Как работает стартер лампы дневного света: Принцип работы люминесцентной лампы
Принцип работы люминесцентной лампы
Категория: Источники освещения
Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.
Историческая справка
Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.
Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.
Устройство люминесцентной лампы
Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой.
- стеклянная цилиндрическая трубка;
- два цоколя с двойными электродами;
- стартер, работающий на начальном этапе поджига;
- электромагнитный дроссель;
- конденсатор, подключенный параллельно питающей сети.
Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.
К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.
Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.
Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.
Принцип работы люминесцентного светильника
Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.
Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока.
На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.
Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.
Для чего нужен дроссель в люминесцентной лампе
Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:
- включение светильника в работу;
- поддержание нормального безопасного режима.
На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.
При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.
Принцип работы стартера люминесцентной лампы
Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток.
Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.
Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.
Варианты исполнения
Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:
- форме исполнения;
- виду балласта;
- внутреннему давлению.
Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.
Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.
Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.
Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.
Принцип работы стартера люминесцентной лампы — советы электрика
Принцип работы стартеров люминесцентных ламп
Стартер
Стартер представляет собой маленькую газоразрядную лампу тлеющего разряда. Стеклянная колба заполняется инертным газом (неон либо смесь гелий-водород) и помещается в железный либо пластмассовый корпус, на верхней крышке которого имеется смотровое окно.
В неких конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электрода. Различают несимметричную и симметричную конструкции стартеров. В несимметричных стартерах один электрод недвижный, а 2-ой подвижный, сделан
В истинное время наибольшее распространение получила симметричная конструкция стартеров, у каких оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сопоставлению с несимметричной.
Обратите внимание
Напряжение зажигания в стартере тлеющего разряда выбирается таким макаром, чтоб оно было меньше номинального напряжения сети, но больше рабочего напряжения, устанавливающегося на люминесцентной лампе при ее горении.
При включении схемы на напряжение сети оно стопроцентно окажется приложенным к стартеру. Электроды стартера разомкнуты, и в нем появляется тлеющий разряд. В цепи будет проходить маленький ток (20-50 ма). Этот ток нагревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере закончится.
Через дроссель и поочередно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, избираемым таким макаром, чтобы ток подготовительного обогрева катодов в 1,5 2,1 раза превосходил номинальный ток лампы.
Продолжительность предварительного обогрева катодов определяется временем, в течение которого электроды стартера остаются замкнутыми. Когда электроды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, именуемого временем контактирования, электроды размыкаются.
Потому что дроссель обладает большой индуктивностью, то в момент размыкания электродов стартера в дросселе появляется большой импульс напряжения, зажигающий лампу.
После зажигания лампы в цепи установится ток, равный номинальному рабочему току лампы. Этот ток обусловит такое падение напряжения на дросселе, что напряжение на лампе станет приблизительно равным половине номинального напряжения сети.
Потому что стартер включен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стартере, его электроды останутся разомкнутыми при горении лампы.
Возможность зажигания лампы находится в зависимости от длительности подготовительного обогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с.
Важно
и, как следует, приложенного к лампе напряжения возможно окажется недостаточной для ее зажигания, и лампа не зажжется. Потому, если при первой попытке стартер не зажжет лампу, он сразу автоматом будет повторять описанный процесс до того времени, пока не произойдет зажигание лампы.
Согласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до10 сек. Параллельно электродам стартера включен конденсатор емкостью 0,003-0,1 мкф. Этот конденсатор обычно располагается в корпусе стартера.
Конденсатор выполняет две функции: понижает уровень радиопомех, возникающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденсатор влияет па процессы зажигания лампы. Конденсатор уменьшает величину импульса напряжения, образуемого в момент размыкания электродов стартера, и наращивает его продолжительность.
При отсутствии конденсатора напряжение на лампе очень стремительно возрастает, достигая нескольких тыщ вольт, но продолжительность его деяния очень маленькая. В этих условиях резко понижается надежность зажигания ламп. Кроме того, включение конденсатора параллельно электродам стартера уменьшает возможность сваривания либо, как молвят, залипания электродов, получающегося в результате образования электронной дуги в момент размыкания электродов. Конденсатор содействует резвому гашению дуги.
Применение конденсаторов в стартёре не обеспечивает полного угнетения радиопомех, создаваемых люминесцентной лампой. Потому нужно дополнительно на входе схемы установить два конденсатора емкостью более 0,008 мкф каждый, соединенных поочередно, и среднюю точку заземлить.
Одним из рекомендуемых методов понижения уровня радиопомех является применение дросселей с симметрированной обмоткой где обмотка дросселя разделена на две совсем однообразные части, имеющие равное число витков, намотанных на один общий сердечник. Любая часть дросселя соединена поочередно с одним из катодов лампы.
При включении такового дросселя с лампой оба ее катода работают в схожих критериях, что понижает уровень радиопомех. В текущее время, обычно, выпускаемые индустрией дроссели изготовляются с симметрированными обмотками. В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут сразу достигать собственных нулевых и наибольших значений.
Как понятно из теории переменного тока, в данном случае ток будет отставать по фазе от напряжения сети на некий угол, величина которого определяется соотношением индуктивного сопротивления дросселя и активного сопротивления всей сети. Такие схемы именуются отстающими.
Совет
В ряде всевозможных случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лампу опережал бы по фазе напряжение сети. Такие схемы именуются опережающими.
Для выполнения этого условия поочередно с дросселем врубается конденсатор, емкость которого рассчитывается таким образом, чтоб его емкостное сопротивление было больше индуктивного сопротивления дросселя. В опережающем балласте в период зажигания лампы ток подготовительного обогрева катодов имеет недостаточную величину.
Для устранения этого явления нужно на время зажигания лампы прирастить ток подготовительного обогрева, что можно сделать, если отчасти восполнить емкость индуктивностью. В цепь стартера врубается дополнительная индуктивность в виде компенсирующей катушки.
При замыкании электродов стартера эта компенсирующая катушка врубается поочередно с дросселем и конденсатором, общая индуктивность схемы возрастает, а совместно с ней возрастает ток подготовительного обогрева. После размыкания электродов стартера компенсирующая катушка отключается, и в рабочем режиме лампы она не участвует.
Индуктивность дополнительной катушки компенсирует емкость конденсатора, установленного в стартере. Потому в схему вводится дополнительный конденсатор емкостью более 0,008 мкф, включаемый параллельно лампе и выполняющий в данном случае роль помехоподавляющего конденсатора. Один из недочетов рассмотренных схем – маленький коэффициент мощности. Он составляет величину 0,5-0,6.
Пускорегулирующие аппараты (ПРА), выполненные на базе этих схем, относятся к группе так именуемых некомпенсированных аппаратов.
При использовании таких аппаратов согласно правилам устройства электроустановок (ПУЭ) для увеличения низкого коэффициента мощности нужно предугадывать групповую компенсацию коэффициента мощности, обеспечивающую доведение его для всей осветительной установки до величины 0,9-0,95.
При невозможности либо экономической неэффективности внедрения групповой компенсации коэффициента мощности употребляют схемы, в каких дополнительно параллельно лампе врубается конденсатор достаточной емкости, избранный таким макаром, чтоб коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, сделанный по этой схеме, именуют возмещенным.
Обратите внимание
Расчеты демонстрируют, что для ламп мощностью 20 и 40 вт при напряжении 220 в емкость конденсатора составляет 3-5 мкф. Основной недочет стартерных схем зажигания их низкая надежность, которая обоснована ненадежностью работы стартера. Надежная работа стартера зависит также от уровня напряжения в питающей сети.
Со снижением напряжения в питающей сети возрастает время, нужное для разогрева биметаллических электродов, а при уменьшении напряжения более чем на 20% номинального стартер вообщем не обеспечивает контактирования электродов, и лампа не будет загораться. Означает, с уменьшением напряжения в питающей сети время зажигания лампы возрастает.
