Набор прочности бетона в зависимости от температуры снип: График набора прочности бетона, таблица прочности бетона

Опубликовано в Разное
/
23 Окт 1979

Содержание

График набора прочности бетона (СНИП)

Содержание
  1. Этапы твердения раствора
  2. Что влияет на набор максимальной прочности
  3. Ускорение набора прочности

Ключевой этап проведения ремонтно-строительных работ – сушка бетона. Залитый состав отвердевает и набирает прочность несколько недель. Процесс проходит под наблюдением инженеров и требует постоянного контроля.

Специалисты обеспечивают выполнение нормативов и при необходимости вносят коррективы в график. Материал чувствителен к температурным колебаниям и имеет «коэффициент сезонности» – зимой бетонные работы проводят с использованием систем обогрева. Чтобы определить, сколько сохнет бетон, учитывают различные факторы.

Этапы твердения раствора

Бетонные работы – часть любого строительства, от дачно-коттеджного до промышленного и специального. Материал применяют на различных стадиях возведения объектов, для заливки фундамента и несущих конструкций, устройства перекрытий.

Строители успешно используют свойство цементно-песчаной смеси с добавлением щебня – способность принимать форму опалубки. Ценят прочность и долговечность материала, время высыхания которого составляет порядка 28 дней.

В зависимости от условий эксплуатации и качества состава расчетный срок службы объектов достигает 250 лет, а в среднем оценивается в 50-100. Для современного строительства это солидный период – технологии постоянно совершенствуются, появляются новые материалы и конструктивные решения.

Набору прочности по-прежнему уделяют особое внимание и контролируют каждый этап:

  1. Застывание. Происходит в первые часы «жизни» состава. К месту работ раствор доставляют в бетономешалке или подготавливают на месте для максимального сохранения необходимых свойств. Время застывания летом при температуре выше 20°С – около часа, в жару – 15-30 минут. При «ноле» – начинается через 6-10 часов после приготовления смеси и растягивается до 20 часов с момента заливки;
  2. Твердение. Основной этап занимает 7-14 дней. За этот период конструкция набирает до 70% расчетного значения, которое зависит от марки бетона;
  3. Контрольное значение по ГОСТ 18105-86. Стандартное время набора прочности – 28 дней. Специалисты сравнивают полученный результат с нормативами специальной таблицы.

Имеется прямая зависимость между затвердением раствора в различных условиях и достижением максимального значения.

Что влияет на набор максимальной прочности

Абсолютное большинство бетонных работ выполняют на открытом воздухе. Погодные условия и температурный график – ключевые параметры, которые определяют, сколько застывает раствор.

В теплое время года созревание смеси и постепенное отвердение происходит естественным образом. Процесс зависит от физико-химических свойств состава и имеет небольшие отличия, связанные с маркой бетона.

В осенне-зимний период набор прочности обеспечивают двумя способами:

  • Противоморозные добавки. Используют для сохранения свойств приготовленного раствора. Специальные вещества не допускают замерзание воды и потерю качества, облегчают заливку конструкции, выравнивание поверхности;
  • Электропрогрев. Выполняется несколькими методами с общей сутью – обеспечение равномерного прогрева толщи бетона в течение периода, необходимого для набора прочности.

При низких температурах применяют провода ПНСВ или «вживляют» в материал электроды, после чего подключают напряжение. Реже используют в качестве нагревательного элемента саму опалубку, покрывают поверхность специальными матами.

Работы требуют соблюдения правил электробезопасности и выполняются по СНиП 3.03.01-87. Если минимальная температура достигает 0°С, а средняя за сутки не превышает 5°С, бетонирование изначально планируют с прогревом залитой конструкции. При необходимости в раствор включают ПМД.

Ускорение набора прочности

Бетонные составы классифицируют в зависимости от показателя прочности на сжатие. Легкие растворы используют для вспомогательных работ или конструкций, которые не испытывают нагрузку.

Базовыми считаются бетоны М-200 – М-400. Составы применяют при сооружении большинства объектов гражданского строительства. Растворы класса выше М-500 предназначаются для специальных объектов и конструкций повышенной прочности.

Базовую скорость отвердения рассчитывают на основе марок М-200 – М-300.

Показатели основаны на временном промежутке в четыре недели. На практике необходимый период сокращается при определенных условиях:

  • Использование специальных добавок. Это вспомогательные компоненты, которые подмешивают в раствор при приготовлении. Применение сокращает время полного застывания до 14 дней. Такие работы проводят летом – антиморозные добавки не обладают подобным свойством;
  • Увлажнение. При сухой жаркой погоде происходит быстрое испарение воды из высыхающего состава, что отрицательно влияет на график набора прочности и качество конструкции. Постоянное увлажнение способствует созданию условий, при которых достигают оптимальной динамики застывания.

После завершения расчетного периода проводят испытания бетона и контрольные замеры. Если показатели соответствуют нормативам, приступают к следующим этапам работ.

Чтобы строительство завершилось согласно планам, рекомендуется разработать детальную проектную документацию с учетом особенностей конструкции. В календарном графике бетонные работы по возможности планируют в наиболее благоприятный сезон.


Процесс набора прочности бетона в зависимости от температуры (СНиП, ГОСТ)

Главное свойство бетонной смеси определяет набор прочности бетона, отражающий качественное состояние монолитной конструкции. Поскольку она находится во взаимосвязи со структурой данного строительного материала, то набор прочности можно поделить на два шага, связанных со схватыванием и затвердеванием бетона. Для последнего характерно наличие физико-химических свойств, возникающих при взаимодействии цемента с водой. Кода идет формирование бетона, то гидратация цемента вызывает образование других соединений.

Схема приготовления бетона.

Как происходит набор прочности бетона

Схватывание состава может произойти в первые дни с того момента, как была изготовлена консистенция из цемента и воды. Время ее схватывания находится в прямой зависимости от температуры воздуха. Если она составляет 20°С, то может понадобиться около одного часа. Поскольку процесс застывания бетона не мгновенный, а достаточно долговременный, то для набора прочности материала может потребоваться несколько месяцев.

Зачастую схватывание цемента происходит приблизительно спустя около двух часов с того момента, как был затворен цементный раствор, а окончательный процесс может начаться приблизительно спустя три часа. Поэтому на данной стадии может помочь ускоритель схватывания бетона.

Изображение 1. График набора прочности бетона.

Начало данной стадии может быть отодвинуто в результате снижения температурного уровня, а ее продолжительность существенно возрастает. Если уровень температуры воздуха составляет 0°С, то начало этапа схватывания может произойти спустя от 6 до 10 часов после того, как произошло затворение смеси. При этом данный процесс способен растянуться на 15-20 часов. Если температуры завышены, то период схватывания бетона может быть сокращен, что составит около 10-20 мин.

Схватывание бетона предполагает то, что данный состав должен оставаться подвижным весь период, что позволяет оказывать влияние на смесь. Механизм тиксотропии, связанный с уменьшением вязкости субстанции в условиях механического воздействия на нее, то есть периодического смешивания бетона, который схватился не полностью, твердение и процесс высыхания бетона не начинаются. Данное свойство учитывают в процессе доставки раствора на бетоносмесителе, поскольку состав при этом должен перемешиваться в миксере, что позволяет сохранять все его важные свойства.

Вращение миксера машины препятствует высыханию цементного раствора, не позволяя твердеть смеси достаточно долго. Возможно и развитие необратимых последствий, которые называют «свариванием» бетона, а это снижает его полезные свойства. Данный процесс особенно быстро может происходить летом.

Вернуться к оглавлению

Что представляет собой процесс твердения бетона

Ниже перечислены особенности, характерные для бетона:

Относительная прочность бетона в разные сроки твердения при различных температурах.

  1. Чем ниже уровень температуры внешней среды, тем медленней твердеет состав и нарастает его прочность.
  2. Если температура не превышает нулевую отметку по Цельсию, то вода в составе начинает замерзать, а твердение смеси уже не происходит. Повышение уровня температуры влечет за собой возобновление твердения.
  3. Влажность среды позволяет всей строительной массе приобретать более высокую прочность, чем в процессе затвердевания бетона вне помещения.
  4. Процесс схватывания бетона может стать замедленным и практически непрерывным при отсутствии влаги, так как именно она необходима в первую очередь при гидратации цемента.
  5. Если температура повышается до 80-90°С, то происходит значительное увеличение скорости процесса нарастания прочности в условиях максимальной влажности.

Пар высокого давления позволяет пропаривать смесь автоклавным способом, что осуществляется только при создании соответствующих условий.

Набор прочности бетона — это непостоянная величина. Если твердение бетона происходит в нормальных условиях, то набор прочности начинается через одну-две недели, что составляет от 60 до 70% от того уровня прочности, который набирается за 28 дней. Далее он продолжается, но очень медленно. С момента, когда была произведена заливка раствора, затвердевание бетона является максимальным.

При правильном течении процесса гидратации должны соблюдаться определенные условия. Уровень влажности должен составлять от 90 до 100%, а температуры — от 18 до 20°С. При нарушении данных условий может произойти изменение времени застывания состава.

Переход воды при отрицательных температурах в твердое состояние вызывает в результате промерзания бетона давление кристаллов льда на массу частиц цемента, что может снижать качество состава.

Таблица соответствия марок и классов бетона.

Смесь начинает затвердевать и при низком уровне влажности. Это вызвано прекращением поступления влаги, что требуется для гидратации цемента.

Если для конструкции характерны идеальные условия, то гидратация возобновляется. Когда подходит к концу уже вторая неделя, то смесь уже имеет прочность, составляющую 80% от основной первоначальной прочности. После этого ее набор замедляется.

На практике по истечении 28 дней завершение набора прочности не происходит, поскольку длительность данного процесса может составлять несколько лет. Когда смесь достигает трехлетнего возраста, то его прочность соответствует 200-250% от величины, характерной для возраста бетона, равного 28 суткам.

Никто не может дать однозначного ответа на вопрос о длительности процессов твердения смеси. Все зависит от той нагрузки, которая запланирована для той или иной конструкции.

Вернуться к оглавлению

Как осуществляют испытания

Например, если планируется строительство забора из металлического сайдинга либо досок, то для его возведения будет достаточно устройства бетонного ленточного фундамента. Если требуется начать строительство дома на бетонном фундаменте, то без помощи специалиста высокой квалификации здесь не обойтись. Процесс набора прочности в зависимости от температуры показан на рисунке (ИЗОБРАЖЕНИЕ 1).

Изображение 2. Таблица набора прочности бетона.

Марочная прочность, которая набрана за 28 суток, на рисунке взята за 100%. Оценка класса бетона производится спустя 28 суток. Осуществление процесса испытаний возможно с использованием образцов, имеющих стандартную кубическую форму. Сторона куба при этом может составлять 15 см. Температура, позволяющая выдержать образец, должна достигать 20°С, а относительная влажность колебаться в пределах 95%. Хранить смесь в виде испытуемых образцов можно в камере нормального хранения в нормальных условиях.

Если уровень температуры твердения отклоняется от нормального в наибольшую сторону, то созревание бетона будет осуществляться в условиях повышенной температуры. Если происходит ее отклонение к наименьшей стороне, то твердение бетона может предполагать сниженную температуру.

В таблице (ИЗОБРАЖЕНИЕ 2) отражена информация, связанная с набором прочности бетонного состава, имеющего марку от М200 до М300, изготавливаемого на основе портландцемента, маркой М-400 или М-500, за первые прошедшие 28 суток, что определяется среднесуточной температурой.

Вернуться к оглавлению

Способы заливки бетона при повышенных температурах

Среди многих факторов, оказывающих влияние на набор прочности бетонного раствора, в большей степени можно отметить следующие:

  1. Соотношение воды с цементом.
  2. Уровень уплотнения смеси.
  3. Тип цемента, необходимый при производстве раствора.
  4. Определенная температура, которая характерна в процессе твердения бетона.

Таблица критической прочности для разных марок бетона.

В подавляющем большинстве случаев, связанных с осуществлением работ с использованием раствора бетона, влияние атмосферных условий может быть слишком далеким от идеальных, поэтому необходимо принятие дополнительных мер. Когда заливка раствора осуществляется в холодный период, то отрицательные температуры требуют обеспечения прогрева смеси.

С этой целью можно применять ряд различных способов. Среди них можно выделить процесс прогрева бетона с применением электрических проводов. При этом заливку раствора делают, используя теплую опалубку. Для предотвращения процесса кристаллизации воды зимой в бетон производится ввод соответствующих антиморозных присадок.

В зимних условиях иногда может быть использован способ, который предполагает гидратацию цемента. С этой целью в бетон добавляют противоморозные вещества в небольших количествах. Температура при заливке смеси должна составлять не менее -15°С. Данные условия связаны с быстрым замерзанием воды и прекращением процесса гидратации, возобновление которого происходит только в весенний период. Применение данного метода способно приводить к процессу снижения качества бетонной конструкции.

Другое экстремальное условие связано с повышенным уровнем температуры окружающего воздуха. Данный случай позволяет увлажнять застывающий раствор. При этом после поливания раствора водой бетон должен быть укрыт специальной пленкой и слоем состава, который имеет битумную основу. Созревание бетона требует осуществления контроля над изменением объема смеси. Превышение в процентах не должно составлять 1% от первоначального уровня показателя.

Отсутствие усадки при этом является идеальным моментом, хотя на практике это не всегда становится возможным. При изменении объемов, которое имеет практическое значение, возможно применение специальных мер, далеко не всегда являющихся эффективными. Если времени на процесс высыхания бетона недостаточно, то на заливке могут появиться трещины, которые способны вызвать понижение прочности всей строительной конструкции.

График набора прочности бетона в зависимости от температуры

Самым важным показателем качества бетонов является прочность материала. Согласно требованиям ГОСТ в условиях сжатия она может варьировать в диапазоне М50-800. Наибольшей популярностью пользуются марки цемента М100-500.

Блок: 1/5 | Кол-во символов: 219
Источник: http://aquagroup.ru/articles/nabor-prochnosti-betona.html

Стадии набора прочности и влияние температуры

Вы наверняка знаете, что для достижения марочного значения бетона требуется 28 дней. Это общая цифра, которая на деле может отклоняться в большую или меньшую сторону. Чтобы возвести надежную постройку, нужно понимать сам процесс набора прочности, он состоит из двух стадий:

  • На первой стадии смесь схватывается – все компоненты бетона соединяются между собой.
  • На второй материал набирает прочность и твердеет.

Блок: 2/7 | Кол-во символов: 456
Источник: http://okbeton.ru/raschet/nabor-prochnosti-betona-v-zavisimosti-ot-temperatury.html

Срок твердения бетона

Подавляющее большинство самодеятельных строителей считают по не совсем понятным причинам, что за окончанием укладки в опалубку либо завершением работ по выравниванию стяжки процесс бетонирования законченным. Между тем, время схватывания бетона значительно больше, чем время на его укладку. Бетонная смесь – живой организм, в котором по окончании укладочных работ происходят сложные и протяженные по времени физико-химические процессы, связанные с превращением раствора в надежную основу строительных конструкций.

Прежде чем производить распалубку и наслаждаться результатами приложенных усилий, нужно создать максимально комфортные условия для созревания и оптимальной гидратации бетона, без которой невозможно достижение требуемой марочной прочности монолита. Строительные нормы и правила содержат выверенные данные, которые приведены в таблицах времени схватывания бетона.

Температура бетона, ССрок твердения бетона, сутки
1 2 3 4 5 6 7 14 28
Прочность бетона, %
0 20 26 31 35 39 43 46 61 77
10 27 35 42 48 51 55 59 75 91
15 30 39 45 52 55 60 64 81 100
20 34 43 50 56 60 65 69 87
30 39 51 57 64 68 73 76 95
40 48 57 64 70 75 80 85
50 49 62 70 78 84 90 95
60 54 68 78 86 92 98
70 60 73 84 96
80 65 80 92

Содержащиеся в официальных таблицах данные, конечно, должны служить ориентиром при самостоятельном обустройстве бетонных или железобетонных конструкций. Но применение таких данных должно происходить в плотной практической привязке к реальным условиям строительства.

Блок: 2/5 | Кол-во символов: 1437
Источник: https://betonshchik.ru/poleznoe/vremja-shvatyvanija-betona.html

Как бетон набирает прочность?

После укладки в смеси начинают происходить физико-химические процессы по превращению его в прочную основу для строительной конструкции. Как только под их влиянием вода и цемент вступают во взаимодействие, раствор постепенно теряет свою подвижность и изменяет свойства. Формирование новой структуры происходит в течение определенного времени. Вызревание бетона предполагает прохождение раствором двух стадий: начальной — схватывания, и завершающей — затвердевания. Их прохождение дает возможность получить прочностные свойства соответствующие бетону определенного класса и марки.

Стадия схватывания

Во время транспортировки в автобетоносмесителе смесь остается подвижной благодаря постоянному перемешиванию и тиксотропным ее свойствам. Прекращение механического воздействия на раствор после заливки увеличивает его вязкость, и он начинает схватываться. Все выявленные дефекты нужно устранять в начале первой стадии вызревания, она начинается сразу после заливки бетонной смеси и длится недолго.

Время схватывания зависит от температуры воздуха. Постоянная температура +20°С считается идеальным условием для первой стадии застывания раствора, позволяющим ему схватиться за 3 часа. При изменении этого условия длительность схватывания может уменьшиться или увеличиться. Дольше всего эта стадия длится при температурных значениях окружающего воздуха близких к 0 градусов.

Стадия твердения

После окончательного схватывания раствора начинается стадия твердения. На начальном этапе заполнитель, скрепленный кристаллизованными частицами цемента, не обеспечивает требуемую прочность. Но с началом реакции гидратации, твердение становится наиболее динамичным. Бетонная основа за 7 суток становится намного прочнее. За этот небольшой отрезок времени бетон набирает 70 процентов прочности. После происходит замедление этого процесса и еще 25% твердости набираются на протяжении трех недель. Полное затвердевание происходит через несколько лет.

Блок: 2/4 | Кол-во символов: 1955
Источник: https://betonpro100.ru/harakteristiki-i-svojstva/nabor-prochnosti-betona

Уход за бетоном после заливки: основные цели и методы

Процессы, связанные с проведением мероприятий, которые предшествуют распалубке, содержат несколько технологических приемов. Цель выполнения таких мероприятий одна – создание железобетонной конструкции, максимально соответствующей по своим физико-техническим свойствам параметрам, которые заложены в проект. Основополагающим мероприятием, безусловно, является уход за уложенной бетонной смесью.

Уход заключается в выполнении комплекса мероприятий, которые призваны создать условия, оптимально соответствующие происходящим в смеси физико-химическим преобразованиям, во время набора прочности бетона. Неукоснительное следование предписанным технологией ухода требованиям позволяет:

  • свести к минимальным значениям усадочные явления в бетонном составе пластического происхождения;
  • обеспечить прочностные и временные значения бетонного сооружения в параметрах, предусмотренных проектом;
  • предохранить бетонную смесь от температурных дисфункций;
  • препятствовать прелиминарному отвердению уложенной бетонной смеси;
  • предохранить сооружение от различного происхождения воздействий механического или химического генеза.

Процедуры ухода за свежеобустроенной железобетонной конструкцией следует начинать непосредственно по окончании укладки смеси и продолжаться до тех пор, пока ей не будет достигнуто 70 % прочности, предусмотренной проектом. Это предусматривается требованиями, изложенными в пункте 2.66 СНиПа . Распалубку можно провести и в более ранние сроки, если это обосновано сложившимися параметрическими обстоятельствами.

После окончания укладки бетонной смеси следует провести осмотр опалубочной конструкции. Цель такого осмотра – выяснение сохранения геометрических параметров, выявление протечек жидкой составляющей смеси и механических повреждений элементов опалубки. С учетом того, сколько времени застывает бетон, точнее сказать – с учетом времени его схватывания, проявившиеся дефекты необходимо устранить. Среднее время, за которое может схватиться свежеуложенная бетонная смесь, составляет около 2-х часов, в зависимости от температурных параметров и марки портландцемента. Конструкцию необходимо предохранять от любого механического воздействия в виде ударов, сотрясений, вибрационных проявлений столько, сколько времени сохнет бетон.

Блок: 3/5 | Кол-во символов: 2295
Источник: https://betonshchik.ru/poleznoe/vremja-shvatyvanija-betona.html

Факторы, влияющие на прочность

Практически все работы с раствором проводятся на открытом воздухе как летом, так и зимой. Погодные условия и температура воздуха оказывает непосредственное влияние на время застывания бетона. Таким образом, на набор прочности влияют следующие факторы:

  • температура;
  • влажность;
  • класс материала;
  • время.

Чем ниже температура на улице, тем медленнее и дольше будет происходить процесс затвердения. Зимой, в естественных условиях, эта процедура полностью останавливается, так как вода не испаряется, а замерзает. При повышении температуры застывание раствора опять продолжится. Чтобы это лучше понять, стоит обратиться к графику твердения бетона В25 или В30.

