Как проверить ультразвуковой излучатель тестером: Как проверить ультразвуковой излучатель тестером
Как проверить ультразвуковой излучатель тестером
Проверка ультразвуковой ванны или мойки – необходимость, с которой сталкиваются все. Неважно где это происходит на производстве или дома, и на каком этапе возникает необходимость проверки. Ультразвуковые ванны и мойки проверяются везде, начиная с этапа их производства и заканчивая текущей эксплуатацией. Сегодня мы подробно рассмотрим вопрос о том, как проверить ультразвуковую ванну или мойку.
Когда и зачем проверяют ультразвуковые ванны и мойки
Ультразвуковые ванны и мойки проверяют на этапах:
- производство УЗ оборудования;
- ОТК на производстве;
- на этапе приемки;
- эксплуатационные проверки во время работы;
- в случае возникновения неисправностей в работе.
Чуть подробнее об этапах. Проверка во время изготовления необходима для понимания того, что оборудование нормально функционирует. После этого мойку передают в отдел технического контроля, который проверяет параметры работы и функционал. После этого оборудование готово к отгрузке. На этапе приемки (получения товара) существует целесообразность проверки, поскольку транспортная компания могла не бережно отнестись к транспортировке и повредить товар. УЗ мойку нельзя ронять или бить, она может выйти из строя. Необходимость эксплуатационной проверки обусловлена следующими причинами:
- могут выйти из строя часть излучателей, визуально и на слух может быть не понятно работают ли они;
- в ходе эксплуатации соединение излучателя и поверхности внутренней емкости пострадало, излучатель неплотно прилегает и общее КПД может упасть практически до 0.
Когда возникла неисправность в работе УЗ мойку или ванну необходимо первично проверять перед отправкой специалисту, особенно если гарантий срок уже закончился.
Методы проверки ультразвуковой ванны или мойки
В одной из наших статей мы говорили о типовых неисправностях УЗ оборудования и о том, как их решить. Акцентировать внимание на особых тонкостях мы в этой статье не будем их можно прочесть здесь, а рассмотрим лишь базовую проверку, которая доступна каждому.
Существует два вида проверки:
- проверка электрической части;
- проверка работы ультразвука.
В проверке электрической части мы ограничены способами и методами, поскольку Ваша новая мойка находится на гарантии и лезть внутрь ее не рекомендуется, поскольку это приведет к потере гарантии. В оборудовании, у которого уже нет гарантии, можно проверить и внутренность. Поэтому новое оборудование мы можем проверить только мультиметром. Проверке подвергается кабель питания на прозвонку и наличие / отсутствие обрыва. Так же мы можем проверить предохранитель, прозвонив его. Если все хорошо, то оборудование можно подключать.
При проверке работы ультразвука существует два общедоступных способа или метода. К ним относятся:
- проверка ультразвуковой мойки или ванны при помощи фольги;
- проверка суспензией.
О них подробно далее.
Проверка ультразвуковой мойки или ванны при помощи фольги
Этот метод широко распространен среди всех владельцев ввиду своей простоты и доступности. Для этого нам потребуется обычная фольга, которая есть в каждом продовольственном магазине.
Алгоритм проверки работы ультразвука фольгой:
- В УЗВ необходимо налить обычной воды согласно инструкции.
- Включить работу ультразвука на время не более 1 минуты (больше нам и не потребуется).
- Взять кусок фольги размером с внутреннюю емкость либо приготовить несколько квадратиков 10 на 10 сантиметров для проверки каждого излучателя в отдельности.
- Далее опускаем фольгу в середину емкости. С первых секунд работы на фольге начнут появляться маленькие дырки. Значит УЗ работает, если их нет значит не работает.
Качество работы излучателей определяется временем появления дырок на фольге. Если спустя секунд 10-20 после начала, дырок не появилось, значит общий КПД снизился.
Проверка ультразвуковой мойки или ванны суспензией
Данный метод так же обладает большой доступностью, но для его применения потребуется наличие мелких не растворимых объектов. К таким можно смело отнести мелкую металлическую стружку черных или цветных металлов, подобное. Наша задача создать взвесь она же суспензия.
Алгоритм проверки работы ультразвука суспензией:
- Наливаем воду согласно инструкции.
- Добавляем нашу «стружку» равномерно распределяя ее по дну мойки.
- Запускаем УЗ в работу максимум на 1 минуту и смотрим, что происходит. Стружка должна подняться со дна над каждым излучателем и распределиться где-то в средней области жидкости а так же по всему объему. Важно! Момент распределения в средней части и/или равномерное распределение по всему объему может и не произойти! Данное явление тесно связано с весом частиц, чем они легче, тем лучше. Главное чтоб Вы наблюдали движение в месте расположения излучателей.
Что делать если ультразвуковая ванна или мойка не прошла проверку
Если какой-то вариант проверки не был пройден, Вам необходимо связаться с изготовителем Вашего оборудования, описать ситуацию и получить от него рекомендации или руководства к действию. В подавляющем большинстве случаев все заканчивается отправкой оборудования на ремонт по гарантии. Вышеописанные два метода проверки дают практически 100% гарантию получения достоверной информации о работоспособности.
В ситуациях, когда гарантийный срок закончился вариантов не много: пытаться решить проблему самому либо искать специалиста. Обратите внимание, что хороший изготовитель всегда занимается ремонтом своего оборудования, причем не только по гарантии, у него есть ОТК и штат специалистов. Это поможет Вам отсеять перекупщиков и сомнительные магазины. При самостоятельном ремонте у Вас должны быть хотя бы базовые познания в электронике, без них решить проблемы не удастся, можно сделать только хуже. Поэтому мы рекомендуем обращаться всегда к специалистам.
В заключение хочется сказать следующее. Мы рассказали, как правильно проверить ультразвуковую ванну или мойку. Качество УЗО важно и им пренебрегать не стоит! УЗ от Титан Ультрасоник имеют все сертификаты, проходят ОТК, а гарантийное и послегарантийное обслуживание выполняется на высоком уровне. Выбирайте проверенных поставщиков.
Проверка ультразвуковой ванны или мойки – необходимость, с которой сталкиваются все. Неважно где это происходит на производстве или дома, и на каком этапе возникает необходимость проверки. Ультразвуковые ванны и мойки проверяются везде, начиная с этапа их производства и заканчивая текущей эксплуатацией. Сегодня мы подробно рассмотрим вопрос о том, как проверить ультразвуковую ванну или мойку.
Когда и зачем проверяют ультразвуковые ванны и мойки
Ультразвуковые ванны и мойки проверяют на этапах:
- производство УЗ оборудования;
- ОТК на производстве;
- на этапе приемки;
- эксплуатационные проверки во время работы;
- в случае возникновения неисправностей в работе.
Чуть подробнее об этапах. Проверка во время изготовления необходима для понимания того, что оборудование нормально функционирует. После этого мойку передают в отдел технического контроля, который проверяет параметры работы и функционал. После этого оборудование готово к отгрузке. На этапе приемки (получения товара) существует целесообразность проверки, поскольку транспортная компания могла не бережно отнестись к транспортировке и повредить товар. УЗ мойку нельзя ронять или бить, она может выйти из строя. Необходимость эксплуатационной проверки обусловлена следующими причинами:
- могут выйти из строя часть излучателей, визуально и на слух может быть не понятно работают ли они;
- в ходе эксплуатации соединение излучателя и поверхности внутренней емкости пострадало, излучатель неплотно прилегает и общее КПД может упасть практически до 0.
Когда возникла неисправность в работе УЗ мойку или ванну необходимо первично проверять перед отправкой специалисту, особенно если гарантий срок уже закончился.
Методы проверки ультразвуковой ванны или мойки
В одной из наших статей мы говорили о типовых неисправностях УЗ оборудования и о том, как их решить. Акцентировать внимание на особых тонкостях мы в этой статье не будем их можно прочесть здесь, а рассмотрим лишь базовую проверку, которая доступна каждому.
Существует два вида проверки:
- проверка электрической части;
- проверка работы ультразвука.
В проверке электрической части мы ограничены способами и методами, поскольку Ваша новая мойка находится на гарантии и лезть внутрь ее не рекомендуется, поскольку это приведет к потере гарантии. В оборудовании, у которого уже нет гарантии, можно проверить и внутренность. Поэтому новое оборудование мы можем проверить только мультиметром. Проверке подвергается кабель питания на прозвонку и наличие / отсутствие обрыва. Так же мы можем проверить предохранитель, прозвонив его. Если все хорошо, то оборудование можно подключать.
При проверке работы ультразвука существует два общедоступных способа или метода. К ним относятся:
- проверка ультразвуковой мойки или ванны при помощи фольги;
- проверка суспензией.
О них подробно далее.
Проверка ультразвуковой мойки или ванны при помощи фольги
Этот метод широко распространен среди всех владельцев ввиду своей простоты и доступности. Для этого нам потребуется обычная фольга, которая есть в каждом продовольственном магазине.
Алгоритм проверки работы ультразвука фольгой:
- В УЗВ необходимо налить обычной воды согласно инструкции.
- Включить работу ультразвука на время не более 1 минуты (больше нам и не потребуется).
- Взять кусок фольги размером с внутреннюю емкость либо приготовить несколько квадратиков 10 на 10 сантиметров для проверки каждого излучателя в отдельности.
- Далее опускаем фольгу в середину емкости. С первых секунд работы на фольге начнут появляться маленькие дырки. Значит УЗ работает, если их нет значит не работает.
Качество работы излучателей определяется временем появления дырок на фольге. Если спустя секунд 10-20 после начала, дырок не появилось, значит общий КПД снизился.
Проверка ультразвуковой мойки или ванны суспензией
Данный метод так же обладает большой доступностью, но для его применения потребуется наличие мелких не растворимых объектов. К таким можно смело отнести мелкую металлическую стружку черных или цветных металлов, подобное. Наша задача создать взвесь она же суспензия.
Алгоритм проверки работы ультразвука суспензией:
- Наливаем воду согласно инструкции.
- Добавляем нашу «стружку» равномерно распределяя ее по дну мойки.
- Запускаем УЗ в работу максимум на 1 минуту и смотрим, что происходит. Стружка должна подняться со дна над каждым излучателем и распределиться где-то в средней области жидкости а так же по всему объему. Важно! Момент распределения в средней части и/или равномерное распределение по всему объему может и не произойти! Данное явление тесно связано с весом частиц, чем они легче, тем лучше. Главное чтоб Вы наблюдали движение в месте расположения излучателей.
Что делать если ультразвуковая ванна или мойка не прошла проверку
Если какой-то вариант проверки не был пройден, Вам необходимо связаться с изготовителем Вашего оборудования, описать ситуацию и получить от него рекомендации или руководства к действию. В подавляющем большинстве случаев все заканчивается отправкой оборудования на ремонт по гарантии. Вышеописанные два метода проверки дают практически 100% гарантию получения достоверной информации о работоспособности.
