Схема стабилизатор напряжения 220в для дома своими руками схема: Стабилизатор напряжения 220в для дома своими руками схема

Опубликовано в Дом
/
2 Ноя 2019

Содержание

Стабилизатор напряжения 220в для дома своими руками схема

Бытовые устройства чувствительны к скачкам напряжения, быстрее подлежат износу, и появляются неисправности. В электрической сети напряжение часто изменяется, снижается, либо возрастает. Это взаимосвязано с отдаленностью источника энергии и некачественной линии питания.

Чтобы подключать приборы к устойчивому питанию, в жилых помещениях применяют стабилизаторы напряжения. На его выходе напряжение обладает стабильными свойствами. Стабилизатор можно приобрести в торговой сети, однако такой прибор можно изготовить своими руками.

Имеются допуски на изменение напряжения не более 10% от номинального значения (220 В). Это отклонение должно быть соблюдено как в большую сторону, так и в меньшую. Но идеальной электрической сети не бывает, и величина напряжения в сети часто меняется, усугубляя тем самым работу подключенных к ней устройств.

Электрические приборы отрицательно реагируют на такие капризы сети и могут быстро выйти из строя, потеряв при этом свои заложенные функции. Чтобы избежать таких последствий, люди применяют самодельные приборы под названием стабилизаторы напряжения. Эффективным стабилизатором стал прибор, выполненный на симисторах. Как сделать стабилизатор напряжения своими руками мы и рассмотрим.

Характеристика стабилизатора

Это устройство стабилизации не будет иметь повышенную чувствительность к изменениям напряжения, подающегося по общей линии. Сглаживание напряжения будет производиться в том случае, если на входе напряжение будет находиться в пределах от 130 до 270 вольт.

Включенные в сеть устройства будут питаться напряжением, имеющим величину от 205 до 230 вольт. От такого прибора можно будет питать электрические устройства, суммарная мощность которых до 6 кВт. Стабилизатор будет производить переключение нагрузки потребителя за 10 мс.

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Стабилизатор напряжения и его особенности

Когда напряжение входа становится меньше 130 вольт, то на выходах компараторов появляется логический уровень малого размера. В этот момент транзистор VТ4 находится в открытом виде, первый светодиод мигает. Эта индикация сообщает о наличии низкого напряжения, что означает невозможность выполнения регулируемым стабилизатором своих функций.

Все симисторы закрытии и нагрузка отключена. Когда напряжение находится в пределах 130-150 вольт, то сигналы 1 и А имеют свойства высокого значения логического уровня. Такой уровень имеет низкое значение. В таком случае транзистор VТ5 открывается, и начинает сигнализировать второй светодиод.

Оптосимистор U1.2 открывается, так же, как и симистор VS2. Через симистор будет протекать нагрузочный ток. Затем нагрузка зайдет в верхний вывод катушки автотрансформатора Т2.

Если напряжение входа 150 – 170 В, то сигналы 2, 1 и В имеют повышенное значение логического уровня. Другие сигналы имеют низкий уровень. При таком напряжении входа транзистор VТ6 открывается, 3-й светодиод включается. В этот момент 2-й симистор открывается и ток поступает на второй вывод катушки Т2, являющийся 2-м сверху.

Собранный самостоятельно стабилизатор напряжения на 220 вольт будет соединять обмотки 2-го трансформатора, если уровень напряжения входа достигнет соответственно: 190, 210, 230, 250 вольт. Чтобы сделать такой стабилизатор, необходима печатная плата 115 х 90 мм, изготовленная из фольгированного стеклотекстолита.

Изображение платы можно отпечатать на принтере. Затем с помощью утюга переносят это изображение на плату.

Изготовление трансформаторов

Изготовить трансформаторы Т1 и Т2 можно самостоятельно. Для Т1, мощность которого 3 кВт, необходимо применить магнитопровод с поперечным сечением 1,87 см2, и 3 провода ПЭВ – 2. 1-й провод диаметром 0,064 мм. Им наматывают первую катушку, с количеством витков 8669. Другие 2 провода применяются для образования остальных обмоток. Провода на них должны быть одного диаметра 0,185 мм, с числом витков 522.

Чтобы не изготавливать самому такие трансформаторы, можно применить готовые варианты ТПК – 2 – 2 х 12 В, соединенные последовательно.

Чтобы изготовить трансформатор Т2 на 6 кВт, применяют магнитопровод тороидальной формы. Обмотку наматывают проводом ПЭВ – 2 с числом витков 455. На трансформаторе необходимо вывести 7 отводов. Первые 3 из них наматываются проводом 3 мм. Остальные 4 отвода наматываются шинами сечением 18 мм

2. С таким сечением провода трансформатор не нагреется.

Отводы выполняют на таких витках: 203, 232, 266, 305, 348 и 398. Витки считают с нижнего отвода. В этом случае электрический ток сети должен поступать по отводу 266 витка.

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Достоинства и недостатки, отличия от заводских моделей

Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью.

Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками.

В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине.

Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Релейный стабилизатор напряжения 220V без разрыва цепи


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Содержание / Contents

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения — там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением № 2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги — контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10.
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1. Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 — усилители для реле.
Реле Р1 и Р2 — основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный — низкое, зеленый — норма, синий — высокое.Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676.
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1, а вспомогательные LIMING JZC — 22F.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).


Прибор повешен на стене и закрыт кожухом из жести

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки «Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт». Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.a) Безобрывное переключение цепей переменного тока с помощью реле — вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле1. Статья «Типы стабилизаторов напряжения» на сайте «Энергосбережение в Украине»
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на деталиСхема, чертеж печатной платы и программа с прошивкой
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Иван Внуковский,
Украина, г. Днепропетровск

Камрад, рассмотри датагорские рекомендации

Иван Внуковский (if33)

Украина, г. Днепропетровск

Радиолюбитель, стаж более 40 лет. Работал на заводе инженером КБ, инженером по обслуживанию ЭВМ, механиком по ремонту бытовой техники. Сейчас на пенсии.

 

Схема стабилизатора напряжения сети | Мастер Винтик. Всё своими руками!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

 

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого    трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

 Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

 Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Симисторы можно использовать другие, — все зависит от мощности нагрузки. Можно даже использовать в качестве элементов коммутации элекромагнитные реле.

