Как работает стартер люминесцентной лампы: Стартеры для ламп дневного света

Опубликовано в Разное
/
29 Мар 2021

Содержание

Стартеры для ламп дневного света

Человечество стремится экономить на всех видах энергоносителей, особой строкой идёт электричество. Количество приборов бытовых увеличивается, плата за их использование растёт. Поэтому в жизнь прочно входят и активно используются лампы дневного света. И схема подключения люминесцентных ламп проста, не требует никаких специальных знаний в электротехнике.

Стартер – основной элемент схемы включения люминесцентных ламп, который выполняет функции замыкание и размыкание цепи питания лампы. В настоящее время существует три основных вида по действию стартера: тепловой, электронный и тлеющего разряда.

Общие положения

Стартёры разных модификаций и видов конструктивно между собой очень похожи. Составными частями стартера являются малогабаритная газоразрядная лампа, колба, которая изготавливается из стекла, а внутрь ее помещается инертный газ.

Лампа располагается внутри корпуса, который изготавливается из металла или разновидностей пластика, и может иметь отверстие в верхней части прибора.

Стартеры, теплового действия и работающие по принципу тлеющего разряда, оснащаются конденсатором, который предназначен для сглаживания скачков напряжения и гашения дуги.

Также конденсатор служит для снижения радиопомех, подключается он параллельно к контактам стартера.

Конструкция и условия работы

В зависимости от особенностей конструкции электродов стартёры различают как симметричные и несимметричные.

В несимметричных стартерах один электрод крепится подвижный, а второй – неподвижный, в симметричной конструкции – оба электрода подвижные. В цепь питания лампы стартер включается параллельно к последней.

Время зажигания источника дневного света регламентировано ГОСТом и ограничено 10 секундами.

Условия, при которых происходит успешное зажигания, зависят от подогрева катодов лампы и величины тока, проходящего через них, в момент размыкания электродов стартера. При малом токе источник дневного света может не загореться, поэтому стартер повторит процесс зажигания, до тех пор, пока процесс розжига не завершится.

Виды стартеров

Стартеры выпускают различных видов:

  • Тепловые;
  • Тлеющего ряда;
  • Полупроводниковые.

При малом токе источник дневного света может не загореться, поэтому стартер повторит процесс зажигания, до тех пор, пока процесс розжига не завершится

Основные характеристики

Стартеры теплового вида имеют следующее отличие от аналогов – это продолжительное время запуска источника дневного освещения. Устройства данного вида при работе потребляют большое количество электроэнергии, что негативно влияет на их экономичность.

Другое название стартеров данного вида – термо-биметаллические, они, как правило, применяются при эксплуатации при низких температурах. Основным отличием от прочих видов является то, что при отсутствии напряжения контакты уже замкнуты, и при подаче напряжения на прибор, возникает более высокий импульс.

Стартеры, использующие в своей работе принцип тлеющего разряда, содержат биметаллические электроды, изготовленные из сплавов с различными коэффициентами термического расширения. Работа приборов данного вида осуществляется следующим образом: при включении светильника в электрическую сеть, напряжение подается на стартер, электроды которого в этот момент разомкнуты.

Под действием поданного напряжения между электродами возникает тлеющий разряд. В цепи проходит небольшой электрический ток и под его действием происходит нагревание биметаллических электродов стартера. Они нагреваются и изгибаются, что обусловлено реакциями, проходящими в биметаллах, под воздействием электрического тока, и именно это и приводит к замыканию цепи.

После замыкания цепи происходит прекращение тлеющего разряда в колбе стартера. Одновременно электрический ток нагревает катоды лампы, электроды стартера в это время замкнуты и остывают, после остывания контакты стартера размыкаются.

Размыкание данной цепи приводит к возникновению особого импульса, обладающего повышенным напряжением, который формируется в дросселе и позволяет произвести пробой газа в лампе, и соответственно ее разжигание.

В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются неуправляемыми. В тяжёлых условиях, таких как эксплуатация при пониженных температурах, скорость нагрева биметаллических контактов замедляется, соответственно лампа дневного света зажигается дольше или вообще выходит из строя. Однако, развитие полупроводниковой электроники позволило изготовить стартеры принципиально нового типа.

Полупроводниковые стартеры размещаются в обычном стандартном корпусе с полупроводниковыми компонентами. Они соответствуют всем требованиям предъявляемым к стартерам по мощности и напряжению питания подключаемой лампы. Работа стартеров данного вида, формирование импульса, происходит по принципу ключа – нагрева и размыкания цепи.

Наиболее оптимальными параметрами, данного вида стартеров, обладают приборы со ждущим режимом зажигания, при котором размыкание контактов происходит в необходимой фазе напряжения и достаточной температуре нагрева электродов.

Безусловно, использование электронных элементов позволяет увеличить срок эксплуатации лампы и срок работы самого стартера, в сравнении с тепловыми и биметаллическими аналогами. Основной недостаток данного вида – стоимость, они по цене значительно дороже.

В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются не управляемыми

Классификация стартеров

Стартеры классифицируются по следующим параметрам:

  • Мощность;
  • Напряжение.

Параметры, которые следует учесть при выборе стартера:

  • Температурный режим работы;
  • Тип конденсатора;
  • Номинальное напряжение;
  • Стоимость.

По способу подключения стартеры могут быть:

  • Для одиночного подключения;
  • Для последовательного подключения к сети напряжением 220/240 В или одиночного к сети напряжением 110/130 В.

Подключение к сети определяется способом подключения ламп, это одноламповый или двухламповый. При первом способе подключения, лампа и дроссель включаются последовательно, стартер – параллельно. При двухламповом подключении, последовательно подключаются две лампы и один дроссель, при этом к каждой лампе включается отдельный стартер.

Обозначение и маркировка

Маркировка отечественных и зарубежных производителей отличается друг от друга. По ГОСТу действующему в РФ цифры (буквы) маркировки соответствуют:

  • 1-я – 60/90/120 – мощность подключаемой лампы;
  • 2-я – «С» – информирует что это «стартер»;
  • 3-я – 220/127 – напряжение питания лампы.

Для зарубежных аналогов для ламп мощностью от 4,0 до 80,0 Вт и напряжением 220 В применяются обозначения – S10, FS-U, ST111, а напряжением 127 В и мощностью до 22 Вт – S2, FS-2, ST151.

Особенности выбора

Достоинства и недостатки

Преимущества использования современных стартеров:

  • Экологическая безопасность;
  • Продление срока исправности ламп;
  • Долговечность;
  • Простота и удобство установки.

Важно помнить и о недостатках, а это:

  • Низкая надежность;
  • Зависимость от напряжения;
  • Разброс времени срабатывания контактов электродов.

Технические требования

Все технические средства, оборудование и комплектующие должны соответствовать техническим условиям и правилам. Так в отношении стартеров действуют следующие регламентирующие документы:

  • ГОСТ 8799-90 «Стартеры для трубчатых люминесцентных ламп. Технические условия»;
  • ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».

Популярные производители и модели

Многие известные производители светотехнической техники являются и производителями стартеров, наиболее известные это: Philips, Osram, Sylvania и другие.

Компания «Philips» (Нидерланды) выпускает широкий ассортимент продукции, в том числе и стартеры. Наиболее современные и совершенные из них это серии: «Ecoclick Starters», «Safety & Comfort Starters», «Green Starters».

Фирмы «OSRAM» (Россия) выпускает большой ассортимент стартеров для разного типа и назначения ламп дневного света. Некоторые модификации имеют особые преимущества перед аналогами других производителей.

Такими приборами считаются:

  • Стартеры предохранители – DEOS® ST 171, DEOS® ST 172 и DEOS® ST 173;
  • Стартеры автоматы – DEOS® ST 172;
  • Универсальные – DEOS® ST 171, DEOS® ST 172 и DEOS® ST 173.

Автоматические стартеры отключают перегоревшие или неисправные лампы, а также осуществляют повторное включение.

Отдельного внимания заслуживают стартеры, применяемые для специальных ламп, к таким можно отнести лампы для соляриев. Именно такое оборудование, лампы и комплектующие выпускает компания «Havels Sylvania»

(Германия). В ассортименте компании электронные стартеры различной мощности, времени подогрева и температуры эксплуатации.

