Как работает тепловой насос: Принцип действия теплового насоса | Viessmann

Опубликовано в Разное
/
5 Ноя 1978

Содержание

Принцип действия теплового насоса | Viessmann

Принцип работы теплового насоса очень напоминает по своей сути работу холодильника. В то время как холодильник отводит тепловую энергию и направляет ее наружу, то есть из внутренней части холодильника, тепловой насос делает наоборот: он забирает тепловую энергию от окружающей среды за пределами помещения и преобразует ее в полезную для отопления. Тепловой насос может забирать тепловую энергию как из воздуха внутри помещения или снаружи, так и из грунтовых вод и почвы. И поскольку температура полученного тепла, как правило, не достаточна для того, чтобы отапливать здание или обеспечивать его горячей водой, в дело вступает термодинамический процесс.

Процесс охлаждения в подробностях


В независимости от того, какой тип теплового насоса используется для отопления, в функционал теплового насоса также входит процесс охлаждения, который происходит в четыре этапа.

1. Испарение

Для того, чтобы начать процесс испарения жидкости, необходима энергия. Этот процесс можно наблюдать на примере с водой. Если емкость с водой нагревается до 100 градусов Цельсия (тепловая энергия подается) вода начинает испаряться. При дальнейшем подаче тепловой энергии температура воды не повышается. Вместо этого вода полностью преобразуется в пар.

2. Сжатие газа

При сжатии газа, например воздуха (давление увеличивается), также повышается температура. Вы можете наблюдать это например, если вы придержите отверстие в велосипедном воздушном насосе и начнете процесс «накачки» воздуха, вы почувствуете тепло.

3. Конденсация


Согласно закону сохранения энергии при конденсации водяного пара, высвобождается тепловая энергия, которая ранее использовалась для испарения.

4. Расширение

При резком снижении давления в жидкости, находящейся под давлением, температура снижается в несколько раз. Это можно наблюдать на примере баллона с сжиженным газом для кемпинговой горелки. Открытие клапана может привести к образованию льда на клапане баллона с жидким газом даже летом. (Здесь давление снижается с 30 бар до 1 бар.)

Постоянное повторение процесса


Эти процессы происходят внутри теплового насоса в замкнутом контуре. Для транспортировки тепла используется жидкость (хладагент), которая испаряется при очень низких температурах. Чтобы испарить эту жидкость, используется тепловая энергия из земли или наружного воздуха. Для этого достаточно даже температуры в минус 20 градусов по Цельсию. Холодные пары хладагента затем очень сильно сжимаются компрессором. При этом их температура возрастает до 100 градусов Цельсия. Эти пары хладагента конденсируются и отдают тепло в систему отопления. Затем давление жидкого хладагента на расширительном клапане сильно снижается. При этом температура жидкости снижается до исходного уровня. Процесс может начинаться заново.

Процесс на примере воздушно-водяного теплового насоса


Проще всего объяснить этот процесс на примере воздушно-водяного теплового насоса: тепловой насос «воздух-вода» может состоять из одной или двух составляющих. В обоих случаях встроенный вентилятор активно  направляет  окружающий воздух в теплообменник. Через теплообменник проходит хладагент, который переходит из одного состояния в другое при очень низких температурах. Внутри теплообменника хладагент нагревается воздухом из окружающей среды  и постепенно переходит в газообразное состояние. Для повышения температуры, возникающих при этом паров, используется компрессор. Он сжимает пары хладагента и увеличивает как давление, так и их температуру до требуемого значения.

Другой теплообменник (конденсатор) затем передает тепло от нагретых паров хладагента на отопление (теплые полы, радиаторы, буферная емкость или водонагреватель). Хладагент, находящийся под давлением отдает тепло, его температура падает и он снова переходит в жидкое состояние. Перед тем, как поступить обратно в контур, хладагент сначала расширяется в расширительном клапане. После того, как он достигнет своего исходного состояния, процесс процесс в холодильном контуре может начинаться с самого начала.

Принцип работы теплового насоса. Как работает тепловой насос?

Все больше и больше интернет пользователей интересуются альтернативами способами отопления: тепловыми насосами.

Для большинства это абсолютно новая и неизвестная технология, поэтому и возникают вопросы типа: «Что такое тепловой насос?», «Как выглядит тепловой насос?», «Как работает тепловой насос?» и пр.