График представляет собой кривые линии, показывающие, как долго и при какой температуре достигается определенная прочность бетона. Если летом твердение бетона протекает естественным образом, то зимой необходимо принимать меры для его застывания. Для этого в бетонную смесь добавляют специальные противоморозные вещества, которые способствуют сохранению свойств приготовленного раствора.

При этом они не дают воде быстро замерзать и позволяют качественно провести заливку бетонной смеси. При более низких температурах сразу после заливки раствора обеспечивают его прогрев. Обычно для этого используют электрический ток или тепловые обогреватели. В первом случае с помощью проводов по контурам производят подключение непосредственно арматуры в опалубке или через электроды, погруженные в раствор.

Причем контуры не должны касаться друг друга, иначе будет короткое замыкание. Все подключение ведется через специальный масляный трансформатор для прогрева бетона. Во втором случае место бетонирования накрывают шатром и подключают несколько воздушных обогревателей. Большую роль играет повышенная влажность воздуха. Если ее показатели достигают 70—90%, то прочность раствора значительно увеличивается.

Блок: 3/4 | Кол-во символов: 1871
Источник: https://TvoiDvor.com/beton/grafik-nabora-prochnosti-betona-v-zavisimosti-ot-temperaturyi/

Вторая стадия

Когда первая стадия завершена, материал начинает твердеть. Необходимую прочность бетон набирает уже через четыре недели, но окончательный набор прочности завершится только через несколько лет. Марку бетона специалисты смогут определить через 28 дней. Набор прочности бетона в зависимости от влажности и температуры проходит с разной скоростью. В первые 5-6 дней после заливки процесс протекает наиболее интенсивно. После первых трех суток материал получит 30% прочности от марочного значения, которое мы узнаем только через 4 недели.

Через две недели после заливки бетон наберет до 70% прочности, а через 90-100 дней прочность превысит марочный показатель на 20%. Прекратится процесс через несколько лет, но прочность изменится незначительно. При проверке бетона, залитого 3 года назад, можно узнать, что его прочность вдвое превысила марочный показатель.

На таблице ниже показано, как длительность набора прочности зависит от температуры:

Блок: 4/7 | Кол-во символов: 960
Источник: http://okbeton.ru/raschet/nabor-prochnosti-betona-v-zavisimosti-ot-temperatury.html

Методы ускорения застывания бетона

Очень часто в процессе строительства необходимо ускорить процесс набора прочности бетона. Так, при заливке монолитных конструкций и ограничении сроков строительных работ применяют смеси на основе сернокислых, углекислых и аммонийных солей, хлоридов и нитратов кальция.

Применение этих добавок позволяет сократить длительность застывания бетона в 2 раза. Стоит заметить, что такие работы проводят в летний период и антиморозные добавки здесь не подойдут. В сильно жаркую и сухую погоду проводят увлажнение залитого раствора, так как очень быстро испаряется вода и происходит нарушение графика набора прочности материала.

Для этого верхнюю часть раствора накрывают материалом или посыпают опилками и периодически смачивают их по мере испарения воды. На асфальтобетонных заводах для ускорения застывания раствора применяют способ пропаривания. Процедуру эту проводят на открытом воздухе или в специальных закрытых камерах, где за 6—16 часов изделия из бетона набирают 60—70% прочности.

Блок: 4/4 | Кол-во символов: 1014
Источник: https://TvoiDvor.com/beton/grafik-nabora-prochnosti-betona-v-zavisimosti-ot-temperaturyi/

График набора прочности бетона

Временной интервал, на протяжении которого происходит обретение раствором необходимых эксплуатационных свойств, называется периодом выдерживания бетона, после которого можно наносить защитный слой бетона. График набора прочности  отражает время, которое требуется бетону для достижения максимального значения прочности.

В нормальных условиях состав «созревает» за 28 дней. На протяжении первых 5-ти дней происходит интенсивное твердение бетона. Спустя 7 дней после заливки достигаются 70% прочности выбранной марки. Однако дальнейшие строительные работы специалисты советуют начинать лишь при достижении 100% — не ранее, чем через 28 дней после заливки.

Время набора прочности бетона для каждого отдельного случая может несколько отличаться. Для точного определения срока твердения состава проводят контрольные испытания образцов материала.

В теплое время года в монолитном домостроении для оптимизации процесса выдерживания состава и обретения им оптимальных механических и физические свойства достаточно следующих операций:

  • Выдерживание в опалубке бетона.
  • Дозревание состава после удаления опалубки.

Если мероприятия проводятся в холодное время года, для достижения должной марочной прочности следует обеспечить дополнительное обогревание бетона и его гидроизоляцию. Связано это с тем, что при снижении температуры происходит замедление процесса полимеризации.

Чтобы ускорить набор прочности и минимизировать время выдержки бетона рекомендуется использовать пескобетоны с низким водоцементным соотношением. При соотношении вода и цемент 1/4 сроки, приведенные в таблице, сокращаются в 2 раза. Для достижения такого результата в состав добавляются пластификаторы. Также сократить срок созревания состава можно, искусственно увеличив температуру.

Блок: 2/5 | Кол-во символов: 1781
Источник: http://aquagroup.ru/articles/nabor-prochnosti-betona.html

Согласно ГОСТ

Необходимая марка и класс бетона определяется с учетом составленного проекта. Необходимые показатели прочности могут меняться в зависимости от применяемых строительных материалов. Например, при возведении дома на основе легких бетона для основания нет необходимости применять бетон высокой прочности. Когда стены строения будут выполнены из кирпича, то бетон должен иметь высокие прочностные характеристики. Например, для этого используют тяжелый и мелкозернистый бетон по стандарту 26633 ГОСТ.

Для определения прочности применяется ГОСТ 18105-86. В этом случае необходимо подготовить проект или же посмотреть информацию со схожего.

Прочность – это главный показатель качества для бетона ГОСТа любого уровня. Процесс его затвердения начинает происходить уже в первые часы после того, как соединили воду и цемент, а вот его длительность зависит от различных факторов: температуру, влажность, состав бетона. Если вес необходимые условия были соблюдены точно, то процесс набора прочности будет окончен по прошествии 28 дней, а вы сможете приступить к необходимым работам.

Блок: 5/5 | Кол-во символов: 1103
Источник: https://ResForBuild.ru/beton/rastvor/grafik-nabora-prochnosti-betona.html

Зависимость времени набора прочности от марки бетонной смеси

Логически понятно, что применение для приготовления бетонных составов разных марок портландцемента приводит к изменению времени твердения бетона. Чем выше марка портландцемента, тем меньше время для набора прочности требуется смеси. Но при использовании любой марки, будь это марка 300 либо 400, не следует прикладывать к железобетонной конструкции значительные механического характера нагрузки раньше, чем по истечении 28 дней. Хотя время схватывания бетона по таблицам, приведенным в строительных правилах, может быть и меньше. Особенно это касается бетонов, приготовленных с применением портландцемента марки 400.

Марка цементаВремя твердения различных марок бетона
за 14 суток за 28 суток
100 150 100 150 200 250 300 400
300 0.65 0.6 0.75 0.65 0.55 0.5 0.4
400 0.75 0.65 0.85 0.75 0.63 0.56 0.5 0.4
500 0.85 0.75 0.85 0.71 0.64 0.6 0.46
600 0.9 0.8 0.95 0.75 0.68 0.63 0.5

Проектирование, строительство и окончательное обустройство любых построек с применением железобетонных компонентов требует внимательного отношения ко всем стадиям возведения. Но от тщательности изготовления бетонных составляющих, в особенности фундаментов, в значительной степени зависит долговечность и надежность всего сооружения. Соблюдение сроков, за какое время схватываются бетонные смеси и составы, можно с уверенностью назвать основой успеха в любом строительном процессе.

Блок: 5/5 | Кол-во символов: 1416
Источник: https://betonshchik.ru/poleznoe/vremja-shvatyvanija-betona.html

Вывод

В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.

Блок: 6/6 | Кол-во символов: 234
Источник: https://kladembeton.ru/poleznoe/nabor-prochnosti-betona.html

Заключение

Как показывает практика, существует множество причин изменения прочностных показателей бетона. Важно учитывать пропорции, качество компонентов, особенности местности и, конечно же, температуру.

Блок: 7/7 | Кол-во символов: 231
Источник: http://okbeton.ru/raschet/nabor-prochnosti-betona-v-zavisimosti-ot-temperatury.html

Кол-во блоков: 18 | Общее кол-во символов: 20078
Количество использованных доноров: 7
Информация по каждому донору:
  1. https://TvoiDvor.com/beton/grafik-nabora-prochnosti-betona-v-zavisimosti-ot-temperaturyi/: использовано 2 блоков из 4, кол-во символов 2885 (14%)
  2. http://okbeton.ru/raschet/nabor-prochnosti-betona-v-zavisimosti-ot-temperatury.html: использовано 3 блоков из 7, кол-во символов 1647 (8%)
  3. https://betonpro100.ru/harakteristiki-i-svojstva/nabor-prochnosti-betona: использовано 1 блоков из 4, кол-во символов 1955 (10%)
  4. http://aquagroup.ru/articles/nabor-prochnosti-betona.html: использовано 5 блоков из 5, кол-во символов 4054 (20%)
  5. https://ResForBuild.ru/beton/rastvor/grafik-nabora-prochnosti-betona.html: использовано 3 блоков из 5, кол-во символов 4155 (21%)
  6. https://kladembeton.ru/poleznoe/nabor-prochnosti-betona.html: использовано 1 блоков из 6, кол-во символов 234 (1%)
  7. https://betonshchik.ru/poleznoe/vremja-shvatyvanija-betona.html: использовано 3 блоков из 5, кол-во символов 5148 (26%)

Набор прочности бетона: особенности ускорителей, по СНиП

Наиважнейшим свойством для бетонов, характеризующим его марку, является прочность изделия, которая проверяется в лабораторных условиях. Образец, достигший возраста 28 суток (срок, за который осуществляется набор прочности бетона в зависимости от температуры,может изменяться), подвергается нагрузке на сжатие до первых признаков разрушения. По результатам испытаний назначается марка бетона в условиях сжатия в диапазоне от М50 до М800.

Не все задумываются о том, а будет ли изделие обладать необходимой прочностью, слепо доверяя наемным рабочим или инструкции рабочего процесса, которую подсказал сосед

Проектирование объектов строительства

При проектировании строительства с применением бетонных смесей утверждается определенный класс материала для каждой отдельно взятой конструкции.

Использование той или иной марки зависит от области применения, но можно смело утверждать, что самыми ходовыми в градостроительстве считаются марки в диапазоне 100-500.

Обычно именно кубик является результатом лабораторных исследований

  • Проектируя сооружения, где недопустимо образование трещин в опорных элементах (плотин, резервуарах запаса воды и т.п.) следует учитывать прочность затвердевшего раствора на растяжение.
  • Проектирование дорожных покрытий и взлетных линий аэродромов большое значение имеет показатель прочности на растяжение при изгибе.

Все эти составляющие показателя прочности бетонов отражаются в маркировке материала.

Для понимания приведем соотношение показателей марочности и классности бетона с показателями прочности смеси классов:

  • В 3,5 – средний показатель прочности 46 кгс/см2(ниже будут указаны только числовые значения)- марка 50.
  • В 5 — 65 — М 75.
  • В 7,5 – 98 — М 100.
  • В 10 и В 12,5 — 131 и 164 — М 150.
  • В 15 – 196 — М 200.
  • В 20 — 262 — М 250.
  • В 25 – 327 — М 300.
  • В 30 — 393 — М 450.
  • В 35 и В 40 — 458 и 524 — М 550.
  • В 45 и В 50 – 589 и 655- М 600.
  • В 55 – 720 — М 700.
  • В 60 – 786 — М 800.

Перевести значение марки смеси в класс можно по формуле — В=(М*0,787)/10. Если вы собираетесь своими руками что-либо возводить, то есть является частным застройщиком, то оптимально использовать марки 250 – 550.

Наличие множества трещин и пузырьков говорит о низком качестве изделия

К сведению!
Класс бетона отражает гарантированную прочность в Мпа.
Изменять класс бетона на этапе строительства в разрез с проектом возможно только по согласованию с проектной организацией и утверждения в отделе архитектурного надзора.
К этому прибегают в исключительных случаях.

Что влияет на прочность бетона

На данный показатель готового изделия влияют многие факторы:

Качественный и правильный армокаркас (на фото) – еще один показатель, от которого напрямую зависит прочность бетонного изделия

  • Активность и содержание цемента в смеси.
  • Водоцементное отношение.
  • Выбор минеральных заполнителей.
  • Степень однородности (зависит от качества перемешивания).
  • Последующее уплотнение.
  • Время, прошедшее после заливки.
  • Условия отвердевания бетона.

Для сокращения сроков твердения бетонных изделий используют ускорители набора прочности бетона. Их применяют по технологической необходимости и всегда при производстве работ в зимнее время. С введением в состав смеси специальных добавок, конечно же, повышается отпускная стоимость бетона.

Важно!
Добавки актуальны только для крупных строительных компаний, занимающихся возведением многоквартирных жилых домов, частным застройщикам особой пользы они не принесут.

Достижение бетоном марочной прочности

Показания степени готовности смеси в зависимости от временных интервалов отражает график набора прочности бетона СНиП. В нормативе оговариваются средние сроки твердения и время набора прочности бетона.

При нормальных условиях смесь созревает в течение 28 суток, причем:

По горизонтали указано время (сутки), по вертикали прочность (проценты)

  • Первый этап интенсивного твердения – первые пять дней.
  • По истечении семи дней после завершения заливки достигается 70% проектной прочности изделия.
  • Окончательного срока отвердевания (100%) придется ожидать оставшиеся 21 сутки и только тогда можно приступать к дальнейшему ведению работ.

Внимание!
Так изменяются показатели прочности бетонных растворов во времени по СНиПу.
В реальных условиях они могут меняться в связи с разными причинами, на это влияет не только температура, но и качество раствора.

Уход в период выдержки

Вот небольшая инструкция о методах создания оптимальных условий для созревания цемента:

  • Первые пять- семь дней особенно важное проведение мероприятий по обеспечению комфортных условий выдержки залитого цемента:
    • Поверхность раствора накройте влагозащитным материалом (подойдет обычная полиэтиленовая пленка, ее цена не сильно бьет по бюджету).
    • Активно увлажняйте ее примерно раз в сутки, вновь накрывая защитным полотном.
    • При необходимости организуйте прогрев бетона с помощью тепловых пушек.
  • Через неделю особое внимание уделяйте увлажнению, если на первоначальной стадии допускалось поливать твердеющий раствор раз за двое суток, то здесь пропускать нельзя.

Примечание!
При наружной температуре воздуха 25-30°С изделие можно вводить в эксплуатацию спустя 11 дней.

В нормативных документах, касающихся бетонных работ можно найти график набора прочности бетона В25 или любого другого класса, что поможет вам разобраться со сроками строительства.

Вот такие цифры и расчеты вы можете обнаружить в специализированных документах

Вывод

Надеемся, что вышеизложенная информация была вам полезна, напомним лишь, что набор прочности бетоном по времени СНиП гарантирован в идеальных условиях. Руководствуясь этими сведениями, следует давать поправку на «жизнь», и не ограничивать срок твердения при умеренной погоде 14-15 днями, как это может быть указано в документах.

В представленных видео в этой статье вы найдете дополнительную информацию по данной теме.

набор прочности бетона по времени, часы, сутки.

Таблица — набор прочности бетона по времени, часы, сутки.

Набор прочности бетона (в часах)

Срок твердения, часы Температура твердения бетона
0°С 5°С 10°С 15°С 20°С 25°С 30°С
прочность бетона на сжатие % от 28-суточной
4 6 7 8 10 12 13 14
8 10 12 13 16 18 20 22
12 13 16 18 21 23 25 27
16 16 19 22 24 27 30 32
20 18 21 24 27 31 33 36
24 20 23 27 30 34 37 39
28 22 25 29 32 37 30 42
32 23 27 31 34 38 42 45
36 24 28 32 36 40 43 47
40 25 29 33 37 42 44 48
44 25 29 34 38 43 46 49
48 26 30 34 39 43 47 50

Набор прочности бетона (в сутках)

Срок твердения, сутки Температура твердения бетона
0°С 5°С 10°С 15°С 20°С 25°С 30°С
прочность бетона на сжатие % от 28-суточной
1 20 23 27 30 34 37 39
2 26 30 34 39 43 47 50
3 30 35 41 45 50 52 56
4 34 40 46 50 55 58 63
5 39 44 51 55 60 63 68
6 42 48 54 59 64 68 72
7 45 52 58 63 68 72 76
10 53 60 67 72 77 82 85
14 60 68 74 81 86 690 95
21 70 76 83 91 97 >100 >100
28 75 83 90 100 >100 >100 >100

График набора прочности бетона в зависимости от температуры

Сегодня бетон является самым популярным материалом для строительства. Широкое распространение этому материалу принесла высокая прочность. Чтобы получить максимальный показатель, необходимо учитывать ряд факторов, среди которых мы выделим температуру. Мы подробно разберем процесс формирования бетона и узнаем, сколько нужно времени для полного застывания в тех или иных условиях. Освоить материал помогут вспомогательные таблицы и графики.

Основными факторами, которые влияют на процесс набора прочности, являются:

  • температура окружающей среды;
  • время застывания;
  • влажность воздуха;
  • марка.

Также стоит учитывать соотношение цемента и воды в смеси, пропорции ингредиентов, способ перемешивания, скорость укладки и регулярность увлажнения. Максимально качественный результат можно получить только при использовании спецтехники. Ручное замешивание не сможет довести смесь до идеальной однородной массы. Это важно для возведения промышленных объектов, но для частного одноэтажного дома способ замеса особой роли не сыграет. На таблице ниже показано, как длительность набора прочности зависит от температуры:

Этапы твердения раствора

Уже довольно давно при строительстве любых объектов стали применять этот материал. Причем его применяют на любых стадиях этого процесса начиная с фундамента и заканчивая плитами перекрытия. Удобен этот материал тем, что способен в жидком состоянии принимать форму опалубки и, по мере его застывания, получается требуемая конструкция.

При этом необходимо знать промежуток времени, за сколько бетон набирает прочность. Обычно полная готовность бетона достигается через 28 суток. Обязательно все работы проводят согласно требованиям строительных норм и правил (СНиП). В этом документе полностью описано как работать с этим материалом в любое время года, чтобы объекты прослужили затем в течение 50—100 лет.

Причем при современном строительстве постоянно появляются новые технологии и конструктивные решения, позволяющие продлить этот срок. Но до сих пор процессу набора прочности уделяют большое внимание и следят за проведением каждого этапа, в которые входят:

  1. Застывание — начинается с первых минут, после залития бетонной смеси, которое производят с помощью автобетоносмесителя. В начальный период прямую зависимость имеет время набора прочности бетона от температуры. Чем температура выше, тем быстрее схватывается раствор. Например, при 20° C этот процесс протекает в течение часа, летом на открытом солнце — от 15 до 30 минут, а при 0° C — до 20 часов.
  2. Твердение — важный этап, при котором материал набирает до 70% расчетного значения прочности. Длительность этого процесса зависит от марки материала и протекает от 7 до 14 дней.

Во время заливки раствора одновременно берутся и контрольные пробы, которые затем проверяют специалисты и сравнивают с нормативами, через определенное время, по таблице твердения бетона.

Дополнительно о влиянии температуры внешней среды на твердение материала

Набор прочности бетона, особенности, график которого описаны в статье, зависит от температуры. Чем холоднее, тем медленнее будет повышаться прочность. При отрицательных температурах процесс и вовсе останавливается, так как вода замерзает, а ведь она обеспечивает гидратацию цемента. С повышением температуры набор продолжится. Но при снижении этот процесс снова остановится. Если в составе присутствуют модификаторы, время твердения уменьшается, тогда как температура, при которой процесс останавливается, снижается.

В продаже можно найти быстродействующие составы, которые имеют способность придавать бетону марочную прочность через 2 недели. Так как потепление будет способствовать сокращению процесса созревания материала, то можно утверждать, что при 40 °C марочное значение будет достигнуто через 7 дней. Поэтому заливка бетона должна осуществляться в жаркую погоду. Зимой для обеспечения нормальных условий потребуется подогрев материала, а своими силами осуществить такие работы будет проблематично, ведь потребуется специальное оборудование. Кроме того, нагревать раствор до 90 °C и выше недопустимо.

Факторы, влияющие на прочность

Практически все работы с раствором проводятся на открытом воздухе как летом, так и зимой. Погодные условия и температура воздуха оказывает непосредственное влияние на время застывания бетона. Таким образом, на набор прочности влияют следующие факторы:

  • температура;
  • влажность;
  • класс материала;
  • время.

Чем ниже температура на улице, тем медленнее и дольше будет происходить процесс затвердения. Зимой, в естественных условиях, эта процедура полностью останавливается, так как вода не испаряется, а замерзает. При повышении температуры застывание раствора опять продолжится. Чтобы это лучше понять, стоит обратиться к графику твердения бетона В25 или В30.