Стартеры устойчивы к ультрафиолетовому излучению, напряжение 220/240 В, предназначены для одиночной схемы включения:

  • PureBronze PBS-25, мощностью 4 – 65 Вт;
  • PureBronze PBS-100, мощностью 80 – 100 Вт;
  • PureBronze PBS-160, мощностью 80 – 160 Вт.

Ассортимент других фирм производителей также широк и разнообразен, что позволяет выбрать прибор по предъявляемым к нему требованиям, однако важно помнить, что не следует выбирать дешевые модели, т.к. в них, как правило, используются дешевые материалы, а это отрицательно скажется на сроке эксплуатации прибора.

Возможные неисправности

При использовании любого источника освещения всегда возникает вопрос о его ремонте, замене вышедших из строя элементов.

Одной из причин, не зажигания лампы дневного света, может стать неисправный стартер, неисправность которого может выразиться как:

  • Лампа не зажигается;
  • На концах лампы свечение есть, но лампа не зажигается.

Для замены стартера необходимо выполнить несложные операции:

  • Выключить светильник;
  • Снять плафон или иной защитный элемент светильника;
  • Извлечь неисправный элемент – стартер;
  • Вставить в цоколь новый прибор;
  • Произвести сборку светильника в обратном порядке;
  • Включить светильник.

Заменить стартер не составляет труда, когда есть запасной, если же такого нет, то необходимо убедиться, что извлеченный из светильника является именно тем элементом, из-за которого не горит лампа. Работоспособность его можно проверить простым способом.

Необходимо последовательно со стартером включить лампочку накаливания и подать на них напряжение. Если стартер рабочий, то лампочка будет гореть и периодически выключаться, при этом будет слышен характерный щелчок внутри стартера. Если, лампочка не горит, или горит и не моргает, значит, стартер неисправен, и точно подлежит замене.

Теоретически считается, что срок исправной работы стартера эквивалентен времени работы лампы, которую он зажигает. Однако необходимо учитывать, что с увеличением срока работы прибора, интенсивность напряжения тлеющего разряда, для стартеров данного вида, снижается, что сказывается на работе последнего. Тем не менее, все производители ламп дневного света рекомендуют производить замену стартеров одновременно с заменой ламп.

Блиц-советы

При необходимости выбрать замену вышедшему из строя стартеру нужно так:

  • Обратить внимание на напряжение питания лампы;
  • Определиться с необходимой мощностью прибора;
  • Выбрать производителя, исходя из ценовой политики и требуемой надежности.

Технологии не стоят на месте. Стартёр теперь монтируют прямо в цоколь ламп дневного света со стандартным патроном, эти лампы называют «экономлампы». Они аналогичны по своим принципам работы лампам дневного света, только вид их сильно изменён.

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка

Просмотров: 26

Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.

Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.

Содержание статьи:

  • Как устроено приспособление?
  • Принцип работы аппарата
  • Виды стартеров для люминесцентных приборов
    • Пускатель электронного типа
    • Тепловой вид пускателя
    • Механизм тлеющего разряда
  • Роль конденсатора в схеме
  • Основные недостатки пускателей
  • Расшифровка маркировочных значений
  • На что смотреть при выборе?
  • Выводы и полезное видео по теме

Как устроено приспособление?

Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.

Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.

Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи электромагнитного балласта. Остальные — подключены к катодам пускателя.

Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.

Конструкции стартера и схема его включения: 1 – дроссель; 2 — стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 — корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе

Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.

Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.

Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.

В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.

Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы

Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.

Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.

В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети

Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.

В процессе подбора нужного пускателя, учитывая конкретную модель лампы дневного света (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.

Принцип работы аппарата

Подав сетевое питание на светотехнический прибор, напряжение проходит через витки дросселя и нить накала, выполненную из монокристаллов вольфрама.

Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.

Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.

Величина тока сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи

Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.

Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.

Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.

Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.

Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.

Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.

Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.

Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.

При любых изменениях тока в контуре, в том числе и его полного прекращения, пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот участок и приводит к возбуждению в схеме ЭДС самоиндукции

Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.

Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.

Виды стартеров для люминесцентных приборов

В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.

Пускатель электронного типа

Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.

Например, при температуре ниже 0 °C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.

Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т. е. ее порче.

Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы

Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.

Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.

В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:

  • управленческой схемы;
  • высоковольтного узла коммутации.

В качестве примера можно привести микросхему электронного зажигателя UBA2000T фирмы PHILIPS и высоковольтный тиристор TN22 производства STMicroelectronics.

Принцип работы электронного стартера основан на размыкании цепи посредством нагревания. Некоторые образцы обладают существенным преимуществом – опцией ждущего режима зажигания.

Таким образом размыкание электродов производится в необходимой фазности напряжения и при условии оптимальных температурных показателей нагрева контактов.

Полупроводниковые элементы электронного балласта должны подходить по ключевым рабочим характеристикам, а именно, соотношению значения мощности и напряжения сети подсоединенного светотехнического прибора

Важно, что при поломках лампы и неудачных попытках ее запуска такого типа механизм выключается, если их число (попыток) достигнет 7. Поэтому о досрочном выходе из строя электронного стартера и не может быть и речи.

Как только произойдет замена лампочки на исправную, приспособление сможет возобновить процесс запуска ЛЛ. Единственный минус этой модификации – высокая цена.

В схеме со стартером в качестве дополнительного метода снижения радиопомех могут использоваться симметрированные дросселя с обмоткой, разделенной на идентичные участки, с равным количеством витков, накрученных на общее устройство – сердечник.

На сегодняшний день выпускаемые балласты имеют сборно-стержневую конструкцию. Вырубка магнитного провода осуществляется из стальных листов. Как правило, такие дросселя имеют две симметричные обмотки

Все области катушки соединены в последовательном порядке с одним из контактов лампы. При включении оба его электрода будут работать в одинаковых техусловиях, таким образом снижая степень помех.

Тепловой вид пускателя

Ключевой отличительной характеристикой тепловых зажигателей является длительный период пуска ЛЛ. Такой механизм в процессе функционирования использует много электричества, что негативно сказывается на его энергозатратных характеристиках.

Тепловой стартер также называют термобиметаллическим. Разогрев контактов происходит с замедлением, что эффективно сказывается на работе светотехнического прибора в низкотемпературной среде

Как правило, этот вид применяется в условиях низкого температурного режима. Алгоритм работы существенно разнится с аналогами других видов.

В случае отключения питания электроды устройства находятся в замкнутом состоянии, при подаче – образуется импульс с высоким напряжением.

Механизм тлеющего разряда

Пусковые механизмы, основанные на принципе тлеющего разряда, имеют в своей конструкции биметаллические электроды.

Они выполнены из металлических сплавов с различными коэффициентами линейного расширения при нагреве пластины.

Минусом зажигателя тлеющего разряда является низкий уровень импульса напряжения, из-за чего нет достаточной надежности загорания ЛЛ

Возможность розжига лампы определяется длительностью предшествующего нагрева катодов и показателей тока, протекающего через светотехнический прибор в момент размыкания цепи контактов стартера.

Если при первом рывке пускатель не зажигает лампу, он будет автоматически воспроизводить попытки до того момента, пока лампа не засветится.

Поэтому такие устройства не используются при низких температурных режимах или неблагоприятном климате, например, при повышенной влажности.

Если не будет обеспечиваться оптимальный уровень нагрева контактной системы лампа будет затрачивать много времени на розжиг или же будет выведена из строя. Согласно стандартам ГОСТа, потраченное стартером время на зажигание не должно превышать 10 секунд.

Пусковые приборы, выполняющие свои функции посредством теплового принципа или тлеющего разряда, в обязательном порядке оборудуются дополнительным устройством – конденсатором.

Роль конденсатора в схеме

Как уже было отмечено ранее, конденсатор располагается в кожухе приспособления параллельно его катодам. Этот элемент решает две ключевые задачи:

  1. Понижает степень электромагнитных помех, создаваемых в диапазоне радиоволн. Они возникают в результате контакта системы электродов пускателя и образуемых лампой.
  2. Влияет на процесс зажигания люминесцентной лампы.

Такой дополнительный механизм снижает величину импульсного напряжения, сформированного при размыкании катодов стартера, и наращивает его продолжительность.