Сделав другие настройки резисторами R2, RЗ, R5 (рис. 1) и, соответственно, другие отводы Т2 (рис. 2) можно изме­нить шаг переключения напряжения.

Кривошеим Н. Радиоконструктор. 2006г. №6.

Литература:

  1. Андреев С. Универсальный логичес­кий пробник, ж. Радиоконструктор 09-2005.
  2. Годин А. Стабилизатор переменного напряжения, ж. Радио, №8, 2005  

P.S. В нашем «Магазине Мастера» вы можете приобрести готовые модули стабилизаторов, усилителей, индикаторов напряжения и тока, а также различные радиолюбительские наборы для самостоятельной сборки.

 Наш «Магазин Мастера «



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Простой преобразователь напряжения -12В на ~230В
  • На рыбалке, в лесу или на даче, в общем в дали от электричества для питания эл.приборов и различных устройств часто возникает необходимость в напряжении ~230В. Для этой цели можно использовать преобразователь постоянного напряжения 12В — например, автомобильного аккумулятора в переменное напряжение 230 В. О таком несложном преобразователе на трёх микросхемах, который можно сделать своими руками и пойдёт сегодня речь.

    Подробнее…

  • Регулируемый источник питания на LM117-LM317
  •  

    Стабилизаторы положительного напряжения, предназначены для получения стабилизированных напряжений от 1,2 В до 37 В при токе нагрузки до 1,5 А. Имеют три вывода и для задания нужного выходного напряжения требуют всего лишь резисторный делитель.  Подробнее…

  • Как запитать светодиод от одной батарейки?
  • От одной батарейки светодиод не будет светиться, значит у нас два варианта: добавить батареек или сделать преобразователь питания.

    С первым вариантом всё понятно, а кого заинтересовал второй давайте рассмотрим подробнее…

    Подробнее…


Популярность: 45 294 просм.

⚡️Самодельный стабилизатор напряжения 220в | radiochipi.ru

На чтение 3 мин. Опубликовано Обновлено

Электронный стабилизатор напряжения — это промежуточное устройство между бытовой электросети и электропотребителем (нагрузкой). Такое устройство предназначено для поддержания напряжения на определенном уровне, а в частности 220В.

Нередко случается в квартирах, а часто в своих домах, напряжения в розетке далеко от идеала 220В, оно или сильно занижено, либо завышено, а порой просто резко скачет. В таких ситуациях включенные бытовые приборы в розетку ведут себя как-то странно, освещение тускло горит, холодильник начинает гудеть, вода в электрочайнике медленно закипает. На помощь нам приходит стабилизатор сетевого напряжения.

[info]Стабилизаторы бывают промышленные и бытовые. Промышленные стабилизаторы напряжения работают от трех фазного напряжения 380В, бытовые от однофазного и делятся на электронные, феррорезонансные, релейные, электромеханические, инверторные.[/info]

Рассмотрим принципиальную схему упрощенного электронного стабилизатора напряжения. В диодном мосту VD2 по диагонали расположен полевой транзистор VT2, когда он закрыт, то первичная обмотка вольтодобавочного трансформатора Т1 отключена от сети. Выходное U на холостом ходу, равно сетевому за исключением, малого падения напряжения на вторичной обмотке трансформатора Т1.

По схеме начало первичной обмотки L1-1 трансформатора Т1 соединен непосредственно к сети 220В. Для того чтобы подключить второй конец первичной обмотки L2-1’ трансформатора Т1 к сети 220В, необходимо открыть полевой транзистор VT2 (IRF840), после чего к нагрузке приложится сумма напряжений на вторичной обмотке L1 1-2, L2 2’-1’ и напряжения сети.

povyshayushhij-stabilizator-peremennogo-napryazheniyaНа биполярный транзистор VT1 структуры n-p-n перехода подается напряжение, через нагрузку, трансформатор Т2 и диодный мост VD1. Потенциометром R1 выставляется выходное U=220В порог срабатывания устройства на нагрузке, биполярный транзистор VT1 открывается, при этом транзистор VT2 закрывается. Если напряжение в сети упадет и станет ниже 220В, то закроется транзистор VT1, откроется транзистор VT2.

Диодный мост VD1 КЦ405В выпрямляет переменное U=12В на вторичной обмотке трансформатора Т2, после постоянное напряжение подается на стабилизатор DA1 КР142ЕН8А и запитывает коллекторную цепь транзистора VT1 КТ972А. Конденсатор С5 и резистор R6 соединены параллельно истоку стоку транзистора VT2 и образуют гасящую цепочку от нежелательных скачков напряжения. С1 выполняет роль фильтрующего конденсатора от сетевых помех, тем самым улучшает процесс работы устройства.

Подбирая номиналы сопротивлений резисторов R3, R5 добиваются наилучшей и устойчивой работы стабилизации напряжения. Включение/выключение устройства и нагрузки осуществляется выключателем SA1. В стабилизаторе напряжения предусмотрено отключение стабилизирующего напряжения на нагрузке выключателем SA2. Собранный по схеме стабилизатор включают в сеть 220В и переменным резистором R1 выставляют U=220В на нагрузке.

С каталогом масляных трансформаторов можно ознакомиться по ссылке.

Вольтодобавочный трансформатор Т1 собран на основе готового трансформатора марки СТ-320, ранее использовавшегося в БП-1 блоках питания телевизоров УЛПЦТ-59. Трансформатор необходимо разобрать полностью, снять магнитосердечник, после чего смотать все вторичные обмотки, необходимо оставить только сетевую (первичную обмотку). Заново намотать поровну вторичные обмотки эмалированным медным проводом ПЭВ, ПЭЛ.

Одинаковые две катушки имеют следующие намоточные данные:

kolichestvo-vitkov-v-transformatore

Полевой транзистор VT2 необходимо закрепить на радиаторе!

Сетевой стабилизатор напряжения | Микросхема

Поводом для публикации статьи про сетевые стабилизаторы напряжения послужил комментарий одного из наших уважаемых радиолюбителей в заметке про мощные стабилизаторы напряжения, обеспечивающие ток нагрузки до 3 ампер.

Здесь рассмотрим именно сетевые стабилизаторы напряжения бытового назначения, т.е. которые обеспечивают на выходе стандартное для многих стран (хотя далеко не всегда оно таковое – прим. AndReas) потребительское напряжение 220 вольт. Так вот, при девиации сетевого напряжения на входе такого стабилизатора они призваны приводить его к номиналу 220 вольт на выходе. Таким образом, обеспечивается стабильное и бесперебойное питание бытовых приборов или оргтехники, что способствует значительному продлению срока эксплуатации бытовой техники.