Здесь мы постараемся просто и доступно дать ответы на все эти и еще много других вопросов, связанных с тепловыми насосами.

 

Что такое Тепловой Насос?

Тепловой насос — устройство (другими словами «тепловой котел»), которое отбирает рассеянное тепло из окружающей среды (грунт, вода или воздух) и переносит его в отопительный контур вашего дома.

Тепловой насос Грунт-Вода

Благодаря солнечным лучам, которые непрерывно поступают в атмосферу и на поверхность земли происходит постоянная отдача тепла. Именно таким образом поверхность земли круглый год получает тепловую энергию.

Воздух частично поглощает тепло от энергии солнечных лучей. Остатки солнечной тепловой энергии почти полностью поглощается землей.

Кроме того, геотермальное тепло из недр земли постоянно обеспечивает температуру грунта +8°С (начиная с глубины 1,5-2 метра и ниже). Даже холодной зимой температура на глубине водоемов остается в диапазоне +4-6°С.

Именно это низкопотенциальное тепло грунта, воды и воздуха переносит тепловой насос из окружающей среды в отопительный контур частного дома, предварительно повысив температурный уровень теплоносителя до необходимых +35-80°С.

ВИДЕО: Как работает тепловой насос Грунт-Вода?

 

Что делает Тепловой Насос?

Тепловые насосы — тепловые машины, которые предназначены для производства тепла с использованием обратного термодинамического цикла. Тепловые насосы переносят тепловую энергию от источника с низкой температурой в систему отопления с более высокой температурой. В процессе работы теплового насоса происходят затраты энергии, не превышающие объем произведенной энергии.

Прямой цикл Карно

В основе работы теплового насоса лежит обратный термодинамический цикл (обратный цикл Карно), состоящий из двух изотерм и двух адиабат, но в отличии от прямого термодинамического цикла (прямого цикла Карно) процесс протекает в обратном направлении: против часовой стрелки.

В обратном цикле Карно окружающая среда выступает в роли холодного источника тепла. При работе теплового насоса тепло внешней среды благодаря совершению работы передается потребителю, но с уже более высокой температурой.

Передать тепло от холодного тела (грунт, вода, воздух) возможно только при затрате работы (в случае с тепловым насосом — затраты электрической энергии на работу компрессора, циркуляционных насосов и пр.) или другого компенсационного процесса.

Еще тепловой насос можно назвать «холодильником наоборот», так как тепловой насос это та же холодильная машина, только в отличии холодильника тепловой насос забирает тепло снаружи и переносит его в помещение, то есть обогревает помещение (холодильник же охлаждает путем отбора тепла из холодильной камеры и выбрасывает его через конденсатор наружу).

Как работает Тепловой Насос?

Теперь поговори о том как работает тепловой насос. Для того, что понять принцип работы теплового насоса нам нужно разобраться в нескольких вещах.

1. Тепловой насос способен извлекать тепло даже при отрицательной температуре.

Большинство будущих домовладельцев не могут понять принцип работы теплового насоса Воздух-Вода (в принципе любого воздушного теплового насоса), так как не понимают каким образом может извлекаться тепло из воздуха при отрицательной температуре зимой. Вернемся к основам термодинамики и вспомни определение теплоты.

Теплота — форма движения материи, представляющая собой беспорядочное движение образующих тело частиц (атомов, молекул, электронов и др.).

Даже при температуре 0˚С (ноль градусов по Цельсию), когда замерзает вода, в воздухе все еще есть теплота.  Ее значительно меньше чем, например при температуре +36˚С, но тем не менее и при нулевой и при отрицательной температуре происходит движение атомов, а значит и происходит выделение теплоты.

Движение молекул и атомов полностью прекращается при температуре -273˚С (минус двести семьдесят три градуса по Цельсию), что соответствует абсолютному нулю температуры (ноль градусов по шкале Кельвина). То есть и зимой при минусовой температуре в воздухе есть низкопотенциальное тепло, которое можно извлекать и переносить в дом.

2. Рабочая жидкость в тепловых насосах — хладагент (фреон).

Хладагент R-410А, используемый в тепловых насосах

Что такое холодильный агент? Хладагент — рабочее вещество в тепловом насосе, которое отбирает теплоту от охлаждаемого объекта при испарении и передает тепло рабочей среде (например, воде или воздуху) при конденсации.