У люминесцентной лампы по мере старения наблюдается повышение ее рабочего напряжения, а у стартера, напротив, с ростом срока службы напряжение зажигания тлеющего разряда миниатюризируется. В итоге этого может быть, что при пылающей лампе стартер начнет срабатывать и лампа угасает. При размыкании электродов стартера лампа вновь зажигается и наблюдается мигание лампы.
Такое мерцание лампы, кроме вызываемого им противного зрительного чувства, может привести к перегреву дросселя, выходу его из строя и порче лампы. Подобные же явления могут иметь место при использовании старенькых стартеров в сети с пониженным уровнем напряжения. При возникновении мерцаний лампы нужно поменять стартер на новый.
Стартеры имеют значимые разбросы времени контактирования электродов, и оно очень нередко недостаточно для надежного подготовительного обогрева катодов ламп. В итоге стартер зажигает лампу после нескольких промежных попыток, что наращивает длительность переходных процессов, снижающих срок службы ламп. Общий недочет всех одноламповых схем – невозможность уменьшить создаваемую одной люминесцентной лампой пульсацию светового потока. Потому такие схемы можно использовать в помещениях, где устанавливается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульсации светового потока лампы включать в разные фазы трехфазной цепи. Нужно стремиться к тому, чтоб освещенность в каждой точке создавалась более чем от 2-3 ламп, включенных в различные фазы сети. Двухламповые схемы включения. Применение двухламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, потому что пульсации светового потока каждой лампы происходят не сразу, а с неким сдвигом по времени. Поэтому суммарный световой поток 2-ух ламп никогда не будет равен нулю, а колеблется около некого среднего значения с частотой, наименьшей, чем при одной лампе. Не считая того, эти схемы обеспечивают высочайший коэффициент мощности комплекта лампа – ПРА.
youtube.com/embed/udZ10lU19wo?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Наибольшее распространение получила двухламповая схема, именуемая нередко схемой с расщепленной фазой. Схема состоит из 2-ух элементов-ветвей: отстающей и опережающей. В первой ветки ток отстает по фазе от напряжения на угол 60°, а во 2-ой – опережает на угол 60°.
Благодаря этому ток во наружной цепи будет практически совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.
Эту схему можно отнести к группе компенсированных, и по сопоставлению с одноламповой некомпенсированной схемой она обладает тем преимуществом, что требуется принимать дополнительных мер для повышения коэффициента мощности.
Важно
При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для 2-ух и одноламповых аппаратов. В текущее время выпускается огромное количество разных типов аппаратов, выполненных по этой схеме.
Источник: http://elektrica.info/printsip-raboty-starterov-lyuminestsentny-h-lamp/
Принцип работы люминесцентной лампы и устройство прибора
Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.
Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.
При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.
Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.
Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.
Устройство лампочки
Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.
На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.
Схема
Стандартная схема подключения лю
Стартер для люминесцентных ламп: устройство, принцип работы, маркировка + тонкости выбора
Для чего нужен стартер в люминесцентных лампах?
Стартер для люминесцентных ламп является одним из основных элементов лампочек дневного света. Зачем он нужен? Замыкание и размыкание электрической цепи – вот основная его функция. Кроме него в состав лампы входит дроссель, являющийся одновременно трансформатором и стабилизатором. Он нужен для ограничения тока в светильнике и защищает оборудование от перегрева и скачков напряжения.
Принцип работы стартера
Стартер является малогабаритной газоразрядной лампой, работа которой основана на принципе тлеющего разряда.
Устройство стартера представляет собой стеклянную колбу с двумя электродами, заполненную неоном или гелием. Для защиты колба помещена в корпус из металла или прочного пластика.
Электроды изготавливаются из биметаллических пластин. У разных производителей их конструкция может отличаться.
Обратите внимание
Для сглаживания момента замыкания и размыкания контактов в цепи дополнительно устанавливают конденсатор. Одновременно он является дугогасительным устройством. Возникающая в момент включения дуга может привести к свариванию контактов. Это может стать причиной преждевременного выхода из строя и существенно снизить срок эксплуатации.
Зная, для чего нужен стартер, легко разобраться в принципе его работы.
В начальный момент электроды имеют разомкнутое состояние. При подключении к сети в устройстве возникает разряд, величина тока которого лежит в диапазоне от 20 до 50 мА.
Он разогревает биметаллические электроды, вследствие нагрева происходит изгиб электродов стартера, после чего электрическая цепь замыкается.
При перемещении электрического тока по замкнутой цепи происходит разогрев дросселя и катодов люминесцентной лампы.
При отсутствии тлеющего разряда электроды из биметалла остывают. Это ведет к их разгибанию, разрыву электрической цепи и возникновению импульса высокого напряжения.
Под его воздействием дроссель зажигает лампу.
С увеличением свечения лампы все напряжение сети приходится на нее, поскольку стартер подключен параллельно лампе, недостаток напряжения питания оставляет электроды в разомкнутом положении.
Виды стартеров:
- тепловые;
- тлеющего ряда (содержащие биметаллические электроды с упрощенной схемой) ;
- полупроводниковые.
Напряжение стартера необходимо выбирать выше, чем в лампах, и ниже напряжения сети.
Срок службы, ремонт и замена
Длительная эксплуатация стартера вызывает снижение напряжения внутри него, что приводит к износу. Это отражается на работоспособности, лампа начинает мигать, а затем и вовсе прекращает запускаться.
Это связано с тем, что при долгом использовании лампы уменьшается тлеющий заряд.
Если появились признаки неисправности в виде моргающей лампочки, необходимо заменить неисправный элемент с целью предотвращения выхода из строя всего оборудования.
Кроме моргания может произойти износ дросселя от перегрева контактов и поломка люминесцентной лампы. Чтобы часто не менять непригодные для работы устройства, нужно приобретать качественные стартеры, хорошо зарекомендовавшие себя на рынке светотехники. Установка стабилизаторов напряжения также дает положительный эффект для повышения срока службы ламп.
Замена стартера делается следующим образом:
- отключить лампу;
- снять плафон;
- выкрутить против часовой стрелки неисправную деталь;
- новый стартер вставить в паз и повернуть по часовой стрелке до упора.
Внешний вид стартеров и маркировки
Чтобы правильно подобрать стартер, необходимо знать:
- тип запуска лампочки;
- производителя;
- электрические характеристики.
Качественное оборудование выпускают фирмы Philips, Chilisin, Luxe, Osram. Дешевые модели стартеров быстро изнашиваются или приводят к такому действию, как разгерметизация колбы.
В этом случае газы, которыми заполнена лампа, начинают испускать неприятный запах, все это еще и вредно для здоровья. Хороший производитель комплектует свою продукцию запасными частями и дает большой гарантийный срок, до 6 тысяч включений.
В фирменных магазинах предлагают бесплатную замену. При обнаружении брака фирменные магазины бесплатно заменяют непригодную для работы деталь.
Важно
Фирма Philips считается лучшим производителем стартеров. Они изготовлены из высококачественных материалов. Например, для защиты от перегрева использован теплоустойчивый поликарбонат.
Процент брака составляет 0,0001%. В моделях этой фирмы нет радиоактивных компонентов.
Простой дизайн и обслуживание позволяют справиться с установкой и заменой оборудования даже неопытному человеку, нужно лишь следовать инструкции.
Пускатели этой фирмы производятся в Нидерландах. Модель S2 предназначена для низковольтных ламп с ограничением по мощности 4–22 Вт.
Более универсальной является модель S10. Ее можно применять для высоковольтных устройств без ограничения мощности.
Всем стандартам качества удовлетворяют стартеры отечественного производства фирмы Osram, имеющие огнестойкий корпус из макролона.