Конденсатор снижает вероятность слипания контактов. Если в устройстве не предусмотрен конденсатор, напряжение на лампе довольно быстро увеличивается и может доходить до нескольких тысяч вольт. Такие условия снижают степень надежности розжига ламп

Поскольку использование подавляющего устройства не позволяет достичь полного нивелирования электромагнитных помех, на входе схемы вводят два конденсатора, общая емкость которых составляет не менее 0,016 мкф. Они соединяются в последовательном порядке с заземлением средней точки.

Основные недостатки пускателей

Главным минусом стартеров является ненадежность конструкции. Отказ запускающего механизма провоцирует фальстарт – визуализируются несколько вспышек света до начала полноценного светового потока. Такие неполадки снижают ресурс вольфрамовых нитей лампы.

Пусковые аппараты образуют внушительные потери энергии и понижают КПД устройства лампы. К недостаткам также относится зависимость от напряжения и значительный разброс времени срабатывания электродов

У люминесцентных ламп со временем наблюдается повышение рабочего напряжения, тогда как у стартера, наоборот, чем выше срок службы, тем ниже напряжение зажигания тлеющего разряда. Таким образом выходит, что включенная лампа может провоцировать его срабатывание, из-за чего свет погаснет.

Разомкнувшиеся контакты пускателя вновь зажигают свет. Все эти процессы осуществляется в доли секунды и пользователь может наблюдать только мерцание.

Пульсирующий эффект вызывает раздражение сетчатки глаза, а также приводит к перегреванию дросселя, снижению его ресурса и выходу из строя лампы.

Такие же негативные последствия ожидают и от значительного разброса времени контактной системы. Его зачастую недостаточно для полноценного предварительного разогрева катодов лампы.

В итоге прибор загорается после воспроизведения ряда попыток, что сопровождаются увеличенной длительностью процессов перехода.

Если стартер подключен в цепь одноламповой схемы, в этом случае нет возможности снизить световую пульсацию.

С целью снижения негативного эффекта рекомендуется использовать такого рода схемы только в помещениях, где применены группы ламп (по 2-3 образца), включать которые необходимо в разные фазы трехфазной цепи.

Расшифровка маркировочных значений

Общепринятой аббревиатуры для моделей стартеров отечественного и зарубежного производства не существует. Поэтому рассмотрим основы обозначений по отдельности.

Декодировка значения 90С-220 выглядит так: стартер, функционирующий с люминесцентными образцами, сила которых составляет 90 Вт, а номинальное напряжение 220 В

Согласно ГОСТу, расшифровка буквенно-цифровых значений [ХХ][С]-[ХХХ], нанесенных на корпус прибора, выглядит следующим образом:

  • [ХХ] – цифры, указывающие на мощность световоспроизводящего механизма: 60 Вт, 90 Вт или 120 Вт;
  • [С] – стартер;
  • [ХХХ] – напряжение, применяемое для работы: 127 В или 220 В.

Для реализации зажигания ламп иностранные разработчики выпускают приспособления с различными обозначениями.

Электронный форм-фактор выпускается многими фирмами. Наиболее известная на отечественном рынке — Philips, производящая стартеры таких типов:

  • S2 рассчитаны на мощность 4-22 Вт;
  • S10 — 4-65 Вт.

Фирма OSRAM ориентирована на выпуск стартеров как для одиночного подключения осветительных приборов, так и для последовательного. В первом случае это маркировка S11 с ограничением по мощности 4-80 Вт, ST111 — 4-65 Вт. А во втором, например, ST151 — 4-22 Вт.

Выпускаемые модели стартеров представлены в широком ассортименте. Ключевые параметры, учитывающиеся при подборе — соразмерные значения характеристикам ламп люминесцентного типа.

На что смотреть при выборе?

В процессе выбора пускового механизма недостаточно основываться на имени разработчика и ценовом диапазоне, хотя и эти факторы должны быть учтены, т.к. указывают на качество прибора.

В этом случае выигрывают надежные аппараты, положительно зарекомендовавшие себя на практике. Стоит обратить внимание на такие фирмы: Philips, Sylvania и OSRAM.

Стартер FS-11 бренда Sylvania. Подбирается к лампам дневного света, мощностью 4-65 Вт. Может использоваться в сети переменного тока. Работает по принципу тлеющего разряда

Самыми основными эксплуатационными параметрами пускателя считаются такие технические особенности:

  1. Ток зажигания. Этот показатель должен быть выше рабочего напряжения лампы, но не ниже сети питания.
  2. Базисное напряжение. При подключении в одноламповую схему применяется аппарат на 220 В, двухламповую – на 127 В.
  3. Уровень мощности.
  4. Качество корпуса и его огнеустойчивость.
  5. Эксплуатационный срок. При стандартных условиях применения, стартер должен выдерживать не менее 6000 включений.
  6. Длительность разогрева катодов.
  7. Тип применяемого конденсатора.

Также необходимо учитывать индуктивное противодействие катушки и коэффициент выпрямления, отвечающий за соотношение обратного сопротивления к прямому при постоянном напряжении.

Выводы и полезное видео по теме

Помощь в подборе необходимо балласта для лампы дневного света:

Пускатель для люминесцентных приборов: основы маркировки и конструктивное устройство аппарата:

Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.

Лампу накаливания использовать на 40-60 Вт, как показано на фото:

Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.


На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:

Питание ламп от 12В

Но любители самоделок часто задаются вопросом «Как зажечь люминесцентную лампу от низкого напряжения?», мы нашли один из вариантов ответа на этот вопрос. Для подключения люминесцентной трубки к низковольтному источнику постоянного тока, например, аккумулятору на 12В, нужно собрать повышающий преобразователь. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Такую схему можно использовать для подключения люминесцентных ламп к бортовой сети автомобиля. Для её работы также не нужен дроссель и стартер. Более того она будет работать даже если её спирали перегорели. Возможно вам понравится одна из вариаций рассмотренной схемы.


Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам. Это не идеальное решение, а скорее выход из ситуации. Светильник с такой схемой подключения не следует использовать в качестве основного освещения рабочих мест, но допустимо для освещения помещений, где человек не приводит много времени — коридоры, кладовые и прочее.

Наверняка вы не знаете:

  • Преимущества ЭПРА перед ЭмПРА
  • Для чего нужен дроссель
  • Как получить напряжение 12 Вольт


Нравится0)Не нравится0)

3. Как работают люминесцентные лампы?

3.4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать, излучая на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран так, чтобы излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть с помощью ударной ионизации. Эта ионизация может происходить только в исправных лампах.Следовательно, вредное воздействие на здоровье от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

Электрические аспекты эксплуатации

Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны разные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где Схема не может быть заменена до люминесцентных ламп. Это снизило количество технических сбоев, вызывающих эффекты, как указано выше.

ЭМП

Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e. грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

Мерцание

Все лампы будут различать силу света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.За лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не на частоте 50 Гц (Seitz et al.2006). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях приводить к мерцанию частот, либо только в часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специального покрытия стекло и часто продаются с атрибутом «теплый» или «Холодные» или, точнее, по их цветовой температуре для профессиональные световые приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.На международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, настроенными на защиту от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити и поглощение стекла. Некоторые КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одним конвертом, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г. ).

Стартер люминесцентной лампы — Японский перевод — Linguee

В ассортименте представлены товары для уличного освещения HID с зажиганием, а также газовые и масляные

[…] зажигатели котла и индуктивный баллон la s t стартеры люминесцентных ламп .

st-japan.co.jp

の 照明 HID イ グ ニ ッ シ ョ ン 用 よ オ ル 用 点火 装 53 な ど が 含 ま れ ま す。

st-japan.co.jp

Серийный номер двигателя проштампован на верхнем картере двигателя по направлению к задней части и виден слева

[…] сбоку сзади т h e стартер м o до r.

assets1.triumphmotorcycles.jp

エ ン ジ ン シ リ ア ル 番号 は 、 エ ン ジ ン ク ラ ン

[. ..] ク ケ ー ス 上 側 後方 に 、 ス タ ー モ タ ー 後方 の 左側 に り。

активов1.триумф … otorcycles.com

A M 1 Стартер K i t DWire представляет собой введение от до r y стартер k i t для версии флэш-памяти 8-битного однокристального микроконтроллера производства Panasonic Corporation.

object.co.jp

М1 Стартер Комплект DWir е は パ ナ ソ ニ ッ ク 株式会社 製 フ ラ ッ シ ュ メ モ リ 内 蔵 8 ビ ッ ト シ ン グ ル チ ッ プ マ イ コ ン の 門 向 ス タ ー タ ー キ Ямато で す

объект.co.jp

По сравнению с общей остановкой на холостом ходу

[…] системы, которые используют t h e стартер m o до r для перезапуска [. ..]