Особенность хладагентов в том, что они способны закипать и при отрицательных и при относительно низких температурах. Кроме того хладагенты могут переходить из жидкого состояния в газообразное и наоборот. Именно во время перехода из жидкого состояния в газообразное (испарения) происходит поглощение теплоты, а во время перехода из газообразного в жидкое (конденсации) происходит передача теплоты (отделение тепла).

3. Работа теплового насоса возможна благодаря его четырем ключевым компонентам.

Для того, чтобы понять принцип работы теплового насоса его устройство можно разделить на 4 основные элементы:

  1. Компрессор, который сжимает хладагент для повышения его давления и температуры.
  2. Расширительный клапан — терморегулирующий вентиль, который резко понижает давление хладагента.
  3. Испаритель — теплообменник, в котором хладагент с низкой температурой поглощает тепло от окружающей среды.
  4. Конденсатор — теплообменник, в котором уже горячий хладагент после сжатия передает тепло в рабочую среду отопительного контура.

Именно эти четыре компонента позволяют холодильным машинам производить холод, а тепловым насосам — тепло. Для того, чтобы разобраться как работает каждый компонент теплового насоса и для чего он нужен предлагаем просмотреть видео о принципе работы грунтового теплового насоса.

ВИДЕО: Принцип работы теплового насоса Грунт-Вода

Принцип работы теплового насоса

Теперь попытаемся подробно описать каждый этап работы теплового насоса. Как уже говорилось ранее — в основе работы тепловых насосов лежит термодинамический цикл. Это значит, что работа теплового насоса состоит из нескольких этапов цикла, которые повторяются снова и снова в определенной последовательности.

Рабочий цикл теплового насоса можно разделить на четыре следующие этапы:

1. Поглощение тепла из окружающей среды (кипение хладагента).

В испаритель (теплообменник) поступает хладагент, который находиться в жидком состоянии и имеет низкое давление. Как мы уже знаем при низкой температуре хладагент способен закипать и испаряться. Процесс испарения необходим для того, чтобы вещество поглотило тепло.

Согласно второму закону термодинамики тепло передается от тела с высокой температурой к телу с более низкой температурой. Именно на этом этапе работы теплового насоса хладагент с низкой температурой проходя по теплообменнику отбирает тепло от теплоносителя (рассола), который ранее поднялся из скважин, где отобрал низкопотенциальное тепло грунта (в случаи с грунтовыми тепловым насосами Грунт-Вода).

Дело в том, что температура грунта под землей в любое время года составляет +7-8°С. При использовании геотермального теплового насоса типа Грунт-Вода устанавливаются вертикальные зонды, по которым циркулирует рассол (теплоноситель). Задача теплоносителя — нагреться до максимально возмножной температуры во время циркуляции по глубинным зондам.

Когда теплоноситель отобрал тепло из грунта, он поступает в теплообменник теплового насоса (испаритель) где «встречается» с хладагентом, который имеет более низкую температуру. И согласно второму закону термодинамики происходит теплообмен: тепло от более нагретого рассола передается менее нагретому хладагенту.

Здесь очень важный момент: поглощение тепла возможно во время испарения вещества и наоборот, отдача теплоты происходит при конденсации. Во время нагрева хладагента от теплоносителя он меняет свое фазовое состояние: хладагент переходит из жидкого состояния в газообразное (происходит процесс закипания хладагента, он испаряется).

Пройдя через испаритель хладагент находиться в газообразной фазе. Это уже не жидкость, но газ, который отобрал тепло у теплоносителя (рассола).

2. Сжатие хладагента компрессором.

На следующем этапе хладагент в газообразном состоянии попадает в компрессор. Здесь компрессор сжимает фреон, который за счет резкого увеличения давления нагревается до определенной температуры.

Аналогичным образом работает и компрессор обычного бытового холодильника. Единственное существенное отличие компрессора холодильника от компрессора теплового насоса — значительно меньшая производительность.

ВИДЕО: Как работает холодильник с компрессором

 

3. Передача тепла в систему отопления (конденсация).

После сжатия в компрессоре хладагент, который имеет высокую температуру поступает в конденсатор. В данном случае конденсатор — это тоже теплообменник, в котором во время конденсации происходит отдача теплоты от хладагента к рабочей среде отопительного контура (например воде в системе теплых полов, или радиаторов отопления).