Не буду загружать вас, уважаемые радиолюбители, теоретическим материалом, поскольку здесь и так все ясно. Схем различных сетевых стабилизаторов напряжения масса. Большинство из них также уже содержат фильтры от ВЧ помех и прочие «навороты». Но фирмы при покупке у них готового сетевого стабилизатора напряжения всегда «до кучи» пытаются «навалить» «левого», уже ненужного товара, например, сетевые фильтры. А цена на данные устройства порой доходит до абсурда.

Для начала небольшая ремарка. Если вы зашли на эту страничку, чтобы просто найти подходящий стабилизатор для себя, то можете поискать, например, здесь. Некоторые модели вполне заслуживают внимания.

Поскольку речь в комментарии зашла про сетевые стабилизаторы напряжения торговой марки Defender, то остановлюсь на них чуточку подробнее. Если изучить номенклатуру предлагаемых ими стабилизаторов, то в описании практически каждого устройства написано одно и то же назначение, а именно: предназначен для защиты электропитания бытовой аудио- и видеотехники, компьютеров, периферии и другой электронной аппаратуры от длительного повышения или понижения напряжения в сети, импульсных помех, а также для защиты от высокого напряжения.

Лично я для компьютера и другой маломощной цифровой электроники, вместо каких бы то ни было сетевых стабилизаторов, использую источник бесперебойного питания (или инвертор или преобразователь — кому как нравится). Вот это крайне полезное устройство во всех отношениях. Оно и от девиации напряжения спасает (кстати, в некоторые современные модели таких инверторов уже встроены стабилизаторы), и от его совершенного падения до нуля, да и от помех защищает.

А сетевые стабилизаторы напряжения не то чтобы необходимы, но рекомендованы приборам с электродвигателями и низкочастотными трансформаторами. А действительно необходимы они этим самым приборам за городом, на даче, т.е. там, где на выделенной вам электролинии напряжение много меньше даже 180 вольт.

Ну да ладно, лирику в сторону, продолжаем по существу. Как мне стало известно, в сетевых стабилизаторах напряжения Defender AVR применяется автотрансформаторная схема с цифровым управлением, а раньше использовалась схема с аналоговым управлением. Пример схемы с аналоговым управлением:

Более про бытовые стабилизаторы Defender никаких данных, к сожалению, найти не удалось. Вообще подобные фирмы неохотно раскрывают, так сказать, коммерческую тайну. Хотя, было бы что скрывать, если подобных разработок полно в общем доступе (прим. авт. AndReas). Но мы подготовили ещё несколько схем сетевых преобразователей напряжения. Не думаю, что все производители подобных устройств могут предложить что-то кардинально новое. Все их, так называемые, разработки основаны на общедоступных схемотехнических решениях. Вот один из них:

Сетевой стабилизатор напряжения, схема которого представлена чуть выше, включает последовательно с нагрузкой одну, две или три дополнительных обмотки трансформатора при девиации сетевого напряжения. Если сетевое напряжение ниже необходимого, то дополнительные обмотки включаются синфазно с сетью, и напряжение на нагрузке становится больше сетевого. Если напряжение сети становится выше нормы, то обмотки включаются в противофазе с сетевым напряжением, приводя к уменьшению напряжения на нагрузке. Трансформатор на схеме обозначен Т1, а дополнительные обмотки римскими цифрами IV, V, VI. Компараторы DA3…DA8 настроены на срабатывание в зависимости от уровней сетевого напряжения 250 В, 240 В, 230 В, 210 В, 200 В и 190 вольт соответственно. Если напряжение сети превышает указанные уровни, то на выходах (вывод 9) тех компараторов, для которых выполняется указанное условие, действует напряжение высокого логического уровня (логической 1), составляющее около 12 В. Таким образом, разница уровней срабатывания компараторов составляет 10 В, или примерно 5 % сетевого напряжения. Уровни срабатывания компараторов DA5 и DA6 отличаются на 20 вольт. Это соответствует зоне регулирования 220 В ± 5%. Следует заметить, что государственными стандартами установлено допустимое сетевое напряжение от 187 В до 242 В. Данный же стабилизатор, как видно, обеспечивает более высокую точность поддержания величины сетевого напряжения. Это можно отразить так:

Вместо указанных на схеме компараторов можно применить микросхему К1401СА1. В качестве стабилизаторов применены КР142ЕН8Б. Диодные мостики VD1 и VD2 можно заменить на КЦ402…КЦ405, КЦ409, КЦ410, КЦ412. VD4…VD7 – любые с допустимым обратным напряжением более 15 В и прямым током более 100 мА. Оксидные конденсаторы — К50-16, К50-29 или К50-35; остальные— КМ-6, К10-17, К73-17. Реле К1 — К5 — зарубежного производства Bestar BS-902CS. Реле этого типа имеют обмотку сопротивлением 150 Ом, рассчитанную на рабочее напряжение 12 В, и контактную группу переключающего типа, рассчитанную на коммутацию напряжения 240 В при токе 15 А. Трансформатор Т1 выполнен на магнитопроводе ШЛ50х40. Обмотка I намотана проводом ПЭВ-2 0,9 и содержит 300 витков; обмотка II —21 виток провода ПЭВ-2 0,45; обмотка III — 14 витков провода ПЭВ-2 0.45; обмотки IV, V, VI содержат по 14 витков провода ПБД 2.64. Удобно использовать стандартный трансформатор типа ОСМ1-0.63, у которого все обмотки, кроме первичной (она содержит 300 витков), удалены, а вторичные обмотки намотаны в соответствии с приведенными выше данными. При изготовлении трансформатора одноименные выводы обмоток I, IV, V, VI следует пометить (на схеме обозначены точками). Номинальная мощность такого трансформатора составляет 630 Вт. К данному сетевому стабилизатору напряжения можно подключить нагрузку до 3 киловатт. Если точность поддержания выходного напряжения нужна ниже, то число вторичных обмоток трансформатора Т2 можно снизить до двух, а их напряжение увеличить с 10 вольт до 15 вольт. При этом число компараторов также уменьшится, а пороги их срабатывания следует установить соответственно напряжениям вторичных обмоток Т2.