двигатель, время необходимое для

[…] Перезагрузка

сократилась почти вдвое до 0,35 секунды.

marklines.com

ジ ン の ー ー モ .は 約 半 分 の […]

0,35

marklines.com

Индукционная лампа, новый источник света, в основном

[…] считается t h e люминесцентная лампа w i th 80 цвет […] Индекс рендеринга

и цветовая температура 4100K

[…]

(например, источник света T8 в следующей таблице).

ru.lvd.cc

光源 — 無極 灯 は 、 演 色 性 指数 80 、 色 温度 が 41 00k 蛍 灯 同等 が 基本 (( T8 光源)。

иен.lvd.cc

Мы также заменили некоторые наружные ночные фонари на более

[…] энергоэффективность ie n t люминесцентная лампа t y pe Светодиодные лампы [. ..]

на пробной основе.

fujikura.co.jp

、 に 53 LED фудзикура.co.jp

Клубы также распространяли копии s o f starter b o ok s с тисненым логотипом Rotary и заполненными информацией о программе.

rotary.org

ク ラ ブ は ま た 、 ロ ー タ ー の ロ ゴ と プ ロ グ ラ 情 報 の 入 っ た 初心者 用 の を 配 布 し ま し。

rotary.org

Выход из дроссельной заслонки

[…] полностью закрыто, нажмите t h e стартер b u tt , пока двигатель не запустится.

assets1.triumphmotorcycles.jp

ス ロ ッ ト ル を 全 閉 に 状態 で 、 エ ン ジ ン が か る ま ス タ ー タ ボ ン を

01. 9 … au

Предлагаем широкий выбор ламп и освещения

[. ..]

аксессуары, лампы накаливания,

[…] miniature cold cat ho d e люминесцентные лампы ( C CF L), ультрафиолетовые […]

лампы, светодиодные индикаторы и дисплеи,

[…]

лампы для поверхностного монтажа (SMD), миниатюрные кварцевые галогенные лампы, цветные силиконовые фильтры, патроны для ламп и сборки проводов.

digikey.kr

社 は 特 選 ン プ ク セ サ リ 、 白熱 灯 ュ 蛍 光 54 54 • 54 • 54 • 54 • • • • • • • • • • • • • • • • • • • • • • • • • • •;実 装 ラ ン プ (SMD) 、 ミ ニ ア 石英 ハ ロ ゲ ン ラ 着 色 シ リ コ ン フ ィ 、 ラ ン プ ソ ケ 、 お.jp

Вспомогательный

[…] блок питания заряжается от a стартер / a l te rnator и работает […]

вспомогательное оборудование, такое как компрессоры кондиционеров при остановленном двигателе.

marklines.com

補助 ス タ ー タ ー ル タ ネ ー タ ー が 充電 、 、 ジ.com

На основании этих наблюдений мы пришли к идее использовать металл

[…]

галогенная лампа для сильного освещения и более мягкая

[…] освещение wi t h люминесцентная лампа , i n заказать для […]

реализует естественный солнечный свет.

adana.co.jp

す な わ ち 、 強 い 光 は ラ イ ド ラ ン プ で な 光 蛍 光 管 54 た わ け で あ る。

адана.co.jp

Запуск двигателя можно

[…] сделано нажатием ty p e стартер a f te r ключ вставлен [. ..]

в положение ВКЛ.

pivotjp.com

エ ン ン 始 ス タ ー タ ー) 常 の キ ー ON 動作 後 、 ッ000 シ ュ ot otcom

Флуоресцентные светильники (Примечание) подпадают под действие Закона об энергосбережении, и Закон требует, чтобы производители и импортеры указывали предусмотренные элементы информации в своих каталогах и т. Д., Включая название продукта или название модели, режим l o f люминесцентная лампа , t ot al Поток, потребляемая мощность, коэффициент энергоэффективности и название производителя.

asean.or.jp

蛍 光 灯 器具 (注) は 同 法 の 対 と な っ て お り よ び 輸入 事業 者 は 、 グ 等 に 名 ま 名 名事業 者 等 の 氏 名 又 は 名称 を 記載 す る こ と が 義務 づ け て い る。

asean.or.jp

В 2011 финансовом году 23% нашей продукции были классифицированы как

[. ..]

лидирует в отрасли и почти нет товаров * 3 были оценены как низкие

[…] энергоэффективный, кроме одного ком па c t люминесцентная лампа m o de l.

panasonic.co.jp

2010 は 、

[…] № 1 は 23% 、 下 位 は 電 球形 蛍 1 機 種 残 り ま し が 、 ほ ぼ ゼ * 2 [ …]

す る こ と が で き ま し た。

panasonic.net

Например,

[…] освещение на a люминесцентная лампа o r L ED развивается […]

мерцает из-за переключения (неравномерная яркость).

cipa.jp

蛍 光 灯 LE D 照 明 に は 、 ス イ ッ チ グ る ち ら つ […]

も の が あ る。

cipa.jp

High P ow e r Люминесцентная лампа T h e высокая интеграция p ow e r люминесцентная лампа o f fe rs встроенный [. ..]

электронный балласт, высокий коэффициент мощности,

[…]

яркий, удобный свет, простота в эксплуатации и установке.

cnlight-lighting.com

蛍 光 ラ ン プ 気 的 バ ラ お 要 が あ.装着 も 簡 単 で す。

cnlight-lighting.jp

Согласно Закону люминесцентные светильники для настольных ламп

[…]

должен иметь маркировку использования и

[…] яркость, модель t h e люминесцентная лампа , t от al поток, мощность […] Потребление

, потребление энергии

[…]

эффективность, меры предосторожности при использовании, имя этикетировщика и т. Д.

asean.or.jp

卓 上 ス タ ン ド 用 蛍 光 い て は 、 用途 及 び 蛍 光 ラ ン プ ..]

効率 、 使用 上 の 注意 、 者 名 を 表示 す る こ と と な っ い る。

asean. or.jp

Стартер k i ts предварительно расфасованы […] Оценочные наборы

, содержащие плату ЦП, интегрированную среду разработки (IDE) и образец

[…]

, такое как файлы заголовков и драйверы.

semicon.toshiba.co.jp

ス タ ー タ キ ッ は 、 CPU ボ ー ド 開 発 環境 (IDE) 、 ヘ ッ フ ァ イ ル や バ の.toshiba.co.jp

2U серии,

[…] Одинарный Ca pp e d Люминесцентная лампа W i th половина длины традиционной ванны ul a r люминесцентная лампа , o ur 2U серия одиночный ок. pp e d люминесцентная лампа o f fe rs то же самое […]

световой поток.

cnlight-lighting.com

2 U 型 蛍 光 ラ ン プ 、 一端 接 続 式 蛍 光 灯 蛍 光 灯 と バ ラ ス ト が 分離 し 設計

Поскольку были лампы без отражателей, а некоторые были грязными, мы рекомендовали установку из блестящего металла

[. ..] Отражатели

, установка выключателей и последовательная замена старых

[…] лампы с высокой эффективностью en c y люминесцентная лампа F R Ls .

eccj.or.jp

反射 板 の な い も の ・

[…] 汚 れ て い る も が っ た の で 光 沢 の あ る メ タ 板 を 取 り 付 け る プ ル ス イ け 54 54 53 54 900 54 900 53 54 900 54 53 53 900 54 900 54 54 900 53 54 900 54 54 900 53換 し て い く こ と を リ コ メ ン ド し た。

eccj.or.jp

EVK-6R — это готовый к работе o- g o стартер k i t , что позволяет быстро и […]

простых оценок GPS-модуля LEA-6R с помощью Dead Reckoning.

fastrax.fi

EVK-6R は 、 推測 航 法 搭載 の LEA-6R GPS モ ジ ュ ー ル の 短 評 価 を 可能 に に え ・ キ ッ ト で す。

fastrax.fi

Кроме того, поскольку он излучает свет с поверхности, его практическое применение в качестве фактического осветительного устройства приводит к небольшому количеству

[. ..]

