Как работает стабилизатор напряжения: Как работает стабилитрон и для чего он нужен?

Опубликовано в Разное
/
18 Май 2021

Содержание

Как работает стабилитрон и для чего он нужен?

Что такое стабилитрон, какой у него принцип действия и назначение. Основные характеристики стабилитронов и их маркировка. Условное обозначение на схеме.

Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.

Содержание:

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Основные характеристики

При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.

Основными характеристиками являются:

  • напряжение Ucт. стабилизации;
  • номинальный ток стабилизации Iст., протекающий через стабилитрон;
  • допустимая мощность рассеивания;
  • температурный коэффициент стабилизации;
  • динамическое сопротивление.

Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.


Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Маркировка

В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.

На нижеприведенных фото представлены приборы советского производства, и как они выглядели.


Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.

На нижеприведенном рисунке представлена маркировка SMD-диодов.

Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.

На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.

Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Что такое транзистор-тестер
  • Как работает резистор
  • Как выпаивать радиодетали из плат
Опубликовано: 25.03.2020 Обновлено: 25.03.2020 нет комментариев

Виды стабилизаторов напряжения, их отличия и устройство

Постоянство питающего напряжения обеспечивается стабилизаторами напряжения, которые выполняют свою функцию независимо от скорости изменения показателей. Эффективность приборов очевидна при изменениях силы тока и сопротивления, поэтому не только напряжение является характеристикой сети. Благодаря таким изменениям сохраняется работоспособность техники и пожарная безопасность в любом помещении. Короткое замыкание, перегревание проводов и расплавление изоляции случается из-за увеличенного сопротивления нагрузки. Вот уже на протяжении 65 лет имеются устройства для регулировки напряжения. И если ранее в повседневной жизни преобладали только ферромагнитные стабилизаторы, то в наши дни доминируют релейные, электромеханические и электронные устройства.

В настоящее время выделяют следующие виды напряжения:

  1. Релейные стабилизаторы.
  2. Электромеханические стабилизаторы.
  3. Электронные стабилизаторы.

1. Релейные стабилизаторы напряжения

Бытовой и компьютерной технике, оргтехнике, производственному оборудованию необходима бесперебойная работа, которая осуществляется выравниванием сетевых параметров тока. Безупречная сохранность для пользователей от перегруженности, коротких замыканий и иных отклонений от рабочего тока гарантируется чрезвычайной точностью сохранения заданных характеристик выходного напряжения. Основным элементом релейных стабилизаторов является автоматический трансформатор, а за управление устройством отвечает электронная схема. Витки трансформатора подключаются с помощью реле в соотношении, которое нужно для обеспечения номинальных выходных параметров тока.

Число обмоток трансформатора и количество коммутационных реле определяет количество ступеней регулировки выходного напряжения. Погрешность выходного вольтажа будет больше, если число ступеней меньше. Усредненный показатель – от пяти до семи, самый большой – 9.

Релейные устройства работают по следующей схеме:

  • Подача входного тока и сравнение параметров, которые требуются на выходе, осуществляется с помощью электронной схемы.
  • Вычислив разницу характеристик входного и выходного напряжения, блок управления вычисляет необходимое для стабилизации число обмоток и количество их витков, которые должны быть задействованы.
  • Благодаря реле осуществляется последовательное переподключение витков каждой из трансформаторных обмоток.

В итоге увеличения и уменьшения вольтажа на обмотках трансформатора на выход стабилизатора подаётся ток, параметры которого располагаются в разрешенных для нормальной работы подчинённой сети пределах.

Достоинствами релейных стабилизаторов являются миниатюрность, большой охват входных параметров тока и рабочей температуры. Практически бесшумная работа и невосприимчивость к частотным изменениям входного тока, жизнеспособность и сравнительно низкая цена являются отличительными чертами данного вида стабилизаторов.

К недостаткам стоит отнести сокращение скорости реакции стабилизатора при увеличении точности выравнивания параметров тока. Также следует отметить достаточно скорый износ релейных коммутаторов под влиянием механических и импульсных токовых нагрузок.

2. Электромеханические стабилизаторы напряжения

Главным элементом является трансформатор с отводами. 2-ая составляющая электромеханического стабилизатора – механизм с ползунком. Принцип работы следующий — при сниженном входном напряжении сети ползунок начинает движение по отводам. Движение прекращается, когда на выходе получается стандартное значение. Если оно превышено, он перемещается в обратную сторону. Щетки из графита, поддерживающие выходное напряжение с высочайшей точностью (около 2%), выполняют функцию ползунка-токосъемника, регулировка которого производится плавно. Такая регулировка является главным преимуществом, а если использовать две графитовые щетки, то устройство корректирует напряжение быстрее, т. к. повышается площадь контакта.

Существуют модели (свыше 30кВт), которые снабжаются еще одним трансформатором. Такие модели способны выдерживать высокие перегрузки, несмотря на присутствие движущихся частей.

Существенное упрощение расчета при выборе такого оборудования осуществляется суммой полученной средней его мощности с ее четвертью. Благодаря вышеуказанному сложению обозначается характеристика будущего стабилизатора. Соответственно, при покупке за меньшую стоимость допускается использовать наименьший запас по мощности стабилизатора. Явным техническим преимуществом является отсутствие внесения изменений в сеть по причине невосприимчивости к данному событию. А это очень актуально для медицинских и измерительных приборов, аудиоаппаратуры.

Среди отрицательных характеристик следует выделить износ движущихся частей. В процессе эксплуатации за такими деталями нужен уход, регулировка и замена. Также следует отметить незначительное запаздывание в реакции на изменения показателей сети. Габариты и большой вес являются показателями довольно мощных устройств, которые весьма требовательны к условиям эксплуатации, такие как, температура воздуха в помещении, где находится стабилизатор. Температурный диапазон от -5 до +40 Цельсия.

Ниже указаны диапазоны характеристик электромеханических стабилизаторов разных изготовителей:

ИзготовительМощность, кВтВходное напряжение, В
Ресанта0,5 — 100

140 — 260

240 — 430 (трехфазный)

Штиль0,5 — 30

160 — 250

280 — 430 (трехфазный)

Энергия0,5 — 100

140 — 260

240 — 430 (трехфазный)

Volter1,0 — 60

140 — 260

240 — 430 (трехфазный)

3. Электронные стабилизаторы напряжения

Приборы данного типа осуществляют входное напряжение ступенчато, их еще называют дискретными. В основе находится автотрансформатор. Вторая составляющая электронных стабилизаторов – реле или полупроводники в виде тиристоров и симисторов. Принцип работы заключается в следующем: каждая обмотка трансформатора добавляет на выходе соответствующее напряжение. Определенная обмотка включается регулировкой входного напряжения реле или электронных ключей. Точность у разных приборов колеблется от 2 до 10%. Причиной таких колебаний кроется в ступенчатом регулировании. Величина колебаний напрямую зависит от количества обмоток.

Допустим, каждая прибавляет по 17,6 В (точность стабилизатора 8%) при входном напряжении 195 Вт переключаются две обмотки и на выходе получится 230,2 Вт. Данный стабилизатор осуществляет регулировку быстро, но с небольшой погрешностью. Если указано 2%, то мы получим на выходе 221,4 Вт. Но, обмоток уже получается 6, и поэтому регулировка в этом случае происходит дольше.

К тому же стоимость системы повышается за счет большого количества электронных ключей, при этом об увеличении надежности не может быть и речи.

Необходимо понимать, для какого устройства допустима погрешность. Для холодильников, плит, и других приборов с электродвигателем или нагревательным элементом, десятипроцентное отклонение входящего напряжения не отражается на стабильном рабочем режиме. В случае, когда требуется защитить кинотеатр или компьютер, необходимо остановить свой выбор на более точном устройстве.

Благодаря наличию цифрового управления, все соответствующие элементы располагаются на одной микросхеме. Следовательно, происходит уменьшение веса и габаритов прибора. Входное и выходное напряжение отображается на дисплее.