В ситуациях, когда гарантийный срок закончился вариантов не много: пытаться решить проблему самому либо искать специалиста. Обратите внимание, что хороший изготовитель всегда занимается ремонтом своего оборудования, причем не только по гарантии, у него есть ОТК и штат специалистов. Это поможет Вам отсеять перекупщиков и сомнительные магазины. При самостоятельном ремонте у Вас должны быть хотя бы базовые познания в электронике, без них решить проблемы не удастся, можно сделать только хуже. Поэтому мы рекомендуем обращаться всегда к специалистам.
В заключение хочется сказать следующее. Мы рассказали, как правильно проверить ультразвуковую ванну или мойку. Качество УЗО важно и им пренебрегать не стоит! УЗ от Титан Ультрасоник имеют все сертификаты, проходят ОТК, а гарантийное и послегарантийное обслуживание выполняется на высоком уровне. Выбирайте проверенных поставщиков.
Ультразвуковые стиральные машины — что это?
Общие сведения
Многим известно применение ультразвука при очистке различных поверхностей. Например, в промышленности для этого используются так называемые ультразвуковые ванны. Для бытового применения в отечественных торговых сетях появились ультразвуковые стиральные машины (УЗСМ). По словам производителей, эти УЗСМ не только могут стирать белье, но и дезинфицировать его.
Попробуем разобраться, так ли это.
Как отмечают производители, процесс стирки УЗСМ происходит под воздействием кавитации.
Примечание. Кавитация (от латинского cavitas — пустота) — образование в жидкости полостей (пузырьков), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении ее скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупариода разрежения (акустическая кавитация).
Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырек захлопывается, формируя при этом ударную волну.
Негативное воздействие подобного явления хорошо знакомо, например, транспортникам и гидроэнергетикам — кавитация разрушает гребные винты судов и гидротурбин.
Начнем с того, что ультразвук без образования кавитационных пузырьков работает в жидкости, как ОЧЕНЬ плохая «мешалка» (на самом деле эксперименты показали, что ультразвук «стирает» белье очень плохо даже в условиях развитой кавитации). Дело в том, что действие кавитации (применительно к УЗСМ кавитация выполняет «стирающее», вымывающее или перемешивающее действие) наиболее активно проявляется только в дистиллированной воде.
Даже небольшие добавки поверхностно-активных веществ (ПАВ), а к ним относится и стиральный порошок, значительно снижают интенсивность этого действия. Учитывая то, что мощность ультразвукового излучения УЗСМ очень мала (единицы Ватт), действие кавитации на процесс «стирки» так незначительно, что им вообще можно пренебречь.
Хочется отметить, что волновое сопротивление белья в воде сравнимо с самой водой (как таковая граница волнового раздела «белье-вода» отсутствует), следовательно, белье будет колебаться с той же амплитудой, что и вода.
Коэффициент затухания ультразвуковых волн в белье составляет 30. 60 дБ/м. Таким образом. какое-то ощутимое воздействие излучения УЗСМ на белье может происходить только на очень небольшом расстоянии (несколько сантиметров).
Но и это не самое главное — сам процесс стирки основан на вымывании грязи из белья. Для этого частица грязи должна хотя бы выйти за пределы ткани. Поскольку белье и прилегающий к нему слой воды под воздействием ультразвука колеблются синфазно (вследствие отсутствия границы раздела двух сред), то относительного перемещения белья и грязи не происходит. следовательно, нет и вымывания грязи.
Поэтому белье стирается ТОЛЬКО за счет пассивного перемешивания в жидкости раствора ПАВ.
В заключение отметим, что если при обычной стирке (замачивании) пользоваться качественным стиральным порошком, эффект будет тот же, что и применение УЗСМ в этом же растворе.
Как говорится, комментарии излишни.
А теперь рассмотрим, что же внутри этого «чуда техники» — УЗСМ.
Описание принципиальной схемы
В торговых сетях нашей страны можно найти несколько типов УЗСМ со схожими характеристиками. Остановимся на одной из них.
Принципиальная схема одного из вариантов УЗСМ приведена на рис. 1.
Из схемы видно, что основа машины — однокаскадный автогенератор, частота генерации которого определяется в основном параметрами пьезоэлемента (ультразвукового излучателя).
Генератор питается нестабилизированным напряжением 14В. Примечательно, что на выходе сетевого выпрямителя устройства отсутствует фильтрующий электролитический конденсатор, следовательно, автогенератор питается пульсирующим напряжением.
Нужно отметить, что в последнее время в отдельных типах УЗСМ на выходе выпрямителя устанавливается фильтрующий электролитический конденсатор небольшой емкости.
Перечислим основные элементы, входящие в состав этого устройства:
- L1,L2 — согласующие дроссели;
- С1 R2 — цепь обратной связи автогенератора;
- VD5, VD6, RЗ — элементы цепи индикации работоспособности генератора;
- R1 — резистор смещения;
- VT1 — транзистор автогенератора;
- BF1 — пьезоэлемент (излучатель).
Эта схема достаточно проста, поэтому не нуждается в подробном описании.
Отметим лишь, что подобный генератор критичен к низкому питающему напряжению. Если оно становится меньше 11. 12 В, что соответствует сетевому напряжению менее 190 В, генератор просто не будет запускаться.
Форма сигнала на излучателе показана на рис. 2.
Рис. 2 Форма сигнала на излучателе УСЗМ
Из него видно, что сигнал представляет собой пачки, заполнение которых — импульсы частотой около 100 кГц. Частота следования пачек — 100Гц.
Амплитудное значение сигнала на выходе генератора достигает 100 В (при условии, если излучатель погружен в воду). Если излучатель находится в воздухе, напряжение может быть выше.
Как проверить работоспособность УЗСМ по внешним проявлениям
По заявлениям производителей, работоспособность УЗСМ можно проконтролировать по свечению контрольного индикатора. Однако этого бывает недостаточно — например, были зарегистрированы случаи, когда уровень сигнала на пьезоэлементе был значительно ниже нормы (50. 70 В), при этом индикатор светился (естественно, с меньшей интенсивностью).
Проверить работоспособность УЗСМ можно достаточно просто и без использования измерительных приборов — нужно опустить излучатель УЗСМ в воду (машинка должна быть включена) и поместить его максимально близко к поверхности воды. При исправной УЗСМ на поверхности воды (над излучателем) можно наблюдать достаточно заметный (высотой 1. 2 мм) «горб».
Есть еще интересный способ проверки работы УЗСМ — для этого необходимо поместить излучатель в газированную воду. Обильное выделение пузырьков газа на поверхности излучателя свидетельствует о работоспособности машинки.
Возможные неисправности УЗСМ и способы их устранения
УЗСМ не работает (индикатор не светится)
Причин подобного дефекта может быть несколько. Наиболее частой является обрыв в цепи излучателя. Это бывает вызвано тем, что по тем или иным причинам, на одной из сторон кристалла излучателя отслаивается серебряное напыление. Естественно, при отсутствии контакта с пьезоэлементом автогенератор перестает работать, транзистор VT1 открывается, сильно перегревается и часто выходит из строя (бывает даже, что разрушается его корпус). Как говорится, причина одна, а последствия совсем другие.
Многие ремонтники в подобной ситуации начинают искать замену транзистору и пьезоэлементу. Что касается последнего, найти ему достойную замену достаточно трудно. Проблема усугубляется тем, что достать его из корпуса достаточно проблематично — пьезоэлемент в подобных случаях обычно разламывается, так как он чрезвычайно хрупок, да к тому же залит герметиком.
Внешний вид излучателя показан на рис. 3.
Рис. 3 Излучатель УСЗМ
Если нет возможности найти аналогичный излучатель, при подборе альтернативной замены следует учесть следующие моменты:
- резонансная частота пьезоэлемента должна быть около 100 кГц;
- размеры пьезоэлемента должны быть соизмеримы с оригинальным (например, в рассматриваемой модели УЗСМ диаметр диска пьезоэлемента составляет около 25 мм, а толщина — 1 мм). Особое внимание здесь следует обратить на то, чтобы толщина пьезоэлемента не была более 1,5 мм, в противном случае автогенератор УЗСМ не будет запускаться.
После установки аналога пьезоэлемента (автором использовались элементы, выполненные из титаната бария отечественного производства), автогенератор может не заработать. В этом случае можно восстановить генерацию подбором номинала резистора R1, а также элементов цепи обратной связи R2 С1.
Если запустить автогенератор все равно не удается, нужно искать более точный аналог пьезоэлемента.
Что же касается замены транзистора VT1, то наиболее удачным аналогом является 2N5551 в корпусе ТО-92 (температура его корпуса после установки в УЗСМ не должна превышать 50 °С).
Приведем основные параметры этого транзистора: Vсео = 160 В, Bсbо = 180 В, Iс = 600 мА, Р= 625 мВт, h21Е = 250, Fт = 300 МГц.
Тип оригинального транзистора выяснить не удалось, так как во всех рассматриваемых экземплярах УЗСМ на его корпусе была удалена маркировка.
В процессе подбора аналогов прошли испытания более 50 типов транзисторов как отечественного, так и зарубежного производства. В большинстве случаев при работе УЗСМ транзисторы сильно нагревались (более 70 °С). Вероятно это было вызвано низкими значениями таких параметров, как Fт (менее 50 МГц), Iс (менее 300 мА) или Р (менее 400 мВт).
Еще одним проявлением неправильной работы УЗСМ при установке некоторых типов транзисторов являлось низкое напряжение, которое выделялось автогенератором на выводах пьезоэлемента (50. 70 В). Это напряжение удавалось увеличить, изменив номинал резистора R1 (до 200 кОм) — но это приводило к чрезмерному разогреву корпуса транзистора. Причина — малое значение h21Е(50. 100) транзистора.
Если автогенератор вовсе не запускался (как, например, при установке транзистора КТ940А), то это было также вызвано низким значением статического коэффициента передачи тока h21Е (менее 50).
Также следует отметить одну распространенную причину отказа УЗСМ, вызванную проникновением воды внутрь корпуса ультразвукового излучателя. Для устранения подобного дефекта необходимо вскрыть корпус излучателя (разъединить его на две половинки) и тщательно высушить всю внутреннюю поверхность. Затем по всему периметру внутренней стороны крышки корпуса (где установлен пьезоэлемент) удаляют на 2. 3 мм герметик. После этого в образовавшуюся канавку заливают новый герметик (подойдет силиконовый автогерметик, используемый для ремонта системы охлаждения).
В заключение, склеивают половинки корпуса «суперклеем».
Индикатор УЗСМ светится с малой интенсивностью. Уровень сигнала на выводах пьезоэлемента менее 50В (частота генерации более 300 кГц), транзистор VT1 сильно нагревается
Причина подобного дефекта вызвана отказом пьезоэлемента — его необходимо заменить.