отходов, предлагая в будущем потенциальную экономию энергии около 30%

[…] по сравнению wi t h люминесцентная лампа ( a cc для заказа […]

наши расчеты).

konicaminolta.com

た 面 で 発 光 す る た 実 に 照明 器具 と し て 実 れ 際 の ロ 、 将 53 そ 30 程度 の 省 電力 (当 社 試 算) を 実 現 す る 可能性 が

konicaminolta.jp

Проекционный светильник

[…] источник us es a люминесцентная лампа

Люминесцентная лампа — определение люминесцентной лампы по The Free Dictionary

Тип B: Модернизация типа B удаляет люминесцентную лампу и балласт, оставляя существующий светильник, но требует, чтобы лампа была подключена напрямую. Если ваш бюджет позволяет, вы можете полностью избежать периодических обновлений стандартов люминесцентных ламп, полностью установив светодиодное освещение. Экспериментальные результаты, разработанные для люминесцентной лампы 32 Вт, показали, что SRI предложила улучшенную эффективность на 6% по сравнению с классическим SPRI, это связано с тем, что SRI не использует параллельный конденсатор с лампой, что снижает потери в медной индуктивности в цепи резервуара LC Предлагаемая схема SRI также показывает уменьшение потерь на переключение или проводимость на полевых МОП-транзисторах. Затем пришли инженеры по освещению и разработали трубчатую люминесцентную лампу с галофосфором. В качестве примера воздействия этого можно привести строительство нового офисного здания на западе, которое было оснащено новейшим экономичным освещением и окрашенным в бежевый цвет ковровым покрытием.Компактная люминесцентная лампа (КЛЛ), также называемая компактной люминесцентной лампой, энергосберегающим светом и компактной люминесцентной лампой, представляет собой люминесцентную лампу, предназначенную для замены лампы накаливания; некоторые типы подходят для осветительных приборов, ранее использовавшихся для ламп накаливания. Официальных рекомендаций по обращению с люминесцентными лампами в государственных школах Гаутенга нет. * Компактная люминесцентная лампа мощностью 20 Вт равна 1200 люменам. Начиная с июня, более 150 новых магазинов Walmart по всей стране будут установите люминесцентные лампы Philips ALTO с низким содержанием ртути.Лампа ALTO, содержащая на 80% меньше ртути по сравнению с обычными люминесцентными лампами и не снижающая производительность, стала первой люминесцентной лампой, прошедшей испытание Агентства по охране окружающей среды на предмет неопасных отходов. Обычную лампу накаливания мощностью 60 Вт можно заменить люминесцентной лампой мощностью 15 Вт. Официальные источники сообщили со ссылкой на экспертов, что, по словам экспертов, экономия 45 Вт в час, в то время как в случае лампы накаливания на 100 Вт потребители могут сэкономить 75 Вт в час, установив люминесцентный свет мощностью 25 Вт. лампы для более эффективных люминесцентных ламп на заключительном этапе Кубо-Ямайского проекта создания компактных люминесцентных ламп (CFL), также известного как программа кубинских ламп. С целью повышения энергоэффективности при низких температурах были разработаны специальные светильники с так называемыми теплоаккумулирующими трубками [1-6] для размещения трехполосных люминесцентных ламп. Здесь люминесцентные лампы оснащены по крайней мере одной концентрической полупрозрачной защитной трубкой во всю длину, которая устанавливается параллельно люминесцентной лампе в кожухе лампы и накапливает тепло, излучаемое люминесцентной лампой. В области фармацевтического производства простое использование подходящей люминесцентной лампы соответствующего типа может способствовать повышению стандартов и поддержанию безопасной рабочей среды.

Прямой пускатель | Электротехнические примечания и статьи

Введение:

  • Для пуска асинхронных двигателей используются различные методы пуска, поскольку асинхронный двигатель потребляет больший пусковой ток во время пуска. Чтобы предотвратить повреждение обмоток из-за большого пускового тока, мы применяем пускатели разных типов.
  • Самым простым стартером для асинхронного двигателя является пускатель D irect O n L In.Пускатель DOL состоит из MCCB или автоматического выключателя, контактора и реле перегрузки для защиты. Электромагнитный контактор, который может быть отключен тепловым реле перегрузки в случае неисправности.
  • Как правило, контактор управляется отдельными кнопками пуска и останова, а вспомогательный контакт контактора используется через кнопку пуска в качестве удерживающего контакта. Т.е. контактор замыкается электрически с фиксацией во время работы двигателя.

Принцип DOL:

  • Для запуска контактор замыкается, подавая полное линейное напряжение на обмотки двигателя.Двигатель будет потреблять очень высокий пусковой ток в течение очень короткого времени, магнитное поле в утюге, а затем ток будет ограничен током заторможенного ротора двигателя. Мотор развивает крутящий момент заторможенного ротора и начинает разгоняться до полной скорости.
  • По мере ускорения двигателя ток начинает падать, но не будет значительно падать, пока двигатель не достигнет высокой скорости, обычно около 85% от синхронной скорости. Фактическая кривая пускового тока зависит от конструкции двигателя и напряжения на клеммах и полностью не зависит от нагрузки двигателя.
  • Нагрузка двигателя влияет на время, необходимое двигателю для разгона до полной скорости и, следовательно, на продолжительность высокого пускового тока, но не на величину пускового тока.
  • Если крутящий момент, развиваемый двигателем, превышает момент нагрузки на всех скоростях во время цикла пуска, двигатель достигает полной скорости. Если крутящий момент, создаваемый двигателем, меньше крутящего момента нагрузки на любой скорости во время цикла запуска, двигатель прекратит ускоряться. Если пусковой момент с DOL-пускателем недостаточен для нагрузки, двигатель необходимо заменить на двигатель, который может развивать более высокий пусковой момент.
  • Ускоряющий момент — это крутящий момент, развиваемый двигателем за вычетом момента нагрузки, и он будет изменяться по мере ускорения двигателя из-за кривой крутящего момента скорости двигателя и кривой крутящего момента скорости нагрузки. Время пуска зависит от момента ускорения и инерции нагрузки.
  • Прямой пуск имеет максимальный пусковой ток и максимальный пусковой момент. Это может вызвать электрическую проблему с источником питания или вызвать механическую проблему с ведомой нагрузкой. Таким образом, это будет неудобно для пользователей питающей сети, всегда испытывайте падение напряжения при запуске двигателя.Но если этот мотор не большой мощности, это не сильно влияет.

Детали стартеров DOL:

(1) Контакторы и катушка.

  • Магнитные контакторы — это переключатели с электромагнитным управлением, которые обеспечивают безопасное и удобное средство для подключения и отключения параллельных цепей.
  • Контроллеры магнитных двигателей используют электромагнитную энергию для включения переключателей. Электромагнит состоит из катушки с проволокой, помещенной на железный сердечник.Когда через катушку протекает ток, железо магнита намагничивается, притягивая железный стержень, называемый якорем. Прерывание прохождения тока через катушку с проволокой вызывает выпадение якоря из-за наличия воздушного зазора в магнитной цепи.

  • Магнитные пускатели двигателей с линейным напряжением — это электромеханические устройства, которые обеспечивают безопасные, удобные и экономичные средства запуска и остановки двигателей и имеют то преимущество, что ими можно управлять дистанционно.Подавляющая часть продаваемых контроллеров моторов относится к этому типу.
  • Контакторы
  • в основном используются для управления оборудованием, в котором используются электродвигатели. Он состоит из катушки, которая подключается к источнику напряжения. Очень часто для однофазных двигателей используются катушки 230 В, а для трехфазных двигателей используются катушки 415 В. Контактор имеет три основных нормально разомкнутых контакта и контакты меньшей мощности, называемые вспомогательными контактами [NO и NC], которые используются для цепи управления. Контакт — это проводящие металлические части, замыкающие или прерывающие электрическую цепь.
  • NO-нормально открытый
  • NC-нормально закрытый

(2) Реле перегрузки (защита от перегрузки) .