Прежде чем подбирать стартер того или иного производителя, необходимо обратить внимание на следующие характеристики:
- срок службы;
- температурный режим;
- тип конденсатора;
- номинальное напряжение.
Как выбрать подходящий стартер, зная рабочее напряжение? Маркировка отечественных приспособлений регламентирована ГОСТом. Первые две цифры указывают на мощность. Буква «С» – назначение устройства (стартер). Последние цифры определяют напряжение.
Пример: 90С-220. Расшифровывать данную надпись нужно следующим образом: стартер предназначен для ламп дневного света мощностью 90 ватт и рабочим напряжением 220 В.
Выбирая импортные пускатели, следует помнить, что они имеют другие стандарты маркировки. К примеру, обозначения S10, ST111 и FS-U указывают на то, что стартер можно применять в светильниках с мощностью, диапазон которой находится в пределах 4–80 Вт, напряжение сети должно составлять 220 В.
Освещение не включается: причины
Что делать, если не включается светильник:
- Напряжение питания меньше 200 В. Стартер не может работать при таких характеристиках.
- Износ стартера. Тлеющий разряд, дающий толчок для замыкания электродов, недостаточно велик в связи с амортизацией.
- Недостаточно времени для нагрева катодов.
Решить проблему можно, если сделать замену на другую лампу, имеющую больший период замыкания контактов.
Источник: https://LampaGid.ru/vidy/lyuminestsentnye/starter
Стартеры для ламп. Устройство и работа. Замена и как выбрать
Стартеры для ламп являются частью пускорегулирующей аппаратуры, которая служит для зажигания люминесцентных ламп при подключении к сети 220В с частотой 50 Гц. Помимо стартеров в состав ЭМПРА входит конденсатор и дроссель.
Как устроены и работают стартеры для ламп
Стартер представляет собой небольшую газоразрядную лампу, в которой поддерживается тлеющий разряд. Ее корпус состоит из стеклянной колбы, которая заполняется инертным газом. В качестве него может применяться неон или гелий-водород.
В колбе размещено два электрода чаще всего биметаллических. Один электрод закреплен, а второй установлен подвижно. Может применяться два подвижных электрода, что повышает надежность и быстродействие системы.
В случае снижения эффективности изгиба одного электрода, это компенсирует второй.
При подаче напряжения на стартер происходит тлеющий разряд. Он поддерживается незначительным током в пределах 20-50 мА. Тлеющий разряд поднимает температуру внутри колбы, от чего происходит разогрев подвижного биметаллического электрода, в результате чего он изгибается и прикасается ко второму.
Совет
При замыкании цепи разряд переходит на соединительный дроссель и в последующем на саму лампу, вызывая ее подогрев. В это время ток заряда в самом стартере прекращается, поэтому его электроды охлаждаются и разгибаются.
В результате в электрической цепи создается импульс высокого напряжения, который передается на дроссель и зажигает люминесцентную лампу, провоцируя ее стойкое белое свечение.
Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе. Если в тепле она работает безотказно, то в холоде не светит.
Для обеспечения продолжительного ресурса эксплуатации пускателя требуется наличие конденсатора. Его задача заключается в сглаживании экстра токов, благодаря чему осуществляется размыкание электродов прибора. Без наличия конденсатора электроды просто спаяются между собой.
Конденсатор имеет емкость от 0,003 до 0,1 мкФ. Зачастую в конструкции люминесцентных ламп, особенно с патроном Е27, предусматривается подключение двух последовательно соединенных конденсаторов емкостью каждого по 0,01 мкФ.
Это необходимо для компенсации создания радиопомех, которые обычно наблюдаются при работе ламп дневного света.
Специфика работы стартера требует соблюдение определенного напряжения. В случае его падения до уровня 80% лампочка не загорится, поскольку пускатель не сможет правильно ее прогреть.
Обратите внимание
Дело в том, что напряжение зажигания самого стартера должно быть ниже, чем напряжение в сети, к которой он подключен.
При этом рабочее напряжение вызывающее свечение самой люминесцентной лампы должно быть ниже, чем у пускателя.
Срок службы стартера и признаки его скорого выхода из строя
Стартеры для ламп выходят из строя чаще, чем непосредственно сама лампочка. По мере применения пускового устройства напряжение образующее тлеющий разряд снижается.
Как следствие может наблюдаться замыкание между электродами стартера даже при работе лампы, когда она уже издает свет. Как следствие лампочка гасится и снова зажигается, что человеческим глазом воспринимается как мерцание.
Симптомом начала таких проблем является легкое мигание при длительной работе, или вначале до набора максимального свечения.
В это время внутри стартера электроды то присоединяются, то разъединяются. Как только контакт между ними прекращается лампа горит. Подобные блики не только мешают, но и опасны для других элементов лампы, в первую очередь наблюдается перегрев дросселя. Может выйти из строя и сама колба.
Люминесцентные лампочки предлагаются в различных форматах. Лампы, применяемые в обыкновенных люстрах и светильниках, сделаны под цоколь Е14 и Е27.
В этом случае стартер прячется прямо в корпусе лампочки, поэтому как только он выходит из строя, то меняется весь механизм. Для вытянутых ламп, устанавливаемых в потолочные светильники, применяются отдельные пусковые устройства.
Такие стартеры для ламп нужно своевременно менять, чтобы предотвратить выход из строя всей осветительной системы.
Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше.
Стартеры для ламп являются довольно специфической конструкцией, главный недостаток которой в низкой надежности. Зачастую устройство отказывает, в результате чего возникает фальстарт в виде несколько вспышек света при нажатии на включатель.
Как следствие после короткого мерцания полноценное свечение так и не происходит. Любые неполадки пускателя негативно сказываются на ресурсе самой лампочки.
Важно
Проблемы с запуском снижают и коэффициент полезного действия осветительного оборудования, увеличивая потребление энергии, что сопровождается малым количеством выделяемого света.
По мере эксплуатации рабочее напряжение стартера снижается, в то время как у самой лампы повышается. Такая несовместимость провоцирует возникновение тлеющего разряда даже в том случае, если лампочка уже светит, что тоже провоцирует мигание. Со временем стартер может терять в уровне эффективности разогрева лампы.
В результате нажимая на выключатель, свет просто не зажигается. Чтобы все заработало, приходится по несколько раз жать на клавишу. При каждом срабатывании лампа понемногу прогревается, пока не достигнет достаточной температуры для свечения. При этом создается впечатление, что вся проблема в самом выключателе, а точнее его контактами.
По этой причине осуществляется сильное надавливание на его клавишу.
Критерии выбора
Выбирая стартер под определенный тип ламп, требуется в первую очередь обращать внимание на следующие показатели:
- Ток зажигания.
- Напряжение.
- Уровень мощности.
- Тип применяемого конденсатора.
Что касается тока зажигания, он должен быть выше рабочего напряжение лампы, но не ниже напряжения в сети питания. Только при соблюдении таких условий освещение будет работать корректно.
Базисное напряжение может составлять 127 или 220В. При включении в одноламповую схему применяется устройство на 220В. Для двухламповых систем используются стартеры на 127В
Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера.
В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт.
Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее.
В некоторых странах, в том числе и России, для обозначения параметров стартера применяется маркировка. На поверхность корпуса устройства наносится буквенно-цифровая надпись ХХ-С-ХХХ. Сначала идут две цифры, которые указывают на мощность устройства.
Потом указывается буква «С», обозначающая что применяемый прибор это стартер. Дело в том, что при незнании пускатель можно спутать с конденсатором или другими устройствами, поэтому присутствие в маркировке «С» позволяет избежать подобных ошибок.
Сразу после буквы идет трехзначное число, которое указывает на напряжение, применяемое для работы. Это может быть 127 или 220В.