Подробнее список неисправностей УЗСМ приводить не имеет смысла, так как они легко локализуются, например, при отказах сетевого трансформатора, выпрямителя и др.
Всего хорошего, пишите to Elremont © 2007
Как проверить пьезоэлемент мультиметром
Сегодня мы с вами поговорим о такой интересной штуке, как датчик вибрации, область ее применения зависит от вашей фантазии. Я, например, использовал его как датчик, для сигнализации приклеив его к рамке, на которой установлена дверь. Теперь поговорим о самом устройстве. Схема датчика была разработана лично мной, и ее нет нигде в интернете — только на нашем сайте. Характеристики ее следующие: устройство начинает работать сразу после правильной сборки – то есть, не нуждается ни в каких настройках, которые мы с вами так не любим, чувствительность просто потрясающая — с десяти метров от него, исполняя какой нибудь танец, микроамперметр или светодиод начнет подтанцовывать вместе с вами. Вот сама схема датчика вибрации:
Микросхему LM358 использовал, так как она, на мой взгляд, является самым распространенным операционным усилителем, есть она в любом радиомагазине, и стоит копейки. В крайнем случае, ее можно выдрать из краба – универсального зарядного для аккумуляторов мобильных телефонов или из автомобильной сигнализации – там они часто встречаются в приемной части, еще можно заменить на LM324 – у нее плюс питания на четвертую ногу, а минус на одиннадцатую при этом конечно уже не соединяем восьмую и четвертую. Пьезодинамик покупаем или достаем из убитых калькуляторов, наручных часов, велосипедных пищалок и прочих пиликающих игрушек. Микроамперметр бывает в советских магнитофонах, усилителях или авометрах (древних тестерах). Пьезик можно заменить на светодиод или небольшой динамик с малым током потребления (около 20-ти миллиампер, тогда убираем R6). Резисторы R3, R5 – могут быть в пределах 1к до 3к3, главное чтоб они были одинакового номинала. Резистор R4 — влияет на чувствительность, меньше сопротивление — выше чувствительность (минимальное что я ставил 0, 33 ом – это подкрадываясь почувствует на расстоянии 5-6 метров). R1, R2 в пределах 47к … 220к тоже оба с одинаковыми номиналами. R6 как ограничение тока, подходит для микроамперметра и светодиода. Конденсаторы C1 и C2 от 1мк до 47мк. Питание датчика вибрации
возможно даже от литиевого аккумулятора 3,7 вольта, тогда для светодиода можно будет убрать R6. В принципе всё, если собрали все необходимые детали — можно начинать сборку. Собираем сначала схему датчика на ОУ и не трогаем пьезодинамик. Вариант изготовления платы смотрим здесь:
Теперь разбираемся с пьезо динамиком. У него есть середина из пьезоэлемента с напылением сверху для пайки, и пластина (обычно бронзовая или никелированное железо) на которой с одной стороны та самая середина из пьезоэлемента. Припаиваем к середине пьезоэлемента провод, другой его конец провода припаиваем к выводу 3 микросхемы, потом припаиваем пластину прямо на плату, а на противоположной от платы стороне к пьезодинамику прикрепляем пружину (для большей чувствительности) смотрим рисунок. Итак, датчик вибрации собран, можно проверять. Подключаем питание и ждем, пока пружина не успокоится. Когда на выходе будет «0” (не светится светодиод или микроамперметр показывает «0”), щелкаем пальцами или хлопаем, датчик должен отреагировать. Если все работает – отлично, если нет, проверьте, нет ли замыканий, правильно ли все соединили. Микросхема вообще должна быть рабочей, даже если вы ее выпаяли из какого нибудь устройства (на ней нет никакой нагрузки). Если интересно как этот датчик работает, читаем тут. У операционного усилителя есть два входа ( один из них называют «+” другой «-”) и один выход. Если подаем на вход «+” напряжение больше чем на вход «-«, на выходе имеем «+” если же наоборот на выходе будет «-«. По схеме напряжение входе «+” меньше чем на входе «–» на пару милливольт и поэтому на выходе имеем «-«. Теперь пьезо динамик — такая крутая вещь, что преобразует звук или вибрацию в напряжение (у меня от пьезодинамика даже светодиод светился, просто ударяя по нему карандашом), и он при вибрации увеличивает напряжение на входе «+”и, следовательно, имеем на выходе тоже «+”. Заранее благодарю за повторение моих конструкции. Автор статьи — Леша «левша», устройство испытал: АКА.
Изобретение может быть использовано при измерениях вибраций и пульсаций давления пьезоэлектрическими датчиками (ПД), установленными на объекте испытаний. Цель изобретения — повышение качества контроля , определение работоспособности и чувствительности ПД. После проведения испытаний изделия дополнительно измеряют суммарную электрическую емкость пьезодатчика до подачи на пьезодатчик напряжения постоянного тока и после его подачи. Затем определяют их разность и по изменению величин электрических емкостей определяют работоспособность датчика, если она равна О, то датчик неработоспособен . Изменение чувствительности определяют по изменению соотношения величин разности электричесс $ ких емкостей, фиксируемых по двум (Л измерениям в течение заданного интервала Времени. 1 ил.
РЕСПУБЛИН (19) SU (ц! (я) 4 G 01 Ь 27 00
К АВТОРСКОМ,Ф СВИДЕТЕЛЬСТВУ
ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР пО делАм изОБРетений и ОтнРытий (21) 3794965/24-10 (22) 28,09,84 (46) 07.12.86. Бюл. Ф 45 (72) В, Я. Владимиров и M. И. Гольдман (53) 531.787(088.8) (56) Патент США У 3786348, кл, G 01 R 29/22, Авторское свидетельство СССР
N- 535478, кл. G 01 L 27/00, (54) СПОСОБ ПРОВЕРКИ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ДАТЧИКОВ (57) Изобретение может быть использовано при измерениях вибраций и пульсаций давления пьезоэлектрическими датчиками (ПД), установленными на объекте испытаний, Цель иэобретения — повышение качества контроля, определение работоспособности и чувствительности ПД, После проведения испытаний изделия дополнительно измеряют суммарную электрическую емкость пьезодатчика до подачи на пьезодатчик напряжения постоянного тока и после его подачи. Затем определяют их разность и по изменению величин электрических емкостей определяют работоспособность датчика, если она равна «0» то датчик неработоспособен. Изменение чувствительности определяют по изменению соотношения величин разности электрических емкостей, фиксируемых по двум измерениям в течение заданного интервала времени, 1 ил.
Изобретение относится к контрольно-измерительной технике и может быть использовано при измерениях вибраций и пульсаций давления пьезоэлектрическими датчиками, установленными на объекте испытаний, для определения их работоспособности при наличии длинной кабельной линии, составляющей пьезодатчики с усилителем, и чувствительности при повторном использовании их в работе, Цель изобретения — повышение качества контроля, а также определение работоспособности и чувствительности пьезоэлектрического датчика.
На чертеже приведена принципиальная схема установки для осуществления способа, Установка содержит пьезодатчик 1, кабельную линию 2, каждая жила которой экранирована, измеритель емкости 4 и разделительный конденсатор 6, Параллельно измерительному каналу подключен источник напряжения постоянного тока 3 через сопротивление 5.
Предлагаемый способ реализуется следующим образом, 1
К контролируемому измерительному каналу, состоящему из пьезоэлектрического датчика 1 и кабельной линии
2, каждая жила которой экранирована, подключают источник 3 напряжения постоянного тока (типа СИП-Н39029) через резистор 5 (5,1 M0M), который служит для исключения шунтирующего влияния на схему электрической емкости источника 3. К измерительному каналу подключают также измеритель 4 емкости (типа P-589) через конденсатор б (5600ПФ), служащий для электрической развязки с источником 3, Измеряют электрическую емкость С1 пьезодатчика при выключенном источнике 3. Затем включается источник 3 и еще раз измеряется электрическая емкость С пьезодатчика.
Отличие от нуля этой разности говорит о том, что датчик работоспособен, поскольку под действием постоянного напряжения чувствительный элемент пьезодатчика деформируется и от этого изменяется его емкость, При неисправном пьезодатчике разность А С равна О. Величина емкости измерительной кабельной линии в результате измерения величин С Изобретение относится к измерительной технике высоких переменных давлений и позволяет повысить точность градуировки датчиков путем повышения верхнего предела давления в рабочей камере, соответствуюш .его верхнему пределу измерений датчика
Влажность воздуха в жилом помещении является обязательным параметром для жизнедеятельности людей и растений. Всему живому, и даже неживому, на земле необходима вода, которая находится в воздушных массах.
В соответствии с ГОСТ 30494-96 оптимальными показателями являются
- 40-70 % влажности в закрытом помещении для людей.
- 50-75 % влажности для комнатных растений.
- До 60% влажности для бумажных изделий, к примеру, книг и ценных вещей, мебели и бытовых приборов.
От низких показателей влажности страдает все вокруг. К примеру, в Сахаре влажность составляет около 25%, а в городской квартире в отопительный период – около 20%. Сухость в помещении приводит к ослаблению иммунной системы, частым простудам, аллергии и многих иным заболеваниям. Повысить влажность в помещении можно с помощью ультразвукового увлажнителя.
Особенности прибора
Ультразвуковые увлажнители относятся к разряду надежной и эффективной техники для дома. Принцип увлажнения воздуха прибором заключается в использовании уникальной мембраны.
Ультразвуковая мембрана для увлажнителя воздуха под воздействием высокочастотных колебаний превращает залитую в резервуар воду во влажную пыль. С помощью вентилятора, воздух из комнаты засасывается в прибор, проходит сквозь водяную пыль, очищается и насыщается влажностью и подается обратно в комнату, но уже в виде тумана. Принцип холодного пара позволяет применять прибор в помещениях, где живут маленькие дети: пьезоизлучатель для увлажнителя воздуха не греет воду и является безопасным в использовании.
Важно! При работе длительное время ультразвуковой прибор может понижать температуру в комнате за счет насыщения воздуха холодным туманов. Устранить такую неприятность просто: включить функцию «Теплый пар» и подогреть воздушные массы.
Достоинства
- Наличие гидростата, который позволяет в ручном режиме регулировать показатели влажности.
- Автоматическое управление приборов: поддержание указанных параметров влажности, отключение при полном испарении воды.
- Возможность устанавливать параметры влажности вплоть до 70%.
- Низкая шумность в включенном состоянии: значительно меньше допустимых 40 Дб.
- Высокая производительность: до 16 л пара в сутки при емкости до 5 л.
- Потребляет малое количество электроэнергии: до 50 Вт.
- Оснащаются современной системой фильтрации жидкости.
- Безопасное использование, достигаемое за счет отсутствия горячего пара.
- Современный дизайн, возможность выбора цвета, функциональности, габаритов.
Важно! Для повышения длительности эксплуатации прибора необходимо использовать дистиллированную воду. Это поможет также избежать белого налета на мебели и иных поверхностях: дистиллированная вода не имеет примесей и солей.