В конденсаторе хладагент из газовой фазы снова переходит в жидкую. Этот процесс сопровождается выделением тепла, которое используется для системы отопления в доме и горячего водоснабжения (ГВС).

4. Понижение давления хладагента (расширение).

Теперь жидкий хладагент нужно подготовить к повторению рабочего цикла. Для этого хладагент проходит через узкое отверстие термо-регулирующего вентиля (расширительного клапана). После «продавливания» через узкое отверстие дросселя хладагент расширяется, вследствие чего падает его температура и давление.

Этот процесс сравним с распылением аэрозоля из балончика. После распыления балончик на короткое время становиться холоднее. То есть произошло резкое падение давления аэрозоля вследствие продавливания наружу, температура соответственно тоже падает.

Теперь хладагент снова находиться под таким давлением, при котором он способен закипеть и испаряться, что необходимо нам для поглощения тепла от теплоносителя.

Задача ТРВ (термо-регулирующий вентиль) — снизить давление фреона путем расширения его на выходе из узкого отверстия. Теперь фреон снова готов закипать и поглощать тепло.

Цикл снова повторяется до тех пор, пока система отопления и ГВС не получит от теплового насоса необходимый объем тепла.

 

Принцип работы теплового насоса

Постоянный рост цен на энергетические ресурсы заставляет владельцев загородных домов задумываться об использовании альтернативных систем. Сегодня уже очевидно каждому, что таким традиционным видам топлива для отопления, как природный газ, солярка, мазут, уголь, дрова, торфобрикеты или пеллеты нужно искать замену среди альтернативных источников. Одним из таких достаточно эффективных способов получения тепла является тепловой насос, принцип работы которого основан на отборе тепла от естественных низкопотенциальных источников возобновляемой энергии окружающей среды: грунт, термальные и артезианские грунтовые воды, водоёмы, наружный воздух.


Принцип работы теплового насоса

Живое общение

5 минут общения даст больше эффекта чем изучение всего сайта
Бесплатная консультация: +7 (495) 229-85-86

Схема тепловых насосов

В общем, система отопления с использованием такого альтернативного агрегата в своём составе имеет:

  • зонд, представляющий собой, по сути, систему трубопроводов, которая находится в грунте или другой среде и служит для сбора и передачи тепла;
  • собственно сам насос, состоящий из четырёх основных конструктивных элементов: испаритель, компрессор, конденсатор и дроссельный вентиль, объединённых трубопроводами в замкнутую систему;
  • контур отопления.

На первый взгляд может показаться, что схема тепловых насосов довольно сложная, а принцип работы теплового насоса доступен для понимания только специалисту. Однако на самом деле всё гораздо проще. Чтобы понять принцип теплового насоса достаточно посмотреть на обычный холодильник, который забирает тепло от продуктов, лежащих внутри, и отводит его через решётку на задней стенке. Только схема тепловых насосов работает с точностью до наоборот – получает тепло из внешнего источника и передаёт его внутрь.

Работа теплового насоса

Итак, замкнутая система с циркулирующим хладагентом, например, фреоном, температура кипения которого всего порядка 4°С. Как осуществляется работа теплового насоса?

1. Холодный фреон начинает нагреваться в результате получаемого тепла от первичного контура в виде зонда, который в зависимости от используемого источника низкопотенциального тепла помещён в грунт, воду или находится на улице. Если говорить о грунте, то, как правило, его температура в течение года колеблется в пределах 8°С. Естественно, что при растущей температуре фреон начинает закипать и переходит в газообразное состояние.

2. На втором этапе фреон всасывается компрессором, где происходит его резкое сжатие с выделением большого количества тепла – температура фреона может достигать 90°С.

3. Далее перегретый газ подаётся в конденсатор. Этой температуры вполне достаточно для организации отопления и горячего водоснабжения загородного дома тепловым насосом. В конденсаторе температура хладагента падает, при этом выделяемое тепло передаётся системе отопления. Фреон конденсируется, превращаясь газожидкостную смесь.

4. В этом состоянии смесь поступает на дроссельный вентиль – специальный клапан, где происходит резкое снижение давления и температуры фреона, которая достигает 0°С, после чего превращённый в жидкость хладагент снова поступает с испаритель для получения тепла от возобновляемого природного источника – цикл замыкается.

Управление работой теплового насоса осуществляется терморегулятором. При достижении в помещении заранее заданной температуры он прекращает подачу электроэнергии на компрессор, останавливая работу системы, а при понижении температуры, включает его.