График представляет собой кривые линии, показывающие, как долго и при какой температуре достигается определенная прочность бетона. Если летом твердение бетона протекает естественным образом, то зимой необходимо принимать меры для его застывания. Для этого в бетонную смесь добавляют специальные противоморозные вещества, которые способствуют сохранению свойств приготовленного раствора.

При этом они не дают воде быстро замерзать и позволяют качественно провести заливку бетонной смеси. При более низких температурах сразу после заливки раствора обеспечивают его прогрев. Обычно для этого используют электрический ток или тепловые обогреватели. В первом случае с помощью проводов по контурам производят подключение непосредственно арматуры в опалубке или через электроды, погруженные в раствор.

Причем контуры не должны касаться друг друга, иначе будет короткое замыкание. Все подключение ведется через специальный масляный трансформатор для прогрева бетона. Во втором случае место бетонирования накрывают шатром и подключают несколько воздушных обогревателей. Большую роль играет повышенная влажность воздуха. Если ее показатели достигают 70—90%, то прочность раствора значительно увеличивается.

Зависимость уровня набора прочности от показателей температуры материала

Набор прочности бетона в зависимости от температуры материала будет происходить по-разному. В качестве примера можно рассмотреть марки бетона в пределах от М-200 до М-300, которые были затворены на портландцементе с маркировкой в пределах от М-400 до М-500. За сутки материал достигнет трехпроцентной прочности на сжатие, если его температура будет равна -3 °C. При условиях, что смесь будет иметь температуру в +30 °C, прочность за сутки составит 35%.

За трое суток прочность достигнет 8%, если температура материала будет равна -3 °C. 60% прочности удастся добиться при +30 °C температуры за этот же период времени. Если температура материала будет равна +5 °C в течение 28 дней, то прочность материала составит 77%. Стопроцентной прочности удастся добиться за 14 дней, если температура материала будет равна +30 °C.

Методы ускорения застывания бетона

Очень часто в процессе строительства необходимо ускорить процесс набора прочности бетона. Так, при заливке монолитных конструкций и ограничении сроков строительных работ применяют смеси на основе сернокислых, углекислых и аммонийных солей, хлоридов и нитратов кальция.

Применение этих добавок позволяет сократить длительность застывания бетона в 2 раза. Стоит заметить, что такие работы проводят в летний период и антиморозные добавки здесь не подойдут. В сильно жаркую и сухую погоду проводят увлажнение залитого раствора, так как очень быстро испаряется вода и происходит нарушение графика набора прочности материала.

Для этого верхнюю часть раствора накрывают материалом или посыпают опилками и периодически смачивают их по мере испарения воды. На асфальтобетонных заводах для ускорения застывания раствора применяют способ пропаривания. Процедуру эту проводят на открытом воздухе или в специальных закрытых камерах, где за 6—16 часов изделия из бетона набирают 60—70% прочности.

Как происходит набор прочности бетона

Схватывание состава может произойти в первые дни с того момента, как была изготовлена консистенция из цемента и воды. Время ее схватывания находится в прямой зависимости от температуры воздуха. Если она составляет 20°С, то может понадобиться около одного часа. Поскольку процесс застывания бетона не мгновенный, а достаточно долговременный, то для набора прочности материала может потребоваться несколько месяцев.

Зачастую схватывание цемента происходит приблизительно спустя около двух часов с того момента, как был затворен цементный раствор, а окончательный процесс может начаться приблизительно спустя три часа. Поэтому на данной стадии может помочь ускоритель схватывания бетона.


Изображение 1. График набора прочности бетона.

Начало данной стадии может быть отодвинуто в результате снижения температурного уровня, а ее продолжительность существенно возрастает. Если уровень температуры воздуха составляет 0°С, то начало этапа схватывания может произойти спустя от 6 до 10 часов после того, как произошло затворение смеси. При этом данный процесс способен растянуться на 15-20 часов. Если температуры завышены, то период схватывания бетона может быть сокращен, что составит около 10-20 мин.

Схватывание бетона предполагает то, что данный состав должен оставаться подвижным весь период, что позволяет оказывать влияние на смесь. Механизм тиксотропии, связанный с уменьшением вязкости субстанции в условиях механического воздействия на нее, то есть периодического смешивания бетона, который схватился не полностью, твердение и процесс высыхания бетона не начинаются. Данное свойство учитывают в процессе доставки раствора на бетоносмесителе, поскольку состав при этом должен перемешиваться в миксере, что позволяет сохранять все его важные свойства.

Вращение миксера машины препятствует высыханию цементного раствора, не позволяя твердеть смеси достаточно долго. Возможно и развитие необратимых последствий, которые называют «свариванием» бетона, а это снижает его полезные свойства. Данный процесс особенно быстро может происходить летом.

Что представляет собой процесс твердения бетона

Ниже перечислены особенности, характерные для бетона:


Относительная прочность бетона в разные сроки твердения при различных температурах.

  1. Чем ниже уровень температуры внешней среды, тем медленней твердеет состав и нарастает его прочность.
  2. Если температура не превышает нулевую отметку по Цельсию, то вода в составе начинает замерзать, а твердение смеси уже не происходит. Повышение уровня температуры влечет за собой возобновление твердения.
  3. Влажность среды позволяет всей строительной массе приобретать более высокую прочность, чем в процессе затвердевания бетона вне помещения.
  4. Процесс схватывания бетона может стать замедленным и практически непрерывным при отсутствии влаги, так как именно она необходима в первую очередь при гидратации цемента.
  5. Если температура повышается до 80-90°С, то происходит значительное увеличение скорости процесса нарастания прочности в условиях максимальной влажности.

Пар высокого давления позволяет пропаривать смесь автоклавным способом, что осуществляется только при создании соответствующих условий.

Набор прочности бетона — это непостоянная величина. Если твердение бетона происходит в нормальных условиях, то набор прочности начинается через одну-две недели, что составляет от 60 до 70% от того уровня прочности, который набирается за 28 дней. Далее он продолжается, но очень медленно. С момента, когда была произведена заливка раствора, затвердевание бетона является максимальным.

При правильном течении процесса гидратации должны соблюдаться определенные условия. Уровень влажности должен составлять от 90 до 100%, а температуры — от 18 до 20°С. При нарушении данных условий может произойти изменение времени застывания состава.

Переход воды при отрицательных температурах в твердое состояние вызывает в результате промерзания бетона давление кристаллов льда на массу частиц цемента, что может снижать качество состава.


Таблица соответствия марок и классов бетона.

Смесь начинает затвердевать и при низком уровне влажности. Это вызвано прекращением поступления влаги, что требуется для гидратации цемента.

Если для конструкции характерны идеальные условия, то гидратация возобновляется. Когда подходит к концу уже вторая неделя, то смесь уже имеет прочность, составляющую 80% от основной первоначальной прочности. После этого ее набор замедляется.

На практике по истечении 28 дней завершение набора прочности не происходит, поскольку длительность данного процесса может составлять несколько лет. Когда смесь достигает трехлетнего возраста, то его прочность соответствует 200-250% от величины, характерной для возраста бетона, равного 28 суткам.

Никто не может дать однозначного ответа на вопрос о длительности процессов твердения смеси. Все зависит от той нагрузки, которая запланирована для той или иной конструкции.

Как осуществляют испытания

Например, если планируется строительство забора из металлического сайдинга либо досок, то для его возведения будет достаточно устройства бетонного ленточного фундамента. Если требуется начать строительство дома на бетонном фундаменте, то без помощи специалиста высокой квалификации здесь не обойтись. Процесс набора прочности в зависимости от температуры показан на рисунке (ИЗОБРАЖЕНИЕ 1).


Изображение 2. Таблица набора прочности бетона.

Марочная прочность, которая набрана за 28 суток, на рисунке взята за 100%. Оценка класса бетона производится спустя 28 суток. Осуществление процесса испытаний возможно с использованием образцов, имеющих стандартную кубическую форму. Сторона куба при этом может составлять 15 см. Температура, позволяющая выдержать образец, должна достигать 20°С, а относительная влажность колебаться в пределах 95%. Хранить смесь в виде испытуемых образцов можно в камере нормального хранения в нормальных условиях.

Если уровень температуры твердения отклоняется от нормального в наибольшую сторону, то созревание бетона будет осуществляться в условиях повышенной температуры. Если происходит ее отклонение к наименьшей стороне, то твердение бетона может предполагать сниженную температуру.

В таблице (ИЗОБРАЖЕНИЕ 2) отражена информация, связанная с набором прочности бетонного состава, имеющего марку от М200 до М300, изготавливаемого на основе портландцемента, маркой М-400 или М-500, за первые прошедшие 28 суток, что определяется среднесуточной температурой.

Контроль за процессом

Набор прочности бетона в зависимости от температуры был освещен выше. Однако важно следить за процессом в течение первой недели. Мероприятия, направленные на обеспечение условий для выдержки, выражены в:

  • электрообогреве;
  • увлажнении;
  • укрывании влагозащитными и теплоизолирующими материалами;
  • обогреве тепловыми пушками.

Нужно будет уделить внимание смачиванию поверхности. Через неделю после выработки состава конструкция может быть нагружена, это верно, если температура воздуха будет равна 25-30 °C.

Бетон набирает прочность за 28 суток. Сколько времени бетон набирает прочность. Уход за бетоном и температурный режим

Устройство железобетонного монолитного фундамента требует знания и понимания многих важных моментов.

Прежде чем залить смесь в опалубку, непрофессионалу в строительной теме следует подготовиться теоретически.

Имеет немалое значение время разборки опалубки. Как контролировать прочность и когда можно фундамент нагружать?

Как указано в п. 2.5 СНиП 2.03.01-84, для возведения фундаментов следует применять бетон не ниже М-200. Так как БМ-100 используют для устройства подготовки, само тело фундамента чаще всего выполняют из бетона М-200.

На твердость уложенного в опалубку раствора влияют разные факторы, в том числе такие:

  • Правильное соотношение ингредиентов;
  • Температура воздуха;
  • Влажность воздуха;
  • Период времени от приготовления смеси до укладки;
  • Толщина слоя;
  • Соблюдение технологии и пр.

Набор прочности представляет собой химический процесс, требующий оптимальных условий, наиболее важны тепло и влажность. В зависимости от соотношения этих показателей, процесс достижения нормативных прочностных характеристик длится до 28 суток.

Если чрезмерно жарко, то есть температура воздуха выше 25 градусов, то смесь , из нее быстро испарится влага, необходимая для нормального течения реакции твердения, а при температурах ниже +5 градусов процессы замедляются, что отрицательно сказывается на времени застывания.

Оптимальная температура +20 градусов по Цельсию. Уже с первых часов прочность смеси начинает увеличиваться: через 2,5 часа смесь схватится, но твердость еще слишком мала, чтобы бетон держал форму. Интенсивнее всего фундамент набирает прочность в первую неделю, достигая 70% от проектной. Застывание, твердение продолжается до 28 суток.

Контроль схватывания бетона

В условиях выполнения бетонных работ строительными предприятиями контроль качества проводится путем испытания образцов бетона следующими методами:

  • Сжатием специальным оборудованием;
  • Простукиванием массива молотком Кашкарова;
  • Ультразвуковыми приборами (неразрушающий метод).

Для испытания на стационарном станке готовят кубики: из одной порции смеси заливают образцы размером 10×10 см в количестве не менее 3-х, маркируя сами образцы, а также фиксируя на них дату и время.

Кубики передают в специальную строительную лабораторию проводить испытания, где на основании нагрузки, при котором кубики разрушились, выполняют расчеты и выводят прочность бетона, учитывая возраст кубиков. Этот метод считается точным.

Простукивание молотком дает приблизительные результаты и относится к неточным методам. Молотки есть разных видов, а прибор конструкции Кашкарова примечателен тем, что сила удара не отражается на итоговых показаниях прочности. Сам молоток весит 400-800 г.

Прочностные показатели определяют по следам, остающемся на бетоне, в соответствии с таблицей, приведенной в нормативной литературе.

Ультразвуковые приборы основаны на определении скорости прохождения ультразвука через толщу бетона: чем плотнее бетон, тем меньше скорость. Кроме величины прочности, ультразвуковой метод позволяет установить наличие пустот, раковин в массиве фундамента или иного конструктивного элемента.

Специальные методы должны применяться профессионалами с опытом работы в строй. лаборатории, дилетанты не смогут определить точной величины сопротивления материала сжатию, то есть прочности.

В кустарных условиях проверка схватывания производят так: одновременно с укладкой смеси в опалубку заливают отдельно форму произвольного размера (размером в плане 10×10 см), но желательно одинаковой с основным конструктивом высоты.

На 2 день с одной стороны опалубку нужно снять и посмотреть, держит ли бетон форму, насколько он схватился. При необходимости следует спустя сутки убрать опалубку с другой грани образца и проанализировать динамику схватывания. Один из образцов можно попытаться разбить, чтобы убедиться в его твердости.

Важно понимать, что образец меньших размеры, чем массив фундамента, а в небольшом объеме бетон застывает быстрее. Убедившись, что образец схватился, следует дать массиву дополнительное время 2-5 суток, чтобы получить желаемый результат — крепко затвердевший, схватившийся фундамент.

Когда снимать опалубку

Снятие опалубки можно осуществлять при острой необходимости на 3-5 день, но лучше выдержать 7-14 дней.

Хорошо схватившийся, набравший 30-70% прочности бетон сохраняет форму, не дает сколов разбирая опалубку. Распалубка допустима в ранние сроки, если щиты, доски нужны для выполнения работ на другой захватке или на следующем объекте.

В приватном строительстве резонно не спешить и дать смеси набрать нужные показатели прочности, для чего потребуется 2 недели.

Через сколько можно нагружать фундамент

Давать нагрузку на фундамент — значит, выполнять следующий этап возведения здания, в случае с фундаментом это устройство стен:

Такой срок наступает по прошествии 28-30 дней с момента заливки бетона в опалубку.

Этот срок можно сократить, если применить специальные средства — химические добавки, или же технологические приемы, как прогревание в холодное время года, полив водой или укрытие мокрыми матами летом, когда жара.

Если бетон схватывается в естественных условиях лучше не торопиться и снимать опалубку не раньше, чем через одну-две недели, а возводить стены в возрасте не менее 4 недель.

В конструкции фундамента ничего сложного нет, но лучше, когда этим занимаются профессионалы, у которых есть и опыт, и технические средства контроля застывания бетона.

Если все-таки заливка опалубки выполняется своими силами, то распалубку лучше сделать спустя 7-14 дней, а подвергать нагрузке — не раньше, чем через 28 дней с даты заливки.

Для твердения бетона характерны следующие особенности:

  • чем ниже температура окружающего воздуха, тем медленнее происходит твердение и нарастает прочность;
  • при температуре ниже 0°С вода, необходимая для гидратации цемента, замерзает и твердение прекращается. При последующем повышении температуры твердение и набор прочности возобновляются;
  • при прочих равных условиях во влажной среде к определенному сроку бетон приобретает прочность выше, чем при твердении на воздухе;
  • в сухих условиях дальнейшее твердение замедляется и практически прекращается, из-за отсутствия влаги, необходимой для гидратации цемента;
  • при повышении температуры до 70-90° С и максимальной влажности скорость нарастания прочности значительно увеличивается. Именно такие условия создают при пропаривании бетона паром высокого давления в автоклавах.

Заметим, что скорость набора прочности бетона – величина непостоянная. Твердение имеет наибольшую интенсивность в первые 7 суток с момента заливки бетонной смеси. При нормальных условиях твердения через 7-14 дней бетон набирает 60-70% от своей 28-дневной прочности. В дальнейшем набор прочности не прекращается, но происходит гораздо медленнее, а к трехлетнему возрасту прочность бетона может достигать 200-250% от величины, определенной в возрасте 28 суток.

От чего зависит набор прочности и твердение

На набор прочности бетона влияют множество факторов, среди них можно выделить следующие:

  • тип цемента, используемого при производстве бетонной смеси;
  • температура, при которой происходит твердение бетона;
  • водоцеметное отношение;
  • степень уплотнения бетонной смеси.

Влияние каждого из вышеперечисленных факторов на твердение и набор прочности приведено ниже в виде таблицы и графиков.

Зависимость от типа цемента и температуры твердения:

Ниже приведены данные по набору тяжелым бетоном относительной прочности в зависимости от вышеуказанных двух параметров (типа цемента и температуры твердения).

Время твердения,
суток

Тип цемента

Относительная
прочность бетона при различных температурах твердения

20 о С

10 о С

5 о С

0,45

0,42

0,26

0,16

0,37

0,34

0,21

0,12

0,23

0,19

0,11

0,06

0,58

0,58

0,37

0,22

0,52

0,32

0,19

0,38

0,34

0,21

0,12

0,65

0,66

0,43

0,26

0,38

0,23

0,47

0,45

0,28

0,17

0,78

0,82

0,54

0,33

0,75

0,78

0,51

0,31

0,67

0,68

0,44

0,27

0,87

0,92

0,61

0,38

0,85

0,37

0,81

0,85

0,56

0,34

0,93

Которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.

Процесс набора

Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.

Схватывание

Схема возможного расслоения бетонной смеси: а — в процессе транспортирования и уплотнения, б — после уплотнения; 1 — направление, по которому отжимается вода, 2 — вода, 3, 4 — мелкий и крупный заполнители.

Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.

Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.

Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.

Твердение

Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град., влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.

Вместе с тем на этой стадии закономерно изменяется со временем. К примеру, для к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.

Особенности набора прочности

Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.

Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.

В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.

Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.

От чего зависит набор прочности?

Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.

Поэтому прочностью определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.

В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.

Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.

Выступает прочность. Если ознакомиться с требованиями государственных стандартов, то можно найти информацию о том, что прочность может изменяться в пределах от М50 до 800. Однако одними из самых популярных выступают марки бетона от М100 до 500.

График набора прочности

Раствор бетона в течение определённого времени после заливки будет обретать нужные эксплуатационные свойства. Этот временной интервал называется периодом выдерживания, после него можно осуществлять нанесение защитного слоя. График набора прочности бетона отражает время, в течение которого материал будет достигать наивысшего уровня прочности. Если сохраняются нормальные условия, то на это уйдет 28 дней.

Первые пять суток — это время, в течение которого будет происходить интенсивное твердение. А вот через 7 дней после завершения работ материал достигнет 70% прочности. Дальнейшие строительные работы рекомендуется начинать после достижения стопроцентной прочности, что произойдет через 28 дней. График набора прочности бетона по времени может отличаться для отдельных случаев. Для того чтобы определить сроки, проводятся контрольные испытания над образцами.

Что еще необходимо знать

Если работы по монолитному домостроению осуществляются в теплое время, то для оптимизации процесса выдерживания смеси и обретения ею физических и механических свойств нужно будет выдержать конструкцию в опалубке и оставить дозревать после демонтажа ограждения. График набора прочности бетона в холодное время будет отличаться. Для того чтобы добиться марочной прочности, нужно обеспечить обогревание бетона и гидроизоляцию. Это обусловлено тем, что пониженные температуры способствуют замедлению полимеризации.

Для того чтобы набор прочности произошел как можно быстрее, а выдержка бетона по времени была минимизирована, необходимо добавлять к ингредиентам пескобетоны, у которых водопроцентное соотношение минимально. Если цемент и вода добавляются в пропорции четыре к одному, то сроки будут сокращены в два раза. Для получения такого результата состав должен быть дополнен пластификаторами. Смесь может созревать быстрее, если искусственно повысить ее температуру.

Контроль за набором прочности

Для того чтобы график набора прочности бетона был соблюден, в течение некоторого времени — до недели — необходимо осуществлять мероприятия, обеспечивающие условия для выдержки раствора. Его необходимо обогревать, увлажнять, а также укрывать влаго- и теплоизолирующими материалами.

Для этого довольно часто используются тепловые пушки. Особое внимание специалисты рекомендуют уделять увлажнению поверхности. Через 7 дней после завершения заливки при таких условиях, если температура внешней среды будет изменяться в пределах от 25 до 30 °С, конструкция может нагружаться.

Классификация бетонов

Если в процессе затворения раствора используется цемент и традиционные плотные заполнители, которые позволяют получать тяжелые составы, то данные смеси относятся к маркам М50-М800. Если перед вами то для его приготовления использовались пористые заполнители, позволяющие получать лёгкие составы. Бетон имеет марку в пределах М50-М150, если он является особо легким или легким, а также ячеистым.

Проектная должна быть определена ещё на этапе составления документации по возведению объекта. Эту характеристику дают, основываясь на сопротивлении осевому сжатию в образцах-кубах. В строящихся конструкциях основным является осевое растяжение, марка цемента при этом определяется по нему.

Набор прочности бетона (график набора по времени на растяжение) будет длиться дольше, когда повышается марка по прочности на сжатие. Но в случае с высокопрочными материалами рост сопротивления растяжению замедляется. В зависимости от того, каков состав и область использования смеси, определяется класс и марка по прочности.