Недостатки
- Своевременный уход: чистить прибор необходимо каждые 10 дней.
- Сложность ремонта.
- Относительно высокая стоимость.
Устройство ультразвукового увлажнителя
Блок управления прибором
Рабочая схема может быть выполнена в виде отдельного элемента или быть составной индикатора. Она регулирует и настраивает режимы работы прибора, отслеживает показатели датчиков. К примеру, при полном испарении жидкости устройство отключается, при достижении заданных параметром влажности работа также будет прекращена.
Генератор
Схема, которая формирует электрический сигнал. С его помощью задаются электрические колебания необходимой частоты. Как правило, генератор является отдельным элементом.
Ультразвуковой излучатель для увлажнителя воздуха
Элемент, который под воздействием тока вибрирует на высокой частоте. Ультразвук создается на частоте 1,7 мГц, которая не воспринимается слухом человека. Под воздействием ультразвука вода разбивается на мельчайшие частицы и преобразовывается в туман. «Холодный пар» распространяется по комнате, освежая и очищая ее.
Датчики
В ультразвуковых увлажнителях устанавливаются датчики воды и влажности. С их помощью выполняется контроль за наличием жидкости в емкости и показателями влажности в помещении.
Блок питания
Компонент, предназначенный для питания прибора.
Вентилятор
Элемент, используемый для распространения холодного пара по комнате.
Важно! Прежде чем приступить к ремонту прибора следует установить неисправность и ее причину.
Распространенные неисправности
Неприятный запах
Появление стороннего запаха свидетельствует о застое воды, если прибор длительное время не использовался, и вода не была слита. Также причиной может быть засорение системы фильтрации. Решение: полная чистка прибора с использованием специальных средств, замена фильтров.
Отсутствует подача воздуха
В том случае, когда увлажнитель работает, но воздух не идет необходимо проверить работоспособность вентилятора. Причиной неисправности может быть и засорение фильтра воздухозаборной решетки. Решение: замена фильтрующего элемента или вентилятора.
Совсем не включается
При отсутствии питания прибор теряет работоспособность. При обнаружении неприятности проверить есть ли напряжение в линии. Также данная проблема актуальна при выходе из строя предохранителя вилки. Решение: замена предохранителя, вилки или проводов.
Как проверить работоспособность пьезоэлемента
Первым признаком неисправности является отсутствие пара или ослабление парообразования. Устранить неисправность можно самостоятельно, выполнив замену элемента.
Алгоритм замены
- Отключить прибор от питания.
- Снять емкость для воды, вытереть насухо прибор.
- Вскрыть корпус устройства, используя отвертку под тип винтов.
- Осмотреть элементы на предмет горения, прочности крепления проводов и их целостность, проверить целостность элементов.
- Найти пьезоэлемент для увлажнителя воздуха, сфотографировать способ подключения проводов или записать их расположение.
- Отсоединить излучатель.
- Снять уплотнительные детали.
- Осмотреть элемент, определить, нет ли механических повреждений.
- При наличии видимых дефектов заменить элемент на новый, при их отсутствии проверить контакты.
- Собрать прибор.
Правила безопасности при использовании ультразвукового увлажнителя
- Увлажнитель воздуха используется строго по назначению: запрещается применять его для сушки белья или проветривания помещения.
- Поток пара должен быть направлен на безопасное место: запрещается направлять холодный туман на предметы интерьера, бытовую технику, кровать или иную мебель.
- Ремонтировать прибор необходимо в отключенном состоянии: запрещается работать с увлажнителем в момент питания или при наличии воды.
- Собирать прибор необходимо в соответствии с первоначальным положением всех элементов и проводов.
- После ремонта необходимо проверить прибор на работоспособность: включить увлажнитель в защитное УЗО. Если защита сработала – без визита в сервисный центр не обойтись.
Ультразвуковой увлажнитель воздуха требует к себе своевременного внимания. Это прибор инновационного типа, работающий при высоких частотах. Используйте его в соответствии с рекомендациями производителя, и он длительное время будет обеспечивать оптимальную влажность в вашем доме.
Ультразвуковая ванна. Часть 1 / Хабр
Хомяки приветствуют вас, друзья.Сегодняшний пост будет посвящен созданию ультразвуковой очистительной ванны в основе которой лежит пьезокерамический излучатель Ланжевена мощностью 60 Вт. В процессе мы рассмотрим из чего состоит устройство, как его настроить чтобы ничего не сгорело и в конце лицезреем очистительные способности, которые по своему действию превосходят Мистера Пропера и всех его знакомых. Ультразвуковая ванна имеет много сфер применения и перечислить все практически невозможно, так как большинство из них будет зависеть только от вашего воображения.
Прежде чем начать растворять свои пальцы в ультразвуковой ванне, давайте разберем как же возникают механические колебания на более простых системах. Одним из примеров таких колебательных механизмов являются магнитострикторы, которые под воздействием магнитного поля могут сжиматься или растягиваться. Такими параметрами обладает обыкновенный феррит от старого дедовского приемника, который наверняка у каждого валяется где-то в гараже.
Для начала эксперимента нам понадобится: генератор сигналов, модулятор плотности импульсов для регулировки мощности, полумост, регулируемый блок питания и осциллограф для визуальной оценки сигнала. Дальше на небольшой оправке мотаем катушку из толстой меди, в моем случае вышло порядка 50 витков провода 2 мм. Феррит будет вставляться прямо в середину этой пушки гауса. Выставляем на модуляторе импульсов мощность в 100 процентов. Вращая ручку на генераторе находим резонанс системы, который в конкретном случае будет выглядит как две горы, вершины которых нужно выровнять.
Частота конкретного стержня получилась 8.5 кГц. Приближаясь к механическому резонансу, видно как капля на верхушке ферритового стержня начинает вибрировать, меняя при этом свою первоначальную форму. В какой-то момент амплитуда вибрации достигает такой величины, что воду разрывает на тысячи мелких частиц и визуально кажется, что жидкость за долю секунды превращается в туман. Размер каждой такой капли зависит от механической системы, чем выше частота — тем меньше капля.
Такая магнитострикционная система плоха тем, что при определенном пороге мощности хрупкий феррит разрывает на части, как это произошло сейчас. 15 Вт оказались недопустимы. В середине стержня возникает максимальное механическое напряжение, вот его и разрывает. Если после этого пытаться склеить две половинки стержня, то такой активной работы как была изначально не будет, так как каждый отдельный кусок будет иметь свой механический резонанс. Во время съёмки у меня разорвало три таких стержня.
В качестве эксперимента подключим к генератору самый обычный пьезокерамический излучатель. Вращая ручку генератора находим момент, когда вода начинает активно возмущаться. Как видно, капли, которые образовались имеют несколько больший размер чем в представленном варианте ранее, так как резонансная частота тут в 2 раза ниже, и соответствует 3.6 кГц.
Для справки. В ультразвуковых испарителях и увлажнителях воздуха используется тот же принцип, только частота тут лежит уже в мегагерцовом диапазоне. Размер капли воды может достигать несколько десятков микрон.
Теперь переходим исключительно к излучателю Ланжевена, названого в честь французского физика который занимался магнетизмом. Электромеханическая частота этой железяки равна 40 кГц, и испарение воды на нем больше похоже на извержение какого-то вулкана. На таком холостом ходу излучатель сильно греется, поэтому так делать не рекомендую.
В следующем эксперименте попробуем получить ультразвуковую левитацию. На резонансе в ланжевене образуется стоячая ультразвуковая волна с пучностью на конце излучающей накладки. Это основная продольная мода. В этом случае частицы вещества на конце накладки колеблются в вертикальном направлении с амплитудой в десятки микрон. Эти колебания легко передаются в воздух.
Если на определенном расстоянии от излучателя установить отражающую поверхность, то излученные и отраженные волны будут складываться, образуя в воздухе стоячие звуковые волны которые имеют узлы — области минимального давления, и пучности — области максимального давления. Чтобы шарик с пенопластом левитировал его необходимо разместить именно в узле звукового давления. Если отключить систему, весь карточный домик тут же рухнет.
С принципом работы Ланжевена разобрались. Теперь можно поближе разглядеть излучатель. С лицевой стороны видно отпескоструенную матовою поверхность, которая обеспечивает лучшее сцепление с клеем, который будет скреплять излучатель с гастроемкостью.
Объем такого корыта полтора литра. Типоразмер посудины 1/6, глубина 100 мм, материал нержавейка. Центруем излучатель на дне посудины и отмечаем место где он будет находиться. По сути это нужно для того, чтобы следы наждачки не вылезли за границы и не испортили внешний вид. В идеале это место лучше обработать пескоструем, но у меня такого в хозяйстве нет. Когда поверхности подготовлены обезжириваем их ацетоном и разводим эпоксидный клей.
Наносим его тонким слоем на само корыто и ту же процедуру проводим с излучателем. Пропусков быть не должно, так как нам нужно обеспечить хороший акустический контакт всей излучающей поверхности. При стыковке шатла Ланжевен пытается куда-то уползти. Чтобы он далеко не убежал его нужно немного притереть, а затем придавить чтобы выполз весь лишний клей.
После полимеризации эпоксид приобретёт так называемую металлическую твердость. Для любителей такой вариант начать работу с мощным ультразвуком, может оказаться вполне подъёмным.
Теперь время сделать корпус. Отмечаем на 10 мм ДСП заранее вымеренные размеры и начинаем работу электролобзиком. Делать такую операцию желательно ночью, когда все соседи спят)
В конечном результате выйдет 5 ровных кусков, всё что нужно это понадежней скрепить стенки фанеры чтобы ничего не развалилось. Примеряем ванну вставляя одно в другое. В идеале коробка должна выйти чуть меньше чем размеры самой гастроемкости.
Переходим к электронной части. Для управления временем работы ванны нужен таймер. Подходящая схема в интернете нашлась, а вот печатную плату пришлось разводить самому так как она попросту отсутствовала в описании. В результате получилась небольшая платка с достаточно скромными размерами. То что нужно.
Подаем питание и видим как что-то засветилось. Кратковременное нажатие на кнопку энкодера включает и выключает таймер. Поворот ручки позволяет выбрать время в минутах от 1 до 99. После истечения заданного интервала играет музыка, а затем раздается сирена которую можно отключить разово нажав на энкодер. Работа проще некуда. Если кого-то напрягают звуковые сигналы, на плате предусмотрена перемычка отключающая динамик.
Теперь дело за генератором, который будет качать акустическую систему. Разводил плату исключительно под габариты деталей которые нарыл в кладовке. Пытался разместить элементы как можно поплотней, чтобы высокочастотных наводок не было. Хотя вариант собранный из говна и палок на коленке тоже не плохо работал, но так делать не стоит.