Самый главный плюс – отсутствие механического износа, т.к движущихся деталей нет. От качества тиристоров или симисторов зависит долговечность. Некоторые модели устойчивы к температурам от минус двадцати и ниже.

Явным минусом является чувствительность к коротким замыканиям или большим нагрузкам, которые могут вывести из строя электронные ключи. Поэтому следует выбирать электронный стабилизатор с хорошим запасом мощности.

Стабилизаторы используют в квартирах, на дачах, в коттеджах. Однофазные стабилизаторы используются при напряжении 220В. Мощность таких стабилизаторов от 0,5 до 30 кВт, что позволяет защитить один прибор или всю технику в доме. В сети 380 В возможны сочетания из трехфазных (3-30 кВт и выше) и однофазных стабилизаторов. Такие устройства представляют собой 3 однофазных стабилизатора, которые могут быть расположены под одним корпусом. Техническое решение модели более 100 кВт представляет собой три трансформатора на одном сердечнике. Устройства рассчитаны для защиты отдельных единиц техники, а так же они могут располагаться в загородных домах, офисах, на предприятиях для защиты всей сети.

Устройство стабилизаторов напряжения Volter: строение, составные элементы.

Некоторые задаются вопросом – для чего нужен стабилизатор напряжения? Стоит ли вообще тратить на данный прибор деньги? Мы Вам ответим – однозначно стоит. Стабилизатор был создан для защиты самого различного электрооборудования от поломок из-за скачков напряжения в сети. На данный момент это очень актуальная проблема, ведь создается огромное множество высокоточного оборудования, которое требует стабильных показаний при электроснабжении. При этом здесь как бытовая техника, так и медицинские приборы или промышленные машины.

Современные стабилизаторы напряжения отлично справляются со своими задачами. Не думайте, что покупая стабилизатор, Вы выбрасываете деньги на ветер. Проработав более 15 лет, этот прибор полностью окупит себя, так как вам не придется покупать, скажем, новый телевизор или несколько токарных станков из-за того, что произошел скачек напряжения, и они сгорели.

Из каких элементов состоит стабилизатор напряжения Volter?

Петли
Позволяют удобно закрепить стабилизатор на стене.

Переключатель «стабилизация-транзит»
Исключает одновременное замыкание 2-х групп контактов.

Ручки для переноса
Позволяют легко транспортировать стабилизатор.

Несущее шасси
Играет роль основного теплоотвода, имеет оцинкованное покрытие для защиты от коррозии.

Информативный ЖК-дисплей
Удобно контролировать параметры стабилизации.

Датчик температуры
Играет роль тепловой защиты устройства на случай перегрева.

Автотрансформатор

  • Имеет стержневую конструкцию и лаковую пропитку;
  • Обеспечивает минимальный шум;
  • Лучший вариант охлаждения;
  • Способ соединения обмоток — сварка.

Кнопки управления
Для регулирования уровня выходного напряжения

Дополнительная розетка
На 10А.

Порошковая покраска корпуса
С предварительным фосфатированием металла.

Клеммник термостойкий
Для удобного подключения и надежного крепления проводов.

Плата управления
Быстродействие 20мс, защита от перенапряжений.

Плата защиты
Независимая дублирующая защита от перенапряжений.

Автоматический выключатель
С независимым расцепителем: защита от короткого замыкания и перегруза.

Датчик тока

Радиатор охлаждения
Алюминиевый для улучшенного теплообмена силовых ключей.

Силовые ключи
Полупроводниковые с большой перегрузочной способностью.

Теплообмен
Охлаждение без помощи вентиляторов.

Как работают стабилизаторы напряжения?

В данной статье мы хотим подробнее осветить вопрос – как работает стабилизатор напряжения? Здесь все несложно. В современных устройствах применяется многим известный автотрансформатор. Но, разумеется, сам процесс стабилизации напряжения был несколько усовершенствован.

Ранее регулировка напряжения, подумать страшно, выполнялась пользователем вручную или при помощи аналоговой платы, ныне стабилизатор напряжения имеет «интелект» — мощный процессор, который управляет работой системы.

Кроме этого изменения коснулись и способа переключения обмоток. Если раньше это делалось релейными ключами или токосъемниками, то сейчас эту функцию выполняют симисторы (электронные ключи). Такое устройство стабилизатора напряжения сделало их более востребованными в квартирах и частных домах, так как техника полностью перестала шуметь.

Основной принцип действия стабилизатора напряжения представляет собой переключение электронными ключами обмоток автотрансформатора, которое выполняется процессором при обнаружении перепада напряжения. Для этого у него есть специальная программа, замеряющая показания сети на входе и на выходе, после чего посылается сигнал на необходимый ключ.

Процессор – самый важный элемент всей системы, от которого зависит эффективная работа стабилизатора напряжения.

Главная задача данного элемента – запустить нужный симистор и сделать это ровно в нулевой точке синусоиды напряжения, иначе она будет искажена. Чтобы это выполнить процессором производится несколько десятков измерений напряжения и, когда улавливается нужное положение – подается сигнал и выполняется мгновенное включения ключа.

Но это ещё не все, перед тем как будет послан сигнал, проверяется — сработал ли предыдущий ключ, чтобы не возникло встречного тока. Поэтому процессор изначально замеряет микро токи и только потом посылает сигнал следующему ключу. Для стабильной работы стабилизатора напряжения все операции повторяются при каждой полуфазе.

Разумеется, процессор отличается высоким быстродействием, все данные собираются очень быстро, процессор может произвести все замеры и анализы пока синусоида находится в нулевой точке, а это — менее чем 1 микросекунда времени.

Благодаря изобретению данной системы стабилизатор напряжения регулирует даже самые большие и частые скачки напряжения менее чем за 10 миллисекунд.

Кроме описанного принципа также встречаются стабилизаторы, которые работают с использованием двухкаскадной системы регулирования. Она присутствует в более точных приборах. В данном случае напряжение обрабатывается в два этапа: сначала при небольшом количестве ступеней, а затем то же самое выполняет второй каскад и напряжение становится «идеальным». Такая система снижает себестоимость устройств, так как для 16 ступенчатой системы регулирования по данному принципу требуется всего 8 симисторов (метод комбинации 4х4=16). При этом в каскадной системе используется один трансформатор.

Скорость реагирования такого стабилизатора несколько меньше, чем у вышеописанного (20 миллисекунд). Поэтому такой принцип работы стабилизаторов напряжения используется только в устройствах для защиты бытовой техники и электроинструмента.

Важные аспекты при выборе стабилизатора напряжения

Напоминаем, наши инженеры бесплатно помогут с выбором оборудования под ваши задачи.

Стабилизатор напряжения – оборудование, которое подключается к общей электросети. Основное его предназначение – поддержание напряжения в допустимых границах, защита от непредвиденных скачков.

Устанавливают стабилизаторы напряжения на вводе в квартиру, после электросчетчика. Стабилизаторы выравнивают напряжение, ликвидирует большие скачки и обеспечивает беспрерывную работу всего электрооборудования либо отдельных его элементов.

Нужно ли устанавливать стабилизатор напряжения в квартире?

Ответ на этот вопрос можно получить лишь после длительного наблюдения за напряжением в сети на протяжении достаточно длительного времени. Исходя из стандарта IEC 60038:2009, данные показатели не должны выходить за границы 220-240 В. Для Российской Федерации допустимым считается интервал около 198-253 В.

В основном, напряжение практически на территории всей страны не выходит за рамки требуемых стандартов. Если в процессе наблюдения были замечены перепады напряжения на протяжении длительного периода времени и уровень напряжения колебался менее 198 В либо более 253 В, то настоятельно рекомендуем подумать о покупке хорошего стабилизатора напряжения.

Какая именно бытовая техника нуждается в стабилизации напряжения?

