Трансформаторный блок питания 12в своими руками: Как сделать блок питания на 12В из простого трансформатора

Опубликовано в Своими руками
/
13 Авг 2021

Содержание

характеристика, схемы, как сделать своими руками

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

(1/N)~F*S*B

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

12В

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

3.3 В

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Как из 220в получить 12в без трансформатора: варианты устройств, схемы

Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.

Основные способы понижения

Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.

На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».

Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.

Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.

Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:

  • С помощью балластного конденсатора понижение напряжения.
  • При помощи балластного резистора гасится избыточное напряжение.
  • Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.

Балластный конденсатор

Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.

Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:

В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.

Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.

Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.

При помощи резистора

Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение.

Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.

Автотрансформатор или дроссель с подобной логикой намотки

В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц.

Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).

Схема автотрансформатора с фиксированным напряжением U2.

Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.

Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих  светодиодные светильники.

Технические требования к конденсатору

Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 *  = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.

Бестрансформаторное электропитание: возможные схематические решения

Микросхема линейного стабилизатора

Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц.

Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:

Зарядное устройство

Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети.

В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.

Для чего может использоваться напряжение 12 или 24 вольт в быту

В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

  • аккумуляторные электродрели, шуруповерты и электропилы;
  • стационарные насосы для полива огородов;
  • аудио-видеотехника и радиоэлектронная аппаратура;
  • системы видеонаблюдения и сигнализации;
  • батареечные радиоприемники и плееры;
  • ноутбуки (нетбуки) и планшеты;
  • галогенные и LED-лампы, светодиодные ленты;

  • портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
  • паяльные станции и электропаяльники;
  • зарядные устройства мобильных телефонов и повербанков;
  • слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
  • детские игрушки, елочные гирлянды, помпы аквариумов;
  • различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

для начинающих, сборка своими руками

Любой радиолюбитель в своей жизни не раз собирал блок питания для своих электронных устройств. Поэтому его устройство и принцип работы должен знать каждый, кто занимается электроникой.

Ведь собрав даже самый простой блок питания своими руками, начинающие радиолюбители получают такой восторг, потому что простой блок питания не требует никакой настройки и никакой регулировки, он сразу начинает работать.

Блоки питания бывают нескольких типов: трансформаторные, бестрансформаторные, импульсные.

Принципиальная схема БП

Трансформаторные блоки питания — самые простые и надежные блоки питания. Также из простых блоков питания они являются самыми безопасными по электробезопасности .

Простой трансформаторный блок питания состоит из: трансформатора, выпрямителя и фильтра. Если требуется более качественное стабилизированное питание, то устанавливается стабилизатор. Блоки питания будем рассматривать блоками. Внизу представлена принципиальная схема.

Трансформатор

На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если  на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.

Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить  12 вольт.

Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.

Диодный мост

Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.

Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный  через токоограничивающий резистор R1.

С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.

Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.

Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.

Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.

Фильтрующий конденсатор

Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«

Ниже на рисунке показана схема, и уровень пульсаций в каждой точке

В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.

Стабилизатор

Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.

В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для  устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.

Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.

Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.

Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.

Стабилизированный блок питания на LM7805

На рисунке ниже представлена схема простого блока питания со стабилизатором.

 

На первичную обмотку трансформатора TV1 поступает сетевое напряжение 220 В. Со вторичной обмотки трансформатора выходит пониженное переменное напряжение от 7 до 8 вольт. Далее ток проходит через диодный мост, и на выходе моста получается выпрямленное напряжение. На конденсаторах С1 и С2 выпрямленное напряжение сглаживается.

На выходе стабилизатора LM7805 выходит стабилизированное напряжение 5 вольт. Далее на конденсатор сглаживающий импульсы. И вот уже выпрямленное и стабильное напряжение поступает на светодиод VD5 с токоограничивающим  резистором. Светодиод служит индикатором напряжения.

Если требуется источник питания малой мощности, то можно рассмотреть как вариант- бестрансформаторный блок питания. Но это уже другая история.

Вам тоже будет интересно почитать

Мощный блок питания из трансформатора микроволновки своими руками

Этот мастер-класс буден немного противоречив и вызовет не одно разрозненное мнение. Я хочу поделиться тем, как сделать из трансформатора микроволной печи мощный выпрямитель — блок питания, на необходимое мне напряжение.
Очень часто микроволновки выходят из строя и выбрасываются на помойку. У меня сломалась недавно ещё одна и я решил дать вторую жизнь её трансформатору.
Трансформатор там повышающий и обычно преобразует 220 В в высокое напряжение 2000-2500 В, необходимое для возбуждения магнетрона.
Я видел как много людей переделывают данные трансформаторы либо под аппарат для контактной сварки, либо аппарат для дуговой сварки. Но никогда не видел чтобы из него делали мощные блоки питания.
Ведь трансформатор очень мощный, порядка 900 Вт, а это не мало. Вообщем я покажу вам как перемотать трансформатор под необходимое для вас напряжение.