Настройка этого сетевого стабилизатора следующая:

Самыми простыми в схемотехническом отношении являются электромеханические сетевые стабилизаторы напряжения. Основными компонентами такого типа приборов являются автотрансформатор и электродвигатель, например, РД-09 со встроенным редуктором, который вращает движок автотрансформатора.

Все очень просто. Контроль сетевого напряжения осуществляет электронная схема, которая при его девиации подает сигналы электродвигателю на вращение ротора по часовой или против часовой стрелки. Вращаясь, ротор перемещает движок автотрансформатора, обеспечивая тем самым стабильное выходное напряжение. Вот несколько схем электромеханических сетевых стабилизаторов:

Ещё одной разновидностью сетевых стабилизаторов напряжения являются релейные. Они обеспечивают более высокую выходную мощность вплоть до нескольких киловатт. Мощность нагрузки даже может превосходить мощность самого трансформатора. При выборе мощности трансформатора учитывается минимально возможное напряжение в электрической сети. Если, например, минимальное напряжение сети не менее 180 вольт, то от трансформатора требуется вольтодобавка 40 вольт, т.е. в 5,5 раз меньше сетевого напряжения. Во столько же раз выходная мощность всего стабилизатора будет больше мощности силового трансформатора. Количество ступеней регулирования напряжения обычно не превышает 3…6, что обеспечивает достаточную точность поддержания выходного напряжения. Вот некоторые схемы стабилизаторов релейного типа:

Дополнительно можете ознакомиться со следующими схемами, описанием работы и конструкциями сетевых стабилизаторов напряжения:

Скачать схему сетевого стабилизатора на 6 киловатт

Скачать схему сетевого стабилизатора с микроконтроллерным управлением

Обсуждайте в социальных сетях и микроблогах

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Стабилизатор сетевого напряжения
Мощный стабилизатор напряжения

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Автоматический стабилизатор напряжения от 5 кВА до 10 кВА — 220 В, 120 В

Стабилизатор напряжения в диапазоне кВА — это мощные стабилизаторы напряжения переменного тока, специально разработанные для контроля и стабилизации колебаний высокого напряжения для электрооборудования большой мощности.

В этой статье мы обсудим простую в создании 7-ступенчатую схему стабилизатора с высокой мощностью порядка 5000–1000 Вт, которую можно использовать для управления колебаниями в сети переменного тока и для получения очень точных стабилизированных выходов напряжения для наших бытовых электроприборов. .

Работа схемы

Предлагаемая схема стабилизатора напряжения сети с 7 релейными операционными усилителями, управляемая Accurate, довольно проста. В нем используются дискретные операционные усилители, подключенные в качестве компараторов для измерения уровней напряжения.

Как видно на диаграмме, инвертирующие входы каждого операционного усилителя снабжены последовательно увеличивающимися опорными уровнями напряжения через серию предустановок, которые снижают определенное количество напряжения на себе.

Каждый операционный усилитель сравнивает это напряжение с общим образцом переменного напряжения сети, подаваемого на неинвертирующие входы операционных усилителей.

Пока этот образец напряжение ниже эталонного уровня соответствующих операционных усилителей держать их выходов на низком уровне и последующие этапы реле транзистор остаются неактивными, однако в случае, если уровни напряжения имеет тенденцию к переходу от его нормального диапазона, соответствующие реле запуска и переключение режимов трансформатор отключается, чтобы выходной сигнал был соответствующим образом уравновешен и скорректирован.

Например, если входное напряжение переменного тока имеет тенденцию к падению, верхние реле могут срабатывать, соединяя соответствующие ответвления с более высоким напряжением с выходом, и наоборот, если напряжение стремительно растет.

Здесь выходные межсоединения операционного усилителя гарантируют, что только одна оптопара и, следовательно, только одно реле активируется одновременно.

Список деталей

  • P1 — P8 = 10 K предустановка,
  • A1 — A8 = IC 324 (2 шт.)
  • R1 — R8 = 1 K,
  • Все диоды = 1N4007 ,
  • Все реле = 12 В, 400 Ом, SPDT,
  • Все оптопары = MCT2E или эквивалентные,

Трансформатор = Pink Tap — это нормальный отвод напряжения, верхние отводы находятся в убывающем порядке на 25 В, а нижние отводы — в порядке возрастания 25 вольт.

Полная принципиальная схема предлагаемого точного 7-ступенчатого стабилизатора напряжения сети с управляемым операционным усилителем.

IC LM324 Подробная информация о распиновке

Принципиальная схема

Обновление до твердотельной версии с использованием SSR

На приведенной ниже диаграмме показана довольно простая конструкция стабилизатора напряжения, который может удерживать огромную выходную мощность в диапазоне от 5 до 10 кВА. Использование SSR или твердотельных реле делает выходной каскад простым в настройке и очень точным — благодаря современным SSR, которые предназначены для выдачи большой мощности в ответ на меньшие входные потенциалы постоянного тока.

Схема Описание

Предлагаемая схема простого высокопроизводительного автоматического стабилизатора напряжения проста для понимания. Все операционные усилители работают в стандартных режимах компаратора напряжения.

Предустановки с P1 по P7 могут быть отрегулированы в соответствии с требуемыми точками отключения, которые будут соответствовать переключению выходного SSR и последующим выборам ответвлений трансформатора.

Центральный зеленый TAP — это нормальное выходное напряжение, нижние TAP постепенно производят более высокие напряжения, а верхние TAP настроены на более низкие напряжения.

Эти TAP выбираются соответствующими SSR в ответ на изменяющиеся напряжения переменного тока, таким образом регулируя выходное напряжение для приборов, близкое к нормальному уровню.

Эта схема была запрошена г-ном Александаром, и данные SSR были предоставлены им.

Список деталей

  • R1 — R9 = 1K, 1/4 Вт,
  • P1 — P7 = 10K предустановка,
  • C1 = 1000uF / 25V
  • VR1 = 1K Preset,
  • операционных усилителей = IC 324,

Трансформатор = вход 230 вольт или 120 вольт, отводы — уровни увеличения / уменьшения напряжения (TAP) согласно индивидуальным спецификациям.