Некоторое оборудование имеет встроенные системы защиты, которые дают возможность нормально функционировать оборудованию и «безболезненно» переносить незначительные перепады напряжения.

Сюда можно отнести:

1. Многие телевизоры уже имеют встроенный импульсивный блок питания, который может обеспечить относительно-нормальное бесперебойное функционирование техники при перепадах напряжения.
2. Практически все компьютеры способны функционировать при небольших перепадах напряжения.
3. Можно выделить активные нагрузки. Сюда относят утюг, водонагреватель, плойку, электрическую плиту. Они менее капризны, однако, при низком напряжении их продуктивность падает.
4. Работоспособность светодиодных ламп обеспечивается благодаря встроенному драйверу тока, который в них интегрирован. Напряжение в электросети практически не оказывает никакого влияния на яркость свечения светодиодных ламп.

Существует огромное количество электрооборудования, которому необходима достойная защита от значительных перепадов напряжения в сети:

1. Это могут быть глубинные насосы и кондиционеры. Данные электроприборы имеют встроенные асинхронные двигатели. При функционировании с низким напряжением в сети, им свойственен сильный перегрев, который очень часто и приводит к серьезным поломкам.
2. В холодильнике при работе с низким напряжением в электросети двигатель может сильно перегреться, начать гудеть и выйти из строя.
3. Домашние кинотеатры. Не все производители устанавливают импульсные блоки питания способные работать в широком диапазоне входных напряжений. (Может произойти пробой специального элемента на входе телевизора – варистора).
4. Все лампы накаливания. На яркость их света огромное влияние оказывает характеристика напряжения в электросети.
5. Микроволновые печи. При более низком напряжении снижается и мощность СВЧ-излучения. Если характеристики тока не соответствуют заявленным требованиям сети, то печь просто перестает функционировать.
6. Стиральные машины. Даже новые модели очень чувствительны к перепадам напряжения. Если напряжение резко падает, может произойти сбой программы. Более ранним моделям перепады напряжения страшны сильнее. От скачков напряжения они могут даже сгореть.
7. Посудомоечные машины. Если напряжение в сети очень низкое, то машинка может просто не включиться либо отключиться в процессе работы.
8. Бойлеры новых моделей. Они очень чувствительны к резким скачкам в сети.

Чтобы решить проблему как можно точнее, необходимо в обязательном порядке применять стабилизаторы напряжения для очень чувствительных электроприборов.

Практически все стабилизаторы напряжения обладают такими характеристиками

1. Регулировка напряжения электросети в заданном диапазоне.
2. Защитное отключение выходного напряжения. Оно необходимо для того, чтобы прекратить подачу напряжения на все электрические приборы, если регулятор напряжения вышел из строя либо параметры сети отклонились от допустимых значений.
3. Защита от короткого замыкания — автоматический выключатель для предотвращения перегрузки.

В состав стабилизаторов входят:

1. Плата управления
2. Автотрансформатор или его разновидности
3. Индикация режимов работы
4. Узел регулирования
5. Корпус
6. Клеммная колодка подключения

Какие же стабилизаторы напряжения лучше всего использовать в квартирах?

Современный рынок не ограничивается одним типом стабилизаторов, на нем представлено огромное количество оборудования с различными характеристиками.

Различают такие виды стабилизаторов напряжения:

1. Электромеханические с токосъемными роликами или на щетках;
2. Электронные на тиристорах,транзисторах или реле.

Все это оборудование в зависимости от внешних условий (диапазон колебаний, помехи и т.д.) подходит для устранения проблем в сети. Какие же стабилизаторы подходят для обеспечения полноценной работы электроприборов в Вашей квартире?

Выбор производится исходя из:

1. Количества фаз;
2. Мощности нагрузки;
3. Диапазона перепадов напряжения;
4. Точности выходного напряжения;
5. Допустимого уровня шума;
6. Требуемого быстродействия;
7. Условий окружающей среды.
8. Уровня устойчивости к помехам в сети;
9. Срока эксплуатации.

3 x Atlas 10 (30)

Количество фаз

трехфазный

Мощность

30 кВА

Рабочий диапазон

141-266 В

Габариты

300*560*300 (3 шт.) мм

3 x Atlas 20 (60)

Количество фаз

трехфазный

Мощность

60 кВА

Рабочий диапазон

141-266 В

Габариты

300*560*300 (3 шт.) мм

Orion 105

Количество фаз

трехфазный

Мощность

105 кВА

Рабочий диапазон

150-278 В

Габариты

600x800x1800 мм

Orion Plus 500

Количество фаз

трехфазный

Мощность

500 кВА

Рабочий диапазон

150-278 В

Габариты

1200x800x2000 мм

Электромеханические стабилизаторы напряжения:

Регулирование в стабилизаторах данного типа осуществляется при помощи автотрансформатора, по обмоткам которого передвигаются графитовые ролики, либо щетки( в бюджетных вариантах). Регулирование осуществляется плавно и с высокой точностью. Они достаточно хорошо справляются с током нагрузки, и более неприхотливые к помехам в сети. Подходят для эксплуатации радиолюбителям и любителям музыки, так как не вносят посторонних шумов и помех в сеть. Лампы накаливания горят роно и не моргая.

Среди недостатков можно выделить основное:

1. Качественные зарубежные модели достаточно дорогие;
2. Большое количество некачественных китайских подделок;
3. Скорость регулирования ниже, чем у электронных;
4. Необходимость проведения регламентных работ.

Стабилизаторы напряжения электронного типа

Различаются по принципу действия и используемым компонентам. Приведем основные типы:

1. Релейные
2. Тиристорные/ симисторные
3. IGBT/ ШИМ- регулирование.

Первый и второй тип самое популярное и обоснованное направление в улучшении электромеханических стабилизаторов – это производство оборудования с двойными преобразователями – инверторами. Не совсем компактные приборы, однако они в силах обеспечить:

1. Высокое качество тока на выходе;
2. Достаточно высокий уровень работоспособности;
3. Способность подавлять импульсные помехи тока в сети.
Достаточно высокая стоимость делает такое оборудование не доступным для широкой массы покупателя.

Электронные релейные

Наверное, это самые дешевые стабилизаторы напряжения, которые выполняют ступенчатое регулирование напряжения. Самый главный минус такого оборудования – во время работы иногда щелкают. Бывают такие периоды, когда стабилизатор клацает практически все время. Поводом тому может быть:

1. Сломалось одно реле или подгорели контакты;
2. Электросеть находится в плачевном состоянии – имеется огромное число скруток и плохих контактов, маленькое сечение провода;
3. Сломанный контроллер.

Не важно, какая будет причина. Если стабилизатор систематически щелкает, то при таких условиях он очень быстро выйдет из строя.

Стабилизаторы напряжения релейного типа – достаточно удобны для эксплуатации в домашних условиях, за счет:

1. Скорости переключения, которая практически не уступает электромеханическим моделям;
2. Достаточно быстрого срабатывания;
3. Очень удобного корпуса, малого веса;
4. Очень выгодной цене.

Среди недостатков можно выделить следующее: очень часто реле выходит из строя, потому что контакты имеют свойство подгорать: можно обслуживать лишь мощную аппаратуру; синусоида напряжения на выходе очень искажается; не очень любят перегрузки.

Такие приборы отлично подойдут для обеспечения бесперебойной работы телевизора, холодильника, приборов для освещения, различной офисной техники, вентиляционной системы, кондиционеров.
Так что, если у вас нет сверхчувствительной техники, которая боится частых и резких перепадов напряжения, то такие стабилизаторы очень подойдут для использования в условиях квартиры.

Они включают в себя:

1. Серводвигатель;
2. Автотрансформатор;
3. система управления.

Основные достоинства таких стабилизаторов напряжения:

1. Очень удобная регулировка;
2. Возможность нормально полноценно работать при разном напряжении;
3. Результат на выходе очень точный;
4. Способность работать без сбоев достаточно долго;
5. Могут без сбоев переносить не долгосрочные перегрузки.