На сегодняшний день наибольшее распространение получили геотермальные агрегаты, принцип работы которых основан на получения тепла от грунта. Они наиболее эффективны, надёжны, долговечны и обеспечивают стабильные характеристики независимо от погодных условий и времени года.

≋ Как работает тепловой насос «воздух вода» • Принцип действия

Тепловой насос воздух-вода — это энергоэффективная система, которая появилась на рынке Украины не так давно, но уже получила широкое распространение и положительные отзывы покупателей. Централизованное отопление на сегодняшний день имеет высокую стоимость и низкое качество, поэтому тепловой насос стал достойной заменой обычным батареям. Данный агрегат характеризуется универсальностью, поскольку служит для организации нагрева воды и отопления/охлаждения помещений.

Внешне насос воздух-вода схож с обычной сплит-системой: он имеет наружный и внутренний блоки. Система оснащена конденсатором, испарителем и компрессором. Конденсатор — это элемент внутреннего модуля системы, в котором происходит передача тепловой энергии носителю (воде). Испаритель расположен в наружном блоке, в нем происходит отбирание тепла из воздуха. Тепловой насос воздух-вода считается самым простым и эффективным устройством для обеспечения комфортного микроклимата в помещении.

Рекомендуем товар

Как работает тепловой насос “воздух-вода”?

Принцип работы достаточно простой и состоит из следующих этапов:

  • Во внешнем модуле устройства расположен мощный вентилятор, который забирает воздух с улицы.
  • Далее происходит прямой контакт наружного воздуха с испарителем (теплообменником).
  • Внутри испарителя циркулирует по замкнутому контуру хладагент, который нагревается и испаряется (т.е. переходит в газообразное состояние). Особое свойство хладагента — это кипение при низких температурах.
  • Газообразный хладагент поступает в компрессор (который работает от электричества), где происходит его сжатие. При сжатии повышается давление и температура хладагента.
  • Нагретое вещество под высоким давлением перемещается в конденсатор, где отдает тепло носителю (в данном случае воде). После отдачи хладагент охлаждается, происходит конденсация и, как следствие, газообразное состояние переходит в жидкое.
  • В контуре установлен расширительный вентиль, задачей которого является снижение давления. Пройдя его, жидкий хладагент снова попадает в испаритель (теплообменник) и переходит в газообразное состояние. Данный цикл постоянно повторяется.

Таким образом становится понятно, как работает тепловой насос воздух-вода. Ведь воздух является бесконечным возобновляемым природным ресурсом (при этом совершенно бесплатным). Это дает возможность сэкономить большую часть денежных средств при обогреве помещения.

Рекомендуем товар

Технические характеристики энергосистемы воздух-вода

Преимуществ у теплового насоса данного вида множество. Среди них и экономичность, и универсальность, и простота в эксплуатации, и экологичность. Однако, по нашему мнению, стоит обратить внимание на такие показатели:

  • Объем воды. Энергоагрегат типа воздух-вода может быть рассчитан не только на организацию отопления/охлаждения, но и на подачу горячей воды. Объем накопительной емкости свидетельствует о потенциальном расходе тепловой энергии, площади помещения и т.д. Нагретая вода циркулирует в оборудованной системе отопления (радиаторах, фанкойлах, системе теплый пол).
  • Показатель COP. Компрессор, который обеспечивает сжатие газообразного хладагента, работает от электросети, следовательно затрачивает электроресурсы. Значение COP, указанное в технической документации, показывает соотношение вырабатываемой энергии к потребляемой. То есть, если значение равно 3, значит тепловой насос воздух-вода вырабатывает энергии в три раза больше, чем потребляет. Чем выше показатель, тем лучше и экономичнее прибор.
  • Работа при отрицательной температуре. Тепловой насос способен отбирать тепло даже при минусовых температурах (есть модели устройств, которые работают при температуре наружного воздуха до -10°C, а также до -25°C).
  • Значение SCOP — это сезонный коэффициент производительности теплового насоса. Ведь температура окружающей среды постоянно меняется. Рассчитывается значение в зависимости от климатической зоны, а за основу берется несколько показателей температурного режима (в зимнее и летнее время).