Разбираем трансформатор от микроволновой печи



Обычно трансформатор микроволновки содержит три обмотки. Самая многочисленная, намотанная самым тонким проводом — это повышающая, вторичная, на выходе у которой 2000-2500 В. Она нам не нужна, мы ее удалим. Вторая обмотка, более толстая, с меньшим количеством проволоки по сравнению с вторичкой — это сетевая обмотка на 220 В. Ещё, между этими двумя массивными обмотками, есть самая маленькая, которая состоит из нескольких витков провода. Это низковольтовая обмотка примерно на 6-15 В, выдающее напряжение на накал магнетрона.

Срезаем швы магнитопровода



Необходимо спилить швы, удерживающие между собой «Ш»-образные пластины и «I»-образные. Швы китайского производителя на так крепки как кажутся. Спилить их можно болгаркой или вообще расколоть зубилом с молоткам. Я использовал болгарку, это гуманный способ.

Снимаем катушки




Снимаем все катушки. Если они очень крепко засели — постучите аккуратно резиновым молотком. Нам пригодиться только обмотка на 220 В, остальные удаляем. Ставим обратно первичную обмотку на 220 В и помещаем её вниз «Ш»-образного сердечника.

Расчет вторичной обмотки


Теперь нам необходимо рассчитать количество витков вторичной обмотки. Для этого нужно узнать коэффициент трансформации. Обычно, в таких трансформаторах он равен единице, следовательно один виток провода будет выдавать один вольт. Но это не всегда так и нужно это перепроверить.
Берем любой провод и наматываем 10 витков провода на сердечник. Затем собираем сердечник и зажимаем его струбциной, чтобы он не развалился. Обязательно через предохранитель подаем 220 В на первичную обмотку. А в это время замеряем напряжение на выходе 10 -ти витковой обмотки. В теории должно быть 10 В. Если нет, значит коэффициент трансформации не такой как обычно и вам нужно производить расчеты для вычисления напряжения для вашей обмотки. Все это не сложно, математика пятый класс.
У меня имеется в наличии два трансформатора. Один я буду делать на 500 В, другой на 36 В. Вы же можете сделать на любое другое напряжение.

Намотка катушки трансформатора на 500 В


Коэффициент трансформации у моего экземпляра один к одному. И чтобы намотать обмотку на 500 В мне нужно соответственно сделать 500 витков провода на катушке. Берем провод.

Конечно не такой, а смотанный на барабане. Прикидываем силу тока и объем катушки. Из этих значений выбираем диаметр провода.

Вот такое простенькое приспособление я собрал для намотки катушки. Сам сердечник из дерева, боковины из оргстекла. Закрепить его можно на дрель или шуруповерт.

Намотал, собрал, подключил. Замеряю выходное напряжение, почти попал — 513 В, что для меня приемлемо.

Трансформатор на 36 В


Обмотку на 36 В можно намотать и вручную, взяв соответствующий провод. Чтобы одеть и распрямить обмотку на сердечнике можно использовать такие клинья, смотрите фото.

После того как обмотка вся натянется, в образовавшиеся отверстия, после снятия клиньев положите плотно спрессованную бумагу. Это мой примитивный способ. Обмотку потом рекомендую пропитать эпоксидкой, иначе будет сильно гудеть.

Работа над ошибками


Я перемотал обмотку, чтобы сделать её более плотной и мощной. Для этого я намотал её двойным проводом, вместо одного толстого. В конце я их соединю.

После того как все обмотки закреплены, пришло время собрать сердечник трансформатора. Для этого закрепляем всю конструкцию струбциной и свариваем дуговой сваркой те же места что и были раньше. Делать толстый шов не нужно, все должно выглядеть как и было.
Далее, для моего выпрямителя мне понадобятся:


Я буду нагружать выпрямитель на 20 А, естественно диодный мост нужно установить на радиатор.
Так же, если вы будете использовать металлический корпус как и я, то не забудьте его заземлить.

О безопасности


Будьте осторожный при подключении трансформатора, никогда не торопитесь и все дважды проверяйте. Подключайте трансформатор только через предохранитель, чтобы избежать возможного замыкания цепи. Не дотрагивайтесь до токоведущих частей во время работы трансформатора.
Также при обработке металла обязательно будьте внимательны и используйте средства защиты органов зрения.
Помните, что все действия вы делаете на свой страх и риск!
Всего доброго!
Original article in English

Бестрансформаторные Схемы Питания

Без трансформаторная Концепция Электропитания

Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:


Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.

Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.

Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.


Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.

Преимущества использования без трансформаторной схемы питания

Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.

Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.

Недостатки без трансформаторной схемы питания

Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.

И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.

Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.

Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.

Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.

Пример схемы

Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:


Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.

Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.

Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.


Источник (Source)

Лучший блок питания 12 В для печатных плат — Выгодные предложения на блоки питания 12 В для печатных плат от глобальных продавцов блоков питания 12 В

Отличные новости !!! Вы находитесь в нужном месте для блока питания 12 В на печатную плату. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший блок питания на 12 В для печатных плат в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели блок питания на 12 В на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в блоке питания 12 В для печатной платы и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 12v pcb power supply по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Схема цепи двойного источника питания

+ 12В и -12В

Целью этого проекта является преобразование источника переменного тока 220В в источник питания +12В и -12В постоянного тока , поэтому он получил название Dual Power Supply , как мы получаем положительный и отрицательный источник питания 12 В одновременно.

Этого можно добиться за три простых шага:

  1. Во-первых, 220 В переменного тока преобразуется в 12 В переменного тока с помощью простого понижающего трансформатора (220 В / 12 В).
  2. Во-вторых, выход этого трансформатора подается на схему выпрямителя, которая преобразует источник переменного тока в источник постоянного тока. На выходе схемы выпрямителя, которая является постоянным током, наблюдаются колебания выходного напряжения. Для фильтрации этих пульсаций используется конденсатор на 2200 мкФ, 25 В.
  3. Наконец, выходной сигнал конденсатора, представляющий собой чистый постоянный ток, подается на регуляторы напряжения IC 7812 и IC7912, которые будут регулировать выходное напряжение на уровне 12 В и -12 В постоянного тока, несмотря на изменение входного напряжения.

Требуемые компоненты:

  • Трансформатор с центральным ответвлением (220В / 12В)
  • Силовые диоды (6А) — 4 шт.
  • Конденсатор (2200 мкФ, 25 В) — 2 шт.
  • Регулятор напряжения (IC 7812 и 7912)
  • Тумблер
  • Нагрузка постоянного тока (двигатель постоянного тока)

Схема:

Создание двойной цепи питания:

Шаг-I: преобразование 220 В переменного тока в 12 В переменного тока с помощью понижающего трансформатора

Первичные выводы трансформатора с центральным ответвлением подключены к бытовой электросети (220 В, переменного тока, , 50 Гц), а выход осуществляется от вторичных выводов трансформатора.Центральное ответвление описывает выходное напряжение трансформатора с центральным ответвлением. Например: трансформатор 24 В с центральным ответвлением будет измерять 24 В переменного тока на двух внешних отводах (обмотка в целом) и 12 В переменного тока от каждого внешнего отвода до центрального отвода (половина обмотки). Эти два источника питания 12 В, переменного тока, , сдвинуты по фазе на 180 градусов друг к другу, что упрощает получение из них положительного и отрицательного 12-вольтных источников питания постоянного тока и . Преимущество использования трансформатора с центральным ответвлением заключается в том, что мы можем получить питание как + 12В, так и -12В постоянного тока , используя только один трансформатор.

ВХОД : 220 В переменного тока , 50 Гц

ВЫХОД : Между внешней клеммой и средней клеммой: 12 В, переменного тока, 50 Гц

Между двумя внешними клеммами: 24 В перем. 50 Гц

Шаг — II: Преобразование 12 В переменного тока в 12 В постоянного тока с помощью мостового выпрямителя

Две внешние клеммы трансформатора с центральным ответвлением подключены к схеме мостового выпрямителя.Схема выпрямителя представляет собой преобразователь, который преобразует источник переменного тока в источник постоянного тока . Обычно он состоит из диодных переключателей, как показано на принципиальной схеме.

Чтобы преобразовать ac в dc , мы можем сделать два типа выпрямителей: один — полумостовой выпрямитель, а второй — полный мостовой выпрямитель. В полумостовом выпрямителе выходное напряжение составляет половину входного напряжения. Например, если входное напряжение составляет 24 В, то выходное напряжение постоянного тока и составляет 12 В, а количество диодов, используемых в этом типе выпрямителя, равно 2.В полномостовом выпрямителе количество диодов равно 4, и он подключен, как показано на рисунке, а выходное напряжение такое же, как входное.

Здесь используется полный мостовой выпрямитель . Итак, количество диодов равно 4, входное напряжение (24 В, переменного тока, ) и выходное напряжение также равно 24 В, постоянного тока, , с пульсациями в нем.