SSR = 10 кВА / 230 В = выход, от 5 до 32 В постоянного тока = вход

Полная принципиальная схема предлагаемой простой цепи автоматического стабилизатора напряжения от 5 кВА до 10 кВА при 220 В, 120 В

Цепь стабилизатора напряжения твердотельного твердотельного реле Диаграмма

SSR Image
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.Цепь стабилизатора напряжения

SMPS | Самодельные схемотехнические проекты

В статье описывается схема твердотельного импульсного стабилизатора напряжения сети без реле, использующая повышающий преобразователь с ферритовым сердечником и пару схем полумостовых драйверов. Идея была предложена мистером Макэнтони Бернардом.

Технические характеристики

В последнее время я начал искать стабилизаторы напряжения, которые используются в домашних условиях для регулирования подачи электроэнергии, повышения напряжения при низком уровне энергоснабжения и снижения при высоком уровне энергоснабжения.

Он построен на сетевом трансформаторе (железный сердечник), намотанном в стиле автотрансформатора, с множеством ответвлений 180, 200, 220, 240 В, 260 В и т. Д.

цепь управления с помощью реле выбирает правильное нажмите для вывода. Я думаю, вы знакомы с этим устройством.

Я задумал реализовать функцию этого устройства с помощью SMPS. Который будет иметь преимущество выдачи постоянного 220 В переменного тока и стабильной частоты 50 Гц без использования реле.

Я приложил к этому письму блок-схему концепции.

Пожалуйста, дайте мне знать, что вы думаете, есть ли смысл идти по этому пути.

Будет ли он действительно работать и служить той же цели? .

Также мне понадобится ваша помощь в секции преобразователя постоянного тока высокого напряжения.

С уважением
McAnthony Bernard

Конструкция

Предлагаемая схема стабилизатора сетевого напряжения на основе твердотельного ферритового сердечника без реле может быть понята, обратившись к следующей схеме и последующему объяснению.

RVCC = 1K.1 Вт, CVCC = 0,1 мкФ / 400 В, CBOOT = 1 мкФ / 400 В

На рисунке выше показана фактическая конфигурация для реализации стабилизированного выхода 220 В или 120 В независимо от колебаний входа или перегрузки при использовании пары неизолированных каскадов процессора повышающего преобразователя.

Здесь две микросхемы МОП-транзисторов с драйвером полумоста становятся ключевыми элементами всей конструкции. Используемые микросхемы — это универсальный IRS2153, который был разработан специально для управления МОП-транзисторами в режиме полумоста без необходимости использования сложных внешних схем.

Мы можем видеть два идентичных каскада драйвера полумоста, где левый драйвер используется в качестве каскада повышающего драйвера, а правая сторона настроена для обработки повышающего напряжения в синусоидальный выходной сигнал 50 Гц или 60 Гц в сочетании с внешним цепь управления напряжением.

Микросхемы внутренне запрограммированы на выполнение фиксированного 50% рабочего цикла на выходных выводах через топологию тотемного полюса. Эти распиновки связаны с силовыми МОП-транзисторами для реализации предполагаемых преобразований.Микросхемы также оснащены внутренним генератором для включения требуемой частоты на выходе, частота которой определяется внешне подключенной сетью Rt / Ct.

Использование функции отключения

В ИС также имеется функция отключения, которая может использоваться для остановки выхода в случае перегрузки по току, перенапряжения или любой внезапной катастрофической ситуации.

Для получения дополнительной информации о микросхемах драйвера полумоста th is , вы можете сослаться на в этой статье: IC IRS2153 (1) D — Распиновка выводов, пояснения по применению сбалансирован благодаря высокотехнологичной внутренней загрузке и обработке мертвого времени, которые обеспечивают безупречную и безопасную работу подключенных устройств.

В обсуждаемой схеме стабилизатора сетевого напряжения SMPS левый каскад используется для генерации около 400 В из входа 310 В, полученного путем выпрямления входа сети 220 В.

Для входа 120 В каскад может быть настроен на генерирование около 200 В через показанную катушку индуктивности.

Индуктор может быть намотан на любой стандартный узел EE сердечник / бобина с использованием 3 параллельных (бифилярных) жил 0,3 мм суперэмалированного медного провода и примерно 400 витков.

Выбор частоты

Частота должна быть установлена ​​путем правильного выбора значений Rt / Ct таким образом, чтобы высокая частота около 70 кГц была достигнута для левой ступени повышающего преобразователя на показанной катушке индуктивности.

Правая ИС драйвера позиционируется для работы с вышеупомянутым 400 В постоянного тока от повышающего преобразователя после соответствующего выпрямления и фильтрации, как можно видеть на схеме.

Здесь значения Rt и Ct выбраны для получения приблизительно 50 Гц или 60 Гц (в соответствии со спецификациями страны) на выходе подключенных МОП-транзисторов

Однако выходной сигнал с правой стороны каскада драйвера может достигать 550 В и его необходимо отрегулировать до желаемого безопасного уровня, около 220 В или 120 В

Для этого включена простая конфигурация усилителя ошибки операционного усилителя, как показано на следующей диаграмме.

Схема коррекции перенапряжения

Как показано на диаграмме выше, на этапе коррекции напряжения используется простой компаратор операционного усилителя для обнаружения состояния перенапряжения.

Схема должна быть настроена только один раз, чтобы получить постоянное стабилизированное напряжение на заданном уровне, независимо от колебаний входа или перегрузки, однако они не могут быть превышены за пределы указанного допустимого предела конструкции.

Как показано, питание усилителя ошибки поступает от выхода после соответствующего выпрямления переменного тока в чистый стабилизированный малым током 12 В постоянного тока для схемы.

Вывод №2

обозначен как вход датчика для ИС, в то время как неинвертирующий вывод №3 привязан к фиксированному напряжению 4,7 В через ограничивающую цепь стабилитрона.

Вход считывания извлекается из нестабилизированной точки в цепи, а выход ИС подключается к контакту Ct правой ИС драйвера.

Этот вывод функционирует как вывод выключения для ИС, и как только он достигает низкого уровня ниже 1/6 своего Vcc, он мгновенно блокирует выходные сигналы, подаваемые на МОП-транзисторы, останавливая работу.

Предварительная установка, связанная с контактом № 2 операционного усилителя, соответствующим образом регулируется таким образом, чтобы выходной сетевой переменный ток устанавливался до 220 В с доступного выхода 450 В или 500 В или до 120 В с выхода 250 В.