  • Защита электродвигателя от перегрузки необходима для предотвращения выгорания и обеспечения максимального срока службы.
  • В любых условиях перегрузки двигатель потребляет чрезмерный ток, вызывающий перегрев. Поскольку изоляция обмотки двигателя ухудшается из-за перегрева, существуют установленные пределы рабочих температур двигателя для защиты двигателя от перегрева.Реле перегрузки используются в системе управления двигателем для ограничения потребляемого тока.
  • Реле перегрузки не обеспечивает защиты от короткого замыкания. Это функция защитного оборудования от перегрузки по току, такого как предохранители и автоматические выключатели, обычно расположенные в корпусе разъединителя.
  • Идеальный и самый простой способ защиты двигателя от перегрузки — это элемент с чувствительными к току свойствами, очень похожими на кривую нагрева двигателя, который размыкает цепь двигателя при превышении тока полной нагрузки.Срабатывание защитного устройства должно быть таким, чтобы двигатель мог выдерживать безвредные перегрузки, но быстро отключался от линии, если перегрузка сохраняется слишком долго.
  • Обычно предохранители не предназначены для защиты от перегрузки. Предохранитель защищает от короткого замыкания (защита от перегрузки по току). Двигатели потребляют высокий пусковой ток при пуске, и обычные предохранители не имеют возможности отличить этот временный и безвредный пусковой ток от опасной перегрузки.Выбор предохранителя зависит от тока полной нагрузки двигателя, он «перегорает» каждый раз при запуске двигателя. С другой стороны, если бы предохранитель был выбран достаточно большим для пропускания пускового или пускового тока, он не защитил бы двигатель от небольших вредных перегрузок, которые могут возникнуть позже.
  • Реле перегрузки — это сердце защиты двигателя. Он имеет характеристики обратнозависимого времени срабатывания, что позволяет ему удерживаться в течение периода разгона (при потреблении пускового тока), но обеспечивает защиту от небольших перегрузок, превышающих ток полной нагрузки, когда двигатель работает.Реле перегрузки являются заменяемыми и могут выдерживать повторяющиеся циклы отключения и сброса без необходимости замены. Однако реле перегрузки не могут заменить устройства защиты от перегрузки по току.

  • Реле перегрузки состоит из блока измерения тока, подключенного к двигателю, а также механизма, приводимого в действие блоком измерения, который служит, прямо или косвенно, для разрыва цепи.
  • Реле перегрузки
  • можно разделить на тепловые, магнитные или электронные.
  1. Тепловое реле : Как следует из названия, тепловые реле перегрузки полагаются на повышение температуры, вызванное током перегрузки, для отключения механизма перегрузки. Реле тепловой перегрузки можно разделить на два типа: плавильные и биметаллические.
  2. Магнитное реле : Магнитные реле перегрузки реагируют только на превышение тока и не зависят от температуры.
  3. Электронное реле: Электронное или твердотельное реле перегрузки обеспечивает сочетание высокоскоростного срабатывания, настраиваемости и простоты установки.Они могут быть идеальными для многих точных приложений.

Электропроводка стартера DOL:

(1) Главный контакт:

  • Контактор подключает напряжение питания, катушку реле и реле тепловой перегрузки.
  • L1 контактора подключается (NO) к фазе R через MCCB
  • L2 контактора подключается (NO) к фазе Y через MCCB
  • L3 контактора Подключите (NO) к фазе B через MCCB.
  • НО Контакт (- || -):
  • (13-14 или 53-54) — нормально открытый нормально разомкнутый контакт (замыкается при срабатывании реле)
  • Точка 53 контактора подключается к точке кнопки запуска (94), а точка контактора 54 подключается к общему проводу кнопки запуска / остановки.
  • NC Контакт (- | / | -):
  • (95-96) — нормально замкнутый нормально замкнутый контакт (размыкается при срабатывании тепловой перегрузки, если она связана с блокировкой перегрузки)

(2) Подключение катушки реле:

  • A1 катушки реле подключается к любой одной фазе питания, а A2 подключается к NC-соединению реле тепловой защиты от перегрузки (95).

(3) Подключение теплового реле перегрузки:

  • T1, T2, T3 подключаются к реле тепловой перегрузки
  • Реле перегрузки подключается между главным контактором и двигателем
  • NC-соединение (95-96) теплового реле перегрузки соединяется с кнопкой остановки и общим соединением кнопки пуска / остановки.

Схема подключения стартера DOL:

Работа стартера DOL:

  • Основным сердцем стартера DOL является катушка реле. Обычно он получает одну фазную постоянную от входящего напряжения питания (A1). Когда катушка получает вторую фазу, катушка реле включается и магнит контактора создает электромагнитное поле, и из-за этого плунжер контактора перемещается, и главный контактор стартера замыкается, а вспомогательный контактор изменяет свое положение NO становится NC, а NC становится (показано красной линией на схеме).
  • Нажатие кнопки пуска:
  • Когда мы нажимаем кнопку пуска, катушка реле получает вторую фазу от фазы питания — главный контактор (5) — вспомогательный контакт (53) — кнопка пуска — кнопка останова — 96-95 — к катушке реле (A2). Теперь катушка подает питание и Магнитное поле создается движением магнита и плунжера контактора. Главный контактор замыкается, и двигатель получает питание одновременно. Вспомогательный контакт меняет положение (53-54) с NO на NC.
  • Отпустите кнопку пуска:
  • Катушка реле получает питание даже после того, как мы отпускаем кнопку «Пуск».Когда мы отпускаем кнопку пуска, катушка реле получает фазу питания от главного контактора (5) — вспомогательного контактора (53) — вспомогательного контактора (54) — кнопки остановки-96-95 — катушки реле (показаны красные / синие линии на схеме).
  • В состоянии перегрузки двигатель будет остановлен прерыванием цепи управления в точке 96-95.
  • Нажатие кнопки останова:
  • Когда мы нажимаем кнопку «Стоп», цепь управления стартера прерывается при нажатии кнопки «Стоп» и питание катушки реле прерывается, плунжер перемещается и замыкающий контакт главного контактора становится разомкнутым, питание двигателя отключается.

Пусковые характеристики двигателя на стартере DOL:

  • Доступный пусковой ток: 100%.
  • Пиковый пусковой ток: от 6 до 8 тока полной нагрузки.
  • Пиковый пусковой крутящий момент: 100%

Преимущества стартера DOL:

  1. Самый экономичный и самый дешевый стартер
  2. Простота установки, эксплуатации и обслуживания
  3. Простая схема управления
  4. Легко понять и устранить неполадки.
  5. Обеспечивает 100% крутящий момент при запуске.
  6. От стартера к двигателю требуется только один комплект кабеля.
  7. Двигатель соединен треугольником на клеммах двигателя.

Недостатки DOL Starte r:

  1. Не снижает пусковой ток двигателя.
  2. Высокий пусковой ток: Очень высокий пусковой ток (обычно в 6–8 раз больше FLC двигателя).
  3. Механически агрессивные: Термическая нагрузка на двигатель, сокращающая его срок службы.
  4. Падение напряжения: В электроустановке наблюдается большой провал напряжения из-за высокого пускового тока, влияющего на других потребителей, подключенных к тем же линиям, и поэтому не подходит для двигателей с короткозамкнутым ротором большего размера.
  5. Высокий пусковой крутящий момент: Ненужный высокий пусковой крутящий момент, даже если он не требуется из-за нагрузки, что приводит к увеличению механической нагрузки на механические системы, такие как вал ротора, подшипники, редуктор, муфта, цепной привод, подключенное оборудование и т. Д.приводящие к преждевременному выходу из строя и простоям оборудования .

Особенности прямого запуска

  • Для трехфазных двигателей малой и средней мощности
  • Три соединительных провода (схема: звезда или треугольник)
  • Высокий пусковой момент
  • Очень высокая механическая нагрузка
  • Сильноточные пики
  • Падения напряжения
  • Простые коммутационные аппараты

DOL подходит для:

  • Можно использовать пускатель прямого включения, если высокий пусковой ток двигателя не вызывает чрезмерного падения напряжения в цепи питания.По этой причине максимально допустимый размер двигателя для пускателя с прямым пуском от сети может быть ограничен поставщиком электроэнергии. Например, коммунальное предприятие может потребовать от сельских потребителей использовать пускатели пониженного напряжения для двигателей мощностью более 10 кВт.
  • Пуск
  • DOL иногда используется для запуска небольших водяных насосов, компрессоров, вентиляторов и конвейерных лент.