Генератор называется пуш-пул. В начале в нем были транзисторы IRFZ46, затем 2SK1276, затем IRFP460 все они показались в работе как то уныло. Лучше всего отработали транзисторы IRFZ44, на них и остановился. Управление идет от микросхемы драйвера IR2153.
Так как управление частотой будет ручной в некоторых режимах транзисторы будут сильно греться. Поэтому нужно предусмотреть хороший отвод тепла. Радиатор желательно использовать с толстой основой, так как его отвод тепла будет намного эффективней чем у куска алюминьки расположенного слева, который перегревается как первоклассник на первом свидании. При любых раскладах необходимо обеспечить хороший отвод тепла и воздушное охлаждение. Значение температуры будет выводиться на китайский термометр с жк экраном. Стоит такой примерно 2 бакса.
Вся энергия в ванне будет раскачиваться импульсным трансформатором от компьютерного блока питания. Из практики размер трансформатора не имеет значения, всё одинаково работало как на малой, так и на большой такой хреновине. 60 Вт для них как два пальца. Потребление всей схемы будем оценивать по показаниям амперметра включенного параллельно мощного шунта. Блок питания для нашей задачи нужен неслабый. Эта плата выковыряна из зарядки от какого-то ноутбука. Если верить характеристикам, то она выдает 65 Вт при напряжении в 20 вольт. Поделив первое на второе получим ток в три с четвертью ампера, что очень радует.
Теперь эту кучу запчастей нужно разместить в шахматном порядке. Для этого на деревянных досках включаем все свои навыки художника и отмечаем заранее запланированные места куда будут вставляться органы управления. Чистая работа завершилась, пора заговнять ковер опилками от ДСП, которые как снег сыпятся во время рассверливания отверстий. Грубые следы от дрели убираем бормашиной. Так как насадка круглая, остаётся подровнять углы и тут в дело идёт напильник. Но работать с ним нужно аккуратно, так как на декоративном покрытии получаются сколы. После того как по всей хате осела пыль, декоративную деревообработку можно считать завершенной.
Размещаем всю электронику. Хороший тон когда все детали входят плотно. Размещаем с обратной стороны плату таймера, а с лицевой китайский термометр который показывает температуру в десятых долях градуса, также устанавливаем остальные рубильники и переключатели. В результате выйдет что-то типа этого.
Внутри размещаем блок питания, как видно он находиться возле выдувного отверстия для лучшего охлаждения. Плату генератора ставим напротив вентилятора и размещаем последний элемент — дроссель.
Как же эта вся груда железа работает?! Сейчас разберёмся. Для начала настройки выставляем на регулируемом блоке питания напряжение порядка 14 вольт. Проверяем стабилизированное напряжение для питания микросхемы драйвера, оно должно быть 12 вольт. Щупом осциллографа цепляемся к затвору транзистора и проверяем присутствует ли сигнал в виде меандра. Если всё на месте, переменным резистором меняем частоту и смотрим чтобы сигнал не дергался и был ровным во всём пределе регулировки. В данном случае верхняя граница порядка 80 кГц, а нижняя в районе 34 кГц. Запас достаточно большой и карман как говорится не жмёт.
Включаем на щупе делитель на 10 и подключаемся к средней ноге полевика — это сток. На холостом ходу видно как в момент включения транзистора происходит высоковольтный выброс за которым следует свободное затухающее колебание сравнительно с ударом по воде. В момент отключения ключа видим еще один пик. В идеале на этом месте должен быть чистый меандр. Но похоже он забухал. Попробуем подключить нагрузку в виде лампы Ильича. Видим как затухания пропали, передний фронт меандра в завале, а индуктивные выбросы достигают порядка 700 вольт. Такая картина никуда не годится.
Часть этого ужаса возникает еще в плате, даже палец на нее влияет. Такой же сигнал будет повторяться и на выходе трансформатора. Видно как между включениями каждого плеча формируется дедтайм в 1.2 миллисекунды. Ровным счетом, кроме формы сигнала работа идёт в правильном направлении.
Высокочастотный звон можно задавить снаббером. Так называется цепочка из резистора и конденсатора. При этом резистор должен быть мощным, около 5 Вт, так как он сильно греется. Разместим их в зоне обдува радиатора. Подсоединяя РЦ цепочку к одному из плеч пуш-пула, видно как гасятся волны правда с небольшим возмущением в момент включения. Это лучшее чего смог добиться экспериментально подбирая ёмкость и сопротивление снаббера для данной схемы. В любой случае даже под нагрузкой сигнал на выходе высоковольтной части трансформатора стремится быть похожим на меандр. С этим разобрались, едем дальше.
Так как излучатель является ёмкостной нагрузкой к нему нужно рассчитать резонансный дроссель, который повысит эффективность работы. Измеряем ёмкость и получаем примерно 5 нФ. Частота данного Ланжевена 40 кГц. Заходим в программу «Электродроид» и вводим туда эти параметры. Гениальная программа для двоечников, ничего не нужно считать только цифры вводить, программа всё сделает за вас сама. По результатам вычислений индуктивность вышла 3.2 мГн. Мотать трансформатор будем двойным проводом, чтобы уменьшить общее сопротивление. Меньше сопротивление, меньше потерь которые будут рассеиваться в виде тепла.
Первый вариант дросселя мотался на сердечник неразобранного трансформатора. Заняло это порядка 4 часов, так как укладывать медь виток к витку было затруднительно. Конечная индуктивность со всеми стараниями вышла 0.6 мГн. Я был расстроен. Можно намотать образец и в один провод на обычном куске феррита, потерь будет много, но для настройки такой вариант сгодится.
И так, что мы тут видим?! На одном из концов излучателя сидит трансформатор тока, в дальнейшем от него будет мало толку. На горячем конце дросселя подцепим неоновую лампочку для визуальной оценки напряжения. Нальем в гастроемкость немного водицы, примерно на 1/3. Щуп осциллографа подключим к высоковольтному выходу трансформатора.
Поднимаем напряжение и видим… Да хрен пойми что! На резонансе при максимальном потреблении меандр просаживается по самое ни хочу образуя две вершины как в фильме Властелин Колец. Подозреваю, так влияет дроссель по питанию низковольтной части. Размах напряжения судя по всему немалый, поэтому делать так как будет дальше не рекомендую. Подключаем щуп с делителем к горячему концу, регулируем частоту и видим как амплитуда напряжения взмахивает за пределы измерения осциллографа. Размах примерно в 1000 вольт. Второй конец неоновой лампы щипается если его касаться.
Посмотрим что там на трансформаторе тока. Картинка прыгает из-за плохой синхронизации осциллографа. Ану синхронизируйся старая рухлядь. Не выводи меня! Ток на резонансе растет что и должно быть. Если вода в ванне болтается, то работа системы становится нестабильной.
Интересный эффект обнаруженный во время экспериментов. Если один конец Ланжевена не соединить с общим проводом схемы, то на корпусе ванны появляется весь потенциал напряжения в киловольтах, это хорошо видно на неоновой лампочке. Даже проскакивают небольшие искры при касании железяки. На плате заранее предусмотрена перемычка заземляющая ланжевен.
Схема электронной части. Пытался в ней указать всё, даже цоколёвку транзистора. На дросселе резонансной части стоит замыкатель. Заметил, что иногда ванна лучше работает без него, чем с ним, а иногда наоборот.
Для наглядности ниже показаны две картинки с сигналами. На первой работа с ёмкостной нагрузкой, а на второй с резонансной. Архив со всем нужным материалами для сборки ванны.
С этой частью разобрались, вроде ничего не сгорело, двигаемся дальше. Подключаем все разъёмы с питанием, управлением, переменными резисторами, келлером, и т.д. Так как датчик температуры термометра имеет очень удобную форму для крепления, ничего другого кроме как присобачить его на кусок фольгированного скотча я не придумал, хотя более правильно будет просверлить дырку в радиаторе и засунуть его туда вместе с термопастой для лучшего теплового контакта.
Корпус ванны сделан из ДСП, а как известно он боится воды, точней его незащищённые боковины. Водостойкий силикон отлично справляется с такими задачами. Отделяем кусок этой гадости и втираем в торцы деревяхи. Тут важно никуда не спешить для себя же делаем. Так же на силиконе будет лучше держаться демпферная лента, которая будет изолировать тело гастроемкости от корпуса устройства, чтобы полезные вибрации не гасились.
Для крепления Ланжевена к нержавеющему корыту вместо эпоксидной смолы можно использовать холодную сварку типа «Поксипол». Им вроде как производители ванн пользуются. Пусть пользуются, обычный эпоксид в разы дешевле стоит.
Для справки. Не стоит оставлять вещи без присмотра, иначе набегут хомяки и погрызут все провода. Но не стоит бояться если рядом паяльник им всегда можно дать отпор) Сказать что ванна получилась компактной это ничего не сказать по сравнению с китайскими, но сколько тут мощи…
Вторая часть
Архив с полезностями
Полное видео проекта на YouTube
Наш Instagram
Как проверить ультразвуковую ванну или мойку
Проверка ультразвуковой ванны или мойки – необходимость, с которой сталкиваются все. Неважно где это происходит на производстве или дома, и на каком этапе возникает необходимость проверки. Ультразвуковые ванны и мойки проверяются везде, начиная с этапа их производства и заканчивая текущей эксплуатацией. Сегодня мы подробно рассмотрим вопрос о том, как проверить ультразвуковую ванну или мойку.
Когда и зачем проверяют ультразвуковые ванны и мойки
Ультразвуковые ванны и мойки проверяют на этапах:
- производство УЗ оборудования;
- ОТК на производстве;
- на этапе приемки;
- эксплуатационные проверки во время работы;
- в случае возникновения неисправностей в работе.
Чуть подробнее об этапах. Проверка во время изготовления необходима для понимания того, что оборудование нормально функционирует. После этого мойку передают в отдел технического контроля, который проверяет параметры работы и функционал. После этого оборудование готово к отгрузке. На этапе приемки (получения товара) существует целесообразность проверки, поскольку транспортная компания могла не бережно отнестись к транспортировке и повредить товар. УЗ мойку нельзя ронять или бить, она может выйти из строя. Необходимость эксплуатационной проверки обусловлена следующими причинами:
- могут выйти из строя часть излучателей, визуально и на слух может быть не понятно работают ли они;
- в ходе эксплуатации соединение излучателя и поверхности внутренней емкости пострадало, излучатель неплотно прилегает и общее КПД может упасть практически до 0.
Когда возникла неисправность в работе УЗ мойку или ванну необходимо первично проверять перед отправкой специалисту, особенно если гарантий срок уже закончился.
Методы проверки ультразвуковой ванны или мойки
В одной из наших статей мы говорили о типовых неисправностях УЗ оборудования и о том, как их решить. Акцентировать внимание на особых тонкостях мы в этой статье не будем их можно прочесть здесь, а рассмотрим лишь базовую проверку, которая доступна каждому.