Наиболее прочными считаются материалы со следующими марками:

Их применяют в строительстве ответственных конструкций. Когда возводятся сооружения и здания, требующие большой прочности, используется бетон марки М300. А вот при обустройстве стяжки лучше всего использовать состав марки М200. Наиболее крепкими являются цементы, марка которых начинается с М500.

Зависимость набора прочности от температуры

Если вы собираетесь использовать раствор в строительстве, то вам должен быть известен график зависимости набора прочности бетона от температуры. Как было упомянуто выше, схватывание происходит в течение первых нескольких суток после затворения раствора. А вот для завершения первой стадии будет необходимо время, на которое влияет температура внешней среды.

Например, когда столбик термометра удерживается на отметке в 20 °С и выше, на схватывание уходит час. Процесс начинается через 2 часа после того, как смесь будет приготовлена, а завершится через 3 часа. Время и завершение стадии при похолодании сдвинется, для схватывания будет необходимо больше суток. Когда столбик термометра удерживается на нулевой отметке, процесс начинается через 6-10 часов после приготовления раствора, а длится он до 20 часов после заливки.

Важно знать ещё и об уменьшении вязкости. На первой стадии раствор остается подвижным. В этот период на него можно оказывать механическое воздействие, придавая конструкции требуемую форму. Этап схватывания можно продлить, используя механизм тиксотропии, оказывая механическое воздействие на смесь. Перемешивание раствора в бетономешалке обеспечивает продление первой стадии.

Процент прочности бетона от марочной в зависимости от температуры и времени

Начинающих строителей обычно интересует график набора прочности бетона в25 °С. В этом случае всё будет зависеть от марки бетона и срока твердения. Если использовать при замешивании портландцемент марки в пределах до 500, в итоге удастся получить бетон М200-300. Через сутки при указанной температуре его процент прочности на сжатие от марочный составит 23. Через двое, трое суток этот показатель увеличится до 40 и 50% соответственно.

Через 5, 7 и 14 суток процент от марочной прочности будет равен 65, 75 и 90% соответственно. График набора прочности бетона в30 °С несколько изменяется. Через сутки и двое прочность составит 35 и 55% от марочной соответственно. Через трое, пять и семеро суток прочность будет равна 65, 80 и 90% соответственно. Важно помнить, что нормативно-безопасный срок равен 50%, тогда как начинать работы можно лишь тогда, когда прочность бетона достигла отметки в 72% от марочного значения.

Критическая прочность бетона в зависимости от марки: обзор

Сразу после заливки раствор наберет прочность благодаря тепловыделению, а вот после замерзания воды процесс остановится. Если работы предполагается выполнять зимой или осенью, то важно добавлять к раствору противоморозные смеси. После укладки выделяет больше тепла в 7 раз, чем обычный портландцемент. Это указывает на то, что приготовленная на его основе смесь будет набирать прочность и при пониженных температурах.

На скорость процесса оказывает влияние ещё и марка. Чем она ниже, чем выше окажется критическая прочность. График набора прочности бетона, обзор которого представлен в статье, указывает на то, что критическая прочность для бетона марок от М15 до 150 составляет 50%. Для предварительно напряженных конструкций из бетона марки от М200 до 300 это значение составляет 40% от марочной. Бетон марок от М400 до 500 имеет критическую прочность в пределах 30%.

Твердение бетона в перспективе

График набора прочности бетона (СНиП 52-01-2003) не ограничивается месяцем. Для завершения процесса набора прочности может потребоваться несколько лет. Но определить марку бетона можно через 4 недели. Прочность конструкция будет набирать с разной скоростью. Наиболее интенсивно этот процесс протекает в первую неделю. Через 3 месяца прочность увеличится на 20%, после процесс замедляется, но не прекращается. Показатель может увеличиться в два раза через три года, на этот процесс будут влиять:

  • время;
  • влажность;
  • температура;
  • марка бетона.

Довольно часто начинающие строители задаются вопросом о том, в каком ГОСТе график набора прочности бетона можно отыскать. Если вы заглянете в ГОСТ 18105-2010, то более подробно сможете узнать об этом. В этих документах упомянуто, что температура напрямую влияет на длительность процесса. Например, при 40 °С марочное значение достигается уже через неделю. Поэтому зимой работы осуществлять не рекомендуется. Ведь подогревать бетон своими силами проблематично, для этого нужно использовать специальное оборудование и предварительно ознакомиться с технологией. А вот нагревать смесь больше, чем на 90 °С и вовсе недопустимо.

Заключение

Ознакомившись с графиком набора прочности, вы сможете понять, что распалубка осуществляется, когда прочность конструкции превышает 50% от марочного значения. Но если температура внешней среды опустилась ниже 10 °С, то марочное значение не будет достигнуто и через 2 недели. Такие погодные условия предполагают необходимость подогрева заливаемого раствора.

Уход за бетоном

Стоп-халтура! Очень и очень многие дачные строители думают, что следующая важная операция после окончания укладки бетона в опалубку — это распалубка и наслаждение результатами своего труда. На самом деле это не так. После окончания укладки бетона в опалубку начинается следующий серьезный строительный технологический процесс — уход за бетоном. С помощью создания оптимальных условий для гидратации в процессе ухода за бетоном достигается планируемая марочная прочность бетонного камня. Отсутствие этапа ухода за бетоном может привести к деформациям, возникновению трещин и уменьшению скорости набора прочности бетоном.
Уход за бетоном — это комплекс мероприятий по созданию оптимальных условий для выдерживания бетона до набора установленной марочной прочности. Основные цели ухода за бетоном:

  • Минимизировать пластическую усадку бетонной смеси;
  • Обеспечить достаточную прочность и долговечность бетона;
  • Предохранить бетон от перепадов температур;
  • Предохранить бетон от преждевременного высыхания;
  • Предохранить бетон от механического или химического повреждения.

Уход за свежеуложенным бетоном начинается сразу же после окончания укладки бетонной смеси и продолжается до достижения 70 % проектной прочности [пункт 2.66 СНиП 3.03.01-87] или иного обоснованного срока распалубки .
По окончании бетонирования необходимо осмотреть опалубку на предмет сохранения заданных геометрических размеров, течей и поломок. Все выявленные дефекты следует устранить до начала схватывания бетона (1-2 часа от укладки бетонной смеси). Твердеющий бетон необходимо предохранять от ударов, сотрясений и любых других механических воздействий.
В начальный период ухода за бетоном, сразу же после окончания его укладки во избежание размыва и порчи его поверхности, бетон следует укрыть полиэтиленовой пленкой, брезентом или мешковиной.
Особенно тщательно следует сохранять температурный и влажностный режим твердения бетона. Нормальная влажность для твердения это 90-100% в условии избытка воды. Как показано выше в таблице № 52 набор прочности в условиях влажности существенно увеличивает итоговую прочность цементного камня.

При преждевременном обезвоживании (которое также может произойти при утечке цементного молока из негидроизолированной опалубки) бетон получает недостаточную прочность поверхностей, склонность к отслаиванию песка от бетона, увеличенное водопоглощение, сниженную устойчивость против атмосферных и химических воздействий. Также при преждевременном обезвоживании возникают ранние усадочные трещины, и возникает опасность последующего образования поздних усадочных трещин. Преждевременные усадочные трещины образуются в первую очередь вследствие быстрого уменьшения объема свежеуложенного бетона на открытых участках поверхности за счет испарения и выветривания воды. При высыхании бетона он уменьшается в объеме и дает усадку. В результате этой деформации возникают структурные и внутренние напряжения, которые могут привести к трещинам. Усадочные трещины появляются сначала на поверхности бетона, а затем могут проникать вглубь. Поэтому необходимо позаботиться об отсроченном высыхании бетона. Оно должно начаться только тогда, когда бетон наберет достаточную прочность, чтобы выдерживать усадочное напряжение без образования трещин. При образовании ранних трещин, когда бетон еще остается пластичным, образующиеся усадочные трещины можно закрыть с помощью поверхностной вибрации.
Высыхание бетона ускоряется на ветру, при пониженной влажности и при температуре воздуха ниже, чем температура твердеющего бетона. Поэтому поверхность бетона надо предохранять от высыхания в период ухода за бетоном. После того как бетон наберет прочность 1,5 МПа (примерно 8 часов твердения) нужно регулярно увлажнять поверхность бетона водой путем рассеянного полива (не струей!). Можно укрыть поверхность мешковиной, брезентом или опилками и смачивать их водой, укрывая сверху полиэтиленовой пленкой, создавая условия по типу влажно-высыхающего компресса. Увлажнение бетона не проводится при среднесуточных температурах ниже +5°С. При угрозе промерзания бетон можно укрыть дополнительно теплоизолирующими материалами (пенопластом, минеральной ватой, ветошью, сеном, опилками и т.п.).
Даже если постоянное увлажнение бетона водой невозможно, бетон следует укрыть полимерной пленкой толщиной не менее 0,2 мм (200 микрон). Полотнища пленки должны быть уложены максимально возможными цельными кусками с минимум швов. Соединяют полотнища пленки внахлест с перекрытием в 30 см с проклейкой клейкой лентой. Кромки пленки должны плотно прилегать к бетону, чтобы минимизировать испарение воды из-под пленки.
Во избежание повреждения свежеуложенного бетона движущими грунтовыми водами необходимо оградить его от размывания до достижения прочности не ниже 25% (1-5 суток в зависимости от условий при положительной температуре).
Срок окончания ухода за бетоном совпадает со сроком его безопасной распалубки.

Таблица №69. Относительная прочность бетона на сжатие при различных температурах твердения


Бетон

Срок
твердения,
суток

Среднесуточная температура бетона, °С

прочность бетона на сжатие % от 28-суточной

М200 — М300 на
портландцементе
М-400, М-500

*Условно безопасный строк начала работ на фундаменте.

Уход за бетоном и температурный режим

Температура свежеприготовленной бетонной смеси не должна превышать 30 °C. При бетонировании при среднесуточной температуре воздуха от + 5°C до — 3°C, температура бетонной смеси при массе цемента более 240 кг /м3 (марка бетона М200 и выше) должна быть не менее +5°C, а при меньшем количестве цемента не менее +10°C.
Безопасное бетонирование при температуре воздуха менее — 3°C и однократное замораживание бетона и его оттаивание возможно только тогда, когда температуру бетонной смеси как минимум в течение 3 дней поддерживалась на уровне не ниже + 10 °C.

Бетонирование при холодной погоде

При холодной погоде наблюдается замедление схватывания и нарастания прочности бетона. При среднесуточной температуре + 5 °C требуется в два раза больше времени, чтобы бетон достиг такой же прочности, как при температуре +20 °C. При температуре, близкой к температуре замерзания, набор прочности бетона практически прекращается. Если свежий бетон замерзает, то его структура может разрушиться. Неиспользованная при гидратации цемента избыточная вода образует в твердеющем бетоне систему капиллярных пор.
При воздействии мороза вода, находящаяся в порах, полностью или частично замерзает, а образуемый в результате замерзания лед оказывает давление на стенки пор, которые могут привести к разрушению их структуры. Замерзание бетона в раннем возрасте влечет за собой значительное понижение его прочности после оттаивания и в процессе дальнейшего твердения по сравнению с нормально твердевшим бетоном. Это происходит из-за разрыва кристаллами льда связей между поверхностью зернистого заполнителя и цементным клеем (цементным камнем).
Устойчивости свежеуложенного бетона к замерзанию можно добиться специальным составом бетонной смеси и требуемыми сроками твердения бетона при положительной температуре.

Таблица №70. Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию (директива RILEM*)

Температура бетона (среднесуточная температура)

Класс прочности цемента

5 °C

12 °C

20 °C

Необходимое время твердения (дни) для достижения устойчивости к замерзанию бетона с водоцементным отношением 0,60

М400 Д20 32,5 Н (32,5N)

32,5R (быстротвердеющий)

4 2,5N

45 ,5R (быстротвердеющий)

*Международный союз лабораторий и экспертов в области строительных материалов, систем и конструкций.

Таблица № 71 Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию *


Класс (марка) бетона

Прочность бетона монолитных конструкций к моменту замерзания, %

Количество суток выдержки бетона при температуре бетона

В7,5-В10 (М100)

В12,5-В25 (M150 — М 350)

В30 (М400) и выше

Бетон в водонасыщенным состоянии с попеременными циклами замораживания

Бетон с противоморозными добавками, рассчитанными на определенную температуру

*Адаптировано с упрощением из таблицы №6 СНиП 3.03.01-87
К эффективным мерам для производства работ по бетонированию в зимнее время относятся:

  • использование цемента с быстрым набором прочности (литера “R” в классе прочности),
  • повышение содержания цемента в бетонной смеси,
  • снижение водоцементного отношения,
  • предварительный подогрев заполнителей (до + 35°C) и воды (до + 70°C) для бетонной смеси [таблица 6 СНиП 3.03.01-87] ,
  • использование противоморозных и воздухововлекающих добавок.

При применении подогрева бетона нельзя нагревать его до температур выше +30°C. При применении горячей воды с температурой до + 70°C ее предварительно следует смешать с зернистым заполнителем (до введения цемента в бетонную смесь), чтобы не «запарить» цемент. Для этого соблюдают следующую очередность загрузки материалов в бетоносмеситель:

  • одновременно с заполнителем подают основную часть нагретой воды,
  • после нескольких оборотов подают цемент и заливают остальную часть воды,
  • продолжительность перемешивания увеличивают в 1,25 -1,5 раза по сравнению с летними нормами для получения более однородной смеси (минимум 1,5 — 2 минуты),
  • продолжительность вибрирования бетонной смеси увеличивают в 1,25 раза.

При предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание (песчаную подушку) или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания [пункт 2.56 СНиП 3.03.01-87]. После укладки бетона и вибрирования, его необходимо укрыть полимерной пленкой и теплоизолирующими материалами (в том числе возможно использование снега), чтобы сохранить выделяющееся тепло при гидратации цемента (на протяжении 3-7 суток в нормальных условиях). При морозах следует построить над фундаментом парник и подогревать его.

Для самодеятельных дачных строителей без опыта можно рекомендовать придерживаться следующего правила: производить бетонные работы при ожидаемых среднесуточных температурах в пределах 28 суток от момента заливки фундамента ниже +5 °C не рекомендуется.
Также следует помнить, что не допускается оставлять малозаглубленные (незаглубленные) фундаменты незагруженными на зимний период . Если это условие по каким-либо обстоятельствам оказывается невыполнимым, вокруг фунда-ментов следует устраивать временно теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы и других материалов, предохраняющих грунт от промерзания [пункт 6.6 ВСН 29-85]. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

Бетонирование при жаркой погоде

Повышение температуры бетона активизирует взаимодействие воды и цемента и ускоряет твердение бетона. С другой стороны, избыточный нагрев бетонной смеси приводит к расширению, которое фиксируется при схватывании бетона и твердении цементного камня. В дальнейшем, при охлаждении бетон сжимается, однако возникшая структура препятствует этому, и в бетоне возникают остаточные напряжения и деформации. Обычно бетон сильнее нагревается с поверхности, поэтому и избыточное напряжение в первую очередь возникает у его поверхности, где могут образовываться трещины. Критический период времени, когда образуются усадочные трещины, часто начинается через час после приготовления бетонной смеси и может продолжаться от 4 до 16 часов.
При прогнозируемой среднесуточной температуре воздуха выше + 25°C и относительной влажности воздуха менее 50% для бетонирования рекомендуется использовать быстротвердеющие портландцементы, марка которых должна превышать марочную прочность бетона не менее чем в 1,5 раза. Для бетонов класса В22,5 и выше допускается применять цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза при условии применения пластифицированных портландцементов или введения пластифицирующих добавок [пункт 2.63 СНиП 3.03.01-87]. Либо использовать добавки, замедляющие сроки твердения бетона.
Также разумным может быть укладка бетона в утреннее, вечернее или ночное время при падении температуры воздуха и исключения воздействия на бетонную смесь солнечных лучей.
При бетонировании температура поверхности бетона не должна превышать + 30 +35°C. При появлении на поверхности уложенного бетона трещин вследствие пластической усадки допускается его повторное поверхностное вибрирование не позднее чем через 0,5-1 ч после окончания укладки. В особых случаях для охлаждения бетона можно использовать чешуйчатый лед.
Свежеуложенную бетонную смесь надо защищать от обезвоживания из-за воздействия температуры воздуха, солнечных лучей и ветра. После набора бетоном прочности 0,5 МПа, уход за бетоном должен заключаться в обеспечении постоянного влажного состояния поверхности путем устройства влагоемкого покрытия и его постоянного увлажнения, выдерживания открытых поверхностей бетона под слоем воды или непрерывного распыления влаги над поверхностью конструкций с помощью распылителя для газонов или перфорированного шланга. При этом только периодический полив водой открытых поверхностей твердеющих бетонных и железобетонных конструкций не допускается.
Во избежание возможного возникновения термонапряженного состояния в монолитных конструкциях при прямом воздействии солнечных лучей свежеуложенный бетон следует защищать отражающей (фольгированной) полимерной пленкой или бумагой в комбинации с теплоизолирующими материалами. При использовании деревянной опалубки, ее также нужно постоянно поливать водой.
Особенно актуальны меры по охлаждению твердеющего бетона при минимальном размере сечения фундаментной ленты 80 см и более. В этом случае при гидратации выделяется слишком много тепла и перегрев бетона и последующее образование трещин возможно даже при обычных температурных условиях.

Таблица №72. Мероприятия по уходу за бетоном в зависимости от температуры воздуха.


Мероприятия по уходу за бетоном

Температура воздуха °C

от -3°C до +5°C

от +5°C до +10°C

от +10°C до +15°C

от +15°C до +25°C

> + 2 5°C

Накрыть пленкой, увлажнять поверхность, увлажнять опалубку, покрыть бетон влагосохраняющим материалом

Да при сильном ветре

Накрыть пленкой, увлажнять поверхность.

Накрыть пленкой, положить теплоизоляцию

Накрыть пленкой, положить теплоизоляцию, устроить парник, подогревать 3 дня до T +10°C

Постоянно поддерживать тонкий слой воды на поверхности бетона

Рекомендуем также

Влияние температуры окружающей среды на высокоэффективные свойства бетона

Материалы (Базель). 2020 окт; 13 (20): 4646.

Факультет гражданского строительства и архитектуры, Технологический университет Ополе, Катовицка 48, 45-061 Ополе, Польша; [email protected]

Поступило 2 сентября 2020 г .; Принято 12 октября 2020 г.

Лицензиат MDPI, Базель, Швейцария. Эта статья представляет собой статью в открытом доступе, распространяемую в соответствии с условиями лицензии Creative Commons Attribution (CC BY) (http: // creativecommons.org / licenses / by / 4.0 /).

Abstract

В этой статье представлены результаты испытаний высокоэффективного бетона (HPC), подготовленного и отвержденного при различных температурах окружающей среды, в диапазоне от 12 ° C до 30 ° C (прочность на сжатие и плотность бетонной смеси также были проверены при 40 ° C. ). Особое внимание было уделено поддержанию предполагаемой температуры компонентов смеси при ее приготовлении и поддержанию предполагаемой температуры отверждения. Изучены свойства свежей бетонной смеси (консистенция, воздухосодержание, плотность) и свойства затвердевшего бетона (плотность, водопоглощение, глубина проникновения воды под давлением, прочность на сжатие, морозостойкость затвердевшего бетона).Было показано, что повышенная температура (30 ° C) оказывает значительное влияние на потерю удобоукладываемости. В исследованиях использовались тест осадки бетона, тест стола текучести и тест Вебе. Наблюдалось уменьшение осадки и диаметра потока, а также увеличение времени Вебе. Было показано, что повышение температуры схватывания бетона приводит к увеличению начальной прочности на сжатие. После 3 дней отверждения, по сравнению с отверждением бетона при 20 ° C, наблюдалось увеличение прочности на сжатие на 18% при 40 ° C, тогда как при отверждении бетона при 12 ° C прочность на сжатие была ниже на 11%.Повышение температуры снижает прочность на сжатие после периода, превышающего 28 дней. После двух лет отверждения бетон, выдерживаемый при 12 ° C, достиг прочности на сжатие на 13% выше, чем у бетона, выдерживаемого при 40 ° C. Испытания на замораживание-оттаивание HPC в присутствии NaCl показали, что этот бетон показал высокую морозостойкость и противообледенительные материалы (образование накипи на поверхности этого бетона минимально) независимо от температуры процесса отверждения, от 12 ° C до 30 ° С.

Ключевые слова: бетон , температура, бетон с высокими эксплуатационными характеристиками (HPC)

1.Введение

1.1. Влияние температуры на процесс гидратации портландцемента

Температура является важным фактором, влияющим на процесс гидратации цемента и свойства бетонной смеси и затвердевшего бетона. Известно, что скорость реакции гидратации цемента растет с повышением температуры. Следствием этого является более быстрое увеличение прочности бетона на ранней стадии созревания [1,2,3].