Многие производители, поставляющие свою продукцию на рынки всего мира, пр
Устройство и схема включения люминесцентной лампы
Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).
Устройство и описание ЛЛ
Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.
Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.
Принцип работы ЛЛ
Стартерная схема включения люминесцентных ламп работает следующим образом.
- На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
- При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
- Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
- Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.
Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.
Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.
Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.
Бездроссельное включение люминесцентных ламп: схемы
Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).
Как запускается ЛЛ с ЭПРА
Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.
Достоинства электронной схемы запуска:
- возможность пуска с любой временной задержкой;
- не нужны массивный электромагнитный дроссель и стартер;
- отсутствие гудения и моргания ламп;
- высокая светоотдача;
- легкость и компактность устройства;
- больший срок эксплуатации.
Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.
Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.
Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.
Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.
ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.
Преимущества современных ЭПРА следующие:
- плавное включение;
- экономичность работы;
- сохранение электродов;
- исключение мерцания;
- работоспособность при низкой температуре;
- компактность;
- долговечность.
Недостатками являются более высокая стоимость и сложная схема зажигания.
Применение умножителей напряжения
Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.
После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.
ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.
Бесстартерная схема включения люминесцентных ламп
Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.
Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.
Как включить сгоревшую лампу?
Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.
Заключение
Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.
Как проверить дроссель — 5 причин неисправности балласта ламп дневного света. Проверка ПРА и ЭПРА отличия.
Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.
Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?
Для чего нужен дроссель
Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.
Вот так она выглядит в разрезе.
В схемах балласт нужен для трех функций:
- контроля тока, чтобы он не превышал номинала
- образование за счет индуктивности кратковременного импульса повышенного напряжения
- сглаживания возможных пульсаций в сети 220В
Подключается он последовательно, а параллельно ему монтируется стартер.
Стартер необходим для поджига лампы.
Как работает лампа дневного света
Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.
После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.
Из-за нагрева форма электрода меняется и происходит его замыкание.
В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.
У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.
От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.
Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.
Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:
- подача 220В из розетки и замыкание контактов стартера
- разогрев спиралей электродов
- размыкание контактов стартера
- подача высоковольтного импульса от дросселя
- образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы
Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:
- сама лампочка
- стартер
- дроссель
При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.
Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?
Как проверить дроссель ПРА без мультиметра
Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.
О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.
Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.
В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.
Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.
Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.
- если не горит совсем – в балласте обрыв, дроссель неисправен
- горит ярко – в балласте межвитковое короткое замыкание
- моргает или светит в половину накала – дроссель исправен
Проверка балласта ПРА мультиметром
Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.
Повреждение дросселя может быть пяти видов:
- замыкание разных обмоток
- замыкание витков в одной обмотке
- неисправность магнитопровода
- пробой на корпус
Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.
Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.
При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.
Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.
Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:
а на выходе свечения нет:
то считайте что обрыв вы нашли.
Замыкание обмоток
Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.
Но изоляция может высохнуть или нарушиться.
Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.
Межвитковое замыкание
Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.
Найти такое повреждение очень трудно, даже при помощи мультиметра.
Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.
Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.
Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:
- мощностью на 20Вт — сопротивление от 55 до 60 Ом
- мощностью на 40Вт – сопротивление от 24 до 30 Ом
- мощностью на 80Вт – сопротивление от 15 до 20 Ом
Магнитопровод
Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.
При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.
Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.
Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.
Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.
Пробой на корпус
О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.
Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.
Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.
Повреждение электронного дросселя
А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.
Все современные модели выпускаются с электронными дросселями без стартеров.
ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.
Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.
Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.
Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.
Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.
Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.
Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.
И сравнивайте с теми фактическими замерами, которые у вас получились.
В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.
Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.
Схемы Подключения Люминесцентных Ламп Без Дросселя
При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.
Рассмотрим несколько вариантов.
Тандемное подключение Ниже показана схема, где две лампы люминесцентного типа включены последовательно.
Подключение лампы дневного света
ЭПРА для двух ламп дневного света Преимущества электронных балластников описаны в видео. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры ЭПРА.
По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами.
Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки.
Возможно, перегорела одна из нитей электродов. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.
Схема включения люминесцентных ламп дневного света через электромагнитный дроссель и стартер.
Устройство люминесцентных ламп
Второй контакт группы направляется на второй стартер. Это тоже люминесцентные лампы, только форма другая. В таком режиме лампа накаливания едва светится. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.
Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему.
Это не идеальное решение, а скорее выход из ситуации.
По мере износа устройства звук нарастает.
Принцип работы люминесцентного светильника Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания.
Если разряд в колбе не возник, процесс подогрева и поджига повторяется несколько раз.
За счет резкого скачка очень быстро разогреваются электроды.
схема люминесцентного светильника с 1 лампой
Основные функции
При появлении устойчивого разряда сопротивление между электродами на противоположных концах колбы падает и ток протекает по цепи дроссель-электроды.
Работа ЭПРА может осуществляться в двух режимах: с предварительным подогревом электродов; с холодным запуском.
Автор: Engineer Схемы подключения люминесцентных ламп без дросселя и стартера Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Пока лампа погашена, напряжения на удвоителе VD1, VD2, С2, С3 достаточно для открывания стабилитронов, поэтому на электродах лампы присутствует удвоенное напряжение сети. В таких случаях только вам решать стоит ли продлевать жизнь умершим светильникам дневного света или бежать в магазин за новыми.
Лампу накаливания использовать на Вт, как показано на фото: Альтернативой описанным способам является использование платы от энергосберегающих ламп. ЭПРА, размещенный в цоколе В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств. Указывается мощность ламп и их количество, а также технические характеристики устройства. Для её работы также не нужен дроссель и стартер.
Как правило, первой наматывают первичную обмотку, затем главную вторичную на схеме обозначена, как III. Схема ее подключения есть справа. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами с перегоревшими нитями накала. Он наступает после того, как испарилась вся ртуть.
Классическая схема включения люминесцентных ламп
Возможно вам понравится одна из вариаций рассмотренной схемы. Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков. Наиболее дорогостоящий элемент схемы — дросселя.
Соответственно это может привести к несчастным случаям. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны. При включении более мощных трубок емкость конденсаторов стоит увеличить. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов.
Это аналогичный осветительный прибор, только сильно видоизмененный. По ней сразу понятно, сколько ламп к нему подключается. В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. Лампа работает.
СПОСОБ ПОДКЛЮЧЕНИЯ ЛАМПЫ ДНЕВНОГО СВЕТА БЕЗ ДРОССЕЛЯ
Схема подключения люминесцентных ламп без стартера
Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.
Для работы больше никаких устройств не надо.
Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.
Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.
Читайте дополнительно: Сроки измерения сопротивления заземляющих устройств
Принцип работы газоразрядных люминесцентных ламп
Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Схема подключения люминесцентных ламп с дросселем
Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.
В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Проверка стартера люминесцентной лампы
ФЛУОРЕСЦЕНТНЫЕ СВЕТИЛЬНИКИ Освежающий праймер по замене стартера.