Для выходного напряжения полного мостового выпрямителя,

V  DC  = 2Vm / Π, где Vm = пиковое значение напряжения питания переменного тока, а Π Pi 

Форма сигнала входного и выходного напряжения полного мостового выпрямителя показана ниже.

В этой схеме двойного источника питания диодный мостовой выпрямитель состоит из четырех силовых диодов на 6 А. Номинал этого диода составляет 6 А и 400 В. Нет необходимости использовать такое количество диодов с высокой токовой нагрузкой, но из соображений безопасности и гибкости используется диод с высокой токовой нагрузкой. Как правило, из-за скачков тока возможно повреждение диода, если мы используем диод с малым током.

Выходной сигнал выпрямителя не чистый dc , но на нем есть пульсации.

ВХОД: 12 В переменного тока

ВЫХОД: 24 В пик (с волнами)

Шаг-III: Отфильтруйте рябь на выходе:

Теперь выход 24V dc , который содержит пульсации от пика до пика, не может быть подключен напрямую к нагрузке. Итак, чтобы убрать пульсации с питания , используются конденсаторы фильтра. Теперь используются два фильтрующих конденсатора номиналом 2200 мкФ и 25 В, как показано на принципиальной схеме.Соединение обоих конденсаторов таково, что общий вывод конденсаторов подключается непосредственно к центральному выводу центрального трансформатора с ответвлениями. Теперь этот конденсатор будет заряжен до 12В постоянного тока , поскольку оба подключены к общей клемме трансформатора. Кроме того, конденсаторы удаляют пульсации от источника dc и дают чистый выход dc . Но выход обоих конденсаторов не регулируется. Итак, чтобы сделать питание регулируемым, выходные конденсаторы передаются на микросхемы регулятора напряжения, что объясняется в следующем шаге.

ВХОД: 12 В пост. Тока (с волнами, не чисто)

ВЫХОД: Напряжение на конденсаторе C 1 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)

Напряжение на конденсаторе C 2 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)

Шаг-IV: Отрегулируйте источник питания постоянного тока 12 В

Следующим важным моментом является регулировка выходного напряжения конденсаторов, которое в противном случае будет изменяться в соответствии с изменением входного напряжения.Для этого в зависимости от требований к выходному напряжению используются ИС регулятора . Если нам нужно выходное напряжение +12 В, то используется IC 7812. Если требуемое выходное напряжение + 5В, то используется 7805 IC. Последние две цифры IC обозначают номинальное выходное напряжение. Третья последняя цифра показывает положительное или отрицательное напряжение. Для положительного напряжения (8) и для отрицательного напряжения (9) используется число. Таким образом, IC7812 используется для регулирования напряжения +12 В, а IC7912 — для регулирования напряжения -12 В.

Теперь соединение двух микросхем выполняется, как показано на принципиальной схеме.Клемма заземления обоих микросхем соединены с центральным отводом выводом трансформатора для создания ссылки. Теперь выходные напряжения измеряются между выходной клеммой и клеммой заземления для обеих ИС.

ВХОД: 12 В постоянного тока (чистый постоянного тока , но не регулируемый)

ВЫХОД: + 12V dc между выходной клеммой 7812 и землей (чистый dc и регулируемый)

-12 В постоянного тока между выходной клеммой 7912 и землей (чистый постоянного тока и регулируемый)

Применение двойной цепи питания:

  • Операционным усилителям требуется два источника питания (обычно один положительный источник и один отрицательный источник), потому что операционный усилитель должен работать при обеих полярностях входящего сигнала.Без отрицательного источника операционный усилитель не сработает во время отрицательного цикла сигнала. Таким образом, выход этой сигнальной части будет «ограничен», то есть сам останется на земле; что явно не рекомендуется.
  • Если в качестве нагрузки используются двигатели постоянного тока, то при +12 В он будет вращаться по часовой стрелке, а при -12В — в противоположном направлении. Например, двигатели, которые используются в игрушках (автомобиль, автобус и т. Д.), Будут двигаться вперед при напряжении +12 В и двигаться назад при напряжении -12 В.Мы показали вращение двигателя в обоих направлениях, используя эту схему двойного источника питания, в видео ниже .

Проверьте нашу другую цепь питания :

Цепь источника питания постоянного тока 12 В

ТЕОРИЯ РАБОТЫ, СХЕМА, СХЕМА ПЛАТЫ

ОПИСАНИЕ.