Влияние температуры на процесс гидратации цемента было предметом многих исследований.Установлено, что на ранних стадиях созревания скорость гидратации алита значительно увеличивается с повышением температуры, но позже (от 28 до 90 дней) она снижается в зависимости от типа цемента [4]. После года созревания самая высокая степень гидратации наблюдалась в цементных пастах, отвержденных при 10 ° C, а самая низкая — в пастах при 60 ° C. Кроме того, было обнаружено, что при отверждении цементного теста при 10 ° C почти все зерна цемента были гидратированы, в то время как при 60 ° C можно было наблюдать зерна цемента, которые были лишь частично гидратированными.

Исследования микроструктуры гидратных фаз цемента при различных температурах показали, что температура также влияет на морфологию, тип и количество образующихся гидратных фаз. При более высоких температурах наблюдается более неоднородное распределение гидратных фаз и образование более коротких игольчатых кристаллов эттрингита [5]. Более того, результаты показывают, что при повышенных температурах скорость гидратации алита и белита выше.

Результаты авторов исследования [6] показывают, что кажущаяся плотность цементного теста увеличивается с температурой (в диапазоне от 5 ° C до 60 ° C).По мнению авторов, это связано с уменьшением количества связанной воды. Это приводит к более пористой микроструктуре цементного теста и уменьшению объема, занимаемого фазой C-S-H. Авторами также была обнаружена более высокая пористость цементных паст, отверждаемых при повышенных температурах [7]. В результате снижается прочность пасты и прочность получаемого материала.

Исследования, представленные в статье [8], показывают, что при повышенных температурах (40 ° C и 50 ° C) наблюдали образование фазы C-S-H с более высокой плотностью, более гетерогенным распределением продуктов гидратации и более высокой пористостью.При 50 ° C в начальный период наблюдался моносульфат кальция, тогда как количество эттрингита значительно уменьшилось. Это подтвердили и авторы других работ [9,10]. Из-за увеличения пористости в дальнейшем прочность снижается. Повышение пористости цементных паст, отверждаемых при повышенных температурах, наблюдалось также в вяжущих, содержащих гранулированный доменный шлак [11,12,13,14].

Цементные пасты с добавлением летучей золы, вулканического пепла или гранулированного доменного шлака, отвержденные в интервале температур от 10 ° C до 60 ° C, были испытаны в работе [11].Было обнаружено, что доменный шлак был единственной добавкой, которая положительно влияла на прочность (по отношению к прочности цементного теста без добавок), особенно при 60 ° C. По мнению этих авторов, микроструктура цементных паст, отвержденных при 60 ° C, показала более высокую пористость, чем микроструктура растворов, отвержденных при 10 ° C.

В [15] было обнаружено, что микроструктура цементного теста с микрокремнеземом, отвержденного при 23 ° C, однородна. Это цементное тесто имеет гораздо менее пористую структуру по сравнению с цементным тестом без добавки, с такой же степенью гидратации цемента.С другой стороны, цементные пасты, отвержденные при 30 ° C и 70 ° C, отличаются от цементных паст, отвержденных при 23 ° C, своей концентрацией Ca (OH) 2. Хотя распределение продуктов гидратации остается относительно однородным, между зернами цемента имеются более крупные непрерывные поры. Авторы обнаружили, что температура отверждения в большей степени влияет на микроструктуру цементного теста с микрокремнеземом, чем цементного теста без этой добавки.

Испытания цементных паст, отвержденных при температурах от 5 ° C до 50 ° C, проведенные через более длительный период времени (до 91 дня), показали, что цементные пасты, отвержденные при самой низкой температуре, были в наибольшей степени гидратированы [16 ].Эти авторы также показали, что при более высокой температуре отверждения в цементном тесте распределение продуктов гидратации является неравномерным, что приводит к более низкой прочности на сжатие этих цементных паст после более длительного времени отверждения [17,18].

Обобщая результаты исследований, проведенных разными авторами, следует констатировать, что повышение температуры приводит к ускорению процесса гидратации портландцемента, причем распределение продуктов гидратации становится более неравномерным.Это приводит к увеличению прочности на сжатие на ранних стадиях отверждения. Повышенная температура также делает неравномерным распределение продуктов гидратации цемента и увеличивает пористость полученной структуры. Следствием этого является снижение прочности на сжатие после более длительного периода отверждения. Это также относится к цементным пастам, содержащим минеральные добавки, хотя в случае таких добавок, как летучая зола или гранулированный доменный шлак, масштаб явления меньше, что можно объяснить снижением теплоты гидратации вяжущих с эти минеральные добавки.

1.2. Влияние температуры на свойства свежей бетонной смеси и затвердевшего бетона

Влияние температуры на гидратацию цемента отражается на свойствах бетонной смеси и затвердевшего бетона. Производство бетонных смесей при повышенных температурах вызывает множество проблем из-за ускоренного процесса гидратации цемента. Кроме того, бетонная смесь имеет повышенную водопотребность из-за испарения. Влияние температуры на удобоукладываемость бетона нормальной прочности хорошо известно — повышение температуры приводит к ухудшению удобоукладываемости [19,20].Авторы статьи [21] также заявили, что существует оптимальная температура (около 20 ° C), позволяющая получить бетонную смесь с наиболее удобной удобоукладываемостью. Клигер [22] обнаружил, что при повышении температуры на 11 ° C оседание уменьшается на 25 мм, в результате чего необходимо увеличивать содержание воды для сохранения его консистенции.

Консистенция бетонной смеси также зависит от эффективности химических добавок при повышенных температурах.Schmidt et al. [23] продемонстрировали, что поведение самоуплотняющегося бетона (SCC), содержащего суперпластификатор, при различных температурах отличается от поведения обычного бетона. Суперпластификаторы в бетонной смеси в зависимости от своей химической структуры по-разному влияют на реологические свойства бетонной смеси. Показана линейная зависимость между температурой и пределом текучести бетонной смеси. Чем выше температура, тем быстрее увеличивается предел текучести [24].

В статье [25] показано, что температура бетонной смеси также влияет на начальное и конечное время схватывания цемента. Разница между начальным и конечным временем схватывания цемента уменьшается с увеличением температуры окружающей среды. Более того, исследование [26] показывает, что увеличение содержания цемента приводит к увеличению температуры бетонной смеси, а также к сокращению времени схватывания.

Повышение температуры окружающей среды обычно приводит к потере удобоукладываемости бетонной смеси.Причиной этого явления является как ускорение процесса схватывания цемента, так и более быстрое испарение воды для затворения при более высоких температурах.

Влияние температуры на свойства затвердевшего бетона аналогично влиянию цементных паст [27]. Повышение температуры затвердевания бетона приводит к более высокой прочности бетона на ранней стадии; однако со временем сила уменьшается. Повышение температуры также снижает коррозионную стойкость бетона [5,28].Этот эффект наиболее очевиден, когда бетонная смесь подвергается воздействию высоких температур сразу после заливки.

Наиболее подвержены чрезмерному нагреву массивные элементы, охлаждающая поверхность которых мала по сравнению с массой бетонной смеси, которую заливают. Негативные явления, вызванные чрезмерным нагревом, можно свести к минимуму правильным подбором связующего состава [29].

Существуют методы, позволяющие минимизировать неблагоприятное воздействие повышенной температуры на свойства бетона.К ним относятся: снижение содержания цемента в бетоне; частичная замена цемента минеральными пуццолановыми и гидравлическими добавками; использование цемента с низкой теплотой гидратации; тепловой контроль агрегатов; использование прохладной воды или добавление в бетонную смесь колотого льда. На практике хорошие результаты достигаются при введении в цемент гранулированного доменного шлака и летучей золы [30,31,32].

Влияние температуры на свойства бетона нормальной прочности широко признано.Повышение температуры отверждения также увеличивает раннюю прочность; однако в дальнейшем это снижает прочность бетона и отрицательно сказывается на его долговечности, что связано с процессом гидратации цемента. Тем не менее, следует отметить, что влияние температуры на свойства высокоэффективного бетона (HPC), который особенно чувствителен к изменениям температуры из-за относительно низкого соотношения в / ц и использования высокодисперсных водоредуцирующих добавок (HRWR). , гораздо менее известна.

Помимо тепла, выделяемого в результате реакции гидратации, на температуру бетонной смеси также влияют температура компонентов смеси, температура окружающей среды и тепло, выделяемое трением в результате смешивания. Температура заполнителя имеет особое значение, поскольку его содержание в бетоне относительно высокое. Температура заполнителя и воды обычно соответствует температуре окружающей среды, в то время как температура цемента, хранящегося в силосах, может быть намного выше, что еще больше увеличивает температуру бетонной смеси.

В данной статье представлены результаты исследования влияния температуры на свойства свежей бетонной смеси и затвердевшего HPC, содержащего поликарбоксилатный суперпластификатор и добавку микрокремнезема. Испытания проводились как при повышенной (30 ° C), так и при пониженной (12 ° C) температуре затвердевания бетона, но в пределах диапазона практической применимости бетона. Прочность на сжатие и плотность бетонной смеси были испытаны при температурах 12 ° C, 20 ° C, 30 ° C и 40 ° C.Особое внимание было уделено достижению заданной температуры компонентов смеси и поддержанию этой температуры при приготовлении смеси и отверждении бетона.

2. Материалы

Бетон (HPC) был изготовлен из портландцемента CEM I 42,5 R (CEM I) с удельной площадью поверхности (Blaine) 440 м 2 / кг. Химический состав цемента показан на. Результаты испытаний гранулометрического состава, выполненных с помощью лазерного анализатора зерна, представлены в.

Гранулометрический состав портландцемента CEM I 42,5 R (CEM I).

Таблица 1

Химический состав портландцемента CEM I 42,5 R (% масс.).

Цемент SiO2 Al2O3 Fe2O3 CaO MgO Cl- Na2Oeq SO3 K2O
CEM I 21,9 5,8 2,9 63.1 1,2 0,01 0,7 2,1 0,5

В качестве HRWR использовали суперпластификатор на основе поликарбоксилатов (SP). СП был добавлен в количестве 1,5% по отношению к массе цемента.

В качестве минеральной добавки использовался микрокремнезем (SF) в количестве 10% по отношению к массе цемента. Согласно спецификации производителя химический состав SF следующий: SiO2 (мин. 85%), Fe2O3 (макс.2,5%), CaO (макс. 1,0%) и Al2O3 (макс. 1,5%).

Бетонная смесь изготовлена ​​из природного мелкого заполнителя (фракция 0/2 мм) и щебня базальтового заполнителя (фракции 2/8 и 8/16 мм). Гранулометрический состав отдельных фракций заполнителя показан на рис.

Гранулометрический состав заполнителей, используемых в производстве HPC.

Результаты физических свойств заполнителей, таких как насыпная плотность, удельная плотность и водопоглощение, представлены в.

Таблица 2

Физические свойства заполнителей.

Доля Среднее значение
Насыпная плотность Удельная плотность Водопоглощение
(кг / дм3) (кг / дм3) (%)
0/2 1,72 2,64 1,4
2/8 1,64 3,12 1,6
8/16 1.60 3,18 0,5

Распределение частиц по размерам было выбрано с использованием итерационного метода, описанного Кучиньским [33,34]. При составлении гранулометрического состава из нескольких различных фракций заполнителя они были объединены таким образом, чтобы обеспечить максимально возможную герметичность при минимально возможном водопотреблении.

Состав смеси HPC был разработан с использованием экспериментального метода, предполагая гранулометрический состав, как определено выше, а также количество и тип цемента с добавлением микрокремнезема ().Соотношение в / ц было выбрано для получения бетона с прочностью на сжатие более 100 МПа. Разработанный состав бетонной смеси представлен в. Консистенцию бетонной смеси регулировали путем добавления соответствующего количества СП.

Таблица 3

Состав бетонной смеси.

Состав Содержание (кг / м3)
цемент 500
Мелкозернистый заполнитель 0/2 фракции 656
2/8 фракция грубого заполнителя 592
Крупный заполнитель фракции 8/16 740
вода 150
микрокремнезем 50
суперпластификатор 7.5

Ингредиенты смешивали в смесителе с принудительной циркуляцией Zyklos Mixer ZK 150 HE (Pemat, Фрайсбах, Германия). Применяли ту же процедуру добавления ингредиентов в смеситель и постоянное время перемешивания бетонной смеси при всех температурах. Используемая процедура смешивания показана на.

Таблица 4

Порядок смешивания ингредиентов бетонной смеси.

Время Выполненная деятельность
(мин)
0–2 смешивание фракций крупного заполнителя (2/8 и 8/16 мм)
2–4 добавление фракции мелкого заполнителя (0/2 мм)
4–6 добавление цемента и микрокремнезема
6–8 добавление 1/2 количества воды
8– 14 добавление 1/2 количества воды с суперпластификатором
14 завершение перемешивания

Бетонные смеси были приготовлены при температурах 12 ° C, 20 ° C, 30 ° C и 40 ° C.Для стабилизации температуры компонентов цемент, микрокремнезем, заполнитель и вода поддерживались при контролируемой предполагаемой температуре в течение не менее 72 часов перед приготовлением бетонной смеси с использованием климатических камер.

Было сделано все возможное, чтобы температура в помещении, где готовилась бетонная смесь, была на заданном уровне. Температуру повышали с помощью соответствующей системы обогрева и воздухонагревателей. Испытания при пониженных температурах проводились в зимний период, что позволило поддерживать предполагаемую температуру.

3. Методы

3.1. Испытания свойств используемых материалов

Гранулометрический состав цемента проверяли с использованием лазерного анализатора частиц Mastersizer 3000 (Малверн, Великобритания) и мокрым методом. В качестве диспергатора использовался изопропанол. Тест проводился с диапазоном затемнения 10–15%. Представленные результаты испытаний представляют собой среднее значение не менее 3 измерений.

Физические свойства заполнителей, такие как насыпная плотность, удельная плотность и водопоглощение, были протестированы в соответствии со стандартами EN 1097-3: 2000, EN 1097-6: 2013 и EN 1097-6: 2013, соответственно.

3.2. Испытание бетонной смеси

Испытание на консистенцию путем испытания бетонной осадки проводилось в соответствии с EN 12350-2: 2011. Это испытание состоит из помещения и уплотнения бетонной смеси в форме усеченного конуса. Результат испытания — уменьшение высоты бетонной смеси сразу после снятия формы.

Определение консистенции с помощью теста потоковой таблицы проводилось в соответствии с EN 12350-5: 2011. Это испытание заключается в размещении смеси в усеченном конусе на плите, а затем после подъема формы выполняются 15 циклов подъема и свободного падения верхней плиты стола.Результат испытания — диаметр потока бетонной смеси.

Определение консистенции с помощью теста Vebe проводилось в соответствии с EN 12350-3: 2011. Результатом испытания является время вибрации смеси, помещенной в цилиндр, до полного уплотнения уровня смеси в цилиндре.

Проверка консистенции бетонной смеси с использованием теста осадки бетона, теста таблицы текучести и теста Vebe проводилась сразу после смешивания ингредиентов, а также через 30 и 60 мин.Бетонная смесь перемешивалась на медленной скорости до испытания.

Содержание воздуха в бетонной смеси определялось в соответствии с EN 12350-7: 2011 с помощью манометра. Испытания с помощью манометра основаны на законе Бойля-Мариотта и заключаются в том, что известный объем воздуха при определенном давлении объединяется в плотно закрытом контейнере с неизвестным объемом воздуха, содержащимся в образце бетонной смеси.

Плотность бетонной смеси определялась согласно EN 12350-6: 2011.Этот метод заключается в определении веса бетонной смеси, полностью заполняя емкость известного объема.

3.3. Испытания затвердевшего бетона

Плотность бетона была определена в соответствии с EN 12390-7: 2011, гидростатическим методом. Метод заключается в определении массы и объема образца бетона путем определения массы вытесненной воды. Испытания проводились на образцах кубической формы со стороной 100 мм.

Испытания бетона на водопоглощение были проведены с использованием метода, описанного в стандарте PN-B-06250: 1988, после 28 дней отверждения бетона.Каждый раз испытание проводилось на 3 кубических образцах с размером стороны 100 мм. Образцы сначала насыщали водой до постоянной массы, а затем сушили при 105 ° C до постоянной массы.

Прочность на сжатие была испытана в соответствии с EN 12390-3: 2011. Испытание проводили с использованием силового пресса Controls MCC8 (Controls Group, Liscate, Италия). Испытания проводились на образцах кубической формы со стороной 100 мм. Образцы бетона, отвержденные более 28 дней, были извлечены из воды и отверждены при лабораторной температуре (20 ± 2) ° C до испытания.

Испытания глубины проникновения воды под давлением в бетон проводились в соответствии с EN 12390-8: 2011. Каждый раз испытание проводилось на 6 образцах бетона кубической формы со стороной 150 мм, отвержденных перед испытанием в течение 28 дней в воде.

Испытания на устойчивость бетона к циклическому замораживанию и оттаиванию в среде противообледенительной соли проводились в соответствии с EN 12390-9: 2007 с использованием «испытания плиты». Этот тест заключается в определении веса отслоившегося материала с поверхности образца бетона после 7, 14, 28, 42 и 56 циклов замораживания и оттаивания в присутствии 3% раствора NaCl.Затем для испытания использовали 4 кубических образца бетона со стороной 150 мм, которые выдерживали в течение 7 дней при 12 ° C, 20 ° C или 30 ° C. Оставшийся период отверждения и подготовки к испытанию проводился в соответствии с EN 12390-9: 2007.

Стойкость к замораживанию-оттаиванию также была проверена в соответствии с польским стандартом PN-B-06250: 1988. Испытание проводится на 12 образцах бетона кубической формы с размером стороны 100 мм, 6 из которых проходят 300 циклов замораживания / оттаивания. Результатом испытания является потеря прочности на сжатие испытанных образцов по сравнению с другими 6 «образцами-свидетелями».Перед испытанием образцы были отверждены в течение 28 дней при температуре воды 12 ° C, 20 ° C или 30 ° C.

Все результаты испытаний, представленные в этой статье, являются средними значениями минимум трех измерений. Приведенные значения неопределенности представляют собой расширенную неопределенность измерения с вероятностью расширения приблизительно 95% и соответствующим коэффициентом расширения k = 4,30 (для 3 образцов) k = 3,18 (для 4 образцов) и k = 2,57 (для 6 образцов).

4.Результаты и обсуждение

4.1. Влияние температуры на свойства бетонной смеси

Консистенция бетонной смеси проверялась тремя методами. Это было необходимо, потому что консистенция значительно различалась от одной температуры к другой, и только один из методов дает результаты, выходящие за рамки применимости этого метода.

показывает осадку, зависящую от времени испытания и температуры окружающей среды, при которой бетонная смесь была приготовлена ​​из ингредиентов, которые ранее имели ту же температуру, что и температура окружающей среды.Понятно, что температура приготовления бетонной смеси в диапазоне от 12 ° C до 30 ° C оказывает существенное влияние на консистенцию. При 30 ° C сразу после смешивания ингредиентов наблюдается минимальная осадка (20 мм), а при 12 ° C это значение достигает 280 мм, что выходит за рамки применимости этого метода испытаний.

Результаты испытаний на консистенцию бетонной смеси методом осадки в зависимости от температуры и времени испытания.

Аналогичные результаты были получены при использовании теста таблицы потоков и теста Вебе.Диаметр потока и время Vebe в зависимости от температуры, а также времени испытания показаны в и, соответственно.

Результаты испытаний на консистенцию бетонной смеси с использованием таблицы расхода в зависимости от температуры и времени испытаний.

Результаты испытаний на консистенцию бетонной смеси с помощью теста Вебе в зависимости от температуры и времени испытания.

Результаты теста на консистенцию с использованием таблицы текучести () показали уменьшение диаметра потока бетонной смеси по мере увеличения температуры и времени.Время Вебе, необходимое для уплотнения бетонной смеси, также увеличивалось с повышением температуры ().

Удобоукладываемость бетонной смеси также значительно снизилась до 60 мин. Более того, при 30 ° C снижение текучести было настолько большим, что уже через 30 минут правильное измерение было невозможно (как тест Вебе, так и тест таблицы текучести).

Представленные результаты испытаний бетонной смеси на консистенцию показали, что повышение температуры приводит к потере удобоукладываемости.Этот эффект особенно заметен при 30 ° C. При такой температуре удобоукладываемость бетонной смеси теряется уже через 30 мин. Наблюдаемое явление — это, в основном, эффект увеличения скорости испарения воды из бетонной смеси при повышенной температуре и ускоренном процессе гидратации цемента [19,21], а также при низком соотношении w / b = 0,27 в HPC. Результаты испытаний на консистенцию с течением времени сложно оценить, поскольку в литературе не было найдено никаких аналогичных испытаний бетонной смеси HPC.Потеря технологичности также может быть вызвана снижением эффективности добавки HRWR при повышенных температурах [23,35]. На практике было бы необходимо использовать больше примеси HRWR. В этой статье пропорции ингредиентов сохранены для обеспечения сопоставимости результатов испытаний.