Существует два вида проверки:
- проверка электрической части;
- проверка работы ультразвука.
В проверке электрической части мы ограничены способами и методами, поскольку Ваша новая мойка находится на гарантии и лезть внутрь ее не рекомендуется, поскольку это приведет к потере гарантии. В оборудовании, у которого уже нет гарантии, можно проверить и внутренность. Поэтому новое оборудование мы можем проверить только мультиметром. Проверке подвергается кабель питания на прозвонку и наличие / отсутствие обрыва. Так же мы можем проверить предохранитель, прозвонив его. Если все хорошо, то оборудование можно подключать.
При проверке работы ультразвука существует два общедоступных способа или метода. К ним относятся:
- проверка ультразвуковой мойки или ванны при помощи фольги;
- проверка суспензией.
О них подробно далее.
Проверка ультразвуковой мойки или ванны при помощи фольги
Этот метод широко распространен среди всех владельцев ввиду своей простоты и доступности. Для этого нам потребуется обычная фольга, которая есть в каждом продовольственном магазине.
Алгоритм проверки работы ультразвука фольгой:
- В УЗВ необходимо налить обычной воды согласно инструкции.
- Включить работу ультразвука на время не более 1 минуты (больше нам и не потребуется).
- Взять кусок фольги размером с внутреннюю емкость либо приготовить несколько квадратиков 10 на 10 сантиметров для проверки каждого излучателя в отдельности.
- Далее опускаем фольгу в середину емкости. С первых секунд работы на фольге начнут появляться маленькие дырки. Значит УЗ работает, если их нет значит не работает.
Качество работы излучателей определяется временем появления дырок на фольге. Если спустя секунд 10-20 после начала, дырок не появилось, значит общий КПД снизился.
Проверка ультразвуковой мойки или ванны суспензией
Данный метод так же обладает большой доступностью, но для его применения потребуется наличие мелких не растворимых объектов. К таким можно смело отнести мелкую металлическую стружку черных или цветных металлов, подобное. Наша задача создать взвесь она же суспензия.
Алгоритм проверки работы ультразвука суспензией:
- Наливаем воду согласно инструкции.
- Добавляем нашу «стружку» равномерно распределяя ее по дну мойки.
- Запускаем УЗ в работу максимум на 1 минуту и смотрим, что происходит. Стружка должна подняться со дна над каждым излучателем и распределиться где-то в средней области жидкости а так же по всему объему. Важно! Момент распределения в средней части и/или равномерное распределение по всему объему может и не произойти! Данное явление тесно связано с весом частиц, чем они легче, тем лучше. Главное чтоб Вы наблюдали движение в месте расположения излучателей.
Что делать если ультразвуковая ванна или мойка не прошла проверку
Если какой-то вариант проверки не был пройден, Вам необходимо связаться с изготовителем Вашего оборудования, описать ситуацию и получить от него рекомендации или руководства к действию. В подавляющем большинстве случаев все заканчивается отправкой оборудования на ремонт по гарантии. Вышеописанные два метода проверки дают практически 100% гарантию получения достоверной информации о работоспособности.
В ситуациях, когда гарантийный срок закончился вариантов не много: пытаться решить проблему самому либо искать специалиста. Обратите внимание, что хороший изготовитель всегда занимается ремонтом своего оборудования, причем не только по гарантии, у него есть ОТК и штат специалистов. Это поможет Вам отсеять перекупщиков и сомнительные магазины. При самостоятельном ремонте у Вас должны быть хотя бы базовые познания в электронике, без них решить проблемы не удастся, можно сделать только хуже. Поэтому мы рекомендуем обращаться всегда к специалистам.
В заключение хочется сказать следующее. Мы рассказали, как правильно проверить ультразвуковую ванну или мойку. Качество УЗО важно и им пренебрегать не стоит! УЗ от Титан Ультрасоник имеют все сертификаты, проходят ОТК, а гарантийное и послегарантийное обслуживание выполняется на высоком уровне. Выбирайте проверенных поставщиков.
Неразрушающий контроль — Ультразвуковой контроль
Что такое ультразвуковой контроль?
Ультразвуковой неразрушающий контроль, также известный как ультразвуковой неразрушающий контроль или просто УЗ, представляет собой метод определения толщины или внутренней структуры испытуемого образца с помощью высокочастотных звуковых волн. Частоты или высота тона, используемые для ультразвукового контроля, во много раз превышают предел человеческого слуха, чаще всего в диапазоне от 500 кГц до 20 МГц.
Какие материалы можно тестировать?
В промышленных приложениях ультразвуковой контроль широко используется для металлов, пластмасс, композитов и керамики.Единственными распространенными инженерными материалами, которые не подходят для ультразвукового контроля с помощью обычного оборудования, являются изделия из дерева и бумаги. Ультразвуковая технология также широко используется в биомедицине для диагностической визуализации и медицинских исследований.
Принцип ультразвукового контроля.
СЛЕВА: зонд посылает звуковую волну в исследуемый материал. Есть два показания, одно от начального импульса зонда, а второе от эхо-сигнала от задней стенки.
ВПРАВО: Дефект создает третью индикацию и одновременно уменьшает амплитуду индикации задней стенки.
Как это работает?
Высокочастотные звуковые волны очень направлены, и они будут проходить через среду (например, кусок стали или пластика) до тех пор, пока не встретят границу с другой средой (например, воздухом), после чего они отражаются обратно к своему источнику. Анализируя эти отражения, можно измерить толщину испытательного образца или найти признаки трещин или других скрытых внутренних дефектов.
При ультразвуковом контроле ультразвуковой преобразователь, подключенный к диагностическому аппарату, проходит над проверяемым объектом.Преобразователь обычно отделяется от объекта испытаний связующим веществом (например, маслом) или водой, как при испытании иммерсией.
Есть два метода приема ультразвуковой волны: отражение и затухание.
В режиме отражения (или эхо-импульса) преобразователь выполняет как отправку, так и прием импульсных волн, поскольку «звук» отражается обратно в устройство. Отраженный ультразвук исходит от поверхности раздела, например, от задней стенки объекта или от несовершенства внутри объекта.Диагностическая машина отображает эти результаты в виде сигнала с амплитудой, представляющей интенсивность отражения, и расстояние, представляющее время прибытия отражения.
В режиме затухания (или сквозной передачи) передатчик посылает ультразвук через одну поверхность, а отдельный приемник определяет количество, которое достигло его на другой поверхности после прохождения через среду. Дефекты или другие условия в пространстве между передатчиком и приемником уменьшают количество передаваемого звука, таким образом обнаруживая их присутствие.Использование связующего вещества увеличивает эффективность процесса за счет снижения потерь энергии ультразвуковой волны из-за разделения поверхностей.
Контроль труб с помощью ультразвукового дефектоскопа
Каковы преимущества ультразвукового контроля?
Ультразвуковой контроль полностью неразрушающий. Образец для испытаний не нужно разрезать, разрезать или подвергать воздействию вредных химикатов. Требуется доступ только к одной стороне, в отличие от измерения с помощью механических инструментов для измерения толщины, таких как штангенциркуль и микрометры.В отличие от рентгенографии, ультразвуковые исследования не представляют потенциальной опасности для здоровья. Когда тест настроен должным образом, результаты очень надежны и воспроизводимы.
Каковы потенциальные ограничения ультразвукового контроля?
Для ультразвуковой дефектоскопии требуется обученный оператор, который может настроить испытание с помощью соответствующих эталонов и правильно интерпретировать результаты. Проверка некоторых сложных геометрических объектов может быть сложной задачей. Ультразвуковые толщиномеры должны быть откалиброваны в соответствии с измеряемым материалом, а приложения, требующие измерения широкого диапазона толщин или измерения акустически различных материалов, могут потребовать нескольких настроек.Ультразвуковые толщиномеры дороже механических.
На строительной площадке техник проверяет сварной шов трубопровода на предмет дефектов с помощью ультразвукового прибора с фазированной решеткой. Сканер, состоящий из рамы с магнитными колесами, удерживает датчик в контакте с трубой с помощью пружины. Влажная зона — это ультразвуковая связка, которая позволяет звуку проходить в стенку трубы.
Ультразвуковой контроль сварных швов
Одной из наиболее полезных характеристик ультразвукового контроля является его способность определять точное положение несплошности в сварном шве.Этот метод тестирования требует высокого уровня подготовки и компетентности оператора и зависит от создания и применения подходящих процедур тестирования. Этот метод тестирования может использоваться для черных и цветных металлов, часто подходит для тестирования более толстых участков, доступных только с одной стороны, и часто может обнаруживать более тонкие линии или более простые дефекты, которые не так легко обнаружить с помощью радиографического тестирования.
Стандарты
Международная организация по стандартизации (ISO)
- ISO 7963, Неразрушающий контроль. Ультразвуковой контроль. Спецификация калибровочного блока No.2
- ISO / DIS 11666, Неразрушающий контроль сварных швов. Ультразвуковой контроль сварных соединений. Уровни приемки .
- ISO / DIS 17640, Неразрушающий контроль сварных швов. Ультразвуковой контроль сварных соединений
- ISO 22825, Неразрушающий контроль сварных швов. Ультразвуковой контроль. Испытание сварных швов аустенитных сталей и сплавов на никелевой основе.
Европейский комитет по стандартизации (CEN)
- EN 583, Неразрушающий контроль — Ультразвуковой контроль
- EN 1330-4, Неразрушающий контроль — Терминология — Часть 4: Термины, используемые при ультразвуковом контроле
- EN 1712, Неразрушающий контроль сварных швов — Ультразвуковой контроль сварных соединений — Уровни приемки
- EN 1713, Неразрушающий контроль сварных швов — Ультразвуковой контроль — Определение характеристик сварных швов
- EN 1714, Неразрушающий контроль сварных швов — Ультразвуковой контроль сварных соединений
- EN 12223, Неразрушающий контроль — Ультразвуковой контроль — Спецификация калибровочного блока №1
- EN 12668-1, Неразрушающий контроль. Характеристики и проверка оборудования для ультразвукового исследования. Часть 1. Инструменты.
- EN 12668-2, Неразрушающий контроль — Характеристики и проверка оборудования для ультразвукового исследования — Часть 2: Зонды
- EN 12668-3, Неразрушающий контроль — Характеристики и проверка оборудования для ультразвукового исследования — Часть 3: Комбинированное оборудование
- EN 12680, Основание — Ультразвуковое исследование
- EN 14127, Неразрушающий контроль — Ультразвуковое измерение толщины
Часто задаваемые вопросы по ультразвуковому контролю
- Что такое ультразвуковой преобразователь?
Преобразователь — это любое устройство, преобразующее одну форму энергии в другую.Ультразвуковой преобразователь преобразует электрическую энергию в механические колебания (звуковые волны), а звуковые волны в электрическую энергию. Как правило, это небольшие портативные сборки, которые бывают самых разных частот и стилей для удовлетворения конкретных потребностей тестирования. - Что такое ультразвуковой толщиномер?