На приведенной ниже принципиальной схеме показана простая тривиальная недорогая схема импульсного источника питания SMPS 12 В постоянного тока 50 Вт в автономном режиме.Его можно использовать для домашних проектов DIY или для изучения работы обратных преобразователей. Этот блок питания может работать в универсальном диапазоне входной линии переменного тока 90-264 В переменного тока. Он обеспечивает номинальное выходное напряжение 12 В постоянного тока при нагрузке более 4 А. Регулировка линии и нагрузки лучше 0,5%.
Устройство имеет защиту от перегрузки по току, перегрева и перенапряжения, а также пассивное ограничение пускового тока. Пульсации на выходе составляют примерно 0,2 В от пика до пика в диапазоне от 0 до 20 МГц. Если вам нужно уменьшить пульсации, вы можете установить дополнительный выходной конденсатор или LC-фильтр вне контура обратной связи.Этот проект представляет собой модификацию схемы 24 В, которую я разработал много лет назад в качестве консультанта для небольшой компании. Эта компания хотела заменить подключаемый модуль на дешевый стандартный источник питания переменного тока в постоянный, у которого было долгое время выполнения заказа. К тому времени, когда я закончил дизайн и построил прототип, они нашли готовую деталь в другом месте на складе. Таким образом, они так и не приступили к производству этого модуля. Соответственно, я не тестировал эту конструкцию, кроме базового DVT. Вы можете построить эту схему для личного использования (конечно, на свой страх и риск).Но вам не разрешается где-либо повторно публиковать содержимое этой страницы или использовать его в коммерческих целях без моего разрешения.

ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ.

Для безопасного тестирования или устранения неисправностей этой цепи рекомендуется запитать ее через изолирующий трансформатор или от изолированного источника переменного тока. Также обратите внимание, что автономный однотранзисторный обратноходовой преобразователь генерирует внутреннее напряжение, которое может достигать 600 В. Не пытайтесь играть с этой схемой, если вы не достигли совершеннолетия, не разбираетесь в силовой электронике и не знаете, как безопасно обращаться с высоким напряжением.Вы можете пройти нашу быструю викторину по безопасности источников питания.

СХЕМА:

РАБОТА С ЦЕПЕЙ.


В этом источнике питания переменного тока в постоянный используется обратный ход, который представляет собой простейшую топологию преобразователя SMPS. Он использует МОП-транзистор 800 В / 11 А (Q1) в качестве коммутирующего устройства и контроллер ШИМ UC3844AN (U3). Входная секция включает предохранитель, фильтр электромагнитных помех, NTC-резистор R1, ограничивающий пусковой ток, полный мостовой выпрямитель CR1 и конденсатор C2 фильтра шины постоянного тока.
Начальный пусковой ток для ИС с ШИМ обеспечивается «стекающими» резисторами R7, R8, которые пропускают небольшой ток, который заряжает конденсатор C7 Vcc.Когда вывод Vcc U3 достигает положительного порога блокировки при пониженном напряжении (обычно 14–16 В), ИС начинает работать и будет включать и выключать переключатель Q1 через резистор управления затвором R4 с фиксированной частотой (в этой схеме это 100 кГц). Когда Q1 включается, напряжение шины постоянного тока подается на первичную обмотку трансформатора T1, ток через первичную обмотку трансформатора нарастает, а энергия накапливается в магнитном поле трансформатора. Диоды D4 и D7 в течение этого временного интервала имеют обратное смещение.Когда Q1 выключается, энергия, запасенная в магнитном поле, заставляет напряжения на всей обмотке менять полярность. В результате выходные выпрямители D4 и D7 проводят ток, и накопленная энергия передается на выход и в цепь смещения. После запуска преобразователя смещение для управляющей ШИМ поступает от обмотки смещения трансформатора.
Вторичный контур управления обратной стороны использует TL431 точность шунт регулятор D1 в качестве как опорного и усилителя ошибки. Он сравнивает разделенное выходное напряжение с внутренним опорным сигналом 2 D1.5В. Оптопара U1 подает ток, пропорциональный сигналу ошибки, через границу гальванической развязки трансформатора обратно в первичный ШИМ. Если точное регулирование выхода не требуется, обратная связь может быть взята из напряжения смещения на C9 и подана через делитель на вывод обратной связи 2.
Первичный ток в T1 измеряется резистором R6. Это напряжение измерения тока подается через фильтр пиковых значений на клемму датчика тока U3, где оно сравнивается с уменьшенным сигналом ошибки на выводе компенсации 1.Когда линейное изменение напряжения считывания тока достигает 1/3 × (V pin1 -1), импульс прекращается и Q1 выключается.
Стабилитрон D6 с оптопарой U2 обеспечивает защиту от перенапряжения на выходе без фиксации.
Термовыключатель отключает источник питания, когда температура на радиаторе MOSFET превышает 95-100 ° C.