Пока на выводе №2 оказывается более высокое напряжение по сравнению с выводом №3, он продолжает поддерживать низкий уровень на выходе, что, в свою очередь, дает команду ИС драйвера отключиться, однако «выключение» мгновенно корректирует вход операционного усилителя, вынуждая его отозвать свой выходной сигнал низкого уровня, и цикл продолжает самокорректировать выходной сигнал до точных уровней, как определено предустановленной установкой контакта №2.

Схема усилителя ошибки стабилизирует этот выход, и поскольку схема имеет преимущество в виде значительного 100% запаса между напряжением источника входного сигнала и значениями регулируемого напряжения, даже в условиях чрезвычайно низкого напряжения выходам удается обеспечить фиксированное стабилизированное напряжение до нагрузки независимо от напряжения, то же самое происходит в случае, когда на выходе подключена несогласованная нагрузка или перегрузка.

Улучшение вышеуказанной конструкции:

Тщательное исследование показывает, что вышеуказанная конструкция может быть изменена и значительно улучшена для повышения ее эффективности и качества вывода:

  1. Катушка индуктивности на самом деле не требуется и может быть снята модернизирован до полной мостовой схемы, чтобы мощность была оптимальной для нагрузки
  2. Выход должен быть чисто синусоидальным, а не модифицированным, как можно ожидать в приведенной выше схеме

Все эти особенности были учтены и позаботились о в следующей модернизированной версии схемы твердотельного стабилизатора:

Работа схемы

  1. IC1 работает как обычная схема нестабильного мультивибратора, частота которой может быть отрегулирована путем изменения значения R1 соответствующим образом.Это определяет количество «столбов» или «рубок» для вывода SPWM.
  2. Частота от IC 1 на его контакте №3 подается на контакт №2 IC2, который подключен как генератор ШИМ.
  3. Эта частота преобразуется в треугольные волны на выводе №6 микросхемы IC2, который сравнивается с образцом напряжения на выводе №5 микросхемы IC2
  4. На вывод №5 микросхемы IC2 подается образец синусоиды с частотой 100 Гц, полученный от мостового выпрямителя. , после соответствующего снижения напряжения сети до 12 В.
  5. Эти образцы синусоидальной волны сравниваются с треугольными волнами на выводе №7 микросхемы IC2, что приводит к пропорционально уменьшенному SPWM на выводе №3 микросхемы IC2.
  6. Теперь, ширина импульса этого SPWM зависит от амплитуды синусоидального сигнала выборки от мостового выпрямителя. Другими словами, когда напряжение сети переменного тока выше, формируются более широкие SPWM, а когда напряжение сети переменного тока ниже, ширина SPWM уменьшается и пропорционально сужается.
  7. Вышеупомянутый SPWM инвертируется транзистором BC547 и применяется к затворам МОП-транзисторов нижнего уровня полной мостовой драйверной сети.
  8. Это означает, что, когда уровень сети переменного тока упадет, отклик на затворах МОП-транзистора будет в форме пропорционально более широких SPWM, а при увеличении сетевого напряжения переменного тока затворы будут испытывать пропорциональное ухудшение SPWM.
  9. Приведенное выше приложение приведет к пропорциональному увеличению напряжения на нагрузке, подключенной между сетью H-моста, всякий раз, когда входная сеть переменного тока падает, и, наоборот, нагрузка будет испытывать пропорциональное падение напряжения, если переменный ток имеет тенденцию подниматься выше опасного уровня. .

Как настроить схему

Определите приблизительную центральную точку перехода, в которой ответ SPWM может быть идентичен уровню сетевого переменного тока.

Предположим, вы выбрали 220 В, а затем отрегулируйте предустановку 1K так, чтобы нагрузка, подключенная к H-мосту, получала примерно 220 В.

Вот и все, настройка завершена, все остальное будет сделано автоматически.

В качестве альтернативы можно таким же образом исправить вышеуказанную настройку в сторону более низкого порогового уровня напряжения.

Предположим, что нижний порог составляет 170 В, в этом случае подайте 170 В в схему и отрегулируйте предустановку 1K, пока не найдете примерно 210 В на нагрузке или между плечами Н-моста.

Эти шаги завершают процедуру настройки, а остальные автоматически регулируются в соответствии с изменениями входного уровня переменного тока.

Важно : Подключите высокоэффективный конденсатор порядка 500 мкФ / 400 В через выпрямленную линию переменного тока, подаваемую в сеть H-моста, чтобы выпрямленный постоянный ток мог достигать до 310 В постоянного тока через ШИНУ H-моста. линий.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Объяснение схем простых таймеров задержки

В этом посте мы обсуждаем создание простых таймеров задержки с использованием очень обычных компонентов, таких как транзисторы, конденсаторы и диоды. Все эти схемы будут производить задержку включения или задержку выключения с интервалами времени на выходе на заранее определенный период, от нескольких секунд до многих минут. Все конструкции полностью регулируются.

Важность таймеров задержки

Во многих приложениях электронных схем задержка в несколько секунд или минут становится решающим требованием для обеспечения правильной работы схемы.Без указанной задержки схема может выйти из строя или даже быть повреждена.

Давайте подробно разберем различные конфигурации.


Вы также можете прочитать о таймерах задержки на основе IC 555. Рекомендуется для вас!


Использование одного транзистора и кнопки

Первая принципиальная схема показывает, как транзисторы и несколько других пассивных компонентов могут быть подключены для получения заданных выходных сигналов времени задержки.

Транзистор снабжен обычным базовым резистором для функций ограничения тока.

Светодиод, который используется здесь только в целях индикации, ведет себя как нагрузка коллектора схемы.

Конденсатор, который является важной частью схемы, занимает определенное положение в схеме, мы можем видеть, что он размещен на другом конце базового резистора, а не непосредственно на базе транзистора.

Кнопка используется для включения цепи.

При кратковременном нажатии кнопки положительное напряжение от линии питания поступает на базовый резистор и включает транзистор, а затем светодиод.

Однако в ходе вышеуказанного действия конденсатор также полностью заряжается.

При отпускании кнопки, хотя питание базы отключается, транзистор продолжает работать с помощью накопленной энергии в конденсаторе, который теперь начинает разряжать накопленный заряд через транзистор.

Светодиод также остается включенным, пока конденсатор полностью не разрядится.