DOL не подходит для:

  • Пиковый пусковой ток приведет к серьезному падению напряжения в системе питания
  • Приводимое оборудование не может выдерживать воздействия очень высоких пиковых нагрузок крутящего момента
  • Безопасность или комфорт тех, кто использует оборудование, могут быть снижены из-за внезапного запуска, например, при использовании эскалаторов и лифтов.

Нравится:

Нравится Загрузка …

Связанные

О компании Jignesh.Parmar (B.E, Mtech, MIE, FIE, CEng)
Джигнеш Пармар закончил M.Tech (Power System Control), B.E (Electric). Он является членом Института инженеров (MIE) и CEng, Индия. Членский номер: M-1473586. Он имеет более чем 16-летний опыт работы в сфере передачи, распределения, обнаружения кражи электроэнергии, технического обслуживания и электротехнических проектов (планирование-проектирование-технический обзор-координация-выполнение).В настоящее время он является сотрудником одной из ведущих бизнес-групп в качестве заместителя менеджера в Ахмедабаде, Индия. Он опубликовал ряд технических статей в журналах «Электрическое зеркало», «Электрическая Индия», «Освещение Индии», «Умная энергия», «Industrial Electrix» (Австралийские публикации в области энергетики). Он является внештатным программистом Advance Excel и разрабатывает полезные базовые электрические программы Excel в соответствии с кодами IS, NEC, IEC, IEEE. Он технический блоггер и знает английский, хинди, гуджарати, французский языки.Он хочет поделиться своим опытом и знаниями и помочь техническим энтузиастам найти подходящие решения и обновиться по различным инженерным темам.

Как выбрать правильную УФ-лампу для ваших потребностей в неразрушающем контроле [Контрольный список]

Изучите четыре основных момента, которые следует учитывать при поиске новой УФ-лампы для флуоресцентных пенетрантных тестов или магнитопорошкового контроля.

Дэвид Гейс, менеджер по продукту

Промышленность общего освещения приняла светодиоды как предпочтительную технологию по сравнению с лампами накаливания и люминесцентными лампами из-за большей гибкости и меньшего количества проблем с безопасностью.Тем не менее, сообщество по неразрушающему контролю отстает в принятии светодиодов из-за особых требований к освещению и проблем, связанных с флуоресцентными методами, такими как испытание на проникновение жидкости или контроль магнитных частиц.

С учетом того, что в последние годы истек срок действия нормативных требований для неразрушающего контроля, а также достигнут прогресс в технологии и производстве светодиодов, высокоинтенсивные светодиодные источники света УФ-А теперь являются идеальным решением для профессионалов в области неразрушающего контроля.

Хотя гибкость является одним из основных преимуществ светодиодной технологии для неразрушающего контроля, это также означает, что требуется больше деталей для определения правильных характеристик для неразрушающего контроля.Чтобы лампа могла использоваться при флуоресцентном проникающем контроле или контроле магнитных частиц, необходимо учитывать множество факторов.

1. Пиковая длина волны и спектр излучения

Пиковая длина волны является наиболее важным фактором при выборе светодиодной лампы для люминесцентного контроля.

Когда были созданы формулы для пенетрантов и материалов с магнитными частицами, источником УФ-А по умолчанию были пары ртути, которые производили единственный пик УФ-А на 365,4 нм, линию элементарного излучения ртути.Следовательно, все флуоресцентные пенетранты и материалы с магнитными частицами настроены на флуоресценцию в УФ-А на длине волны 365 нм.

Для светодиодов пиковая длина волны может изменяться и зависит от отдельных светодиодов, используемых при производстве УФ-лампы. Чтобы убедиться, что светодиодная лампа UV-A дает флуоресценцию в проникающих веществах и материалах с магнитными частицами, светодиоды должны иметь максимальную длину волны в диапазоне 360–370 нм.

Также важно учитывать спектр излучения УФ-А, поскольку излучение УФ-А светодиода намного шире, чем излучение паров ртути.В конце спектра присутствует некоторое излучение в диапазоне видимого света выше 400 нм, которое можно наблюдать как глубокий фиолетовый свет от лампы. Контроль флуоресцентным пенетрантом и магнитными частицами проводится в темноте для увеличения контраста, а загрязнение в видимом свете ухудшит качество контроля. Для проверок на соответствие аэрокосмическим спецификациям, таким как ASTM E3022, Nadcap AC7114 и Rolls-Royce RRES , эти темно-фиолетовые блики неприемлемы. По этой причине любая лампа, используемая для аэрокосмической инспекции, такая как EV6000, должна включать пропускающий фильтр UV-A для блокировки видимого излучения.

Узнайте больше о том, почему ASTM E3022 требует пропускного фильтра UV-A.

2. Профиль луча и рабочее расстояние

При использовании светодиодных ламп вы не ограничены одной конфигурацией для выполнения всех проверок неразрушающего контроля. Лампы могут быть разработаны для конкретных применений и целей.

Лампы, предназначенные для осмотра крупным планом, будут иметь интенсивное сфокусированное пятно, но небольшую площадь луча. Площадь луча светодиодной лампы UV-A — это мера того, какая площадь поверхности превышает минимальную мощность излучения 1000 мкВт / см2, необходимую для проверки.Чтобы получить широкую область луча, необходим массив светодиодов.

Однако, если матрица используется слишком близко к проверяемой поверхности, в результате образуются яркие и тусклые пятна. Это компромисс между рабочим расстоянием и площадью луча.

Лампы с небольшой площадью луча полезны для осмотра труднодоступных мест, таких как отверстия, сварные соединения и внутренние поверхности. Но при использовании на больших конструкциях малый луч может создать «туннельное зрение», когда инспектор фокусируется на одной области, а индикаторы за пределами зоны луча можно легко пропустить.

Лампа с большой площадью луча будет обеспечивать УФ-А-излучением периферийную зону контроля. Это позволяет инспектору быстро находить и идентифицировать флуоресцентные индикаторы в периферийной области для более тщательного изучения.

Рабочее расстояние светодиодной лампы UV-A — это минимальное расстояние, необходимое для равномерного покрытия.

При размещении очень близко к поверхности отдельные светодиоды в матрице будут излучать отдельные лучи с тусклыми областями между ними. Такое неравномерное покрытие ухудшает качество проверки и может привести к пропущенным показаниям.Но по мере того, как лампа удаляется от поверхности, лучи отдельных светодиодов сливаются в гладкий ровный профиль.

Осмотр следует проводить только в том случае, если лампа расположена дальше минимального рабочего расстояния.

Ознакомьтесь с ассортиментом светодиодных УФ-ламп Magnaflux для неразрушающего контроля.

3. Блок питания

Светодиодная лампа UV-A, работающая от низкого напряжения, может работать от аккумулятора в течение нескольких часов. Это делает лампу очень портативной, а полевые проверки становятся быстрыми и простыми.

Однако есть проблема с лампами с батарейным питанием, поскольку интенсивность светодиода напрямую связана с напряжением питания и током. При использовании батареи напряжение и ток падают, образуя характерную кривую разряда. В случае светодиодной лампы UV-A это может привести к снижению интенсивности со временем, в конечном итоге упав ниже минимальных требований в 1000 мкВт / см 2 .

Лампы

Advanced содержат цепи постоянного тока, контролирующие разряд аккумулятора. Эти лампы автоматически отключаются, если они не могут поддерживать минимальную интенсивность 1000 мкВт / см 2 .Знание типа аккумулятора и кривой разряда важно для обеспечения контроля качества светодиодных УФ-ламп с батарейным питанием.

4. Требования к сертификации

В разных отраслях промышленности существуют разные требования к проверкам и допуски.

В аэрокосмической отрасли неразрушающего контроля, включая флуоресцентный пенетрант и контроль магнитных частиц, есть спецификации высокого уровня по всем аспектам процесса. После пяти лет исследований в ASTM E3022 были установлены аэрокосмические требования к светодиодным УФ-лампам.Этот стандарт обеспечивает производителям ламп базовые характеристики для использования при проверке люминесцентных ламп.

Светодиодная УФ-лампа, сертифицированная производителем в соответствии с ASTM E3022, как и ручная УФ-лампа EV6000, приемлема для использования всеми авиакосмическими компаниями и производителями оригинального оборудования и соответствует критериям аудита Nadcap. Однако эти требования применяются только к лампам, используемым для окончательной аэрокосмической инспекции. Лампы, используемые в других местах технологического процесса, например, на станциях промывки или ополаскивания пенетрантами, обычно не требуют полной сертификации ASTM E3022.