Основные минусы в работе стабилизаторов:

1. Пыль, при попадании внутрь стабилизатора, обугливается;
2. Очень чувствительны к низкой температуре;
3. Периодически нуждаются в смене токосъемной щетки;
4. Может образоваться искра в процессе замыкания либо размыкания контактов. Из-за этого нельзя устанавливать стабилизаторы в непосредственной близости с газовыми приборами и оборудованием.

Более современные модели стабилизаторов, вместо привычных токосъемных щеток, имеют встроенные долговечные ролики. Если сравнивать по стоимости, то и стоят такие приборы гораздо больше своих предшественников. Чаще всего, такие стабилизаторы используют там, где не наблюдается частых перепадов напряжения в сети.

Как выбрать стабилизатор напряжения исходя из мощности

Руководствуясь данным критерием, не стоит забывать и о числе используемой техники, которая будет подключена к стабилизатору.

Как вычислить необходимую мощность:

1. Необходимо сложить мощность всех электроприборов. Эти данные можно найти в техпаспорте к приборам либо на наклейках корпуса;
2. Нужно выяснить какой же прибор обладает наиболее высокой мощность пуска. Самый распространенный вариант в быту – это мясорубка либо кондиционер. Далее определяем разницу между номинальной и пусковой мощностями и добавляем полученное значение к полученной совокупной мощности.

Выбор стабилизатора по количеству фаз

Практически во всех многоквартирных домах однофазная сеть с напряжением 220В. При таких условиях и стабилизатор необходимо подбирать из однофазных.

Трехфазные устройства могут понадобиться при:

1. Если имеются трехфазные потребители. Сюда можно отнести – компрессор, котел, насос. Однако, в квартире такие приборы не встречаются;
2. Если квартира подключена к трехфазной сети.

Трехфазные стабилизаторы имеют достаточно высокую стоимость и поэтому очень часто вместо одного трехфазного, пользователи покупают три однофазных стабилизатора.
Выбор стабилизатора по точности, диапазону, месту монтажа

По диапазону различают две категории приборов:

1. Рабочий. Указывает на доступный интервал напряжения на входе, при котором будет происходить подача напряжения 220В (это подходит лишь для однофазной сети) либо 380В (для трехфазной сети). Погрешность имеет место быть;
2. Предельный. Указывает на разницу между входным напряжением и оптимальным его значением, при котором стабилизатор не питает все приборы, которые от него отключены, но при этом сам находится в рабочем состоянии. В основном, это 14-18%.

Стабилизаторы напряжения имеют относительную точность. Чем более точно работает стабилизатор, тем дороже он стоит. Самые дешевые стабилизаторы имеют точность около 2-7%, в таких случаях отклонение должно быть не более 1%.

Установить стабилизатор можно без особого труда и специальных навыков. Практически все модели устанавливаются с помощью кронштейнов, которые идут в комплекте. Обязательным условием при монтировании стабилизатора является то, что он должен располагаться не меньше 0,3 м от потолка.

Если у вас остались вопросы, просьба, не стесняться задавать их нашим инженерам. Каждый из них, ежегодно, проходит обучение на заводе производителя. Телефон горячей линии: +7 925 772 2557

что нужно знать перед покупкой устройства, главные особенности и преимущества

Автор: Александр Старченко

Электронный стабилизатор напряжения по популярности и уровню продаж занимает следующее место после релейного стабилизатора. Широкий ассортиментный ряд электронных стабилизаторов позволяет выбрать необходимое по мощности устройство. Стабилизатор надёжен, обладает хорошими характеристиками и может использоваться в большом диапазоне температур.

Конструкция электронного стабилизатора

Электронный стабилизатор предназначен для нормализации напряжения при отклонении его от номинала, и защиты потребителей от негативных факторов. К таким факторам относятся очень низкое или высокое напряжение, а так же короткие импульсы высокого напряжения, которые иногда возникают в бытовой сети.

В отличие от стабилизаторов других типов, где могут применяться механические и электромеханические компоненты схемы, в электронном стабилизаторе кроме электроники ничего нет.

Электронный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Трансформатор;
  • Плата измерения напряжения;
  • Плата управления;
  • Силовые ключи;
  • Схема защиты;
  • Блок индикации;
  • Байпас.

Роль фильтра заключается в подавлении сетевых помех. Это могут быть высокочастотные наводки или короткие импульсы. Трансформатор имеет обмотку, состоящую из отдельных секций, переключением которых и осуществляется изменение напряжения на выходе.

Плата измерения напряжения осуществляет контроль не только за напряжением сети, но и за нормализованным напряжением на выходе устройства. Плата управления собрана на транзисторах. На ней формируется сигнал, подаваемый на управляющие электроды силовых ключей.

Силовые ключи переключают обмотки трансформатора для выравнивания напряжения. Схема защиты предохраняет нагрузку от возможных повреждений из-за слишком больших перепадов напряжения, а так же предохраняет стабилизатор от перегрузки. Электронный стабилизатор напряжения 220В оборудуется устройством индикации на светодиодных матрицах.

Важным элементом электронного стабилизатора напряжения является «Байпас» или «Транзит». Это устройство позволяет питать нагрузку непосредственно от сети в том случае, если напряжение на входе находится в допустимых пределах. В случае выхода напряжения из допуска, потребитель практически мгновенно подключается к стабилизатору.

«Байпас» входит в плату измерения напряжения и реализуется с помощью обычного реле. Так же режим «Транзит» может включаться вручную переключателем на корпусе стабилизатора.

Принцип работы электронного стабилизатора

Электронный стабилизатор работает по следующему принципу. Плата контроля напряжения сканирует напряжение сети. Как только его величина выйдет из допустимых стандартом 10%, подаётся сигнал на плату управления. Она состоит из транзисторных Усилителей Постоянного Тока. УПТ формируют потенциал, открывающий полупроводниковые вентили. Напряжение на выходе стабилизатора приближается к номиналу. Управление всеми электронными компонентами осуществляется с помощью микропроцессора.

Большим плюсом электронных стабилизаторов можно считать исключительно малое собственное энергопотребление, поскольку в них отсутствуют индуктивные элементы типа обмоток реле или серводвигателя.

Поскольку число секций ограничено, то изменение напряжения осуществляется ступенями, то есть дискретно. Чем большее количество электронных ключей входит в схему устройства, тем выше точность установки напряжения. В качестве силовых ключей применяются мощные полупроводниковые приборы – тиристоры и симисторы.

Тиристор проводит ток только в одном направлении, а симистор (симметричный тиристор), в обе, поэтому для коммутации цепи с переменным напряжением, требуется два тиристора во встречно-параллельном включении или один симистор.

Принцип действия стабилизаторов, собранных на разных полупроводниковых приборах, абсолютно одинаковый, но однофазный автоматический стабилизатор напряжения электронного типа, выполненный на симисторах, имеет существенный недостаток. Это слабая устойчивость при работе с индуктивной (реактивной) нагрузкой. Симисторы просто выходят из строя. Это сильно ограничивает сферу применения стабилизаторов такого типа. Вообще, электронные стабилизаторы, благодаря хорошим характеристикам и высокой надёжности, находят самое широкое применение в любых сферах.

Преимущества и недостатки

По сравнению с аналогичным по принципу работы релейным стабилизатором, электронное устройство обладает гораздо большими преимуществами:

  • Высокая скорость коммутации;
  • Большее количество ступеней регулирования;
  • Более высокая точность;
  • Отсутствие шума;
  • Большой разброс напряжения на входе;
  • Возможность работы при низких температурах;
  • Надёжность.