Те значение конденсатора определяет время задержки или то, как долго транзистор остается в проводящем режиме.

Наряду с конденсатором, номинал базового резистора также играет важную роль в определении времени, в течение которого транзистор остается включенным после отпускания кнопки.

Однако схема, в которой используется только один транзистор, может создавать задержки, которые могут составлять всего несколько секунд.

При добавлении еще одного транзисторного каскада (следующий рисунок) указанный выше диапазон времени задержки может быть значительно увеличен.

Добавление еще одного транзисторного каскада увеличивает чувствительность схемы, что позволяет использовать более высокие значения резистора синхронизации, тем самым увеличивая диапазон временной задержки схемы.

Дизайн печатной платы

Видео демонстрация

Использование симистора:

На следующем изображении показано, как указанная выше схема таймера задержки может быть интегрирована с симистором и использоваться для переключения нагрузки от сети переменного тока

Вышеупомянутое можно дополнительно модифицировать с помощью автономного силового бестрансформаторного источника питания, как показано ниже:

Без кнопки

Если вышеуказанная конструкция предназначена для использования без кнопки, то же самое может быть реализовано как показано на следующей диаграмме:

Следующая схема показывает, как связанная кнопка может стать неактивной, как только она будет нажата, и пока таймер задержки находится в активированном состоянии.

В это время любое дальнейшее нажатие кнопки не влияет на таймер, пока выход активен или пока таймер не завершит свою операцию задержки.

Двухшаговый последовательный таймер

Вышеупомянутая схема может быть изменена для создания двухступенчатого последовательного генератора задержки. Эта схема была запрошена одним из заядлых читателей этого блога г-ном Марко.

Простая цепь аварийной сигнализации отключения с задержкой показана на следующей схеме.

Схема была запрошена Dmats.

Следующая схема была запрошена Fastshack3

Таймер задержки с реле

«Я ищу схему, которая будет управлять выходным реле. Это будет сделано на 12 В, а последовательность будет инициирована ручным переключателем.

Мне понадобится регулируемая задержка времени (возможно, отображаемое время) после отпускания переключателя, тогда выход будет продолжаться в течение настраиваемого времени (также возможно отображается) перед отключением.

Последовательность не будет перезапущена, пока не будет нажата кнопка и снова выпустили.

Время после отпускания кнопки составляет от 250 миллисекунд до 5 секунд. Время «включения» выхода для включения реле составляет от 500 миллисекунд до 30 секунд. Дайте мне знать, если вы можете что-нибудь поделать. Спасибо! »

До сих пор мы научились делать простые таймеры задержки выключения, теперь давайте посмотрим, как мы можем построить простую схему таймера задержки включения, которая позволяет подключенной нагрузке на выходе включаться с некоторой заранее заданной задержкой после выключения питания. ВКЛ.

Объясненная схема может использоваться для всех приложений, которые требуют начальной задержки включения для подключенной нагрузки после включения сетевого питания.

Схема работы схемы таймера задержки включения

Показанная диаграмма довольно проста, но очень впечатляюще предоставляет необходимые действия, кроме того, период задержки является переменным, что делает установку чрезвычайно полезной для предлагаемых приложений.

Функционирование можно понять по следующим пунктам:

Предполагая, что нагрузка, требующая задержки включения, подключена к контактам реле, при включении питания 12 В постоянного тока проходит через R2, но не может достигнуть базы T1, потому что изначально C2 действует как короткое замыкание на землю.

Таким образом, напряжение проходит через R2, падает до соответствующих пределов и начинает заряжать C2.

Как только C2 заряжается до уровня, который развивает потенциал от 0,3 до 0,6 В (+ стабилитрон) на базе T1, T1 мгновенно включается, переключая T2, а затем реле … наконец, нагрузка получает тоже включился.

Вышеупомянутый процесс вызывает необходимую задержку для включения нагрузки.

Период задержки может быть установлен соответствующим выбором значений R2 и C2.

R1 гарантирует, что C2 быстро разряжается через него, так что схема достигает положения ожидания как можно скорее.

D3 блокирует достижение зарядом базы T1.

Перечень деталей

R1 = 1o0K (резистор для разряда C2, когда цепь выключена))
R2 = 330K (синхронизирующий резистор)
R3 = 10K
R4 = 10K
D1 = стабилитрон 3V (опционально, можно заменить на провод)
D2 = 1N4007
D3 = 1N4148
T1 = BC547
T2 = BC557
C2 = 33 мкФ / 25 В (синхронизирующий конденсатор)
Реле = SPDT, 12 В / 400 Ом

Дизайн печатной платы

Замечания по применению

узнайте, как вышеуказанная схема таймера задержки включения становится применимой для решения следующей проблемы, представленной одним из ярых последователей этого блога, г-ном.Нишант.

Проблема цепи:

Здравствуйте, сэр,

У меня есть автоматический стабилизатор напряжения 1 кВА. У него есть один недостаток: при включении очень высокое напряжение выдается в течение 1,5 с (поэтому лампы и лампы часто перегорают) после что напряжение становится нормальным.

Я открыл стабилизатор, он состоит из автотрансформатора, 4 реле 24 В, каждое реле подключено к отдельной цепи (каждое из

10K предустановок, BC547, стабилитрон, BDX53BFP npn, пара транзисторов Дарлингтона IC, конденсатор 220 мкФ / 63 В. , Конденсатор 100uF / 40V, 4 диода и несколько резисторов).

Эти схемы питаются от понижающего трансформатора, и выходной сигнал этих схем берется через соответствующий конденсатор 100 мкФ / 40 В и подается на соответствующее реле. Что делать для решения проблемы. Пожалуйста, помогите мне. Нарисованная вручную принципиальная схема прилагается .

Решение проблемы цепи

Проблема в приведенной выше схеме может быть вызвана двумя причинами: одно из реле на мгновение включается, соединяя неправильные контакты с выходом, или одно из ответственных реле устанавливает правильное напряжение через некоторое время после включения питания.

Поскольку существует более одного реле, выявление неисправности и ее устранение может быть немного утомительным … Схема таймера задержки включения, описанная в вышеупомянутой статье, может быть действительно очень эффективной для обсуждаемой цели.

Подключения довольно простые.

Используя 7812 IC, таймер задержки может питаться от существующего источника питания 24 В стабилизатора.
Затем замыкающие контакты реле задержки могут быть соединены последовательно с проводкой выходного разъема стабилизатора.