Для неавиационно-космических отраслей, таких как сварка, энергетика, трубопроводный контроль или полевые проверки, существует меньше требований к сертификации. Более жесткие промышленные проверки часто проводятся в неидеальных условиях, поэтому требуется более интенсивное УФ-А, чтобы флуоресцентные индикаторы были видны. Однако исследования показали, что интенсивность УФ-А выше 10 000 мкВт / см 2 на расстоянии 15 дюймов / 38 см может вызывать обесцвечивание флуоресцентных красителей и пигментов.

Светодиодная лампа для промышленного применения, такая как недавно выпущенная двойная УФ-лампа EV6500, должна включать сертификат соответствия производителя, который включает максимальную интенсивность УФ-А, регулируемую ниже 10 000 мкВт / см 2 .Сертификат также должен включать максимальную длину волны в диапазоне 360–370 нм, чтобы гарантировать, что лампа имеет правильный спектр излучения для индукции флуоресценции.

Узнайте о нашей стационарной светодиодной УФ-лампе для неразрушающего контроля.

Светодиодные лампы

являются ценным достижением в области неразрушающего контроля, обеспечивая большую гибкость в конструкции и применении, а также повышенную безопасность. Однако при выборе подходящей светодиодной лампы УФ-А для флуоресцентного контроля необходимо учитывать множество факторов.При использовании светодиодных ламп необходимо учитывать такие факторы, как спектр излучения, площадь луча и источник питания. Требования к сертификации также важны для аэрокосмической и других отраслей с высокими техническими характеристиками.

Внимательно изучив свои потребности в тестировании, прежде чем вкладывать средства в светодиодную УФ лампу, специалисты по неразрушающему контролю могут быть уверены, что они получают правильный инструмент, который поможет сделать их флуоресцентные пенетрантные тесты и проверки магнитных частиц быстрее и эффективнее.

Опубликовано 18 апреля 2017 г.

Флуоресцентные лампы с питанием от батарей и УФ — Новости

Я решил преобразовать старую инспекционную лампу в перезаряжаемый мобильный черный фонарь и поигрался с некоторыми другими типами ультрафиолетового света, пока работал с ним!

Добавлено в избранное Любимый 2

Недавно я наткнулся на отличное видео от YouTube-блогера Electronics «Big Clive» о различиях между УФ-А, УФ-В и УФ-С светом.Если у вас есть минута (или 24), вам стоит ее проверить; это довольно интересно!

Если у вас нет получаса, чтобы узнать об УФ-спектре, думаю, я вас не виню, но вот суть видео: в Интернете доступно множество различных типов люминесцентных ламп, которые все обозначены как «УФ» лампы. Некоторые из них — это то, что традиционно можно назвать «черными огнями», но некоторые из них немного более зловещие. Большой Клайв рассказывает историю мероприятия HYPEBEAST, на котором неосведомленный дизайнер использовал лампы UV-C в ряде светильников из-за их, по общему признанию, очень крутого и футуристического, призрачного синего свечения.Это имело досадный побочный эффект: многие пришли с солнечными ожогами и вспышками сварщика … от посещения модного мероприятия.

Вы видите, как Клайв объясняет в видео, УФ-свет бывает нескольких разных вкусов. Первый — это УФ-А при 315-400 нм, который не особенно вреден и представляет собой вид излучения, который создает большинство эффектов «черного света». Следующим идет УФ-В с длиной волны 280–315 нм, который в значительной степени отвечает за солнечные ожоги (и, что неудивительно, это вид УФ-излучения, генерируемый лампами для загара).И еще есть УФ-C на 100-280 нм, что довольно неприятно. УФ-С используется для стерилизации в системах циркуляции воздуха и воды и может вызвать ожоги кожи и повреждение глаз. В природе это не проблема, потому что она не может проникнуть в атмосферу, чтобы добраться до нас от солнца. Люминесцентные лампы, которые излучают УФ-С, должны быть сделаны из кварцевого стекла, чтобы свет мог выходить наружу; обычное стекло имеет тенденцию быть довольно непрозрачным для УФ-С. В видео Клайв демонстрирует несколько различных видов люминесцентных ламп, которые можно дешево купить на eBay и которые генерируют различные виды УФ-излучения.

Примерно в это же время кто-то в офисе избавлялся от небольшой люминесцентной лампы для инспекции. Это что-то вроде штуки с батарейным питанием, которая освещает одну 6-дюймовую трубку. Я схватил ее и сразу начал переводить ее с работы на щелочных батареях на работу от литиевых аккумуляторных батарей. В конце концов, у кого есть куча батареек «С» лежать больше?

Моим первым шагом было разобрать корпус и подключить контакты аккумулятора напрямую к настольному источнику питания.Таким образом, я мог изменить входное напряжение и выяснить, что схема выдержит. Конечно, я мог посчитать, сколько батарей должно было уместиться туда, и умножить это примерно на 1,5 В постоянного тока, что я и сделал, чтобы определить отправную точку. Однако мне было действительно интересно узнать, будет ли он счастлив работать при напряжении, кратном 5 В, чтобы я мог использовать одну из наших плат для зарядного устройства / бустера для работы от литий-ионного аккумулятора. К счастью, в лампе уже была холодная белая лампочка, так что я мог сказать, действительно ли цепь попала в лампочку, и, что удивительно, у нее не было никаких проблем с зажиганием 5В.Лампа может быть не такой яркой, как если бы она работала при немного более высоком напряжении, но она достаточно яркая. Мне пришлось внести несколько тонких изменений в корпус, чтобы разместить гигантскую батарею 6 Ач, а также можно было вставить USB-кабель для зарядки, но все вернулось обратно без каких-либо признаков вмешательства.

Что касается схемы, которая позволяет нескольким щелочным батареям питать люминесцентную лампу, то вот плата, которая была в этой лампе:

Мне кажется, это применение этой классической схемы:

Изображение предоставлено Next.GR

Это очень простой инвертор с драйвером лампы. Транзистор используется для настройки генератора, который переключает ток от батарей по двум обратным путям, начиная с центрального отвода обмотки трансформатора, обратно через одну сторону, а затем через другую. Это переключение назад и вперед на первичной обмотке создает переменный ток на вторичной или выходной обмотке трансформатора. Если трансформатор намотан правильно, выходное напряжение будет намного выше, чем постоянный ток на первичной стороне.

Посмотрев видео Big Clive об УФ-лампах, я уже заказал несколько ламп правильного размера для этого фонаря: лампу BLB или Blacklight Blue, а также стерилизационную лампу UV-C. Вместе они принесли мне менее 20 долларов из специализированного интернет-магазина лампочек. Я был взволнован, обнаружив, что обе эти лампочки отлично работают в моем приборе с небольшой мощностью!

Но теперь мне очень хотелось иметь под рукой все эти различные типы ламп, поэтому я разработал в Fusion 360 зажим, который бы удерживал люминесцентные лампы сбоку корпуса.По сути, каждый зажим представляет собой всего лишь пару цилиндров с отсутствующей дугой, внутренний диаметр которой точно соответствует внешнему диаметру трубок. Два из них будут приклеены к боковой стороне контрольной лампы и позволят мне быстро защелкнуть и отсоединить трубку, когда мне нужно. Вот что я придумал:

Накинул на 3D-принтер ТАЗ 5 и примерно через час у меня была пара готовых зажимов. Чтобы добиться правильного выравнивания, я закрепил обе УФ-лампы и скрутил всю сборку, пока она не стала прямой.Затем, оставив лампочки на месте, я приклеил зажимы к корпусу с помощью небольшого количества клея CA.

Я думаю, что эта маленькая хитрость удалась. Конечно, это не был сложный проект, но не все они должны быть такими сложными. Эта лампа, особенно лампа черного света, пригодится при идентификации материалов или при проверке светофильтров. Лампа UV-C, вероятно, не имеет практического применения lot в этой конфигурации, но если мне когда-нибудь понадобится запах озона или действительно глубокий солнечный ожог, я думаю, будет приятно знать, что она у меня под рукой.

Удачного взлома!

.

Оставить комментарий