В отличие от электромеханических реле, время срабатывания которых может достигать 40-60 мс, тиристорные ключи выполняют коммутацию за гораздо более короткий срок, не превышающий 10-12 мс, а у некоторых моделей он может составлять 2-4 мс. Увеличение количества реле ведёт к увеличению энергопотребления самого стабилизатора и снижению времени нормализации напряжения. Электронные стабилизаторы позволяют без особого ущерба увеличить число дискретных ступеней, что положительно сказывается на точности установки.

Тиристорный стабилизатор бесшумен в работе, и может использоваться при низких температурах, что выгодно  отличает его от стабилизаторов других моделей. Схемные решения допускают работу устройства при большом диапазоне напряжения сети. Надёжность электронного стабилизатора определяется в основном надёжностью тиристоров, а они допускают до 109 переключений. Недостатком можно считать только высокую цену электронного стабилизатора.

Критерии выбора

Выбрать электронный стабилизатор напряжения 220В для дома необходимо по  следующим параметрам:

  • Мощность;
  • Диапазон входных напряжений;
  • Скорость выравнивания;
  • Точность регулирования;
  • Число дискретных ступеней;
  • Дополнительные параметры.

Мощность стабилизатора является главным фактором, определяющим выбор устройства. Если потребителями будет только активная нагрузка, то требуемая мощность вычисляется легко. Нужно суммировать мощность всех потребителей и прибавить 20-30%.

Если к стабилизатору будут подключены стиральная машина или холодильник (реактивная нагрузка с электромотором), то расчёт мощности выполняется по несложной формуле — просто делим мощность прибора на cos ϕ, который должен быть указан в паспорте, либо на коэффициент 0,7. Подробные расчеты мы приводили в статье по выбору стабилизатора для домашних нужд.

Если сеть в конкретном населённом пункте очень нестабильна, то следует выбирать стабилизатор, имеющий как можно больший диапазон напряжения на входе. Для электронных тиристорных стабилизаторов скорость выравнивания напряжения практически одинакова у всех моделей и если имеются небольшие отличия, то они не критичны. От количества ступеней зависит точность напряжения на выходе, но, естественно, от количества тиристоров зависит и стоимость изделия.

При выборе устройства нужно обязательно ознакомиться с уровнями срабатывания защиты. Электронный однофазный стабилизатор напряжения может иметь как настенное, так и напольное исполнение. Нижним пределом рабочей температуры обычно является -40°C, что вполне достаточно для работы в любых условиях.

Бытовой стабилизатор средней мощности

Стабилизаторы «Энергия» пользуются неизменно высоким спросом из-за отличных параметров и надёжности. Однофазный тиристорный стабилизатор «Энергия Classic 5000», представляет собой модель, предназначенную для непрерывной длительной эксплуатации.

Прибор работает при токе нагрузки до 27А. Уровни напряжения сети, при которых срабатывает защита, составляют 60 и 265В, а нормальный рабочий интервал от 125 до 254В. В приборе имеется функция «Байпас», фильтр подавления всех видов помех, и аварийное отключение при нагреве трансформатора до температуры 120 градусов. Стабилизатор имеет 36 месяцев гарантии.

В заключение можно отметить, что электронные стабилизаторы надёжны и неприхотливы, и при соблюдении указанных в документации правил эксплуатации, они проработают очень длительное время.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Стабилизатор напряжения — это… Что такое Стабилизатор напряжения?

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило, тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.

Стабилизаторы постоянного тока

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, т. е. должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

В зависимости от расположения элемента с изменяемым сопротивлением линейные стабилизаторы делятся на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на стабилитроне

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

Uout = Uz — Ube.


По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (т.е. опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения (напряжение стабилизации стабилитрона) должна быть выбрана меньше требуемого минимального выходного напряжения.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ (Gopenloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно конденсатор или дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но, в случае дросселя, уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.

Стабилизаторы переменного напряжения

Феррорезонансные стабилизаторы

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а в некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

  • электродинамические сервоприводные (механические)
  • статические (электронные переключаемые)
  • релейные
  • компенсационные (электронные плавные)

Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15%, ±20%, ±25%, ±30%, -25%/+15%, -35%/+15% или -45%/+15%. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности.

Важной характеристикой стабилизатора напряжения является его быстродействие, то есть чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие это промежуток времени (миллисекунды) за которое стабилизатор способен изменить напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия, например у электродинамических быстродействие 12…18 мс/В, статические стабилизаторы обеспечат 2 мс/В, а вот у электронных, компенсационного типа этот параметр 0,75 мс/В.[источник не указан 943 дня]

Ещё одним важным параметром является точность стабилизации выходного напряжения. Согласно ГОСТ 13109-97 предельно допустимое отклонение напряжения питания ±10% от номинального. Точность современных стабилизаторов напряжения колеблется в диапазоне от 1% до 8%. Точности в 8% вполне хватает для обеспечения исправной работы абсолютного большинства бытовой и промышленной электротехники. Более жесткие требования (1%) обычно предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. Некоторые стабилизаторы выдерживают десятикратные перегрузки, при покупке такого стабилизатора запас по мощности не требуется.

См. также

Литература

  • Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • В.В. Китаев и др Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В.Г. Парфенов Е.М. Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.

Ссылки

Примечания

Что такое регулятор напряжения и как он работает?

Большинству интегрированных ИС требуется постоянное напряжение, с которым они могут работать. Будь то простой логический вентиль или сложный микропроцессор, у них есть собственное рабочее напряжение. Наиболее распространенные рабочие напряжения — 3,3 В, 5 В и 12 В. Хотя у нас есть батареи и адаптеры постоянного тока, которые могут действовать как источник напряжения, в большинстве случаев они не могут быть напрямую подключены к нашей схеме, поскольку напряжение от них не регулируется.

Скажем, например, у нас есть батарея на 9 В, но нам нужно активировать реле 5 В, которое, очевидно, работает на 5 В.Что мы здесь делаем?

Что такое регулятор напряжения и почему мы его используем?

Вспомните школьные годы, нас учили, что на резисторах падает напряжение. Разве не было бы простым решением просто использовать резисторы для падения напряжения в соответствии с законом Ома? Но затем на резисторах падает напряжение в зависимости от протекающего через них тока. В тот момент, когда ваш компонент начинает потреблять меньше тока, напряжение резко возрастает и убивает его.

Вам нужно что-то получше — напряжение не должно зависеть от тока нагрузки, по крайней мере, не сильно.Следующее простейшее решение, которое приходит вам в голову, — это делитель напряжения. Для этого нужны два резистора, но, эй, если их можно втиснуть, они также могут работать. Еще одна неприятная проблема — в тот момент, когда ваш компонент начинает потреблять слишком большой ток, выход делителя проседает — верхний резистор не может удовлетворить текущую потребность. Теперь вы действительно начинаете желать, чтобы вы узнали об этом в школе. Вы можете исправить это, уменьшив номиналы резисторов, но это заставит два резистора потреблять слишком большой ток, что, вероятно, разрушит ваш текущий бюджет и станет слишком горячим с непосредственным риском отказа.

Что еще можно было сделать? Усиление! Конечно, вам пришлось потратить на это много часов лекций! Почему бы не добавить транзистор NPN в качестве повторителя напряжения? Делитель напряжения смещения можно подключить к базе, вход шины 12 В — к коллектору, а выход к компоненту — к эмиттеру, и бинго, вы решили проблему!

Конечно, исправление работает, но оставляет неприятное ощущение — вы использовали три части, и при тестировании обнаруживаете, что сбои в шине питания 12 В идеально воспроизводятся на выходе.Конечно, это усилитель, у него нет интеллекта для автокомпенсации. Вы можете заменить нижний резистор делителя напряжения на стабилитрон, но ток, необходимый для правильного смещения стабилитрона (против таких вещей, как температурные коэффициенты и дрейф), почти равен потреблению вашего компонента, что совершенно бессмысленно.

Нет лучшего способа сделать это? Разве нет волшебного черного ящика, в котором было бы все необходимое для эффективного сброса напряжения? Миллионы EEE по всему миру пережили подобные периоды стресса (включая меня!).Конечно, не все проблемы связаны с падением напряжения, но подобные ситуации обычны в лабораториях EEE повсюду!