Вышеупомянутая проводка мгновенно решила бы проблемы, так как теперь выход будет переключаться через некоторое время во время включения питания, давая достаточно времени внутренним реле, чтобы установить правильные напряжения на их выходных контактах.

Отзыв от г-на Билла

Привет, Свагатам,

Я наткнулся на вашу страницу, проводя исследование в Интернете, чтобы сделать мою задержку более последовательной. Сначала немного справочной информации.

Я гонщик с кронштейном и запускаю машину при первом взгляде на третью янтарную лампочку, когда рождественская елка падает.

Я использую выключатель трансмиссии, который нажат, чтобы заблокировать автоматическую коробку передач одновременно переднего и заднего хода.

Это позволяет увеличить обороты двигателя для увеличения мощности для запуска. Когда кнопка отпущена, трансмиссия выключается с заднего хода и движется вперед на высоких оборотах.

Это похоже на вырывание сцепления на автомобиле с механической коробкой передач, в любом случае моя машина реагирует на это быстро, и в результате появляется красный свет, уезжает раньше, и вы проигрываете гонку.

Уменьшение времени реакции на запуск — это все, и это игра на сотни тысяч с большими мальчиками, поэтому я поставил переключатель транс-тормоза на реле и наложил комбо на 1100 мкФ на реле, чтобы задержать его запуск.

Из-за автомобильной электроники я не верю, что есть точное напряжение, заряжающее эту крышку каждый раз, когда я активирую эту схему, и точность является ключевой, поэтому я купил стабилизатор мощности на Ebay, который потребляет 8-15 вольт и дает постоянное 12вольт на выходе.

Это перевернуло мой сезон, но я считаю, что эту схему можно было бы сделать более точной и более легким способом варьировать время задержки, а не менять комбинации крышек.

Также я должен установить диод перед реле, а не сейчас, потому что все, что есть, это выключатель — куда пойдет ток? Я ни в коем случае не инженер-электрик, но у меня есть некоторые знания по устранению неисправностей в аудио высокого класса в течение многих лет.

Хотел бы получить ваши мысли — спасибо

Билл Кореки

Анализ и решение схемы

Привет, Билл,

Я приложил схему регулируемой цепи задержки, пожалуйста, проверьте ее. Вы можете использовать его для указанной цели.

Предустановка 100K может использоваться и настраиваться для получения точных коротких периодов задержки в соответствии с вашими требованиями.

Тем не менее, обратите внимание, что для правильной работы реле на 12 В напряжение питания должно быть минимум 11 В, если это не выполняется, цепь может работать неправильно.

С уважением.

Простой таймер задержки от 5 до 20 минут

В следующем разделе обсуждается простая схема таймера задержки от 5 до 20 минут для конкретного промышленного применения.

Идею предложил мистер Джонатан.

Технические требования

Пытаясь найти решение моей проблемы в Google, я наткнулся на вашу публикацию выше.

Я пытаюсь понять, как создать лучший контроллер Sous Vide.Основная проблема заключается в том, что у моей водяной бани очень высокий гистерезис, и при нагреве от более низких температур температура будет превышать примерно 7 градусов по сравнению с температурой, при которой прекращается питание.

Он также очень хорошо изолирован, с зазором между внутренним и внешним резервуаром, который заставляет его действовать как термос, из-за чего требуется очень много времени, чтобы спуститься от любого превышения температуры. У моего ПИД-регулятора есть выход управления SSR и выход реле аварийной сигнализации.

Аварийный сигнал может быть запрограммирован как аварийный сигнал ниже предела со смещением от заданного значения.Я могу использовать источник питания на пять вольт, который у меня уже есть, для моего циркуляционного двигателя, чтобы он работал через реле сигнализации и управлял тем же SSR, что и управляющий выход.

Чтобы обезопасить себя и защитить ПИД-регулятор, я добавлю диод как к сигнальному напряжению, так и к управляющему напряжению, чтобы предотвратить обратную подачу одного выхода на другой.

Затем я установлю будильник, чтобы он оставался включенным, пока температура не поднимется выше заданного значения минус 7 градусов. Это позволит отрегулировать настройку ПИД-регулятора без учета начального повышения температуры.

Поскольку я знаю, что последние несколько градусов будут достигнуты без какой-либо подачи питания, мне бы очень хотелось отложить любое распознавание управляющего сигнала примерно на пять минут после отключения будильника, поскольку он все равно будет звонить для тепла.

Это та часть, для которой я еще не разобрался в схеме. Я имею в виду нормально замкнутое реле, включенное последовательно с управляющим выходом, которое удерживается разомкнутым сигналом тревоги.

Когда сигнал тревоги прекращается, мне нужна задержка порядка пяти минут, прежде чем реле вернется в свое нормально замкнутое состояние «выключено».

Я был бы признателен за помощь с задержкой отключения части схемы реле. Мне нравится простота начального дизайна на странице, но у меня такое впечатление, что с ними не справиться и около пяти минут.

Спасибо,

Джонатан Лундквист

Схема схемы

Следующая схема простой схемы таймера задержки от 5 до 20 минут может быть подходящим образом применена для указанного выше приложения.

Схема использует IC4049 для необходимых вентилей НЕ, которые сконфигурированы как компараторы напряжения.

Параллельно 5 вентилей образуют чувствительную секцию и обеспечивают триггер с требуемой временной задержкой для последующих каскадов буфера и драйвера реле.

Управляющий вход поступает от выхода тревоги, как указано в приведенном выше описании. Этот вход становится коммутационным напряжением для предлагаемой схемы таймера.

При получении этого триггера вход 5 вентилей НЕ изначально удерживается на логическом нуле, потому что конденсатор заземляет первоначальный триггер через потенциометр 2 м2.

В зависимости от настройки 2м2 конденсатор начинает заряжаться, и в тот момент, когда напряжение на конденсаторе достигает распознаваемого значения, вентили НЕ возвращают свой выход на низкий логический уровень, который преобразуется как высокий логический уровень на выходе правого сингла. НЕ ворота.

Это мгновенно запускает подключенный транзистор и реле для требуемого выхода задержки через контакты реле.

Поток 2M2 можно настроить для определения требуемых задержек.

Принципиальная схема

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Отправить ответ

avatar
  Подписаться  
Уведомление о