Вот полная спецификация. Отметим, что он был составлен более десяти лет назад. Некоторые номера деталей могут потребовать замены.

ПЕЧАТНАЯ ПЛАТА:


СИЛОВОЙ ТРАНСФОРМАТОР



Конструкция трансформатора может выглядеть необычно.Обратите внимание, что обратный трансформатор работает как индуктор: он накапливает энергию в магнитном поле в течение периода включения Q1. Затем он передает его (за вычетом потерь) во вторичные обмотки в течение периода выключения Q1. Для эффективного хранения энергии с минимальными физическими размерами, немагнитный зазор необходим последовательно с материалом магнитного сердечника с высокой проницаемостью. В конструкции трансформатора с обратным ходом обычно используются ферритовые сердечники с физическим зазором или порошковые металлические сердечники с естественным распределенным зазором.Ферриты с зазором обычно имеют более низкие потери, но у них резкая кривая насыщения. Порошковые сердечники имеют более высокие потери, но их кривая B (H) мягкая. Среди других форм-факторов тороидальные трансформаторы имеют самую низкую индуктивность рассеяния. В данном БП трансформатор выполнен на порошковом тороидальном сердечнике KoolM. Правильная фазировка обмотки имеет решающее значение в обратноходовых преобразователях, как и во всех несимметричных преобразователях. Если обмотки перепутаны по фазе, схема не будет работать или может просто взорваться. Обратитесь к приведенной выше схеме и схеме обмотки для правильной установки трансформатора.Все катушки в этой конструкции должны быть сделаны из проволоки с двумя или более слоями тефлоновой изоляции, чтобы обеспечить усиленную изоляцию между первичной и вторичной обмотками.

См. Также связанные страницы:
Совместимость разъемов питания компьютеров;
Схема и теория SMPS.


Светодиодный трансформатор / блок питания 12V1A 2A Настольный адаптер питания от китайского производителя, завода, завода и поставщика на ECVV.com

1.Универсальный вход переменного тока / Полный диапазон,
2. Защита: короткое замыкание / перегрузка / перенапряжение,
3. Естественное ветровое охлаждение,

4. Светодиодный индикатор включения,

5. 100% старение при полной нагрузке,

6. потребление без нагрузки ниже 0,5 Вт,

7. Все используемые электролитические конденсаторы с длительным сроком службы 105 ° C,

8. Может выдерживать скачок напряжения 300 В переменного тока в течение 5 секунд,

9.Рабочая температура может достигать 60 ° C,

10. пройти испытания на вибрацию 5G,

11. высокая эффективность, длительный срок службы и высокая надежность,

Гарантия 12,2 года.


Преимущество

Мы фабрика. Цена и качество могут быть хорошо гарантированы.

Весь продукт проверяется отделом контроля качества перед отправкой.

Все материалы проходят двойную проверку перед производством.

У нас есть профессиональная команда по продажам, они могут предоставить вам профессиональное руководство по покупке, прежде чем вы совершите покупку в нашем магазине.

Мы принимаем оптовые заказы с быстрым сроком доставки

Платеж

мы принимаем TT, Western Union, Paypal, Escrow Service

Отгрузка

Мы можем отправить товар по всему миру.Вы можете выбрать FedEx, DHL, UPS, TNT, Почта Китая и т. Д. Разные клиенты могут выбрать другой способ доставки в соответствии со своими требованиями.

Гарантия на продукцию

На весь товар дается гарантия два года (24 месяца).

Если вы не удовлетворены нашим товаром, пожалуйста, верните его в течение 14 дней.А также сообщите об этом нашему торговому представителю, прежде чем вы вернетесь обратно.Как только мы получим возвращенный товар, мы вернем вам деньги или заменим товар вам

ТРАНСФОРМАТОРЫ своими руками

Вы можете сделать простой инструмент для намотки, отрезав деревянный брусок до середины катушки и продев в него болт.Используйте металлическую шайбу или пластину на концах, чтобы закрепить каркас на месте. Затем посчитайте количество оборотов патрона при повороте ручки на один оборот. Получаю 51 оборот на 13 оборотов ручки = 3,92308 оборотов за оборот ручки.

Соберите трансформатор с сетевой катушкой 230 В (115 В) и новой 100-витковой катушкой. Для этого теста легче вставить все буквы «E» в одном направлении и использовать монтажный кронштейн, чтобы удерживать буквы «I» вместе на месте. Подключите трансформатор к сети переменного тока.