Ультразвуковой толщиномер — это прибор, который генерирует звуковые импульсы в испытуемом образце и очень точно измеряет временной интервал до получения эхо-сигнала.После программирования скорости звука в исследуемом материале датчик использует эту информацию о скорости звука и измеренный временной интервал для вычисления толщины с помощью простого соотношения [расстояние] равно [скорость], умноженное на [время]. - Насколько точен ультразвуковой толщиномер?
При оптимальных условиях коммерческие ультразвуковые датчики могут достигать точности до +/- 0,001 мм, с точностью +/- 0,025 мм или выше, возможной для большинства распространенных технических материалов.Факторы, влияющие на точность, включают однородность скорости звука в исследуемом материале, степень рассеяния или поглощения звука, состояние поверхности, а также точность и осторожность, с которыми инструмент был откалиброван для конкретного применения. - Кто пользуется ультразвуковыми датчиками?
Основное применение ультразвуковых датчиков — измерение остаточной толщины стенок корродированных труб и резервуаров. Измерение может быть выполнено быстро и легко без необходимости доступа внутрь или необходимости опорожнения трубы или резервуара.Другие важные приложения включают измерение толщины формованных пластиковых бутылок и аналогичных контейнеров, лопаток турбин и других прецизионных обработанных или литых деталей, медицинских трубок малого диаметра, резиновых шин и конвейерных лент, корпусов лодок из стекловолокна и даже контактных линз. - Что такое ультразвуковой дефектоскоп?
Звуковые волны, проходящие через материал, будут предсказуемым образом отражаться от дефектов, таких как трещины и пустоты. Ультразвуковой дефектоскоп — это инструмент, который генерирует и обрабатывает ультразвуковые сигналы для создания отображения формы волны, которую может использовать обученный оператор для выявления скрытых дефектов в испытательном образце.Оператор определяет характерный образец отражения от хорошей детали, а затем ищет изменения в этом образе отражения, которые могут указывать на дефекты. - Какие недостатки вы можете найти в нем?
Широкий спектр трещин, пустот, отслоений, включений и подобных проблем, влияющих на структурную целостность, можно обнаружить и измерить с помощью ультразвуковых дефектоскопов. Минимальный размер обнаруживаемого дефекта в данном приложении будет зависеть от типа испытываемого материала и типа рассматриваемого дефекта. - Кто использует ультразвуковые дефектоскопы?
Ультразвуковые дефектоскопы широко используются в критически важных областях, связанных с безопасностью и качеством, включая сварные швы, стальные балки, поковки, трубопроводы и резервуары, авиационные двигатели и рамы, автомобильные рамы, железнодорожные рельсы, силовые турбины и другую тяжелую технику, корабли корпуса, отливки и многие другие важные приложения. - Какие другие типы инструментов доступны?
Ультразвуковые системы визуализации используются для создания высокодетализированных изображений, похожих на рентгеновские лучи, отображающих внутреннюю структуру детали с помощью звуковых волн.Технология фазированных решеток, первоначально разработанная для медицинской диагностической визуализации, используется в промышленных условиях для создания изображений поперечного сечения. Крупные системы сканирования используются в авиакосмической промышленности и поставщиками металлообработки для проверки на наличие скрытых дефектов как в сырье, так и в готовых деталях. Ультразвуковые генераторы / приемники и анализаторы сигналов используются во множестве приложений исследования материалов.
Ссылки: www.olympus-ims.com и Welding and Cutting United States
.Как проверить полевой МОП-транзистор с помощью цифрового мультиметра
В сообщении объясняется, как тестировать МОП-транзистор с помощью мультиметра с помощью набора шагов, которые помогут вам точно определить хорошее или неисправное состояние МОП-транзистора
МОП-транзисторы эффективны, но сложны Устройства
Полевые МОП-транзисторыявляются выдающимися устройствами, когда речь идет об усилении или переключении различных видов нагрузок. Хотя транзисторы также широко используются для вышеуказанных целей, оба аналога сильно отличаются по своим характеристикам.
Потрясающая эффективность МОП-транзисторов в значительной степени нейтрализуется одним недостатком, связанным с этими устройствами. Это сложность, которая делает эти компоненты трудными для понимания и настройки.
Даже простейшие операции, такие как проверка хорошего МОП-транзистора от плохого, никогда не были легкой задачей, особенно для новичков в этой области.
Хотя МОП-транзисторы обычно требуют сложного оборудования для проверки их состояния, простой способ использования мультиметра также считается эффективным в большинстве случаев для их проверки.
Мы возьмем в качестве примера два типа N-канальных МОП-транзисторов, K1058 и IRFP240, и посмотрим, как эти МОП-транзисторы могут быть протестированы с помощью обычного цифрового мультиметра с немного разными процедурами.
Как проверить N-канальные МОП-транзисторы
1) Установите цифровой мультиметр на диодный диапазон.
2) Держите МОП-транзистор на сухом деревянном столе на его металлическом выступе стороной с печатью к вам и выводами к вам.
3) С помощью отвертки или измерительного щупа закоротите затвор и слив штифтов MOSFET.Изначально внутренняя емкость устройства будет полностью разряжена.
4) Теперь прикоснитесь черным щупом измерителя к источнику , а красным щупом к стоку устройства.
5) Вы должны увидеть индикацию обрыва цепи на счетчике.
6) Теперь, прикасаясь черным щупом к источнику , поднимите красный щуп со стока и на мгновение прикоснитесь к затвору МОП-транзистора и верните его обратно к стоку МОП-транзистора.
7) На этот раз измеритель покажет короткое замыкание (извините, не короткое замыкание, а «непрерывность»).
Результаты пунктов 5 и 7 подтверждают, что МОП-транзистор в порядке.
Повторите эту процедуру много раз для надлежащее подтверждение.
Для повторения описанной выше процедуры каждый раз вам потребуется сбросить полевой МОП-транзистор , закоротив затвор и дренажные провода с помощью измерительного щупа, как описано ранее. Для P-канала шаги тестирования будут такими же, как 1,2,3,4 и 5, но полярность измерителя изменится.Вот как это сделать.
1) Установите цифровой мультиметр на диодный диапазон.
2) Закрепите mosfet на сухом деревянном столе на его металлическом язычке так, чтобы сторона с надписью была обращена к вам, а провода были направлены к вам.
3) С помощью любого проводника или измерительного щупа закоротите штырьки затвора и стока P-mosfet. Первоначально это позволит разрядить внутреннюю емкость устройства, что важно для процесса тестирования.
4) Теперь прикоснитесь КРАСНЫМ датчиком измерителя к источнику , а ЧЕРНЫМ датчиком к стоку устройства.
5) Вы обнаружите «обрыв» цепи на счетчике.
6) Затем, не перемещая КРАСНЫЙ датчик из источника , удалите черный датчик из стока и прикоснитесь им к затвору МОП-транзистора на секунду и верните его обратно на сток МОП-транзистора. .
7) На этот раз измеритель покажет непрерывность или низкое значение на измерителе.
Вот и все, это подтвердит, что ваш MOSFET в порядке и без каких-либо проблем. Любая другая форма чтения укажет на неисправный МОП-транзистор.
Если у вас возникнут какие-либо сомнения относительно процедур, пожалуйста, не стесняйтесь выражать свои мысли в разделе комментариев.
Как проверить МОП-транзистор IRF540
Процедуры в точности аналогичны описанным выше процедурам тестирования N-канального МОП-транзистора. Следующий видеоролик показывает и доказывает, как это можно реализовать с помощью обычного мультиметра.
Практическое видеоурок
Схема приспособления для простого тестера Mosfet
Если вам неудобно использовать вышеупомянутую процедуру тестирования с использованием мультиметра, то вы можете быстро создать следующее приспособление для эффективной проверки любого N-канального МОП-транзистора. .
После того, как вы сделаете это приспособление, вы можете подключить соответствующие штырьки МОП-транзистора к данным гнездам G, D, S. После этого вам просто нужно нажать кнопку для подтверждения состояния MOSFET.
Если светодиод светится только при нажатии кнопки, то с вашим МОП-транзистором все в порядке, любые другие результаты будут указывать на неисправный или неисправный МОП-транзистор.
Катод светодиода перейдет на сторону стока или сливное гнездо.
Для MOSFET с p-каналом вы можете просто изменить конструкцию, как показано на следующем изображении.
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!
Как проверить транзистор мультиметром (DMM + AVO) — NPN и PNP
Как найти базу, коллектор, эмиттер, направление и состояние транзистора с помощью мультиметра
Как запомнить направление PNP и NPN Идентификация транзистора и контактов, проверьте, хорошо это или плохо.
Если вы выберете эту простую тему с помощью цифрового (DMM) или аналогового (AVO) мультиметра, вы сможете:
- Запомните направление транзисторов NPN и PNP
- Определите базу, коллектор и эмиттер Транзистор
- Проверьте транзистор, исправен он или нет.
Запомните направление транзистора PNP и NPN
PNP = заостренный
NPN = не заостренный.
, если вам кажется, что это немного сложно, попробуйте этот… он проще.
Щелкните изображение, чтобы увеличить.
PNP NPN
P = Точки N = Никогда
N = IN P = Точки
P = Постоянно N = iN
Проверить транзистор с цифровым мультиметром в диодном или непрерывном режиме
Сделать Итак, следуйте инструкциям, приведенным ниже.
- Удалите транзистор из цепи, то есть отключите питание от транзистора, который необходимо проверить. Разрядите весь конденсатор (закоротив выводы конденсатора) в цепи (если есть).
- Установите измеритель в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
- Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме (рис. Ниже). Вам необходимо выполнить 6 тестов, подключив черный (-Ve) измерительный провод и красный (+ Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно. Просто замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).Цифры красного цвета — это красный измерительный провод, а номера черного цвета подключены к черному (-Ve) измерительному проводу мультиметра.
- Проверьте, измерьте и запишите показания дисплея мультиметра в таблице ниже.
У нас есть следующие данные из приведенной ниже таблицы.
Из 6 тестов мы получили данные и результаты только по двум тестам, то есть точкам со 2 по 1 и со 2 по 3. Если мы получили точки со 2 по 1, это 0,733 В постоянного тока, а со 2 по 3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также их коллектор, базу и эмиттер.
- Точка 2 — база транзистора в транзисторе BC55.
- BC 557 — это PNP-транзистор, в котором 2 nd (средний вывод — база) подключен к красному (+ Ve) измерительному проводу мультиметра.
- Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 557 PNP), потому что результат теста для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, то есть 2-1 > 2-3.
BC 557 PNP ![]() ![]() | Точки измерения | Результат |
1-2 | OL | |
1-3 | OL | |
2-1 | 0.733 В постоянного тока | |
2-3 | 0,728 В постоянного тока | |
3-1 | OL | |
3-2 | OL |
Нахождение базы транзистора :
Как указано в В приведенном выше руководстве общее число, найденное в приведенных выше тестах, является базовым. В нашем случае 2 nd терминал — это Базовый, а 2 — общий из 1-2 и 2-3.