Но вам повезло — нужный вам компонент существует. Фактически, это одна из первых коммерческих реализаций технологии IC (не считая операционных усилителей) — скромный стабилизатор напряжения .

Если вы когда-нибудь просмотрите техническое описание регулятора напряжения, вы будете поражены схемой, в которой они были упакованы для снижения напряжения и поддержания его в чистоте — хороший стабильный регулятор напряжения, усилители с обратной связью и компенсацией. — приличный силовой каскад.Конечно, если мы смогли вместить так много технологий в наши телефоны, почему бы не сделать регулировку напряжения в красивом корпусе TO-92?

Они становятся лучше с каждым днем ​​- некоторые из них потребляют не больше нескольких наноампер, то есть тысячных миллионных ампер! Более того, другие поставляются с защитой от короткого замыкания и перегрева, что делает их надежными.

Регуляторы напряжения — подробный обзор

Как мы видели в разделе выше, основная задача регулятора напряжения — понижать большее напряжение до меньшего и поддерживать его стабильность, поскольку это регулируемое напряжение используется для питания (чувствительной) электроники.

Регулятор напряжения в основном доукомплектован эмиттерный повторитель, как описано выше, — транзистор, соединенный с ссылкой стабильной, что выкладывает постоянное напряжение, опуская остальное.

Они также имеют встроенный усилитель ошибки, который измеряет выходное напряжение (опять же через делитель), сравнивает его с опорным напряжением, вычисляет разность и соответственно управляет выходным транзистором. Это далеко от делителя напряжения, который точно воспроизводит входной сигнал, хотя и немного меньше.Вы не хотите, чтобы пульсации переменного тока накладывались на вашу шину постоянного напряжения.

Желательно иметь транзистор с высоким коэффициентом усиления, так как управлять силовыми транзисторами очень сложно, с жалким коэффициентом усиления в диапазоне двух цифр. Это было преодолено с помощью транзисторов Дарлингтона, а в последнее время — полевых МОП-транзисторов. Поскольку эти типы требуют меньшего тока для управления, общее потребление тока уменьшается. Это дополняется тем, что опорное напряжение используется внутри и потребляет очень малый ток.

Ток, который регулятор потребляет для управления всей этой внутренней схемой, когда выход не нагружен, называется током покоя. Чем меньше ток покоя, тем лучше.

Эти регуляторы построены с использованием трех транзисторов на силовом выходном каскаде — два из них в конфигурации Дарлингтона, а другой — в качестве устройства ограничения тока. Последовательные переходы CE в сумме дают падение напряжения на регуляторе около 2 В.

Это напряжение известно как напряжение падения, напряжение, ниже которого регулятор перестает регулировать.

Можно найти устройства, называемые LDO или стабилизаторы с малым падением напряжения, с падением напряжения около 0,4 В, поскольку они используют переключатель MOSFET.

Трехконтактный регулятор

Достаточно поговорить, теперь о реальных номерах деталей.

Наиболее распространенной серией регуляторов напряжения является серия 78XX .Две цифры после 78 представляют собой выходное напряжение регулятора, например, 7805 — это регулятор 5 В, а 7812 — регулятор 12 В. Выходные напряжения, доступные с фиксированными регуляторами, охватывают широкий диапазон от 3,3 В до 24 В с хорошими значениями, такими как 5 В, 6 В, 9 В, 15 В и 18 В.

Стабилизаторы этой серии отлично подходят для большинства целей, они могут выдерживать почти 30 В на входе и, в зависимости от корпуса, выходной ток до 1 А. Они исключительно просты в использовании — подключите входной контакт к входному напряжению, а выходной контакт — к устройству, которому требуется более низкое напряжение, и, конечно же, контакт заземления к земле.

Здесь развязывающие конденсаторы необязательны, поскольку усилители обратной связи «отклоняют» входные пульсации и шум, следя за тем, чтобы они не передавались на выход. Однако, если ваше устройство потребляет более нескольких десятков миллиампер, рекомендуется не менее 4,7 мкФ на входе и выходе, предпочтительно из керамики.

Интересная вещь, которую делают люди, — на этих регуляторах делают примитивные зарядные устройства для телефонов. Просто подключите батарею 9 В ко входу и соответствующий USB-разъем к выходу, и вуаля, у вас есть аварийное зарядное устройство для телефона.Эта конструкция достаточно прочная, поскольку на микросхеме встроена термозащита.

Хорошая особенность таких регуляторов напряжения заключается в том, что их распиновка практически универсальна, поэтому возможна их замена. В настоящее время большинство «транзисторных» корпусов на печатных платах представляют собой регуляторы напряжения, которые можно использовать для других проектов, поскольку они очень просты в использовании.

Увеличение выходного тока регуляторов напряжения

Одно ограничение, которое быстро преодолевает полезность, — это выходной ток, который сильно ограничен корпусом и способом его установки.

Существуют сильноточные варианты этих регуляторов, но их сложно найти.

Единственные устройства, способные выдавать большие токи, — это импульсные преобразователи постоянного тока в постоянный, но показатели выходного шума ужасны.

Можно спроектировать собственный сильноточный линейный стабилизатор, но в конечном итоге вы столкнетесь со всеми проблемами, упомянутыми выше.

К счастью, есть способ «захватить» стандартный регулятор с помощью нескольких дополнительных деталей и увеличить выходной ток.

Большинство этих модификаций включают добавление обходного транзистора через стабилизатор и управление базой с входом, как показано на рисунке ниже.

Регулируемые регуляторы

Три концевых стабилизатора довольно хороши и просты в использовании, но что, если вам нужно нестандартное выходное напряжение, такое как 10,5 В или 13 В?

Конечно, более или менее возможно захватить фиксированные регуляторы, но требуемая схема довольно сложна и превосходит основную цель простоты.

Существует

устройств, которые могут выполнять эту работу за нас, наиболее популярным из которых является LM317.

LM317 ничем не отличается от любого другого линейного регулятора с входным и выходным контактами, но вместо контакта заземления есть контакт, называемый «Adjust». Этот вывод предназначен для получения обратной связи от делителя напряжения на выходе так, чтобы на выводе всегда было 1,25 В, изменяя значения сопротивления, мы можем получить разные напряжения. В техническом описании даже говорится: «устраняет запасы множества фиксированных напряжений», но, конечно, это применимо только в том случае, если вы можете позволить себе иметь эти два резистора на борту.

В таких регулируемых регуляторах хорошо то, что при небольшом изменении конфигурации они также могут служить источниками постоянного тока.

Подключив резистор к выходному контакту, а регулировочный штифт к другому концу резистора, как показано на рисунке, регулятор пытается поддерживать постоянное напряжение 1,25 В на выходном резисторе и, следовательно, постоянный ток на выходе. Эта простая схема довольно популярна среди диодных лазеров.

Фиксированные регуляторы тоже могут это делать, но напряжения падения неоправданно высоки (фактически, номинальное выходное напряжение). Однако они сработают в крайнем случае, если вы в отчаянии.

Ограничения регулятора напряжения

Самым большим преимуществом линейных регуляторов является их простота; больше нечего сказать.

Однако, как и все хорошие чипы, они имеют свой набор ограничений.

Линейные регуляторы работают как переменный резистор с обратной связью, сбрасывая ненужное напряжение.При рисовании того же тока, что и нагрузка. Эта потерянная энергия преобразуется в тепло, что делает эти регуляторы горячими и неэффективными при высоких токах.

Например, регулятор 5 В с входом 12 В, работающий на токе 1 А, имеет потерю мощности (12 В — 5 В) * 1 А, что составляет 7 Вт! Это много энергии, а КПД всего 58%!

Значит, при больших перепадах входного и выходного напряжения или при больших токах регуляторы имеют жалкую энергоэффективность.