Презентация на тему: «ФЛУОРЕСЦЕНТНЫЕ СВЕТИЛЬНИКИ. Освежающий праймер по замене стартера» — Стенограмма презентации:
1 ФЛУОРЕСЦЕНТНЫЕ СВЕТИЛЬНИКИ Освежающий праймер по замене стартера
2 Большая картинка
3 Внутреннее устройство стартера
4 Пошаговое руководство для начинающих
5 Пластиковые стартеры отозваны Информационное сообщение ISE 043-07 Известно, что стартеры рассыпаются, что может привести к поражению электрическим током. ЕСЛИ ОБНАРУЖЕН ПЛАСТИКОВЫЙ СТАРТЕР, УВЕДОМЛЕНИЕ ОТДЕЛЕНИЯ ПО ЭЛЕКТРОБЕЗОПАСНОСТИ КОМАНДЫ И Попросите помощника электрика снять стартер.СТАРТЕРЫ В ПЛАСТИКОВЫХ КОРПУСАХ, ОБСЛУЖИВАЮЩИЕ НА СУДОВЫХ ФЛУОРЕСЦЕНТНЫХ ОСВЕЩЕНИЯХ, ДОЛЖНЫ БЫТЬ ЗАМЕНЕНЫ СТАРТЕРАМИ В МЕТАЛЛИЧЕСКИМ КОЖУХЕ ВО ВРЕМЯ РЕАЛИЗАЦИИ РЕМОНТА. ВСЕ ПЛАСТИКОВЫЕ СТАРТЕРЫ В ПОСТАВКЕ СУДНА ДОЛЖНЫ БЫТЬ ВОЗВРАТЫ В КАЧЕСТВЕ ДЕФЕКТА ПЕРВОЙ КАТЕГОРИИ И ДОКУМЕНТИРОВАТЬСЯ В ОТЧЕТЕ О ДЕФИЦИТЕ КАЧЕСТВА ПРОДУКЦИИ (PQDR) (СТАНДАРТНАЯ ФОРМА 368) ВМЕСТЕ С ЛЮБЫМИ ПЛАСТИКОВЫМИ СТАРТЕРАМИ, ПОЛУЧЕННЫМИ ТАМ ПОЛУЧЕННЫМИ.
6 Замена стартера ЗДЕСЬ ПОШАГОВАЯ ИНФОРМАЦИЯ ПО ЗАМЕНИТЕ СТАРТЕРА: (1) ВЫКЛЮЧИТЕ ОСВЕЩЕНИЕ ПЕРЕКЛЮЧАТЕЛЕМ (ПРИМЕЧАНИЕ, ВЫКЛЮЧАТЕЛЬ ДОЛЖЕН НАХОДИТЬСЯ ВМЕСТИМОСТИ ПРИ РАБОТЕ НА СТАРТЕРЕ, ИЛИ ВЫ ДОЛЖНЫ ОТКЛЮЧИТЬ ЦЕПЬ).(2) СНИМИТЕ ЛЮМИНОВУЮ ЛАМПУ (ЭТА ФИЗИЧЕСКОЕ РАЗРЫВ ЦЕПИ МЕЖДУ ЭЛЕКТРИЧЕСКИМ ИСТОЧНИКОМ И СТАРТЕРОМ) (3A) NSWC-SSES PHILADELPHIA PA / 161433Z 07 АВГУСТА — НОТАЛЬНОЕ ЗАМЕЧАНИЕ. ОТДЕЛЕНИЕ ПО БЕЗОПАСНОСТИ И Попросите помощника электрика СНЯТЬ СТАРТЕР ». (3B) В СООТВЕТСТВИИ С COMNAVSURFOR 230104Z 07 АВГУСТА (НОТАЛИЯ) «ПРИ ЗАМЕНЕ ПЛАСТИКОВЫХ СТАРТЕРОВ ОБЯЗАТЕЛЬНО НОСИТЕ РЕЗИНОВЫЕ ПЕРЧАТКИ И ОЧКИ». (3C) ОСТОРОЖНО СНИМИТЕ СТАРОЙ СТАРТЕР, ПОВОРАЧИВАЯ ПРОТИВ ЧАСОВОЙ СТРЕЛКИ И ТЯНЯЯ.(4) ВСТАВЬТЕ НОВЫЙ СТАРТЕР, ВЫРАВНИВАЯ СТАРТОВЫЕ СТОЙКИ С ОТВЕРСТИЯМИ ДЛЯ ФИКСИРОВКИ, А ЗАТЕМ НАЖИМАЯ, ПОВОРАЧИВАЯ ПО ЧАСОВОЙ СТРЕЛКЕ, ЧТОБЫ ЗАБЛОКИРОВАТЬ ЕГО. (5) ЗАМЕНИТЕ ЛАМПУ И ПРОВЕРЬТЕ СТАРТЕР, ВКЛЮЧАЯ ВЫКЛЮЧАТЕЛЬ.
люминесцентных ламп
люминесцентных лампВ этих статьях слово «лампа» означает люминесцентную лампу. Это не значит арматура (штука с патронами для ламп).
Для включения люминесцентной лампы должен быть подан высоковольтный импульс электричества. отправлено через него.Как только лампа загорится, материал внутри трубки становится хорошим проводник электричества — слишком хороший — а затем какой-то способ предотвратить слишком много ток, протекающий через лампочку, должен быть обеспечен. Иначе лампа горит примерно через секунду.
Балласт обеспечивает начальный скачок напряжения, а затем ограничивает ток. На протяжении большей части 20–900–24–-го века балласты представляли собой черные металлические коробки в корпусе лампы, их внутренности были сконструированы наподобие электрического трансформатора из множества тонких листов специальной стали.Такие балласты называются магнитными балластами. К сожалению, листы перемещаются очень мало, поскольку через балласт проходит переменный ток. Это движение создает гул с частотой 120 Гц. Магнитные балласты, а не сами лампы, являются источником шума, ранее связанного с люминесцентными лампами.
Транзисторы сделали возможным другой тип балласта, электронный балласт, который потребляет примерно на 40% меньше энергии, чем магнитный балласт. Электронный балласт не гудит. Он может повысить частоту тока, идущего к лампе, до более 20000 Гц, что выше диапазона человеческого слуха, что также устраняет мерцание, которое раздражает многих людей, и увеличивает светоотдачу.Электрик может дооснащать некоторые старые приборы электронным балластом.
К 2001 году продавалось больше электронных балластов. в США, чем магнитные. Закон об энергетической политике 2005 г. запрещал производство магнитных балластов после 1 января 2009 г., хотя замены по-прежнему будут доступны только для домашнего использования.
Балласты обычно делаются так, чтобы один балласт питал все лампы в приспособление, как правило, два, хотя целых четыре.
Существует три основных типа балласта: предварительный нагрев, быстрый запуск и мгновенный запуск.Электронные пускорегулирующие аппараты с программным запуском) В общем, каждый тип пускорегулирующего устройства соответствует типу люминесцентной лампы.
Тип балласта, который требуется лампе, зависит от того, как она запускается. нить. очень похоже на нить в лампе накаливания. Когда лампа запускается, волокна нагреваются, испаряя жидкую ртуть внутри трубки. два соединения на каждом конце предварительного нагрева, требующего стартера) или быстрый старт.
В лампе мгновенного запуска требуется только одно подключение на каждом конце трубка.(Некоторые двухканальные лампы среднего размера T8 могут использоваться с пусковым балластом. Когда они есть, приспособление закорачивает два штифта вместе, чтобы стать одним штифтом.) Электрический импульс, запускающий лампу, имеет гораздо более высокое напряжение, чем он находится в лампе быстрого запуска. Насколько высока, зависит от длины лампы.
Важной характеристикой балласта является его балласт. фактор. Фактор балласта — это доля начальных люменов, которые дает лампа, если она питается через этот балласт, по сравнению с люменами, которые та же лампа производит при питании от эталонного балласта.Балластный коэффициент — это не просто характеристика балласта, он также зависит от подключенных ламп. Балластные коэффициенты варьируются от 0,70 до 1,20.
Снижение яркости для высококачественной лампы T8.
Яркость измеряется в люменах.
Новая люминесцентная лампа может не достичь максимальной яркости в течение нескольких часов. А начальная яркость лампы измеряется после лампа горела 100 часов.
После первоначального резкого снижения на несколько процентов яркость медленно снижается.В 40% от номинального срока службы, большинство ламп сохранят не менее 90% своего первоначального срока службы. номинальная яркость.