2 nd Метод с использованием цифрового мультиметра для поиска базы транзистора.
Если вы следуете той же схеме и способу подключения выводов мультиметра и выводов транзисторов один за другим на рисунке, показанном выше, на рис «c» и «d», красный (+ Ve) измерительный провод подключается к среднему. я.е. Клемма 2 nd и черный (-Ve) измерительный провод подключаются к клемме 1 st транзистора.
Опять же, красный (+ Ve) измерительный провод подключен к среднему, т.е. 2 nd клемм, а черный (-Ve) измерительный провод подключен к 3 rd одной клемме транзистора, и мультиметр показывает некоторое показание, например 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.
Общий провод — это 2 и , подключенный к красному (+ Ve) измерительному проводу (т.е.е. P и да, два других вывода — это N), который является базовым. В случае транзистора BC 557 PNP все наоборот.
NPN или PNP?
Все просто. Если черный (-Ve) измерительный провод мультиметра подключен к базе транзистора (в нашем случае 2 nd ), то это PNP-транзистор , а когда красный (+ Ve) измерительный провод подключен к База клеммы, это NPN транзистор .
Эмиттер или коллектор?
Прямое смещение EB (эмиттер — база) больше, чем CB (коллектор — база) i.е. EB> CB в транзисторе PNP, например BC 557 NPN. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), то есть BE> BC, например BC 547 PNP.
Вот и вывод.
- Точка 2 — база транзистора в транзисторе BC547.
- BC 547 — это транзистор NPN, где 2 nd (средняя клемма — база) подключена к красному (+ Ve) измерительному проводу мультиметра.
- Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 547 NPN), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т.е. 1-2> 2-3.
BC 547 NPN ![]() ![]() | Точки измерения | Результат |
1-2 | 0,717 В постоянного тока | |
1-2 | OL | |
1-3 | OL | |
1-3 | OL | |
2-3 | OL | |
2-3 | 0,711 В постоянного тока |
Проверить транзистор с аналоговым или цифровым мультиметром в Ом ( Ω) Диапазон Mode:
Шаги:
- Отключите источник питания от цепи и удалите транзистор из схемы.
- Поверните селекторный переключатель и установите ручку мультиметра в положение Ом.
- Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме ( Рис. 1 (а). (Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно, всего лишь замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).(Цифры красного цвета показывают выводы транзистора, подключенные к измерительному выводу Red (+ Ve) мультиметра, а числа в черном цвете показывают выводы транзистора, подключенные к измерительному выводу Black (-Ve) мультиметра (лучше). объяснение в таблице и на рис. ниже)
- Если мультиметр показывает высокое сопротивление как в первом, так и во втором тестах, изменив полярность транзистора или мультиметра, как показано на рис. 1 (а) и (b) (обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше).т.е. в нашем случае клемма 2 nd транзистора является BASE, потому что она показывает высокое сопротивление в обоих тестах с 2 по 3 и с 3 по 2, где Красный (+ Ve) измерительный провод мультиметра подключен к 2 nd клемма транзистора. Другими словами, обычное число в тестах — это Base, что составляет 2 из 1, 2 и 3.
Щелкните изображение, чтобы увеличить
PNP или NPN?
Теперь это транзистор NPN, потому что он показывает чтение только тогда, когда КРАСНЫЙ (+ Ve) измерительный провод (т.е.е. Клемма P, где P = положительный) подключена к базе транзистора (см. Рис. Ниже). Если вы сделаете обратное, то есть черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра, подключенного к клемме транзистора в последовательности (от 1 до 2 и от 2 до 3), покажет показания в обоих тестах, как указано выше , Клемма 2 nd по-прежнему БАЗА, но транзистор PNP (см. Рис. Ниже).
Проверить транзистор в цифровом мультиметре с транзистором или hFE или бета-режимом
hFE, также известный как beta, означает усиление постоянного тока для «гибридного параметра усиления прямого тока, общий эмиттер», используемого для измерения hFE транзистора, который можно найти по следующей формуле.
h FE = β DC = I C / I B
Его также можно использовать для проверки транзистора и его выводов, как показано на рис. 1.
Для проверки транзистор в режиме hFE, в мультиметре есть 8-контактный разъем, обозначенный PNP и NPN, а также ECB (эмиттер, коллектор и база). Просто вставьте три контакта транзистора в слот мультиметра один за другим в разные разъемы, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).
Если они отображают показание (это будет показание транзистора h FE ), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (положение CBE), текущее положение на C, B, Слот E — это точные выводы транзистора (т. Е. Коллектор, база и эмиттер), а транзистор находится в хорошем положении, в противном случае замените его новым.
Похожие сообщения:
.Как проверить конденсатор с помощью цифрового и аналогового мультиметра
6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)
В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой, которая как устранить проверить и проверить конденсатор? Хороший, плохой (мертвый), короткий или открытый?
Здесь мы можем проверить конденсатор аналоговым (измеритель AVO, т. Е. Ампер, напряжение, омметр), а также цифровой мультиметр, либо он в хорошем состоянии, либо следует заменить его новым..
Примечание. Чтобы определить значение емкости, вам понадобится цифровой измеритель с функциями измерения емкости.
Ниже приведены пять (6) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание .
Связанные сообщения:
Метод 1.
Традиционный метод тестирования и проверки конденсатора
Примечание. Не рекомендуется для всех, кроме профессионалов. Будьте осторожны, выполняя эту практику, так как это опасно.Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверяете предупреждения, прежде чем применять этот метод), и нет других вариантов проверки конденсатора, потому что во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2-6 в качестве альтернативы конденсатору.
Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)
Предупреждение и рекомендации по тестированию конденсатора по методу 1.
Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В вы можете использовать 220-224 В переменного тока, но вам необходимо сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом, это уменьшит зарядный и разрядный ток. Вот пошаговое руководство по проверке конденсатора этим методом.
- Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отключен.
- Убедитесь, что конденсатор полностью разряжен.
- Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
- Теперь безопасно подключите эти выводы к источнику переменного тока 230 В на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение поднимется до 63,2% от напряжения источника].
- Отсоедините предохранительные провода от источника переменного тока 230 В.
- Теперь закоротите клеммы конденсатора (сделайте это осторожно и убедитесь, что у вас есть защитные очки).
- Если возникает сильная искра, то конденсатор исправен. .
- Если дает слабую искру, то это конденсатор плохой и немедленно замените его на новый.
Связанные сообщения:
Метод 2.
Проверка конденсатора аналоговым мультиметром
Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, омметр), выполните следующие действия.
- Убедитесь, что предполагаемый конденсатор полностью разряжен.
- Возьмите измеритель AVO.
- Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
- Подключите выводы измерителя к клеммам конденсатора.
- Обратите внимание на показания и сравните со следующими результатами.
- Короткие конденсаторы : Закороченный конденсатор покажет очень низкое сопротивление.
- Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
- Good Capacitors : Сначала сопротивление будет низким, а затем постепенно увеличится до бесконечности. Это означает, что конденсатор в хорошем состоянии.
Метод 3.
Проверка конденсатора с помощью цифрового мультиметра
Чтобы проверить конденсатор с помощью цифрового мультиметра (DMM), выполните следующие действия.
- Убедитесь, что конденсатор разряжен.
- Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
- Подключите выводы измерителя к клеммам конденсатора.
- Цифровой измеритель на секунду покажет некоторые числа. Обратите внимание на чтение.
- И тут сразу вернется в OL (Open Line). Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии .
- Если изменений нет, значит Конденсатор не работает .
Вы также можете проверить:
Метод 4.
Проверка конденсатора с помощью мультиметра в режиме емкости
Примечание. Вы можете выполнить этот тест с помощью мультиметра, если у вас есть измеритель емкости или у вас есть мультиметр с функцией проверки емкости.Кроме того, этот метод хорош и для проверки крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим измерения емкости.
- Убедитесь, что конденсатор полностью разряжен.
- Снимите конденсаторы с платы или цепи.
- Теперь выберите «Емкость» на мультиметре.
- Теперь подключите клемму конденсатора к проводам мультиметра.
- Если показание близко к фактическому значению конденсатора (т. Е. Значению, напечатанному на коробке контейнера конденсатора).
- Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (значение, напечатанное на коробке контейнера конденсатора).
- Если вы читаете значительно меньшую емкость или ее нет вовсе, то конденсатор неисправен, и вам следует его заменить.
Связанные сообщения:
Метод 5.
Тестирование конденсатора простым вольтметром.
- Обязательно отсоедините один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатора от цепи (при необходимости вы также можете полностью отключить его)
- Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в нашем нижеприведенном примере, где напряжение = 16 В)
- Теперь зарядите этот конденсатор в течение нескольких секунд, чтобы номинальное (не до точного значения, но ниже этого i.е. зарядите конденсатор 16В от батареи 9В) напряжением. Обязательно подключите положительный (красный) вывод источника напряжения к положительному (длинному) выводу конденсатора, а отрицательный — к отрицательному. Если вы не можете его найти или не уверены, вот руководство, как найти отрицательную и положительную клеммы конденсатора.
- Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный — к отрицательному.
- Запишите начальное значение напряжения на вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если показания очень малы, значит, конденсатор неисправен. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.
Связанные сообщения:
Метод 6.
Найдите значение конденсатора, измерив значение постоянной времени
Мы можем найти значение конденсатора, измерив постоянную времени ( TC или τ = Tau), если значение емкости конденсатора известно в микрофарадах (обозначено мкФ), напечатанном на нем i.е. конденсатор не перегорел и не перегорел.
Вкратце, время, необходимое конденсатору для зарядки около 63,2% приложенного напряжения при заряде через резистор известного номинала, называется постоянной времени конденсатора (TC или τ = Tau) и может быть рассчитано с помощью:
τ = RxC
Где:
- R = Известный резистор
- C = Значение емкости
- τ = TC или τ = Tau (постоянная времени)
Например, если напряжение питания 9V , затем 63.2% из этого составляет около 5,7В .
Теперь давайте посмотрим, как найти значение емкости конденсатора путем измерения постоянной времени.
Обязательно отключите, а также разрядите конденсатор от платы.
Подключите известное значение сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.
Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.
Теперь измерьте время, необходимое для зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от этого составляет около 5,7 В.
Из значения данного резистора и измеренного времени вычислите значение емкости по формуле Time Content, т.е. τ = TC или τ = Tau (постоянная времени) .
Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.
Если они одинаковы или почти равны, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, так как он не работает.
Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.
Полезная информация : Также можно измерить время, необходимое конденсатору для разряда около 36,8% пикового значения приложенного напряжения. Время разряда можно использовать так же, как в формуле, чтобы найти емкость конденсатора.
Похожие сообщения:
.