Проблема дифференциального напряжения на входе-выходе может быть решена путем последовательного подключения нескольких регуляторов с понижением выходного напряжения (до желаемого значения напряжения), так что напряжение падает ступенчато.Хотя общая рассеиваемая мощность такая же, как при использовании одного регулятора, тепловая нагрузка распределяется по всем устройствам, что снижает общую рабочую температуру.

Ограничения по мощности и эффективности можно преодолеть с помощью импульсного источника питания, но выбор зависит от области применения, нет четких правил относительно того, где и какой тип источника питания использовать.

Основы электроники: регулятор напряжения

Создание регулятора напряжения

Теория предыстории: как работает регулятор напряжения?


Название говорит само за себя: регулятор напряжения.Аккумулятор в вашем автомобиле, который заряжается от генератора переменного тока, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, им всем требуется определенное напряжение, чтобы функция. Колеблющиеся выходы, выходящие за пределы ± 2 В, могут вызвать неэффективную работу и, возможно, даже повредить ваши зарядные устройства. Колебания напряжения могут происходить по разным причинам: состояние электросети, включение и выключение других приборов, время суток, факторы окружающей среды и т. Д.Из-за необходимости стабильного постоянного напряжения введите регулятор напряжения.

Регулятор напряжения — это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.

ИС регулятора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов
, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают как регуляторы напряжения в низковольтных приложениях.

В зависимости от области применения регулятору напряжения может также потребоваться более пристальное внимание для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум.Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы стабилизатора напряжения, с которой вы работаете, в разделе «Примечания по применению».


Указания по применению для регулятора 7805T
Afrotechmods также имеет информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.


Проект

Комплект стабилизатора напряжения макетной платы — отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать входное напряжение в диапазоне 6-18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с шагом 0,1 дюйма.

В комплект входят:

(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) 0.Монолитный конденсатор 1 мкФ
(1) Резистор 1 кОм
(1) Красный светодиодный индикатор питания
(1) Разъемы контактов
(1) Руководство пользователя

Вам понадобятся:

Различные типы регуляторов напряжения и принцип работы

Регулятор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения. Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки.Он действует как буфер для защиты компонентов от повреждений. Регулятор напряжения — это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью. В основном есть два типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения — самый простой тип регулятора напряжения. Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением. Обсудим различные типы регуляторов напряжения.

Регулятор напряжения

Типы регуляторов напряжения и их принцип работы

В основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.


  • Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
  • Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.
Линейный регулятор

Линейный регулятор действует как делитель напряжения.В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что обеспечивает постоянное выходное напряжение.

Преимущества линейного регулятора напряжения

  • Обеспечивает низкую пульсацию выходного напряжения
  • Быстрое время отклика на нагрузку или изменение линии
  • Низкие электромагнитные помехи и меньший шум

Недостатки линейного регулятора напряжения

  • КПД очень низкий
  • Требуется большое пространство — необходим радиатор
  • Напряжение выше входа не может быть увеличено
Регулятор напряжения серии

В последовательном регуляторе напряжения используется регулируемый элемент, последовательно включенный с нагрузкой.Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.

Регулятор напряжения серии

Потребляемый ток эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения. Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Таким образом, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.Схема регулятора напряжения серии

Цепь регулятора напряжения серии

Шунтирующий регулятор напряжения

Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму обычно менее эффективной, чем последовательный регулятор. Это, однако, более простое, иногда состоящее только из напряжения опорного диода, и используется в очень маломощных схемах, в котором впустую ток слишком мал, чтобы быть озабоченность.Эта форма очень часто для эталонного напряжения цепей. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.

Шунтирующий регулятор напряжения

Применение шунтирующих регуляторов

Шунтирующие регуляторы используются в:

  • Импульсные источники питания с низким выходным напряжением
  • Цепи источника и приемника тока
  • Усилители ошибок
  • Регулируемые источники питания по напряжению или току, линейные и импульсные
  • Мониторинг напряжения
  • Аналоговые и цифровые схемы, требующие точных эталонов
  • Прецизионные ограничители тока
Импульсный регулятор напряжения

Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.

Импульсный регулятор напряжения

Импульсный регулятор напряжения быстро включается и выключается для изменения выходного сигнала.Он требует управляющего генератора, а также заряжает компоненты накопителя.

В импульсном регуляторе с частотно-импульсной модуляцией меняются частота, постоянный рабочий цикл и спектр шума, налагаемые PRM, изменяются; отфильтровать этот шум труднее.

Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном стабилизаторе ток в непрерывном режиме через катушку индуктивности никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.

В импульсном регуляторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.

Топологии коммутации

Имеется два типа топологий: диэлектрическая изоляция и неизолированная.

Без изоляции: Это основано на небольших изменениях в Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) — увеличивает входное напряжение; Step Down (Бак) — снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения — понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос — обеспечивает многократный ввод без использования индуктора.
Диэлектрик — Изоляция: Он основан на радиации и интенсивных средах.

Преимущества коммутационных топологий

Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность. Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.

Недостатки топологий коммутации

  • Повышенное пульсирующее напряжение на выходе
  • Более медленное переходное время восстановления
  • EMI производит очень шумный выходной сигнал
  • Очень дорогой
Повышающий регулятор напряжения
переключающиеся

Повышающие преобразователи также повышающие так называемые повышающие импульсные регуляторы, обеспечивают более высокое выходное напряжение за счет увеличения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления гирляндой светодиодов используется повышающий импульсный регулятор напряжения.


Повышающий регулятор напряжения

Предположим, что вывод цепи без потерь = Pout (входная и выходная мощности одинаковы)

Тогда V на входе I на входе = В на выходе I на выходе ,

I на выходе / I в = (1-D)

Отсюда следует, что в этой цепи

  • мощности остаются прежними
  • Напряжение увеличивается
  • Ток уменьшается
  • Эквивалент трансформатору постоянного тока
Понижение (понижающий) Регулятор напряжения

Снижает входное напряжение.

Понижающий регулятор напряжения

Если входная мощность равна выходной мощности, тогда

P на входе = P на выходе ; V вход I вход = V выход I выход ,

I выход / I вход = V вход / V выход = 1 / D

Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент трансформации находится в диапазоне 0-1.

Повышение / Понижение (повышение / понижение)

Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.

  • Выходное напряжение имеет полярность, противоположную входной.
  • Это достигается за счет прямого смещения диода VL с обратным смещением во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения.
  • Используя этот тип импульсного стабилизатора, можно достичь эффективности 90%.
Повышающий / Понижающий регулятор напряжения
Регулятор напряжения генератора

Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения электрических требований транспортного средства при работе двигателя.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор имеет способность производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.

Регулятор напряжения генератора

Статор — это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь — Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.

Электронный регулятор напряжения

Простой регулятор напряжения может быть изготовлен из резистора, включенного последовательно с диодом (или рядами диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.

Электронный регулятор напряжения
Транзисторный регулятор напряжения

Электронные регуляторы напряжения имеют нестабильный источник опорного напряжения, который обеспечивается диодом Зенера, который также известен как обратный пробой рабочего напряжения диода.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения блокируются, но фильтр не блокируется. Регулятор напряжения также имеет дополнительную схему для защиты от короткого замыкания и схему ограничения тока, защиту от перенапряжения и тепловое отключение.

Транзисторный регулятор напряжения

Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию.Кроме того, по любым вопросам относительно этой статьи или любой помощи в реализации проектов в области электротехники и электроники вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос — где мы будем использовать регулятор напряжения генератора?

Фото:

регулятор напряжения | Определение, типы и факты

Регулятор напряжения , любое электрическое или электронное устройство, поддерживающее напряжение источника питания в допустимых пределах.Стабилизатор напряжения необходим для поддержания напряжения в предписанном диапазоне, который может выдерживать электрическое оборудование, использующее это напряжение. Такое устройство широко используется в автомобилях всех типов для согласования выходного напряжения генератора с электрической нагрузкой и требованиями к зарядке аккумулятора. Стабилизаторы напряжения также используются в электронном оборудовании, в котором чрезмерные колебания напряжения могут быть вредными.