На яркость влияет балластный фактор и температура. Т8 и Т12 становиться ярче до температуры окружающей среды около @ градусов и расти постепенно тускнеют при повышении температуры. Лампы Т5 достигают своего пика светимость около @ градусов. Помните, что температура в приспособлении может быть намного выше, чем у воздуха в помещении.
По сравнению с лампами накаливания люминесцентные лампы долговечны.Многие из них рассчитан на 20 000 или даже 30 000 часов жизни (что составляет около 3 ½ лет).
Срок службы люминесцентных ламп, указанных производителем, основан на эксплуатационных характеристиках. группы ламп в цикле 3 часа включения и 20 минут выключения, пока все лампы потерпеть поражение. Номинальный срок службы — это время, по истечении которого половина лампочек вышла из строя. Лампа оставленный постоянно, вероятно, прослужит дольше своего номинального срока службы. Чем чаще флуоресцентный включается и выключается, чем короче его срок службы и тем быстрее он гаснет. Тем не менее, когда стоимость электроэнергии уравновешивается стоимостью лампы, люминесцентное освещение дешевле выключить, если оно вам не понадобится для 15 минут и более.Для ламп доступны специальные долговечные балласты. который будет часто включаться и выключаться.
www.consumerenergycenter.org/myths/fluorescent_lights.html
Обычно доступны специальные балласты. Некоторые компактные флуоресцентные лампы поставляются с такие балласты буитилин.
Видимый свет, излучаемый флуоресцентными лампами, исходит от порошкового покрытия люминофоры внутри трубки, чем-то напоминающие люминофоры внутри лица старомодного цветного телевизора.Цвет испускаемого света трубкой манипулируют, меняя смесь люминофоров. Цвет баланс описывается терминами, подобными приведенным ниже, с указанием коррелированной цветовой температуры (CCT) и индекса цветопередачи (CRI). Используются многие другие цветовые обозначения.
Словесные описания | Название (аббревиатура) | CCT | CRI |
---|---|---|---|
«Теплый» (коррелированные цветовые температуры ниже 3200 кельвинов) | Лампа накаливания люминесцентная (IF) | 2750 | 89 |
Deluxe теплый белый (WWX) | 2900 | 82 | |
Теплый белый (WW) | 3000 | 52 | |
Между (от 3200 до 4000 кельвинов) | Белый (Ш) | 3450 | 57 |
Натуральный белый (N) | 3600 | 86 | |
«Холодный» (коррелированные цветовые температуры выше 4000 кельвинов) | Deluxe холодный белый (CWX) | 4100 | 89 |
Lite белый (LW) | 4150 | 48 | |
Холодный белый (CW) | 4200 | 62 | |
Дневной свет (D) | 6300 | 76 | |
Дневной свет Deluxe (DX) | 6500 | 88 | |
Octron Skywhite (Сильвания) | 8000 | 88 |
В 1990-е производители начали добавлять числовые код, описывающий цвет лампы, к строке символов, определяющих модель, заменяющая обозначения «CW», «WWX» и др.В этом коде «70» означает CRI от 70 до 79; «80» означает CRI от 80 до 89 и так далее. В дальнейшем, ноль можно заменить двумя цифрами — тысячами и сотнями. места ЧКТ лампы. Так, например, «741» будет означать, что у лампы есть индекс цветопередачи. в 70-х и CCT 4100. Некоторые добавляют префикс «RE», чтобы указать на редкоземельные элементы. были использованы люминофоры.
Специальные цвета доступны для некоторых целей, например, для освещения аквариумов, выращивание растений, уничтожение микробов, дубление звездочек и создание флуоресцентных вещества флуоресцируют (последние три излучают значительное количество ультрафиолета легкий).
Формы, размеры и основания
Самая распространенная форма люминесцентных ламп — это прямая трубка. Диаметр длина трубки описывается с точностью до восьмых дюйма, как для ламп накаливания, поэтому Люминесцентная лампа диаметром 1 дюйм (восемь восьмых) — это Т8. Размеры варьируются от Т2 до Т17.
Лампу накаливания мощностью 5, 25 или 300 Вт можно вкрутить в Edison, и все они будут работать так, как должны. Одна розетка; любой мощность. Это не относится к люминесцентным лампам, потому что лампа должна соответствовать балласт в приспособлении.Разная длина связана с разными мощность; например, 4-футовые лампы были 40 Вт (в одно время).
Номинальная длина ламп Т12 и Т8 не измеряется на лампе, а приспособление: это расстояние между внутренними гранями патрона лампы Розетки. Реальная длина лампы на долю дюйма короче.
Номинальная длина лампы T5, однако, почти на 2 дюйма больше, чем у лампы. реальная сквозная длина лампочки.
На концах трубки есть основания, которые соединяются с гнездами в приспособлении.Большинство оснований имеют два контакта и называются двухштырьковыми основаниями.
10 советов по снятию напряжения глаз с компьютера
Гэри Хейтинг, OD, и Ларри К. Ван, OD
Кажется, в наши дни все смотрят в экран компьютера, телефона или другого цифрового устройства. И это вызывает серьезную проблему, называемую цифровым перенапряжением глаз.
Как помочь глазам? Цифровые защитные очки для экрана.
Недавнее исследование, спонсируемое Vision Council, показало, что 59 процентов людей, которые регулярно используют компьютеры и цифровые устройства, испытывают симптомы цифрового напряжения глаз (также называемого компьютерным напряжением глаз или синдромом компьютерного зрения).
Симптомы синдрома компьютерного зрения включают: усталость и дискомфорт в глазах, сухость глаз, головные боли, затуманенное зрение, боль в шее и плечах, подергивание глаз и красные глаза.
Вот 10 простых шагов, которые вы можете предпринять, чтобы снизить риск перенапряжения глаз и других распространенных симптомов синдрома компьютерного зрения (CVS):
1.Пройдите комплексное обследование зрения.
Ежегодное плановое комплексное обследование глаз — это самое важное, что вы можете сделать для предотвращения или лечения проблем с компьютерным зрением. Во время обследования обязательно сообщите офтальмологу, как часто вы используете компьютер и цифровые устройства на работе и дома.
Измерьте, насколько далеко ваши глаза находятся от экрана, когда вы сидите за компьютером, и принесите это измерение на свое обследование, чтобы окулист мог проверить ваши глаза на определенном рабочем расстоянии.
НУЖЕН ОСМОТР ГЛАЗ? Найдите ближайшего к вам глазного врача и запишитесь на прием.
2. Используйте подходящее освещение.
Усталость глаз часто возникает из-за чрезмерно яркого света от солнечного света, проникающего через окно, или резкого внутреннего освещения. Когда вы используете компьютер, ваше окружающее освещение должно быть примерно вдвое слабее, чем обычно в большинстве офисов.
Удалите внешний свет, закрыв шторы, шторы или жалюзи. Уменьшите внутреннее освещение, используя меньше лампочек или люминесцентных ламп, или используйте лампы и лампы меньшей интенсивности.
Также, если возможно, расположите экран компьютера так, чтобы окна были сбоку, а не спереди или сзади.
Многие пользователи компьютеров чувствуют себя лучше, если не работают при люминесцентных лампах над головой. По возможности выключите люминесцентные лампы в офисе и используйте торшеры, которые обеспечивают непрямое «мягкое белое» светодиодное освещение.
Иногда переключение на флуоресцентное освещение «полного спектра», которое более близко соответствует световому спектру, излучаемому солнечным светом, может быть более удобным для работы за компьютером, чем обычные люминесцентные лампы.Но даже полноспектральное освещение может вызвать дискомфорт, если оно слишком яркое.
Попробуйте уменьшить количество люминесцентных ламп, установленных над рабочим местом вашего компьютера, если вас беспокоит верхнее освещение.