Результаты испытаний на содержание воздуха в бетонной смеси в зависимости от температуры выдержки и времени испытаний представлены в.

Результаты испытаний на содержание воздуха в бетонной смеси в зависимости от температуры и времени выдержки.

Как показано на, содержание воздуха в бетонной смеси обычно увеличивается с увеличением температуры смеси и не изменяется значительно с течением времени. Следует отметить, что результаты, полученные при 30 ° C, могут быть недостоверными, так как при этой температуре уплотнение бетонной смеси было затруднено.

Испытания плотности бетонной смеси показали, что температура в исследуемом диапазоне (от 12 ° C до 40 ° C) не оказывает существенного влияния на этот параметр. Различия в результатах определения плотности не превышали погрешности измерения ().Аналогичные результаты были получены авторами в работе [36], которые продемонстрировали, что различия в плотности бетонной смеси, испытанной при разных температурах, незначительны.

Таблица 5

Влияние температуры на плотность бетонной смеси.

Температура окружающей среды Температура бетонной смеси Метод уплотнения Плотность
(° C) (° C) (кг / м3)
12 17.3 стержневой / ручной 2620 ± 10
20 23,5 вибростол / механический 2630 ± 10
30 32,7 вибростол / механический 2630 ± 10
40 41,6 вибростол / механический 2630 ± 10

4.2. Влияние температуры на свойства затвердевшего бетона

Испытания плотности бетона показали, что в диапазоне от 12 ° C до 30 ° C повышение температуры вызывает небольшое увеличение плотности бетона.Однако следует отметить, что эти отличия минимальны, немного превышая погрешность измерения метода испытаний ().

Таблица 6

Влияние температуры окружающей среды на плотность образцов бетона.

Температура отверждения Плотность бетона
(° C) (кг / м3)
12 2650 ± 20
20 2660 ± 10
30 2680 ± 20

Результаты испытаний на водопоглощение образцов бетона, выдержанных при различных температурах, показали, что во всех случаях полученные значения были на очень низком уровне.Наименее абсорбирующим является бетон, выдержанный при 20 ° C, а наибольшим — бетон, выдержанный при 30 ° C (), однако представленные различия следует рассматривать как небольшие. Кроме того, при повышенных температурах скорость водопоглощения увеличивается больше, чем при более низкой температуре отверждения (12 ° C). Аналогичные результаты были получены авторами статьи [37] при испытании минометов.

Водопоглощение образцов бетона в зависимости от температуры твердения бетона.

Результаты испытаний образцов бетона на сжатие в зависимости от температуры выдержки (12 ° C, 20 ° C, 30 ° C и 40 ° C) представлены в.Повышение прочности на сжатие этих бетонов с течением времени показано на.

Результаты испытаний на прочность на сжатие бетона, выдержанного при 12 ° C, 20 ° C, 30 ° C и 40 ° C.

Таблица 7

Результаты испытаний прочности на сжатие (МПа) образцов бетона, выдержанных при 12 ° C, 20 ° C, 30 ° C и 40 ° C.

Время (дни) Температура отверждения
12 ° C 20 ° C 30 ° C 40 ° C
3 74.5 ± 5,3 84,0 ± 1,3 87,9 ± 2,5 99,0 ± 9,1
7 87,8 ± 6,1 93,1 ± 4,0 97,0 ± 11,0 103,3 ± 4,6
28 106,6 ± 2,9 116,9 ± 7,6 107,6 ± 6,3 108,8 ± 6,2
90 128,3 ± 10,4 127,3 ± 7,1 122,7 ± 6,9 119,9 ± 10,7
365 127.7 ± 4,8 131,9 ± 1,8 126,8 ± 0,6 119,0 ± 7,0
730 135,6 ± 6,9 134,8 ± 7,9 124,5 ± 3,7 119,7 ± 6,8

As can Как видно из данных в, ранняя прочность (через 3 и 7 дней) образцов бетона, отвержденных при повышенных температурах (30 ° C и 40 ° C), выше, чем прочность образцов бетона, отвержденных при более низких температурах (12 ° C и 20 ° C). ° С). Однако после более длительного периода отверждения (от 90 дней до 2 лет) наибольшая прочность была продемонстрирована для бетона, отвержденного при более низких температурах.Представленные данные показывают, что для отверждения бетона почти при всех испытанных температурах прочность аналогична в возрасте около 40 дней.

Повышение прочности бетона на сжатие в начальный период времени (до 7 суток) при повышении температуры выдержки можно объяснить ускорением процесса гидратации цемента [38]. Однако, как показывают результаты исследования [25], увеличение скорости гидратации цемента способствует формированию более слабой, более пористой микроструктуры, что, в сущности, приводит к снижению прочности на сжатие после более длительного периода отверждения (более 28 дней). ).

Бетон, выдержанный при 12 ° C и 20 ° C, достиг аналогичных значений прочности в возрасте 2 лет (около 130 МПа), в то время как бетон, изготовленный при 20 ° C, достиг этой прочности намного быстрее. Таким образом, можно сделать вывод, что температура 20 ° C является наиболее благоприятной из-за увеличения прочности с течением времени. Снижение ранней прочности бетона при низких температурах подтверждают и результаты исследований, представленные, например, в [22].

Результаты испытаний на глубину проникновения образцов бетона, отвержденных при 12 ° C, 20 ° C и 30 ° C, показали, что не наблюдалось значительных различий в значениях этого параметра (), который находится в диапазоне 9–11 мм.Вышеупомянутое показывает очень высокую герметичность испытанного бетона и указывает на правильно подобранный состав бетонной смеси, включая плотное распределение частиц по размерам.

Глубина проникновения воды под давлением в образцы бетона в зависимости от температуры выдержки.

Высокая герметичность бетона, показанная в испытании на глубину проникновения воды под давлением, способствует долговечности бетона. Это подтверждается результатами испытаний на устойчивость к замораживанию – оттаиванию, проведенных двумя методами: методом согласно PN-B-06250 и методом согласно EN-12390-9.

Результаты испытаний бетона на морозостойкость при оттаивании по методу PN-B-06250 представлены в. Испытания показали, что независимо от температуры твердения бетона (12 ° C, 20 ° C и 30 ° C) этот бетон может быть классифицирован как имеющий наивысшую степень морозостойкости (F300 согласно PN-B-06250). ).

Таблица 8

Результаты испытаний на стойкость образцов бетона к циклическому замораживанию и оттаиванию, определенные по методу PN-B-06250.

Температура отверждения 12 ° C 20 ° C 30 ° C
потеря массы образцов после испытания (%) 0,01 0,00 0,03
Уменьшение прочности образцов после испытания (%) 8,6 4,3 1,7

HPC, подвергнутый 300 циклам замораживания и оттаивания, не показывает растрескивания или значительной потери массы.Снижение прочности на сжатие является самым высоким для бетона, приготовленного при 12 ° C (8,6%), и самым низким для бетона, приготовленного при 30 ° C (1,7%). Причиной наблюдаемого явления может быть тот факт, что в день начала замерзания (28-й день созревания) образцы бетона, отверждающиеся при более низких температурах, еще не достигли достаточно высокой прочности.

Результаты испытаний на стойкость образцов бетона, выдержанных при 12, 20 и 30 ° С, к циклическому замораживанию и оттаиванию в присутствии антигололедной соли приведены в таблице ().

Таблица 9

Результаты испытаний на устойчивость образцов бетона к циклическому замораживанию и оттаиванию в присутствии антиобледенительной соли (3% NaCl), отвержденных при 12, 20 и 30 ° C.

Температура отверждения Среднее значение масштабируемой массы образца (кг / м2)
Через 7 циклов Через 14 циклов Через 28 циклов Через 42 цикла Через 56 циклов
12 ° C 0.00 ± 0,02 0,00 ± 0,02 0,02 ± 0,02 0,02 ± 0,02 0,02 ± 0,02
20 ° C 0,00 ± 0,02 0,02 ± 0,02 0,02 ± 0,02 0,04 ± 0,02 0,04 ± 0,02
30 ° C 0,00 ± 0,02 0,02 ± 0,02 0,02 ± 0,02 0,04 ± 0,02 0,04 ± 0,02

Массы масштабирования под влиянием циклического Замерзание и оттаивание бетона при одновременном действии солевого раствора было минимальным.Таким образом, влияние температуры выдержки бетона на результат морозостойкости этого метода не было продемонстрировано. В то же время оценка по критерию Бораса доказывает, что спроектированный бетон очень хорошего качества, независимо от применяемой температуры отверждения.

5. Выводы

Высокопроизводительные вычисления все чаще используются в гражданском строительстве. Оценка влияния температуры на свойства бетона особенно важна из-за применения бетона HPC как при повышенных, так и при пониженных температурах.В данной статье представлены результаты исследований влияния температуры окружающей среды и температуры выдержки на свойства бетонной смеси и затвердевшего КВД.

Испытания на консистенцию, проведенные с использованием различных методов, показали, что смеси HPC, приготовленные при различных температурах окружающей среды (в диапазоне от 12 ° C до 30 ° C), имеют очень разную консистенцию. Осадка бетонной смеси при 20 ° C (160 мм) была почти вдвое выше, чем при 12 ° C (280 мм), и почти в пять раз ниже, чем при 30 ° C (20 мм).Эта зависимость была продемонстрирована путем выдерживания ингредиентов смеси в течение 72 ч перед выполнением смеси при предполагаемой температуре испытания.

Результаты испытаний на консистенцию свежей бетонной смеси подтверждают, что смесь HPC очень чувствительна к повышению температуры. Причиной этого может быть более быстрое испарение воды, что в сочетании с низким соотношением вода-связующее приводит к явному снижению удобоукладываемости. На этот эффект также влияет ускорение реакции гидратации цемента.Потеря удобоукладываемости бетонной смеси при повышенных температурах может существенно затруднить ее применение. Об этом свидетельствуют результаты испытаний на консистенцию, а также содержание воздуха в бетонной смеси при 30 ° C.

Было показано, что температура не оказывает значительного влияния на такие свойства, как плотность, водопоглощение и глубина проникновения воды под давлением. Указанные параметры для образцов бетона, приготовленных при разных температурах, незначительно различались.

Испытания прочности на сжатие, проведенные в течение периода от 3 дней до 2 лет на образцах бетона, приготовленных при температурах 12, 20, 30 и 40 ° C, показали, что скорость роста прочности на сжатие увеличивается с увеличением температуры.Бетон, приготовленный при 40 ° C, достиг 99 МПа всего за три дня (т.е. 91% от 28-дневной прочности), а при 12 ° C бетон достиг 74,5 МПа (т.е. 70% от 28-дневной прочности). Это подтверждает, что при повышенных температурах скорость гидратации цемента увеличивается, что приводит к более быстрому увеличению прочности бетона на сжатие в первые 28 дней отверждения.

Через 28 дней наибольшая прочность на сжатие была достигнута за счет созревания бетона при более низких температурах. В возрасте двух лет бетон, полученный при температурах 12, 20, 30 и 40 ° C, достиг прочности на сжатие 135.6, 134,8, 124,5 и 119,7 МПа соответственно.

Как показано, повышение температуры затвердевания бетона приводит к снижению его прочности на сжатие после длительного периода времени по сравнению с бетоном, затвердевающим при более низких температурах. Это может быть связано с тем, что более высокая скорость гидратации приводит к продуктам гидратации с более нерегулярной структурой и более высокой пористостью, что отрицательно влияет на прочность на сжатие после более длительного времени отверждения.

Результаты испытаний на устойчивость к замораживанию-оттаиванию, проведенных с использованием польского стандартного метода, и «испытание плит» показывают, что HPC устойчив к замораживанию-оттаиванию.Снижение прочности на сжатие после 300 циклов замораживания и оттаивания было относительно небольшим и составило максимум 8,6% по сравнению с образцами, не подвергавшимися циклическому замораживанию и оттаиванию, в случае бетона, приготовленного при самой низкой температуре 12 ° C. Для бетона, отвержденного при 20 ° C и 30 ° C, падение прочности составило 4,3% и 1,7% соответственно. Это может быть связано с тем, что в начале испытания (28-й день выдержки) бетон, хранившийся при более низких температурах, достиг более низкой прочности на сжатие, чем бетон, хранившийся при более высоких температурах.

Испытания на морозостойкость в присутствии раствора NaCl показали минимальное образование накипи на бетонной поверхности, что является доказательством очень хорошей морозостойкости испытанного ГВД независимо от температуры его приготовления.

Это исследование показывает значительное влияние пониженной и повышенной температуры на свойства бетонной смеси и затвердевшего бетона HPC, особенно с точки зрения консистенции и прочности на сжатие. Это указывает на направления дальнейших исследований, которые должны включать изучение реологических параметров бетонной смеси HPC и их изменений во времени.Также должны быть проведены исследования, направленные на демонстрацию влияния температуры отверждения на процесс гидратации цемента для вяжущих, используемых в бетоне HPC (с низким соотношением воды и вяжущего). Дальнейшие исследования должны включать изменения гидратных фаз с течением времени.

Благодарности

Мы хотели бы выразить огромную признательность профессору Стефании Гжещик за ее ценные и конструктивные предложения при планировании и развитии этой исследовательской работы.

Вклад авторов

Концептуализация, А.К.-Дж. и K.J .; методология, A.K.-J; формальный анализ, A.K.-J. и K.J .; расследование, A.K.-J .; письменность — подготовка оригинального черновика, А.К.-Ж .; написание — просмотр и редактирование, A.K.-J. и K.J .; визуализация, А.К.-Ж .; надзор, А.К.-Ж. и К.Дж. Все авторы прочитали и согласились с опубликованной версией рукописи.

Финансирование

Работа выполнена в рамках обязательного исследования № NBS 16/2019 на кафедре инженерных материалов факультета гражданского строительства и архитектуры, Технологический университет Ополе, Ополе, Польша.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Сноски

Примечание издателя: MDPI остается нейтральным в отношении юрисдикционных претензий на опубликованных картах и ​​филиалов организаций.

Список литературы

1. Эльхадири И., Эльхадири М., Пуэртас Ф. Влияние температуры выдержки на гидратацию цемента. Ceram. Силик. 2009; 53: 65–75. [Google Scholar] 2. Суцос М., Канаварис Ф. Модифицированная функция зрелости «медсестра-сол» (MNS) для улучшенных оценок прочности при повышенных температурах отверждения.Case Stud. Констр. Матер. 2018; 9: 1–14. DOI: 10.1016 / j.cscm.2018.e00206. [CrossRef] [Google Scholar] 3. Насир М., Аль-Амуди О.С., Аль-Гахтани Х.Дж., Маслехуддин М. Влияние температуры заливки на прочность и плотность простых и смешанных цементных бетонов, приготовленных и затвердевших в жарких погодных условиях. Констр. Строить. Матер. 2016; 112: 529–537. DOI: 10.1016 / j.conbuildmat.2016.02.211. [CrossRef] [Google Scholar] 4. Эскаланте-Гарсия Дж., Шарп Дж. Влияние температуры на гидратацию основных фаз клинкера в портландцементах: часть i, смешанные цементы.Джем. Concr. Res. 1998. 28: 1259–1274. DOI: 10.1016 / S0008-8846 (98) 00107-0. [CrossRef] [Google Scholar] 5. Лотенбах Б., Виннефельд Ф., Алдер К., Виланд Э., Ланк П. 16. Internationale Baustofftagung. F.A. Finger-Institut fur Baustoffkunde; Веймар, Германия: 2006. Temperatureinfluss auf die Hydratation von Portland Zementen; С. 401–408. [Google Scholar] 6. Gallucci E., Zhang X., Scrivener K. Влияние температуры на микроструктуру гидрата силиката кальция (C-S-H) Cem. Concr. Res. 2013; 53: 185–195.DOI: 10.1016 / j.cemconres.2013.06.008. [CrossRef] [Google Scholar] 7. Ван К., Ши М., Ван Д. Влияние повышенной температуры отверждения на свойства цементного теста и бетона при одинаковой степени гидратации. J. Wuhan Univ. Technol.-Mater. Sci. Эд. 2017; 32: 1344–1351. DOI: 10.1007 / s11595-017-1751-2. [CrossRef] [Google Scholar] 8. Лотенбах Б., Виннефельд Ф., Альдер К., Виланд Э., Ланк П. Влияние температуры на поровый раствор, микроструктуру и продукты гидратации портландцементных паст. Джем.Concr. Res. 2007; 37: 483–491. DOI: 10.1016 / j.cemconres.2006.11.016. [CrossRef] [Google Scholar] 9. Томас Дж. Дж., Ротштейн Д., Дженнингс Х. М., Кристенсен Б. Дж. Влияние температуры гидратации на поведение растворимости Ca-, S-, Al- и Si-содержащих твердых фаз в пастах портландцемента. Джем. Concr. Res. 2003. 33: 2037–2047. DOI: 10.1016 / S0008-8846 (03) 00224-2. [CrossRef] [Google Scholar] 10. Бак А.Д., Беркс Дж. П., Пул Т. Термическая стабильность некоторых гидратированных фаз в системах, изготовленных с использованием портландцемента.Управление армии, Опытная станция водных путей, Инженерный корпус; Виксбург, штат Массачусетс, США: 1985. Технический отчет. [Google Scholar] 11. Эскаланте-Гарсия Дж. И., Шарп Дж. Х. Микроструктура и механические свойства смешанных цементов гидратируются при различных температурах. Джем. Concr. Res. 2001; 31: 695–702. DOI: 10.1016 / S0008-8846 (01) 00471-9. [CrossRef] [Google Scholar] 12. Эскаланте Дж., Гомес Л., Йохал К., Мендоза Г., Манча Х., Мендес Дж. Реакционная способность доменного шлака в смесях портландцемента, гидратированных в различных условиях.Джем. Concr. Res. 2001; 31: 1403–1409. DOI: 10.1016 / S0008-8846 (01) 00587-7. [CrossRef] [Google Scholar] 13. Пол М., Глассер Ф. Воздействие длительного теплового (85 ° C) влажного отверждения на пасту портландцемента. Джем. Concr. Res. 2000; 30: 1869–1877. DOI: 10.1016 / S0008-8846 (00) 00286-6. [CrossRef] [Google Scholar] 14. Ян Х.М., Квон С.Дж., Мюнг Н.В., Сингх Дж.К., Ли Х.С., Мандал С. Оценка развития прочности бетона с измельченным гранулированным доменным шлаком с использованием кажущейся энергии активации. Материалы. 2020; 13: 442.DOI: 10.3390 / ma13020442. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 15. Цао Ю., Детвилер Р.Дж. Получение изображений в отраженных электронах цементных паст, отвержденных при повышенных температурах. Джем. Concr. Res. 1995; 25: 627–638. DOI: 10.1016 / 0008-8846 (95) 00051-D. [CrossRef] [Google Scholar] 16. Кьеллсен К.О., Детвилер Р.Дж. Кинетика реакции гидратированных портландцементных растворов при различных температурах. Джем. Concr. Res. 1992; 22: 112–120. DOI: 10.1016 / 0008-8846 (92) -H. [CrossRef] [Google Scholar] 17. Кьельсен К.О., Детвилер Р.Дж., Гьёрв О.Е. Развитие микроструктуры простых цементных паст, гидратированных при разных температурах. Джем. Concr. Res. 1991; 21: 179–189. DOI: 10.1016 / 0008-8846 (91)