Британская викторина

Гаджеты и технологии: факт или вымысел?

Виртуальная реальность используется только в игрушках? Использовались ли когда-нибудь роботы в бою? В этой викторине вы узнаете о гаджетах и ​​технологиях — от компьютерных клавиатур до флэш-памяти.

В автомобилях регуляторы напряжения быстро переключаются с одного на другое из трех состояний цепи с помощью подпружиненного двухполюсного переключателя. На низких скоростях некоторый ток от генератора используется для усиления магнитного поля генератора, тем самым увеличивая выходное напряжение. На более высоких скоростях в цепь генератора поля вводится сопротивление, так что его напряжение и ток уменьшаются. На еще более высоких скоростях цепь отключается, уменьшая магнитное поле.Частота переключения регулятора обычно составляет от 50 до 200 раз в секунду.

В электронных регуляторах напряжения используются твердотельные полупроводниковые устройства для сглаживания колебаний тока. В большинстве случаев они работают как переменные сопротивления; то есть сопротивление уменьшается, когда электрическая нагрузка большая, и увеличивается, когда нагрузка меньше.

Регуляторы напряжения выполняют те же функции в крупных системах распределения электроэнергии, что и в автомобилях и других машинах; они минимизируют колебания напряжения, чтобы защитить оборудование, использующее электричество.В системах распределения электроэнергии регуляторы находятся либо на подстанциях, либо на самих фидерных линиях. Используются два типа регуляторов: ступенчатые регуляторы, в которых переключатели регулируют подачу тока, и индукционные регуляторы, в которых асинхронный двигатель подает вторичное, постоянно регулируемое напряжение для выравнивания колебаний тока в фидерной линии.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

электрических генераторов | Как работают генераторы

Какие части у электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего необходима.Составные части генератора:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые работают вместе, создавая электромагнитное поле и движение электронов, которые генерируют электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии.Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения гарантирует, что машина не перегреется. Выхлопная система направляет и удаляет дымовую форму во время работы.
  1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа.Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство — это полностью автоматический компонент, который обеспечивает готовность аккумулятора к работе в случае необходимости, подавая на него постоянное низкое напряжение.
  1. Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов.Современные устройства даже способны определять падение или отключение питания и могут запускать или выключать генератор автоматически.
  1. Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрических генераторов?

Современные электрические генераторы доступны во многих вариантах заправки топливом. Дизель-генераторы — самые популярные промышленные генераторы на рынке.К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, тогда как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива — как на бензине, так и на дизельном топливе.

Топливные баки генератора

Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания. Без топлива не может происходить сгорание, и генератор не может преобразовывать механическую энергию в электрическую.Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу при необходимости.

В зависимости от типа генератора и его применения, топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Топливо для генератора хранится в баках разной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности.Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Наземные и подземные топливные баки для хранения генератора — лучший выбор для нужд большой емкости. Подземные резервуары для хранения дороже в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения.Топливные баки генераторов и топливные системы генераторов должны соответствовать ряду требований и разрешений, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, — это Нормы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор.В случае кратковременных или нечастых отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам необходимо будет наполнять резервуар чаще, чем вам нужно заполнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым отключениям электроэнергии.

Поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится.Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы получить лучшее представление о стоимости и логистике, связанных с получением топлива для генератора.

Выхлопные системы и средства контроля выбросов генератора

Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генератора снижают и отводят тепло различными способами:

  • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
  • Водород. Водород — очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, часто расположенным в больших местных градирнях.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

Пары, выбрасываемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо фильтровать и удалять из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному регулированию выбросов. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) — для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
  • New Source Performance Standards (NSPS) — стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

Хорошая новость заключается в том, что многие новые генераторы уже соответствуют стандартам выбросов генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — поговорить с дилером или производителем генератора.

Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

Панель управления генератора и автоматический резерва (АВР)

Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка доступа и управления работой генератора.

Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

В дополнение к круглосуточному мониторингу панель управления генератором предоставляет менеджерам сайта обширную информацию:

  • Манометры двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
  • Генераторные датчики предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какого рода техническое обслуживание требуется для генератора?

Генераторы

являются двигателями и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и проверки своих генераторов, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.

Самая лучшая программа обслуживания генератора — это та, которую рекомендует производитель, но, как минимум, все планы обслуживания генератора должны включать регулярное и текущее:

  • Осмотр и снятие изношенных деталей.
  • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
  • Осмотр и чистка аккумуляторной батареи.
  • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Осмотр системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнить с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными, если их не проверить.

Генераторы

могут прослужить десятилетия при правильном обслуживании. Эти простые, небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора — это не то, чем вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать ваш генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.

Основы регуляторов напряжения — Инструментальные средства

Хотя фильтры могут уменьшить пульсации от источников питания до низкого значения, наиболее эффективным подходом является комбинация входного конденсаторного фильтра с регулятором напряжения.

Регулятор напряжения подключен к выходу выпрямителя с фильтром и поддерживает постоянное выходное напряжение (или ток), несмотря на изменения на входе, токе нагрузки или температуре.

Входной конденсаторный фильтр снижает входную пульсацию регулятора до приемлемого уровня.Комбинация большого конденсатора и регулятора напряжения помогает создать отличный источник питания.

Большинство регуляторов представляют собой интегральные схемы и имеют три клеммы: входную, выходную и контрольную (или регулирующую).

Вход регулятора сначала фильтруется с помощью конденсатора, чтобы уменьшить пульсации до. Регулятор снижает пульсации до незначительной величины.

Кроме того, большинство регуляторы имеют внутренний источник опорного напряжения, короткого замыкания, защиту и тепловой схемы выключения.Они доступны для различных напряжений, включая положительные и отрицательные выходы, и могут быть разработаны для регулируемых выходов с минимальным количеством внешних компонентов.

Обычно регуляторы напряжения могут обеспечивать постоянный выходной ток в один или несколько ампер с сильным подавлением пульсаций.

Трехконтактным стабилизаторам, рассчитанным на фиксированное выходное напряжение, требуются только внешние конденсаторы для выполнения регулирующей части источника питания, как показано на рисунке ниже.

Фильтрация осуществляется конденсатором большой емкости между входным напряжением и землей.

Выходной конденсатор (обычно) подключается от выхода к земле для улучшения переходной характеристики. 0,1 мФ до 1,0 мФ 610%.

Рис: Стабилизатор напряжения с входными и выходными конденсаторами.

Базовый фиксированный источник питания со стабилизатором напряжения +5 В показан на рисунке ниже. На рынке доступны специальные трехполюсные стабилизаторы на интегральных схемах с фиксированным выходным напряжением.

Рис: A базовый +5.Регулируемый источник питания 0 В.

Процентное регулирование

Регулировка, выраженная в процентах, представляет собой показатель качества, используемый для определения характеристик регулятора напряжения. Это может быть входное (линейное) регулирование или регулирование нагрузки.

Линейный регламент

Линейный регламент определяет, насколько изменяется выходное напряжение при заданном изменении входного напряжения.

Обычно определяется как отношение изменения выходного напряжения к соответствующему изменению входного напряжения, выраженное в процентах.

Нормы нагрузки

Регулирование нагрузки определяет, насколько сильно изменяется выходное напряжение в определенном диапазоне значений тока нагрузки, обычно от минимального тока (без нагрузки, NL) до максимального тока (полная нагрузка, FL).

Обычно выражается в процентах и ​​может быть рассчитан по следующей формуле:

, где VNL — выходное напряжение без нагрузки, а VFL — выходное напряжение с полной (максимальной) нагрузкой.

.

Оставить комментарий