3. Минимизируйте блики.
Блики света, отражающиеся от стен и готовых поверхностей, а также отражения на вашем компьютере экран также может вызвать напряжение глаз компьютера. Подумайте о том, чтобы установить на свой дисплей антибликовый экран и, если возможно, покрасить ярко-белые стены в более темный цвет с матовым покрытием.
Если вы носите очки, покупайте линзы с антибликовым (AR) покрытием. Покрытие AR уменьшает блики, сводя к минимуму количество света, отражающегося от передней и задней поверхностей линз очков.
4. Обновите свой дисплей.
Если вы еще этого не сделали, замените старый ламповый монитор (называемый электронно-лучевой трубкой или ЭЛТ) плоским светодиодным (светоизлучающим диодом) экраном с антибликовой поверхностью.
Старомодные ЭЛТ-экраны могут вызывать заметное «мерцание» изображения, которое является основной причиной утомления глаз компьютера.Даже если это мерцание незаметно, оно все равно может способствовать утомлению глаз и утомлению во время работы за компьютером.
Чтобы не утомлять глаза, убедитесь, что вы используете хорошее освещение и сидите на достаточном расстоянии от экрана компьютера.
Осложнения из-за мерцания еще более вероятны, если частота обновления монитора меньше 75 герц (Гц). Если вам необходимо использовать ЭЛТ на работе, настройте параметры дисплея на максимально возможную частоту обновления.
При выборе нового плоского дисплея выберите экран с максимально возможным разрешением.Разрешение связано с «шагом точки» дисплея. Как правило, дисплеи с меньшим шагом точек дают более четкое изображение. Выберите дисплей с шагом точки 0,28 мм или меньше.
Также выберите относительно большой дисплей. Для настольного компьютера выберите дисплей с диагональю экрана не менее 19 дюймов.
5. Отрегулируйте настройки дисплея компьютера.
Регулировка настроек дисплея компьютера может помочь снизить напряжение глаз и утомляемость. Как правило, эти настройки полезны:
Яркость: Отрегулируйте яркость дисплея, чтобы она была примерно такой же, как яркость окружающей рабочей станции.В качестве теста посмотрите на белый фон этой веб-страницы. Если это похоже на источник света, значит, он слишком яркий. Если он кажется тусклым и серым, возможно, он слишком темный.
Размер и контраст текста: Отрегулируйте размер и контраст текста для удобства, особенно при чтении или составлении длинных документов. Обычно черный принт на белом фоне — лучшее сочетание для комфорта.
Цветовая температура: Это технический термин, используемый для описания спектра видимого света, излучаемого цветным дисплеем.Синий свет — это коротковолновый видимый свет, который вызывает большую нагрузку на глаза, чем более длинноволновые оттенки, такие как оранжевый и красный. Снижение цветовой температуры вашего дисплея снижает количество синего света, излучаемого цветным дисплеем, для большего комфорта при длительном просмотре.
Реклама
Почти 70% взрослых американцев испытывают некоторую форму цифрового напряжения глаз из-за длительного использования электронных устройств. Для борьбы с этими эффектами Clearly предлагает линейку линз для цифровой защиты, которые предлагают экран, уменьшающий блики и фильтрующий синий свет от цифровых экранов и искусственного света.
Мы живем в цифровом мире, и увеличенное экранное время быстро становится нормой в нашей повседневной жизни. Длительное использование цифровых устройств, включая компьютеры, планшеты и
смартфоны, увеличивает ваше воздействие вредного синего света, который может привести к напряжению глаз, нечеткости зрения, головным болям и проблемам со сном. Уменьшите риск заражения с помощью регулярных перерывов и цифровых защитных очков.
Купите новые линзы и расслабьтесь.
6. Моргайте чаще.
Мигание очень важно при работе за компьютером; мигание увлажняет глаза, предотвращая сухость и раздражение.
Когда люди смотрят на экран, люди моргают реже — примерно на треть реже, чем обычно, — и многие мигания, выполняемые во время работы за компьютером, являются лишь частичным закрытием крышки, согласно исследованиям.
Слезы, покрывающие глаза, испаряются быстрее во время длительных фаз без мигания, и это может вызвать сухость глаз. Кроме того, воздух во многих офисных помещениях сухой, что увеличивает скорость испарения слез, повышая риск возникновения проблем с сухостью глаз.
Если вы испытываете симптомы сухого глаза, спросите своего глазного врача о искусственных слезах, которые можно использовать в течение дня.
Между прочим, не путайте смазывающие глазные капли с каплями, созданными для «устранения красного цвета». Последние действительно могут улучшить ваши глаза — они содержат ингредиенты, которые уменьшают размер кровеносных сосудов на поверхности ваших глаз, чтобы «отбелить» их. Но они не обязательно предназначены для уменьшения сухости и раздражения.
Чтобы снизить риск появления сухости глаз во время работы за компьютером, попробуйте следующее упражнение: каждые 20 минут моргайте 10 раз, закрыв глаза, как при засыпании (очень медленно).Это поможет вам снова увлажнить глаза.
7. Тренируйте глаза.
Другая причина усталости глаз компьютера — это усталость от фокусировки. Чтобы снизить риск утомления глаз, постоянно сосредотачиваясь на экране, отводите взгляд от компьютера хотя бы каждые 20 минут и смотрите на удаленный объект (не менее 20 футов) не менее 20 секунд. Некоторые глазные врачи называют это «правилом 20-20-20». Взгляд вдаль расслабляет фокусирующие мышцы глаза и снижает утомляемость.
Еще одно упражнение — смотреть вдаль на объект в течение 10-15 секунд, а затем смотреть на что-то вблизи в течение 10-15 секунд.Затем посмотрите на далекий объект. Сделайте это 10 раз. Это упражнение снижает риск того, что ваши глаза могут «заблокироваться» (состояние, называемое спазмом аккомодации) после продолжительной работы за компьютером.
Оба этих упражнения снизят риск компьютерной нагрузки на глаза. Кроме того, не забывайте часто моргать во время упражнений, чтобы снизить риск возникновения синдрома сухого глаза, связанного с компьютером.
8. Делайте частые перерывы.
Чтобы снизить риск синдрома компьютерного зрения и боли в шее, спине и плечах, делайте частые перерывы на экран в течение рабочего дня (хотя бы один 10-минутный перерыв каждый час).
Во время этих перерывов вставайте, двигайтесь и вытягивайте руки, ноги, спину, шею и плечи, чтобы уменьшить напряжение и мышечную усталость.
9. Измените свою рабочую станцию.
Если вам нужно переключаться между распечатанной страницей и вашим На экране компьютера поместите написанные страницы на подставку для копий рядом с экраном.
Правильно осветите подставку для копий. Вы можете использовать настольную лампу, но убедитесь, что она не светит ваши глаза или на экран вашего компьютера.
Плохая осанка также способствует развитию синдрома компьютерного зрения. Отрегулируйте рабочее место и стул на нужной высоте, чтобы ноги удобно лежали на полу.
Расположите экран компьютера на расстоянии от 20 до 24 дюймов от глаз. Центр экрана должен быть примерно на 10-15 градусов ниже ваших глаз для удобного расположения головы и шея.
10. Рассмотрим компьютерные очки.
Для максимального удобства работы за компьютером вам может быть полезно попросить офтальмолога изменить рецепт на очки для создания индивидуальных компьютерных очков.Это особенно верно, если вы обычно носите контактные линзы, которые могут стать сухими и неудобными при длительном просмотре экрана.
Компьютерные очки также являются хорошим выбором, если вы носите бифокальные или прогрессивные линзы, поскольку эти линзы обычно не оптимальны для расстояния до экрана вашего компьютера.