Рекомендуем товар

Достоинства тепловых насосов воздух-вода

  • Альтернатива дорогостоящим видам отопления. Газовое, электрическое или центральное отопление — это всегда дорого, при этом цена на данные источники тепла постоянно растет. В современных странах уже давно используют энергоэффективные приборы: солнечные батареи, ветрогенераторы и прочие устройства. Они не только экономичны, но еще и безвредны для окружающей среды и человека.
  • Длительный срок службы. Такая тепловая установка рассчитана на долгий период эксплуатации, имеет несколько лет гарантии и может быть модернизирована по истечению многих лет.
  • Многофункциональность. Тепловой насос можно использовать для обогрева, охлаждения и подачи горячей воды. Кроме того, существуют как бытовые установки, так и промышленные. Это отражается на эффективности и стоимости прибора.
  • Простота монтажа. В сравнении с тепловыми насосами других видов, данный тип (воздух-вода) является самым простым. Он подходит для любой местности, включая город. Не требует оформления разрешительных документов и других бумаг. Кроме того, агрегат не занимает много места в помещении и почти бесшумный.
  • Безопасность. Конструкция теплового насоса не имеет никаких взрыво- и пожароопасных веществ (топлива, газа). Поэтому, используя агрегат, можно не переживать за свое здоровье и жизнь.

Для любого теплового насоса все равно потребуется электроэнергия — этот факт следует учитывать. Однако ее потребление снизится в несколько раз, что не может не радовать.

Наша компания — это лидер в Украине в сфере климатической техники. Мы постоянно тестируем все инновационные устройства, чтобы оценить их достоинства и недостатки. Поэтому, чтобы познакомиться с работой теплового насоса, приглашаем Вас к нам в офис. Мы продемонстрируем Вам его наглядно, ведь у нас он уже давно установлен. Несмотря на то, что оборудование дорогостоящее, его эффективность полностью оправдана.

Рекомендуем товар

Принцип работы теплового насоса — Энергео

Тепловой насос представляет собой устройство по преобразованию низкопотенциальной теплоты, получаемой от какого-либо общедоступного источника, в тепловую энергию высокого потенциала, предназначенную для нужд потребителя (отопления, горячего водоснабжения). Преобразование теплоты происходит за счет ряда фазовых переходов. 

Термодинамически тепловой насос идентичен холодильной машине. И тепловой насос, и холодильная машина работают по обратному тепловому циклу, разница заключается в диапазоне рабочих температур и давлений.  В мире существует весьма широкая классификация тепловых насосов, в сфере теплоснабжения наибольшее распространение получили парокомпрессионные установки.

Цикл работы парокомпрессионного теплового насоса включает в себя следующие преобразования:

Низкопотенциальное тепло принимается тепловым насосом в специальном пластинчатом теплообменнике – испарителе и передается особому рабочему телу – хладагенту. Хладагент представляет собой вещество с низкой температурой кипения. На сегодняшний день в тепловых насосах чаще всего в качестве хладагента используются различные фреоны (R407C, R134а, R410а), а также углекислый газ и пропан. Хладагент, приняв в теплообменнике определенное количество теплоты, испаряется и в газообразном состоянии поступает в компрессор. Компрессор сжимает поступающий хладагент до высокого давления, вследствие чего повышается и температура рабочего тела. После сжатия при более высоких параметрах газообразный хладагент поступает в следующий теплообменник – конденсатор. В конденсаторе происходит передача теплоты высокого потенциала теплоносителю системы отопления и горячего водоснабжения потребителя с последующим переходом остывающего хладагента в жидкое состояние. После конденсатора рабочее тело проходит через редукционное устройство, где давление и температура снижаются до первоначальных параметров перед теплообменником-испарителем. Цикл замыкается и повторяется снова.

Парокомпрессионные тепловые насосы принято различать по способам отбора низкопотенциальной теплоты.


Горизонтальный геотермальный контур

Грунт имеет свойство накапливать и сохранять солнечное тепло в течение длительного времени, что ведет к относительно равномерному уровню температуры источника тепла на протяжении всего года. Это обеспечивает эксплуатацию теплового насоса с достаточно высоким коэффициентом эффективности. Забор тепла из грунта осуществляется с помощью горизонтально проложенной в грунте системы пластиковых труб на глубине 1,2-1,5 м.

Вертикальные геотермальные скважины

Вертикальный зонд — это система труб, опускаемых в вертикальную скважину, глубина и количество таких скважин зависит от мощности необходимого Вам теплового насоса. В грунте на глубине начиная с 10-15 метров в течение года поддерживается всегда одинаковая постоянная температура (около +7 — +8°С для РБ), поэтому данный вид коллектора в наших климатических условиях является наиболее надежным и эффективным.