-I. [CrossRef] [Google Scholar] 18. Вербек Г., Хельмут Р. 5-й Международный конгресс по химии цемента. Цементная ассоциация Японии; Токио, Япония: 1969. Структура и физические свойства цементной пасты; С. 1–44. [Google Scholar] 19. Невилл А. Właściwości Betonu. Polski Cement; Краков, Польша: 2010.п. 874. [Google Scholar] 20. Ортис Дж., Агуадо А., Ронсеро Дж., Зермено М. Влияние температуры окружающей среды на чистую воду и микроэлементы мортерос и пасты из цемента. Índice. 2009; 1: 2–24. [Google Scholar] 21. Ортис Дж., Агуадо А., Агулло Л., Гарсия Т., Зерменьо М. Влияние температуры окружающей среды и влажности заполнителей на удобоукладываемость цементного раствора. Констр. Строить. Матер. 2009; 23: 1808–1814. DOI: 10.1016 / j.conbuildmat.2008.09.016. [CrossRef] [Google Scholar] 22.Клигер П. Влияние температуры смешения и отверждения на прочность бетона. Являюсь. Concr. Inst. 1958; 54: 54–62. [Google Scholar] 23. Шмидт В., Брауэрс Х., Кюне Х.С., Менг Б. Влияние модификации суперпластификатора и состава смеси на характеристики самоуплотняющегося бетона при различных температурах окружающей среды. Джем. Concr. Compos. 2014; 49: 111–126. DOI: 10.1016 / j.cemconcomp.2013.12.004. [CrossRef] [Google Scholar] 24. Petit J.Y., Khayat K.H., Wirquin E. Совместное влияние времени и температуры на изменение предела текучести высокотекучего строительного раствора.Джем. Concr. Res. 2006; 36: 832–841. DOI: 10.1016 / j.cemconres.2005.11.001. [CrossRef] [Google Scholar] 25. Burg R.G. Влияние температуры заливки и выдержки на свойства свежего и затвердевшего бетона. Ассоциация портлендского цемента; Скоки, Иллинойс, США: 1996. стр. 18. [Google Scholar] 26. Марар К., Эрен Э. Влияние содержания цемента и водоцементного отношения на свойства свежего бетона без добавок. Int. J. Phys. Sci. 2011; 6: 5752–5765. [Google Scholar] 27. Кьельсен К.О., Детвилер Р.Дж., Гьёрв О.E. Получение изображений в отраженных электронах цементных паст, гидратированных при различных температурах. Джем. Concr. Res. 1990; 20: 308–311. DOI: 10.1016 / 0008-8846 (90) -C. [CrossRef] [Google Scholar] 28. Рэйчел Дж.Д., Дженнифер Н.С.А.Ф. Использование дополнительных вяжущих материалов для повышения стойкости к проникновению хлорид-ионов в бетоны, отверждаемые при повышенных температурах. Матер. J. 1994; 91: 63–66. [Google Scholar] 29. Kiernoycki W., Borucka-Lipska J. Zmiany objȩtościowe twardniejącego betonu i ich nastȩpstwa. Джем.Wapno Beton. 2004; 9/71: 19-25. [Google Scholar] 30. Барроу Р.С., Карраскильо Р.Л. Влияние летучей золы на повышение температуры в бетоне. Техасский университет в Остине; Остин, Техас, США: 1988. Технический отчет. [Google Scholar] 31. Суцос М., Хатцитеодору А., Квасны Дж., Канаварис Ф. Влияние температуры на месте на возрастание прочности бетонов с дополнительными вяжущими материалами. Констр. Строить. Матер. 2016; 103: 105–116. DOI: 10.1016 / j.conbuildmat.2015.11.034. [CrossRef] [Google Scholar] 32.Ван Л., Цюань Х., Ли К. Оценка эффективности реакции шлака в шлакоцементных растворах при различной температуре отверждения. Материалы. 2019; 12: 2875. DOI: 10.3390 / ma12182875. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 33. Кучинский В. Бетони Конструкцыне. Projektowanie Metoda̧ Kolejnych Przyblień (Iteracji) Budownictwo i Architektura; Варшава, Польша: 1956. с. 219. [Google Scholar] 34. Буковски Б., Бастиан С., Браун К., Грюнер М., Кучиньски В. Technologia Betonu. cz. 2, Projektowanie Betonów.Komitet Inżynierii; Варшава, Польша: 1972 г. [Google Scholar] 35. Grzeszczyk S., Sudoł M. Wpływ temperatury na skuteczność działania superplastyfikatorów nowej generacji. Джем. Wapno Beton. 2003. 6: 325–331. [Google Scholar] 36. Маннхеймер Р. Реология цементных растворов при высоких температурах и высоких давлениях. В: Банфилл П., редактор. Реология свежего цемента и бетона — Материалы международной конференции. CRC Press; Ливерпуль, Великобритания: 1990. стр. 384. [Google Scholar] 37. Kaczmarek A. Wpływ zmiennej temperatury powietrza podczas kondycjonowania zapraw na ich parameter techniczne.Матер. Бутон. 2018; 5: 12–13. DOI: 10.15199 / 33.2018.05.04. [CrossRef] [Google Scholar] 38. Escalante-Garcia J. Неиспаряющаяся вода из чистого OPC и материалы-заменители в композитных цементах, гидратированных при различных температурах. Джем. Concr. Res. 2003; 33: 1883–1888. DOI: 10.1016 / S0008-8846 (03) 00208-4. [CrossRef] [Google Scholar]

Поведение при повышении прочности на сжатие и прогнозирование цементно-стабилизированного макадама при низкотемпературном отверждении

Для материалов на основе цемента температура отверждения определяет скорость прироста прочности и значение прочности на сжатие.В этой статье используется смесь щебня, стабилизированная 5% цемента. Три сценария отверждения с контролируемой температурой в помещении и один сценарий естественного отверждения на открытом воздухе разработаны и реализованы для изучения сценария развития прочности закона прочности на сжатие, и это стандартное отверждение при температуре (20 ° C), отверждение при постоянной низкой температуре (10 ° C), дневное взаимодействие отверждение при температуре (от 6 ° C до 16 ° C) и одно отверждение при естественной температуре на открытом воздухе (при температуре воздуха от 4 ° C до 20 ° C).Наконец, на основе метода зрелости модель оценки зрелости-силы получается путем использования и анализа данных, собранных в ходе внутренних тестов. Модель проверена с высокой точностью на основании подтвержденных результатов, полученных на основе данных наружных испытаний. Это исследование обеспечивает техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что способствует процессу строительства и контролю качества.

1. Введение

Цементно-стабилизированный щебень представляет собой низкодозированную смесь, стабилизированную цементным основанием, и его дозировка цемента составляет 5% или около того; он обычно используется в качестве основного слоя дорожного покрытия в Китае [1].Хорошо известно, зависит ли прочность на сжатие материалов на основе цемента в значительной степени от процесса отверждения, в котором особенно важны как температура, так и время отверждения [2, 3]. Для обычных лабораторных испытаний прочности на сжатие отверждение обычно проводится в условиях постоянной температуры 20 ° C во многих национальных спецификациях [4–6]. Но для проекта строительства дорожного покрытия фактическая температура отверждения на открытом воздухе зависит от погоды. Спецификация требует, чтобы при строительстве выдерживалась температура более 5 ° C [4].Однако в северных сезонных районах замерзания, таких как китайская провинция Хэйлунцзян, несмотря на то, что в апреле температура превышает 5 ° C, температура сильно меняется и очень нестабильна. Из-за большой разницы температур между днем ​​и ночью и того факта, что обычно не достигает 20 ° C во время отверждения, прочность на сжатие иногда не может соответствовать требованиям, что приводит к ослаблению керна. Поскольку сила не может быть подтверждена, нельзя разумно организовать следующий процесс [7].Исходя из этого особого температурного режима, существует острая необходимость в изучении законов увеличения прочности на сжатие при таких различных условиях низкотемпературного отверждения. В связи с этим в данной статье разработаны несколько экспериментов в помещении и на открытом воздухе для проведения такого исследования.

Было предпринято множество исследований для изучения влияния температуры отверждения на материалы на основе цемента, такие как грунт, стабилизированный портландцементом, легкий цементированный грунт, песок, угольная летучая зола и смеси извести [8–10].Что касается температуры отверждения, во многих исследованиях сообщалось о высокой температуре, и большинство результатов показали, что отверждение при высокой температуре может увеличить начальную прочность на сжатие [11, 12]. Прочность на сжатие и предел прочности на растяжение морских грунтов, стабилизированных цементом, которые использовались в качестве материалов для строительства дорог, были изучены при температурах отверждения от 40 ° C до 60 ° C в исследовательской работе Ванга [13]. Escalante-Garcia et al. [14] проверили прочность на сжатие при гидратации при пяти температурах в диапазоне от 10 ° C до 60 ° C, и результаты показали, что высокая температура может улучшить начальную прочность на сжатие, но на самом деле может снизить прочность в долгосрочной перспективе.Wang et al. [15] провели испытания цемента на основе сульфоалюмината кальция при различных температурах отверждения (например, от 0 ° C до 80 ° C) с целью изучения влияния эволюции гидратации на прочность на сжатие. Результаты показали, что прочность на сжатие в раннем возрасте увеличивается с повышением температуры, но уменьшается в диапазоне температур от 40 ° C до 80 ° C, а прочность на сжатие в основном зависит от степени гидратации.

О низкотемпературном отверждении в литературе сообщалось о нескольких исследованиях.Прайс [16] показал, что прочность бетонной смеси при низкой температуре развивается значительно медленнее, чем при комнатной температуре. Husem et al. [17] проверили прочность на сжатие обычного и высококачественного бетона при стандартном отверждении (при 23 ± 2 ° C) и другом низкотемпературном отверждении (при 10, 5, 0 и –5 ° C, соответственно). Результаты показали, что прочность при 10 ° C и менее 10 ° C была ниже, чем при стандартном отверждении. Kim et al. [18] исследовали развитие прочности для историй отверждения при температуре 5 ° C, 20 ° C и 40 ° C, что показало, что прочность бетона при низкой температуре была меньше, чем прочность при стандартной температуре изначально, но была почти такой же со временем.Marzouk et al. [19] провели испытания при пяти температурах в диапазоне от -10 ° C до 20 ° C в течение 3 месяцев и обнаружили, что существует пропорциональная зависимость между прочностью на сжатие и температурой.

Кроме того, с точки зрения прогнозирования прочности, многие литературные источники показали, что теория зрелости подходит и лучше для прогнозирования прочности, чем некоторые другие методы [20, 21]. В 1951 году Саул и др. [22] впервые предложили концепцию «зрелости», которая определялась как произведение времени отверждения и температуры.В знаменитой функции зрелости «Медсестра-Сол» было указано, что при одинаковой зрелости и сила будет примерно такой же. Хорошо известно, что модель зрелости Медсестра-Сол постоянно совершенствовалась и изменялась позже, и для прогнозирования силы были приняты различные математические модели. Например, в модели Читамбира эквивалентный возраст был предложен в качестве индекса, который сочетал в себе возраст и температуру отверждения [23]. Существует линейная зависимость между двойной логарифмической прочностью и логарифмической зрелостью при различных температурах отверждения.Jeong et al. [24] откалибровали соотношение относительной прочности и зрелости по фактору влажности.

Обзор существующей литературы показал, что, хотя было проведено много исследований по другим материалам на основе цемента, меньше исследований было предпринято для 5% стабилизированного цементом щебня. Многие исследования были посвящены влиянию температуры отверждения на прочность. Однако большинство из них были ориентированы на высокие температуры, и, кроме того, почти все отверждение (будь то при высокой или низкой температуре) проводилось при переменной постоянной контролируемой температуре в лабораторной камере.Важно отметить, что при таком отверждении не учитывались чередующиеся изменения температуры в течение реальных дней и ночей (как в строительном проекте), и не проводились испытания в естественных условиях на открытом воздухе. Таким образом, цель данного исследования состоит в том, чтобы сосредоточить внимание на законе увеличения прочности 5% цементно-стабилизированной щебеночной смеси при низкой температуре, которая соответствует фактической температуре строительного проекта. Теория зрелости будет использоваться для прогнозирования прочности на сжатие.Будет выбрана соответствующая функция, и соответствующие параметры будут откалиброваны и получены путем использования и анализа экспериментальных данных. Результаты исследований обеспечат техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что благоприятно сказывается на качестве строительства и управлении процессом.

2. Описательный анализ температур в районе Харбина

Город Харбин, провинция Хэйлунцзян, Китай, расположен на северной широте 44 ° 04′∼ 46 ° 40 ′, в основном равнина, относящаяся к континентальному муссонному климату северной умеренной зоны. и температура быстро меняется весной и осенью.Годовое количество осадков достигает 400–600 мм, коэффициент влажности находится в пределах 0,25–1,25, а средний максимум вечной мерзлоты составляет 120–240 см.

Распределение температуры от 15 -го до 30 -го апреля с 2012 по 2014 год в Харбине показано на Рисунке 1. Тенденция высокой и низкой температуры в период строительства в основном аналогична. Большинство высоких температур распределяются в диапазоне от 15 ° C до 20 ° C, а большинство низких температур находятся в диапазоне от 5 ° C до 10 ° C.Средняя высокая температура составляет 16 ° C, а средняя низкая температура — 6 ° C.


На Рисунке 2 показаны данные о суточной температуре с 15 -го до 30 -го апреля 2014 г. в городе Харбин. Данные других лет следуют аналогичной схеме. Примерно с 2:00 до 4:00 температуры были самыми низкими, с 5:00 температура начала стабильно повышаться в течение 9 часов с высокой скоростью, в 12:00 — 14:00 температуры достигли максимума, а затем температуры начали непрерывно снижаться. в течение 15 часов по относительно низкой цене.


3. Планы тестирования в помещении и на открытом воздухе

В соответствии с законом изменения температуры были разработаны три варианта тестирования в помещении и один тест на открытом воздухе. Температуры трех испытаний в помещении были определены в соответствии с данными почти за 3 года в Харбине, как показано на Рисунке 3, а испытания на открытом воздухе начались в 17 th апреля 2015 года.


Образцы цилиндров 150 мм Размер × 150 мм с 5% -ным содержанием щебня, стабилизированного цементом, были приготовлены в соответствии с конструкцией смеси из стабилизированного щебня.Ежедневно проводились испытания прочности на неограниченное сжатие при трех различных температурах отверждения.

Случай 1. (отверждение при стандартной температуре): стандартное отверждение полностью соответствовало требованиям спецификации операции, при которой температура составляла 20 ° C. Испытание на безусловное сжатие проводилось с 3 -го дня до 7 -го дня. Прочность на сжатие 7 th день (то есть стандартная прочность 7 th ) использовалась в качестве эталона для справки.

Случай 2. (отверждение при постоянной низкой температуре): температура отверждения составляла 10 ° C, которая была определена в соответствии со средними высокими и средними низкими температурами, взвешенными по времени в течение почти трех лет. Прочность на сжатие была проверена, и испытания не прекращались до тех пор, пока прочность на сжатие не превысила стандартную прочность 7 th .

Случай 3. (отверждение при дневной температуре взаимодействия): температуры были изменены в испытательной камере для имитации больших колебаний дневной и ночной температур.Как показано на рисунке 3, высокая температура поддерживалась на уровне 16 ° C с 7:00 до 15:00 в течение 8 часов, а низкая температура составляла 6 ° C с 16:00 до 6:00 в течение 14 часов. С 6:00 до 7:00 температура повысилась с 6 ° C до 16 ° C, а с 15:00 до 16:00 температура снизилась с 16 ° C до 6 ° C. Кроме того, прочность на сжатие будет продолжаться после 7 th дней до тех пор, пока прочность не превысит стандартную прочность 7 th .

Случай 4. (отверждение при естественной температуре наружного воздуха): согласно данным прогноза погоды, испытание началось 17 апреля 2015 года.Образцы помещали в яму для испытаний. Был смоделирован базовый слой дорожного покрытия и методы отверждения, а прочность на сжатие была проверена с 7 -го -го дня до тех пор, пока прочность не превысила стандартную прочность 7 -го . Конкретный рабочий процесс и метод измерения температуры обсуждаются ниже.
Сначала была вырыта яма глубиной 15 см, а дно выровняли. Затем образцы были аккуратно помещены в яму, и промежуток был заполнен мелким заполнителем и уплотнен.Верх был покрыт белым геотекстилем для сохранения влаги, а вода разбрызгивалась на поверхность каждый день в полдень. Фотографии размещения образцов показаны на рисунке 4.
Три образца использовались для измерения температуры. На каждом образце четыре датчика температуры были встроены в верхнюю, среднюю внешнюю, нижнюю и центральную части тела, которые использовались для измерения температуры различных частей каждого образца. На рис. 5 схематически показано расположение датчиков температуры, среди которых центральный датчик был встроен в процесс производства образца, а три внешних датчика были позже закреплены на поверхности.Изображения, показывающие центральные датчики и средние внешние датчики, приведены на рисунке 6. Во время периода отверждения на открытом воздухе для измерения температуры использовался ручной термометр, и частота измерения составляла 1 показание / час.


4. Характеристики материала и методы испытаний
4.1. Характеристики цемента

В эксперименте использовался цемент Harbin TIANE 425 #. Технические показатели цемента приведены в таблице 1. Обратите внимание, что дозировка цемента составляет 5% от массы заполнителя.

Значение

Индекс Время начального схватывания Время окончательного схватывания Прочность в 3D (МПа)
Прочность на сжатие Прочность на изгиб

1 ч 3 мин 2 ч 40 мин 21,3 4,8

4.2. Aggregate Grade

. Используемые агрегаты были четырех размеров: 2 см – 3 см, 1 см – 2 см, 0,5 см – 1 см и 0 см – 0,5 см. Используемый гравий соответствовал требованиям «Технических условий для строительства дорожного покрытия (JTJ034-2000)». Марка композитного заполнителя представлена ​​в таблице 2.


Размер экрана (мм) 26,5 19 9,5 4,75 2,36 0,6 0.075

Композитный сорт 97,7 77,0 48,0 28,6 21,0 10,5 2,2

4,3 Испытание на уплотнение

Для подготовки к изготовлению образца максимальная плотность в сухом состоянии и оптимальное содержание воды в смеси были определены путем испытаний на уплотнение. В соответствии с процедурами, описанными в «Методике испытаний стабилизированных материалов для неорганического связующего для дорожного строительства (JTG E51-2009)», оптимальное содержание воды составляло 6.8%, а максимальная плотность в сухом состоянии составляла 2,144 г / см 3 .

4.4. Испытание на неограниченное сжатие

Образцы были изготовлены и хранились в камере для отверждения. В соответствии с требованиями, температуры отверждения в трех случаях контролировались на уровне 20 ° C и 10 ° C и в диапазоне от 6 ° C до 16 ° C. Образцы были подвергнуты испытаниям на безусловное сжатие в соответствии с разработанным планом испытаний.

5. Результаты и обсуждение
5.1. Результаты испытаний в помещении

На рис. 7 показан закон увеличения прочности на сжатие для трехкомпонентных испытаний в помещении.Что касается стандартной температуры отверждения, равной 20 ° C (Случай 1), прочность увеличивается с увеличением времени отверждения, и скорость прироста изначально высока, но постепенно снижается до 7 -го дня. Прочность составляет 3,5 МПа, что соответствует требованиям стандарта. В условиях постоянной низкой температуры 10 ° C (Случай 2) прочность на сжатие непрерывно увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартных условиях отверждения. Прочность на сжатие — 2.2 МПа в день 7 th , что составляет лишь 62,9% от стандартной прочности 7 th . Прочность на сжатие не достигает стандартной прочности 7 th до 14 th день. При дневной температуре взаимодействия от 6 ° C до 16 ° C (Случай 3) прочность на сжатие также увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартном отверждении, а также немного меньше, чем что в условиях постоянного низкотемпературного отверждения.Прочность на сжатие составляет 2,1 МПа в день 7 th , что составляет только 60% от стандартной прочности 7 th при стандартных условиях отверждения. Прочность на сжатие не достигает стандартной прочности 7 th до 14 th дня.


5.2. Результаты испытаний на открытом воздухе
5.2.1. Закон переноса температуры образцов в естественной среде на открытом воздухе

На рисунке 8 показана кривая дневной температуры в каждом положении образцов 20 апреля 2015 г.Видно, что изменение температуры в образцах было аналогично изменению температуры воздуха, а диапазон колебаний в верхней части был больше, чем в средней и нижней частях. Разница между центральной и средней внешней стороной была небольшой, что указывало на небольшой перенос температуры в горизонтальном направлении. Закон переноса температуры образцов в естественной среде на открытом воздухе представлен следующим образом: (1) С 6 часов утра температура начала повышаться, и разница температур между верхней, средней и нижней частями также постепенно увеличивалась.(2) В 11:00 — 14:00 разница температур между верхней и нижней частями достигла максимума 8 ° C, в то время как разница между верхней и средней температурой составляла около 6 ° C, а средняя и нижняя разница температур составляла около 2 ° C. С. Это ясно указывало на то, что температура демонстрировала нелинейную картину в направлении глубины. Другими словами, тепло, полученное поверхностью, было самым значительным; затем тепло заметно уменьшилось, когда оно перешло в середину, и почти не существовало до дна.(3) В 13 часов дня верхняя температура достигла максимума, а в 14 часов средняя и нижняя температуры достигли максимума днем. После этого температура всех частей постепенно снижалась, при этом температура верхней части падала с максимальной скоростью, а средняя и нижняя температуры медленно понижались. (4) С 20 часов вечера до почти 5 часов утра или около того температуры в каждой позиции были в основном то же самое, в котором разница температур между верхней, средней и нижней частями находится в пределах 2 ° C.


Данные «Температура × Время» использовались в качестве индекса для анализа статуса отверждения в каждой позиции образцов. Кумулятивная сумма «Температура × Время» для каждого положения образцов в естественной окружающей среде была рассчитана для 7 -го дня и показана в Таблице 3. «Температура × Время» для 7 -го дня стандартного отверждения была рассчитано как 3360 ° C · ч.