Измерьте выходное напряжение трансформатора. В моем случае это было 16vAC. Это означает, что у меня 100/16 витков на вольт = 6 витков на вольт. Итак, теперь я знаю, что мне нужно 6 витков, умноженных на желаемое напряжение, плюс пара дополнительных витков.

Расчет катушки

Теперь, когда вы знаете, сколько витков на вольт, и вы уже знаете, какие напряжения вам нужны, все, что вам нужно сделать, это определить, сколько витков провода вам нужно и какой толстый провод вам понадобится для тока и доступного пространства.Не то, чтобы всегда было от 10% до 20% бесполезного пространства, если вы не наматываете идеально близко расположенные слои. Вы можете сделать это для обмоток низкого напряжения, но когда требуется более 500 витков, вы просто наматываете сваи, пытаясь сохранить слои как можно более ровными.

Эта таблица даст вам представление о том, какой размер провода вам нужен. Если вы не можете получить достаточное количество витков с помощью достаточно толстого провода, вам нужно уменьшить количество витков на вольт и перемотать первичную обмотку.Но с коммерческими трансформаторами размер / пространство всегда должны подходить вам.

654 0,10 903 904 653 904 903 903 903 903 903 903
Диаметр (мм) AWG I-максимум (мА) Длина на 100 г барабана
0,05 44 3,8 8200
1400
0,15 35 54 620
0,20 33 75 438
0.25 30 147 227
0,30 29 212 157
0,35 27 288 288 88
0,45 25 476 69
0,50 24 585 56
0.60 21 1150 29
0,80 20 1490 21
0,90 19 1850 18,5 13,5
1,50 15 5250 6,3
2,00 12 9350 3,4

стол для медной проволоки квадратного сечения

Обратите внимание, что медный провод в воздухе переносит в 2 или 3 раза больше, но когда он находится в пластиковом корпусе или намотан на катушку, тепло не может уйти.В результате принято понижать номинал до 3 А на квадратный миллиметр площади поперечного сечения. Военные спецификации даже ниже этой цифры.

Мне нужно 250-0-250В плюс 6,3В. Площадь поперечного сечения центра трансформатора внутри катушки определяется требуемой мощностью. Но мы уже знаем это, так как я выбрал 36-ваттный компонент. Мой первый имеет ширину 11 мм и глубину 6 мм с внутренней стороны, где будет проходить провод. Поэтому у меня есть космический бюджет 66 мм. Мне нужно 250-0-250 В при 50 мА, что составляет 25 мА на секцию 250 В.Я могу использовать 33 мм из свободного пространства для обмотки HT, а остальные 33 мм для обмотки LT.

250-0-250V HT НАМОТКА

При 6 витках на вольт мне нужны две обмотки по 250 В, или 500 В X 6 т / в = 3000 витков.

Это означает, что при ограниченном пространстве мне нужно получить как минимум 3000/33 = 91 виток на каждом квадратном миллиметре пространства. При скорости 100 витков на миллиметр я могу выбрать эмалированный медный магнитный провод диаметром 0,1 мм. В принципе, провод квадратный.Вы не собираетесь наматывать катушки идеальными слоями. Провода диаметром 0,1 мм достаточно для передачи тока 25 мА (при 3 А на квадратный миллиметр). Отлично! катушка HT выглядит так:

1500 витков + 1500 витков проволоки диаметром 0,1 мм.

6.3v LT ЗАМОК

При 6 витках на вольт мне нужна одна обмотка 6.3v X 6t / v = 18 витков (используйте 2 дополнительных) = 20 витков. Согласно таблицам с медной проволокой, диаметр 0,85 мм выдержит 2 ампера, но у меня есть место для медного эмалированного магнитного провода диаметром 1 мм.Это будет означать два хороших аккуратных слоя проволоки и отнимет 2 X 11 = 22 мм из моего космического бюджета. Проволока диаметром 1 мм также может подавать до 2,5 ампер. Отлично! катушка LT выглядит так:

20 витков проволоки диаметром 1,0 мм.

Обмотка катушки

У меня есть сотни дешевых и противных карандашей, которые вы получаете каждый раз, когда идете на лекцию или конференцию. Они идеально подходят для намотки катушек. Освободите поводок и вырежьте внутренности, удерживающие поводок.Теперь вы можете пропустить диаметр 0,1 мм. провод хоть это при намотке. Таким образом, вы можете протянуть проволоку там, где хотите, и предотвратить случайное скольжение проволоки по щеке первого. Для диаметра 1 мм. провод вы можете сделать это вручную.