Кроме того, вы можете рассмотреть фотохромные линзы или слегка тонированные линзы для компьютерных очков, чтобы уменьшить воздействие потенциально опасного синего света, излучаемого цифровыми устройствами.За подробностями и советом обратитесь к своему офтальмологу.
ЧУВСТВУЕТЕ НА КОМПЬЮТЕРЕ НАРУШЕНИЕ ГЛАЗ? Найдите ближайшего к вам окулиста. >
Примечания и ссылки
Частота мигания, амплитуда мигания и целостность слезной пленки во время задач терминала с динамическим визуальным дисплеем. Текущие исследования глаз . Март 2011.
Компьютерные рабочие станции. Министерство труда США, Управление по охране труда.Доступно на веб-сайте OSHA. Июнь 2010 г.
Компьютерная эргономика. Центры США по контролю и профилактике заболеваний. Доступно на веб-сайте CDC. Июнь 2010 г.
По данным исследования NIOSH, стратегические перерывы на отдых уменьшают дискомфорт при ВДТ, не снижая продуктивности. Национальный институт охраны труда и здоровья (NIOSH). Опубликовано на сайте CDC / NIOSH. Февраль 2009 г.
Дополнительные перерывы и упражнения на растяжку для операторов ввода данных: дополнительное полевое исследование. Американский журнал промышленной медицины .Июль 2007.
Аспекты гигиены труда при работе с видеотерминалами. Окружающая среда и медицина труда . 3-е изд. 1998. Philadelphia: Lippincott-Raven, pp. 1333-1344.
Страница обновлена в июне 2019 г.
КОМПЛЕКС ФЛУОРЕСЦЕНТНОГО СВЕТА, НО ПРОБЛЕМЫ ЛЕГКО УСТРАНИТЬ
Люминесцентные лампы более эффективны, чем лампы накаливания, но и сложнее.
В результате простая замена лампы — фактически лампы — при возникновении проблем с люминесцентным светом не всегда может исправить ситуацию.К счастью, устранить проблемы с люминесцентными лампами не так уж сложно, а ремонт обычно легко произвести.
Если люминесцентная лампа не горит и не мерцает при включении, сначала убедитесь, что прибор вставлен в розетку, не перегорел ли предохранитель или сработал автоматический выключатель.
Если это не помогает, попробуйте осторожно пошевелить трубкой в гнездах, покачивая ее вперед-назад и из стороны в сторону. Это удалит мельчайшие отложения коррозии или пыли, которые иногда могут препятствовать прохождению электричества.Обязательно сделайте это, когда выключатель света выключен.
Мерцание или завихрение света в новых люминесцентных лампах является нормальным явлением в первые 100 часов работы.
Если у более старой трубки проявляются эти симптомы, выключите переключатель, снимите трубку, затем тщательно очистите концы. Формы патронов различаются, но процесс снятия трубки одинаков.
Чтобы снять прямую люминесцентную лампу, поверните ее на четверть оборота в любом направлении и вытащите лампу из патронов прямо вниз.Если трубка круглая, просто отсоедините ее от держателей и вытащите из единственного гнезда.
Чтобы очистить концы трубки, протрите выступающие из них штифты мелкозернистой наждачной бумагой, затем сотрите всю пыль тканью или бумажным полотенцем. Если какие-либо булавки погнуты, осторожно сожмите их плоскогубцами, чтобы выпрямить их.
При осмотре концов осмотрите части стекла. Коричневатый оттенок является нормальным для пробирок, которые использовались некоторое время. Трубки с почерневшими концами обычно изнашиваются.
Если только один конец трубки выглядит черным, переверните трубку встык и переустановите ее после очистки штифтов. Если трубка почернела только с одной стороны, поверните ее после очистки и установите заново так, чтобы почерневшая часть повернулась на 180 градусов от своего прежнего положения.
Трубки, почерневшие с обоих концов, могут прослужить довольно долго. Итак, если лампа по-прежнему неисправна после того, как вы ее почистили и переставили, проверьте состояние других компонентов лампы, прежде чем покупать новую.
Первым проверяемым компонентом является стартер. Это небольшой цилиндр, примерно 2 дюйма в длину и обычно серебристого цвета. Его цель — кратковременно накапливать ток при включении света и затем высвобождать его после зажигания трубки.
Стартер отвечает за кратковременную задержку освещения при включении некоторых люминесцентных ламп. Если он неисправен, это также может быть причиной первоначального мерцания при нагревании трубки или полного отсутствия света.
Не все люминесцентные лампы имеют стартеры, но если они есть у вас, то они обычно располагаются рядом с розеткой для лампы.
Фонари с более чем одной лампой имеют отдельный стартер для каждой. Если вы не нашли стартер, отключите свет от сети или отключите питание, затем снимите дефлектор над трубкой и посмотрите туда, или разберите основание, если светильник настольный или напольный.
Чтобы снять стартер, вдавите его внутрь и поверните против часовой стрелки на четверть оборота; он должен выскочить.
Невозможно определить, неисправна ли она, кроме как заменить ее, а поскольку стартеры доступны в хозяйственных магазинах по цене менее доллара, игра стоит того. Возьмите старую деталь с собой, чтобы получить дубликат.
Люминесцентные лампы без стартеров называются быстрозажимными, и это обозначение обычно печатается или штампуется на них. При этом грязь на трубке иногда может препятствовать освещению или вызывать мерцание.
Решение состоит в том, чтобы снять трубку и очистить ее, протерев ее сначала тканью, смоченной в средстве для мытья посуды, а затем тканью, смоченной в простой воде.Будьте осторожны при обращении с пробирками; они хрупкие и в случае разрушения могут разлететься на осколки.
Если люминесцентная лампа мигает — это более медленный и отчетливый процесс, чем мерцание — неисправность может заключаться в ослаблении проводки или в другом компоненте, называемом балластом. Практически всегда виноват балласт, если приспособление гудит во время работы.
Для проверки проводки и балласта снимите дефлектор или разберите основание, а также любые другие детали, необходимые для обнажения патрубков и проводки.
Убедитесь, что пластиковые накручиваемые соединители, соединяющие провода, надежно затянуты, а заземляющий провод (обычно зеленый) плотно прикреплен к металлическому корпусу прибора. Не должно быть оголенных проводов.
Провод, который кажется отсоединенным, вероятно, есть, и его следует снова подключить. Розетки, как и другие компоненты, также должны быть надежно закреплены на месте.
Балласт представляет собой прямоугольный металлический или пластиковый компонент, напоминающий небольшую коробку с проводами, выходящими с обоих концов.Для проверки установите исправную люминесцентную лампу и новый стартер. Если лампа неисправна, значит, неисправен балласт, и его необходимо заменить.
Пометьте провода балласта и провода, ведущие к розетке, кусочками ленты, чтобы они были спарены для упрощения переустановки, затем отсоедините провода от их разъемов и открутите балласт от приспособления.
Отнесите балласт в хозяйственный магазин или магазин электроснабжения, если вам потребуется его замена.
Если замена стартера и трубки не привела к тому, что свет заработал и проводка была исправна, то проблема определенно в балласте.Если шум является единственной проблемой, приобретите балласт с низким уровнем шума, который четко обозначен как таковой. Если свет работает при температуре ниже 50 градусов по Фаренгейту
(еще одна причина мерцания и мерцания), приобретите низкотемпературный балласт.
При покупке новой люминесцентной лампы сравните люмен (яркость), мощность и продолжительность жизни. Большинство производителей печатают эту информацию на картонных коробках. Луковицы обычно хранятся не менее года, а часто и намного дольше.
Следует отметить, что ожидаемый срок службы ламп зависит от количества запусков лампы.Поскольку лампы потребляют больше электроэнергии во время запуска, на самом деле лучше оставить люминесцентные лампы горящими, чем включать и выключать их через частые промежутки времени.