900 93
900 2

Место отверждения, дни (г) Верхний Средний Нижний Центральный

7 2057
7 2057 1690
8 2360 1987 1641 1946
9 2660 2247 1853 2200
10 10 2462
11 3265 2779 2280 2719
12 3569 3045 2498 2979
1398 2979
1398 2720 ​​ 3246

Как видно из Таблицы 3, когда отверждение продолжалось до 12 -го дня, значение «Температура × Время» в верхнем положении достигло 3569 ° C · ч, что превысило стандартное отверждение на 7 чт сут 3360 ° C · час.Однако она составляла всего 2498 ° C · ч в нижнем положении и 2979 ° C · ч в центральном положении. Основываясь на теории зрелости, можно считать, что прочность на сжатие в верхнем положении достигла стандартной прочности 7 th , а в среднем и нижнем положениях не достигла стандартной прочности 7 th . Это также может быть хорошим объяснением того, почему на строительной площадке иногда может произойти сбой керна, когда только верхняя часть является твердой, а нижняя часть довольно рыхлая, как показано на Рисунке 9.


5.2.2. Закон увеличения прочности при отверждении при естественной температуре на открытом воздухе

На рисунке 10 показан закон увеличения прочности при отверждении при естественной температуре на открытом воздухе. Прочность на сжатие увеличивается с увеличением количества дней выдержки. Прочность на 7-й день составляла 2,2 МПа, что составляло лишь 62,9% от стандартного отверждения, и достигла стандартной прочности 7 th , когда количество дней достигло 13.


6. Сравнение закона увеличения прочности и установление зрелости-прочности Модель
6.1. Сравнение закона увеличения прочности при четырех условиях отверждения

На рисунке 11 представлены сравнения кривых увеличения прочности на сжатие при различных условиях отверждения. Можно сделать следующие выводы: (1) Во всех четырех случаях прочность на сжатие увеличивалась с увеличением времени отверждения. Скорость отверждения при низкой температуре была ниже, чем при отверждении при стандартной температуре отверждения. Коэффициенты усиления можно отсортировать в порядке убывания (от высокого к низкому): отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре, в котором разница между двумя последними была незначительной.(2) Кривые увеличения прочности для четырех случаев соответствовали логарифмической кривой с видом функции. После калибровки модели было обнаружено, что средний коэффициент усиления для стандартной температуры составлял a = 1,0152, для постоянной низкой температуры 10 ° C он составлял a = 1,4635, для дневной интерактивной температуры он составлял a. = 1,5106, а для естественной температуры наружного воздуха средний коэффициент усиления составил a = 1,6107. (3) Для достижения той же силы 3.При 5 МПа количество дней, необходимых для каждого из этих четырех случаев, было показано следующим образом: 7 дней для стандартной температуры, 14 дней для постоянной низкой и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха. (4) 7 th день стандартная прочность достигла 3,5 МПа, в то время как остальные три составляли 2,2 МПа, 2,1 МПа и 2,2 МПа, соответственно, что составляло только 62% или около того. (5) Среди трех случаев низкотемпературного отверждения Кривые постоянной низкой температуры и естественной наружной температуры были такими же до дня 11 , оба из которых также были очень близки к случаю дневной температуры взаимодействия, хотя дневной интерактивный прирост был самым медленным среди этих трех случаев.Теория зрелости будет использована для объяснения этого результата в следующем разделе.


6.2. Оценка и прогноз модели зрелости-прочности

Смесь щебня, стабилизированная цементом, состоит в основном из цемента, рассортированного щебня и воды. По составу аналогичен цементобетону. Единственная разница заключается в дозировке цемента. Теория зрелости широко используется для прогнозирования прочности цементного бетона. Таким образом, с точки зрения состава материала функция прогнозирования может быть установлена ​​на основе теории зрелости для прогнозирования прочности на сжатие 5% -ной цементно-стабилизированной смеси щебня.Поскольку цементный щебень можно рассматривать как цементный бетон с низкой дозой цемента, есть четыре функции, которые можно использовать на основе существующих исследований цементного бетона, включая степенную функцию, логарифмическую функцию, экспоненциальную функцию и гиперболическую функцию [25 ].

Зрелость трех экспериментов в помещении была рассчитана и показана в таблицах 4 и 5. Взаимосвязь между зрелостью и силой в трех случаях показана на рисунке 12. Кажется, что логарифмические функции являются лучшими прогностическими кривыми во всех трех случаях. и, следовательно, он использовался в качестве предпочтительной функции для цементно-стабилизированной щебеночной смеси.Кроме того, путем объединения данных по всем трем случаям и разработки единой прогнозной модели параметры a = 1,9358 и b = 12,183 были получены путем аппроксимации данных прочности на сжатие и зрелости, а коэффициент корреляции составил R 2 = 0,9907. Короче говоря, модель прогнозирования прочности и зрелости 5% цементно-стабилизированной смеси щебня была.


дней 3 дня 4 дня 5 дней 6 дней 7 дней

Стенд отверждения 2400 2880 3360

9 0878 3042

дней 10 7 d 8 d 9 d 9 d 11 d 12 d 13 d 14 d

Корпус 2 1680 1920 2160 2400 2640 2880 332060 900
Корпус 3 1638 1872 2106 2340 2574 2808 3276


Для случаев естественного отверждения на открытом воздухе данные центрального положения использовались для расчета зрелости. Следует отметить, что один час использовался в качестве диапазона температур, затем накапливались в один день и снова накапливались по дням, чтобы получить стоимость погашения.Используя полученную функцию для прогнозирования прочности на сжатие при отверждении на открытом воздухе, результаты показаны в Таблице 6. Обратите внимание, что эти результаты были очень близки к испытанной прочности, а коэффициент корреляции достиг 99,865%, что ясно указывает на высокий точность модели. Согласно модели, прочность на сжатие при низкотемпературном отверждении может быть спрогнозирована с учетом зрелости, что дает справочную информацию для расчета прочности и определения графика строительного проекта для инженерных приложений.

900 Срок погашения (° C · ч) 9087


дней 7 дней 8 дней 9 дней 10 дней 11 дней 12 дней 13 дней

1690 1946 2200 2462 2719 2979 3246
Испытанное значение (МПа) 2.200 2.500 2.700 2,900 3,100 3,300 3,500
Прогнозируемое значение (МПа) 2,205 2,478 2,715 2,933 3,125 3,302
7. Заключение

В настоящем исследовании обсуждается закон увеличения прочности на сжатие 5% -ного цементного щебня при низкотемпературном отверждении, с особым акцентом на отверждение при различных температурах, которые аналогичны различным температурам воздуха в реальный мир.

В этой статье были проведены эксперименты при трех вариантах отверждения при температуре в помещении и одном естественном отверждении на открытом воздухе. Экспериментальные результаты показали, что прочность на сжатие увеличивалась с увеличением времени отверждения во всех четырех случаях и что скорость увеличения при низкой температуре была меньше, чем при стандартной температуре. Коэффициенты прироста можно отсортировать в порядке убывания: отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре.Стандартная прочность достигла 3,5 МПа на 7 сутки, в то время как остальные составляли только 62% или около того. Численные результаты также показали, что для достижения той же прочности 3,5 МПа количество дней, необходимых для каждого случая низкой температуры, составляло 14 дней как для постоянной низкой, так и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха.

Согласно температурным данным и информации о прочности, собранной в ходе нескольких испытаний в помещении, была создана оценочная модель для прогнозирования прочности на основе теории зрелости.Доказано, что модель обладает способностью прогнозировать с высокой точностью на основе подтвержденных результатов, полученных на основе данных наружных испытаний.

По мере развития направления исследований в будущем характеристики, связанные с прочностью на сжатие в долгосрочной перспективе, также могут быть исследованы с большим количеством данных, собранных с течением времени.

Доступность данных

Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Авторы выражают искреннюю благодарность Национальной программе ключевых исследований и разработок Китая (2017YFF0205600) за финансовую поддержку.

404 — Не найдено — Hilti USA

404 — Не найдено — Hilti USA Перейти к основному содержанию

Страница, к которой вы пытаетесь получить доступ, не существует

Это может быть потому, что

  • Страница удалена.
    Если вы использовали закладку, рекомендуем обновить ссылку.
  • Также возможно, что в ссылке есть опечатка.

Пожалуйста, попробуйте следующие варианты

  • Используйте наш поиск, чтобы найти то, что вы искали.
  • Используйте нашу основную навигацию для доступа к информации о наших продуктах и ​​услугах.
  • Начните просматривать нашу домашнюю страницу.
Нужна помощь? Связаться с нами

Зарегистрируйтесь здесь

Выполняйте работу быстрее онлайн.
Воспользуйтесь всеми преимуществами использования веб-сайта Hilti.

Зарегистрируйтесь сейчас

Не можете войти в систему или забыли пароль?

Пожалуйста, введите свой адрес электронной почты ниже. Вы получите инструкции по созданию нового пароля.

Нужна помощь? Связаться с нами

Зарегистрируйтесь здесь

Выполняйте работу быстрее онлайн.
Воспользуйтесь всеми преимуществами использования веб-сайта Hilti.

Зарегистрируйтесь сейчас

Выберите следующий шаг для продолжения

Ошибка входа

К сожалению, мы не можем войти в систему.
Адрес электронной почты, который вы использовали, не зарегистрирован для {0}, но был зарегистрирован для другого веб-сайта Hilti.

Обновление количества

Обратите внимание, объем заказа обновлен.Это связано с упаковкой и минимальным объемом заказа.

Обратите внимание, объем заказа был обновлен до. Это связано с упаковкой и минимальным объемом заказа.

3 метода отверждения для повышения прочности бетона на сжатие

Что такое отверждение бетона?

Отверждение бетона — это процесс поддержания достаточной влажности в бетоне в надлежащем температурном диапазоне, чтобы способствовать гидратации цемента в раннем возрасте.Гидратация — это химическая реакция между цементом и водой, в результате которой образуются различные химические вещества, способствующие схватыванию и затвердеванию. На процесс гидратации влияют начальная температура бетона, температура окружающего воздуха, размеры бетона и конструкция смеси. Следовательно, для того, чтобы этот процесс шел хорошо, монолитный бетон должен иметь достаточную влажность и температуру, которая способствует быстрой и непрерывной химической реакции.

Американский институт бетона (ACI) рекомендует минимальный период выдержки, соответствующий достижению 70% прочности бетона на сжатие.Часто указывается, что этого можно достичь после семи дней отверждения. Тем не менее, 70% прочности можно достичь быстрее, если бетон затвердевает при более высоких температурах или когда в бетонную смесь используются определенные добавки. Точно так же для отверждения может потребоваться больше времени, когда бетон или температура окружающей среды ниже. Обычно идеальной температурой отверждения считается 20 градусов Цельсия (68 ° F).

Почему важно отверждение бетона

Тщательный контроль влажности и температуры монолитного бетона во время отверждения является важной частью контроля качества и обеспечения качества вашей бетонной конструкции.Правильные методы отверждения предотвратят высыхание, усадку и / или растрескивание монолитного бетона и, в конечном итоге, повлияют на характеристики вашей конструкции, особенно в зоне покрытия. Отверждение бетона должно происходить сразу после его укладки. Также важно, чтобы непрерывный мониторинг условий твердения бетона проводился в течение семи дней. Если вода испаряется из бетона до того, как он достигнет максимальной прочности, в бетоне не останется воды, достаточной для полной гидратации цемента и достижения максимальной прочности на сжатие.Это особенно актуально в экстремальных погодных условиях, когда бетонная плита подвергается воздействию различных факторов окружающей среды, и рост прочности вашего бетона может быть затруднен.

3 Методы эффективного отверждения бетона

Многие факторы влияют на скорость испарения воды из свежеуложенного бетона. Сюда входят температура воздуха, влажность, температура бетона и скорость ветра. В результате было разработано множество методов, помогающих бетону удерживать влагу в раннем возрасте.Эти методы используются для:

  1. Поддержания присутствия воды в бетоне в течение раннего периода твердения,
  2. Сокращения потерь воды с поверхности бетона и
  3. Ускорения увеличения прочности бетона за счет подачи тепла и дополнительной влаги .

Выбор метода (или комбинации методов) зависит от таких факторов, как доступность материалов для отверждения, размер, форма и возраст бетона, производственные мощности (на месте или на заводе), эстетический вид и экономичность.В результате отверждение часто включает в себя серию процедур, используемых в определенное время по мере того, как бетон стареет. Время проведения каждой процедуры зависит от степени затвердевания бетона, необходимой для предотвращения повреждения бетонной поверхности процедурой.

1) Поддержание влажности

Пруд и погружение

Пруд обычно используется для отверждения плоских поверхностей, таких как тротуары и полы, поскольку земля и песок по периметру бетонной поверхности могут удерживать пруд с водой.Пондинг — идеальный метод предотвращения потери влаги из бетона; он также эффективен для поддержания равномерной температуры по всему бетону. Погружение готового бетонного элемента обычно используется для отверждения образца для испытаний.

Подробнее о важности условий отверждения цилиндра читайте в этой статье.

Распыление и распыление

Распыление и распыление используются, когда температура окружающей среды намного выше нуля, а влажность низкая.Туман распыляется через форсунки или распылители, чтобы повысить относительную влажность воздуха над ровной поверхностью, тем самым замедляя испарение с поверхности. Запотевание используется для минимизации растрескивания при пластической усадке. Если орошение производится через определенные промежутки времени, необходимо предотвратить высыхание бетона между нанесениями воды, используя мешковину или аналогичные материалы; в противном случае чередование циклов смачивания и сушки может вызвать растрескивание поверхности.

Пропитанные влажные покрытия

Влажные покрытия, пропитанные водой, такие как мешковина, хлопчатобумажные маты, коврики или другие влагоудерживающие ткани, обычно используются для отверждения.Материалы следует укладывать, как только бетон достаточно затвердеет, чтобы предотвратить повреждение поверхности. Их следует держать постоянно влажными, чтобы на поверхности бетона оставалась водяная пленка в течение всего периода отверждения.

Несъемные формы

Оставленные формы обычно обеспечивают удовлетворительную защиту формованных бетонных поверхностей от потери влаги. Формы обычно оставляют на месте до тех пор, пока это позволяет график строительства. Если формы изготовлены из дерева, их следует поддерживать во влажном состоянии, особенно в жаркую и сухую погоду.

2) Снижение потерь воды

Покрытие бетона непроницаемой бумагой или пластиковыми листами

Непроницаемые бумажные и пластиковые листы можно наносить на тщательно влажный бетон, например, на полиэтиленовую пленку. Этот материал является легким и эффективным замедлителем влажности, который легко наносится. Во время укладки бетонная поверхность должна быть достаточно твердой, чтобы предотвратить повреждение поверхности.

Нанесение мембранообразующих отвердителей

Мембранообразующие отвердители используются для замедления или уменьшения испарения влаги из бетона.Они могут быть прозрачными или полупрозрачными с белой пигментацией. Составы с белыми пигментами рекомендуются для жарких и солнечных погодных условий для отражения солнечного излучения. Отвердители следует наносить сразу после окончательной отделки и они должны соответствовать ASTM C3094 или ASTM C13155.

3) Ускорение набора прочности бетона

Острый пар

Острый пар и пар высокого давления — это два метода парового отверждения. Температура острого пара должна поддерживаться на уровне около 140 градусов по Фаренгейту или ниже, пока не будет достигнута желаемая прочность бетона.

Нагревательные змеевики

Нагревательные змеевики обычно используются в качестве закладных элементов вблизи поверхности бетонных элементов. Их назначение — защитить бетон от промерзания при бетонировании в холодную погоду.

Электрообогреваемые формы или опоры

Электрообогреваемые формы или опоры в основном используются производителями сборного железобетона.

Бетонные покрытия

Бетонные изоляционные покрытия используются для покрытия и изоляции бетонных поверхностей, подверженных отрицательным температурам в период отверждения.При использовании бетонных покрытий убедитесь, что бетон достаточно твердый, чтобы предотвратить повреждение поверхности.

Здесь все, что вам нужно знать о бетонировании в холодную погоду. однако чрезмерная потеря воды за счет испарения может замедлить или предотвратить адекватную гидратацию, особенно на поверхности плиты. Эти методы удержания влаги в монолитном бетоне, следовательно, важны для надлежащей гидратации, чтобы бетон мог получить достаточную прочность на сжатие.

Отверждение напрямую влияет на качество вашей общей структуры. Увеличение силы происходит быстро в раннем возрасте, но продолжается медленнее в течение неопределенного периода времени. Правильное отверждение увеличит долговечность, прочность, водонепроницаемость, сопротивление истиранию, стабильность объема и устойчивость к замерзанию и оттаиванию.

Процесс укладки и выдержки бетона на месте требует точных температур, чтобы не повредить структурную целостность бетона. С SmartRock® , беспроводным датчиком измерения температуры и прочности бетона, вам больше не придется беспокоиться о неоднозначном времени ожидания.SmartRock доставляет точные данные в реальном времени на ваше мобильное устройство каждые 15 минут с помощью бесплатного приложения SmartRock.

Этот полностью беспроводной датчик позволяет членам команды работать эффективно, не беспокоясь о торчащих проводах или необходимости искать провода под нагревательными одеялами, полагаясь на внешние регистраторы данных. Датчик полностью встроен в бетон и закреплен на арматуре внутри опалубки. SmartRock постоянно отслеживает влияние температуры окружающей среды и внешней среды на ваш монолитный бетон, облегчая контроль твердения бетона и обеспечивая оптимальные условия для увеличения прочности на сжатие.Кроме того, результаты в режиме реального времени позволяют подрядчикам оптимизировать процесс нагрева, снижать затраты на электроэнергию и экономить время в своем графике проекта, зная, когда бетон набирает достаточную прочность для последующих строительных операций, таких как снятие опалубки или последующее натяжение.

Прочтите, как S&F Concrete Contractors использовала SmartRock для мониторинга твердения бетона

Источники
CCANZ
PCA
NRMCA

Примечание редактора: этот пост был первоначально опубликован в январе 2019 года и был обновлен для обеспечения точности и полноты.

Плейотропия и эпистаз внутри сигнальных путей и между ними определяют генетическую архитектуру вирулентности грибов

% PDF-1.6 % 1 0 объект > поток DOI: 10.1371 / journal.pgen.1009313

  • Каллен Рот, Дебра Мюррей, Александрия Скотт, Чи Фу, Анна Ф. Аверетт, Шенг Сун, Джозеф Хейтман, Пол М. Магвене
  • Плейотропия и эпистаз внутри сигнальных путей и между ними определяют генетическую архитектуру вирулентности грибов
  • 10.1371 / journal.pgen.1009313http: // dx.doi.org/10.1371/journal.pgen.10093132021-02-04false10.1371/journal.pgen.1009313
  • www.plosgenetics.org
  • 10.1371 / journal.pgen.10093132021-02-04false
  • www.plosgenetics.org
  • конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > / ProcSet 14 0 R / XObject >>> эндобдж 6 0 obj [16 0 R 17 0 R 18 0 R 19 0 R 20 0 R 21 0 R 22 0 R 23 0 R 24 0 R 25 0 R 26 0 R 27 0 R 28 0 R 29 0 R 30 0 R 31 0 R 32 0 R 33 0 R 34 0 R 35 0 R 36 0 R 37 0 R 38 0 R 39 0 R 40 0 ​​R 41 0 R 42 0 R 43 0 R 44 0 R] эндобдж 16 0 объект > / Граница [0 0 0] >> эндобдж 17 0 объект > / Граница [0 0 0] >> эндобдж 18 0 объект > / Граница [0 0 0] >> эндобдж 19 0 объект > / Граница [0 0 0] >> эндобдж 20 0 объект > / Граница [0 0 0] >> эндобдж 21 0 объект > / Граница [0 0 0] >> эндобдж 22 0 объект > / Граница [0 0 0] >> эндобдж 23 0 объект > / Граница [0 0 0] >> эндобдж 24 0 объект > / Граница [0 0 0] >> эндобдж 25 0 объект > / Граница [0 0 0] >> эндобдж 26 0 объект > / Граница [0 0 0] >> эндобдж 27 0 объект > / Граница [0 0 0] >> эндобдж 28 0 объект > / Граница [0 0 0] >> эндобдж 29 0 объект > / Граница [0 0 0] >> эндобдж 30 0 объект > / Граница [0 0 0] >> эндобдж 31 0 объект > / Граница [0 0 0] >> эндобдж 32 0 объект > / Граница [0 0 0] >> эндобдж 33 0 объект > / Граница [0 0 0] >> эндобдж 34 0 объект > / Граница [0 0 0] >> эндобдж 35 0 объект > / Граница [0 0 0] >> эндобдж 36 0 объект > / Граница [0 0 0] >> эндобдж 37 0 объект > / Граница [0 0 0] >> эндобдж 38 0 объект > / Граница [0 0 0] >> эндобдж 39 0 объект > / Граница [0 0 0] >> эндобдж 40 0 объект > / Граница [0 0 0] >> эндобдж 41 0 объект > / Граница [0 0 0] >> эндобдж 42 0 объект > / Граница [0 0 0] >> эндобдж 45 0 объект > эндобдж 43 0 объект > / Граница [0 0 0] >> эндобдж 46 0 объект > эндобдж 44 0 объект > / Граница [0 0 0] >> эндобдж 47 0 объект > эндобдж 4 0 obj > поток х \ ے q = RE 撫 փ G = @ Ϡ

    .

    Оставить комментарий