Намотка катушки с помощью карандаша

Начните с того, что пропустите проволоку через пустой движущийся карандаш, а затем через отверстие в щеке первого. Очистите и припаяйте конец провода к медной клемме подключения.Начать намотку. В моем случае мне нужно повернуть ручку дрели на 1500 / 3,92308 = 383 оборота.

При высоковольтных обмотках важно, чтобы провод был собран однородными слоями. Таким образом вы избежите высокого напряжения между соседними слоями. Это могло стать причиной сбоя. Но если вы попытаетесь намотать равномерно из стороны в сторону при намотке, этого будет вполне достаточно.

Когда вы закончите первую катушку высокого напряжения, отрежьте провод и проденьте конец через отверстие в бывшей щеке.Очистите и припаяйте провод ко второй контактной площадке. Оберните катушку одним слоем малярной ленты. Лента должна быть на 1 мм шире, чем формирователь катушки, так, чтобы она заходила на сторону формирователя.

Подсоедините следующий конец провода ко второй контактной площадке и намотайте следующие 1500 витков точно так же и в том же направлении, что и первая катушка. Закончите, подключив катушку к третьей контактной площадке. Оберните катушку одним слоем малярной ленты.

Обмотка LT 6,3 В намотана на первую катушку.Для начала пропустите конец проволоки через отверстие в бывшей щеке. Очистите и припаяйте провод к первой контактной площадке LT. Намотайте 20 витков как можно аккуратно в два слоя. Проденьте конец проволоки через другое отверстие в бывшей щеке. Очистите и припаяйте провод ко второй контактной площадке LT.

Тестирование катушки

Временно соберите трансформатор ТОЛЬКО с сетевой катушкой 230 В (115 В). Пропустите переменный ток 50 Гц (60 Гц) через катушку от другого низковольтного трансформатора, например, 24 В.Измерьте напряжение на катушке и переменный ток, потребляемый катушкой.


Временная сборка для испытаний

Теперь повторно соберите трансформатор с сетевой катушкой 230 В (115 В) И вашей вновь намотанной вторичной катушкой, как показано выше. Проверьте каждую катушку на непрерывность (сопротивление) постоянного тока и отсутствие короткого замыкания на шасси или между катушками. Пропустите переменный ток 50 Гц (60 Гц) через катушку от низковольтного трансформатора, как и раньше. Первичная катушка должна потреблять примерно такой же переменный ток, как и раньше.Если ток значительно выше, значит, у вас, вероятно, закорочен виток вашей новой катушки. Не беспокойтесь обо всех вибрациях, они прекратятся, когда трансформатор будет окончательно собран правильно.

Если у вас достаточно времени или вы повторно используете старую магнитную проволоку, вам следует провести этот тест после намотки каждой обмотки катушки. Таким образом вы сможете выявить неисправность на ранней стадии и сэкономить много времени на перемотку.

Наконец, при условии, что все в порядке, разобрать трансформатор, затем заново собрать его должным образом, вставив буквы «E» с разных сторон .Так он был собран, когда вы его впервые разобрали. Буквы «I» вы вставляете в свободные места между концами «E». Последнюю пару букв «Е» немного сложно уместить, но вам нужно выпрямить все ламинаты и немного их сжать.

Если вам нужно было покрыть лаком или покрасить ламинат, то вы должны быть осторожны, чтобы вставить их все краской вверх. Другой момент заключается в том, что невозможно будет уместить их все, но сохраните неиспользованные листы для вашего следующего трансформатора.После восстановления трех или четырех трансформаторов у вас может быть достаточно оставшихся пластин, чтобы построить еще один трансформатор из всех оставшихся 🙂

Заключение

Ну, это было не так уж и плохо. Если вы выполнили эти шаги, вы обнаружите, что легко перемотать трансформатор того типа, который я использовал. Эти трансформаторы стоят всего 19 шведских крон (3 доллара США) каждый для 5-ваттных версий. Один рулон эмалированного магнитного провода 100 Гбит / с стоит 60 шведских крон (10, 5 долларов США), и его будет достаточно для примерно 5 обмоток по 250 В на трансформаторе мощностью 36 Вт.

Если вам нужен трансформатор громкоговорителя для вентилей, то квадратный корень из отношения импеданса анода: громкоговоритель даст вам соотношение витков (напряжений). Анодная катушка 230 В (115 В) уже намотана для вас. Единственное отличие состоит в том, что все буквы «E» следует вставлять с той же стороны катушки, которая использовалась для теста. Когда вы собираете трансформатор, поместите тонкий лист фотокопировальной бумаги между блоком букв «E» и «I» так, чтобы оставался небольшой зазор 0,1 мм. Это предотвратит магнитное «насыщение» сердечника трансформатора постоянным током на аноде.

Оставить комментарий