Грунтовые воды

Если в ваших условиях грунтовые воды легко доступны, то их так же можно использовать в качестве источника тепла, т.к. температура такого источника в любое время года колеблется в среднем от 7 до 12° C. Расстояние между точкой получения тепла и точкой возврата должно быть не менее 10-15 метров. Кроме того в целях предотвращения «короткого замыкания потока», следует обратить внимание на направление потока грунтовых вод. Стоит также учитывать, что для установки подобных сооружений нужно разрешение, кроме этого они должны отвечать определенным нормативным требованиям.

Перейти к каталогу тепловых насосов «грунт-вода».

Окружающий воздух

Окружающий воздух является наиболее доступным источником низкопотенциальной теплоты для теплового насоса. Одним из преимуществ, при выборе теплового насоса данного типа, является простая схема монтажа оборудования в систему с уже установленным любым дополнительным источником тепла (например, дизельным, твердотопливным или газовым котлом). Однако стоит учитывать и то, что, ввиду особенностей наших климатических условий с достаточно низкой температурой наружного воздуха в холодное время года, работа теплового насоса в отопительный период  является не столь продуктивной, как для насосов типа «грунт-вода». Кроме того, тепловые насосы, принимающие тепло от наружного воздуха, способны работать до температуры -25°С (до -32°С — системы «воздух-водух»), при более низкой температуре автоматика теплового насоса будет переводить теплоснабжение потребителя от другого дополнительного источника.

Перейти к каталогу тепловых насосов типа «воздух-вода».

Вентиляционный воздух

Существуют тепловые насосы, использующие удаляемый из помещений воздух системы вентиляции. Применение таких тепловых насосов позволяет осуществлять рекуперацию теплоты воздуха внутри зданий. Перед удалением из помещений, тёплый воздух проходит через тепловой насос, возвращая, таким образом, системе теплоснабжения здания часть накопленной теплоты. 

Перейти к каталогу тепловых насосов, использующих вентиляционный воздух.

принцип работы, типы, применение и эффективность тепловых насосов для отопления дома

Тепловые насосы успешно используются в быту и промышленности в Европе и США уже более 25 лет. Их особенность состоит в преобразовании так называемого низкопотенциального тепла окружающей среды: земли, воды, воздуха. На российском рынке эта экологичная технология получила распространение сравнительно недавно.

Экспериментальные поселки, которые отапливались при помощи тепловых насосов, существовали еще в Советском Союзе. То, что было смелым экспериментом в двадцатом веке, в двадцать первом – вошло в практику.

Устройство и принцип работы бытового теплонасоса

Тепловой насос – это система, с помощью которой можно переносить тепло от менее нагретого тела к более нагретому, увеличивая температуру последнего. Тепловые насосы являются альтернативными источниками энергии, позволяющими получать дешевое тепло без вреда для окружающей среды.

Принцип работы бытового теплонасоса основан на том факте, что любое тело с температурой выше абсолютного нуля обладает запасом тепловой энергии. Этот запас прямо пропорционален массе и удельной теплоемкости тела. Если в этом контексте обратить внимание, например, на моря, океаны, подземные воды, обладающие огромной массой, можно прийти к выводу, что их грандиозные запасы тепловой энергии можно частично использовать для отопления домов без ущерба мировой экологической обстановке. «Взять» тепловую энергию какого-либо тела можно, если охладить его. Грубый расчет выделяемого при этом тепла возможен по формуле: Q = C*M*(T2 − T1), где Q − полученное тепло, C − теплоемкость, M – масса, T1 − T2 − температура, на которую было произведено охлаждение тела. Формула показывает, что при росте массы теплоносителя разница температур может быть небольшой. Например, охлаждая 1 кг теплоносителя от 1000 до 0 o С, можно получить столько же тепла, сколько даст охлаждение 1000 кг от 1 до 0 o С.

Типы тепловых насосов

По виду передачи энергии тепловые насосы бывают двух типов:

  • Компрессионные . Основные элементы установки – это компрессор, конденсатор, расширитель и испаритель. Используется цикл сжимания-расширения теплоносителя с выделением тепла. Этот тип тепловых насосов прост, высокоэффективен и наиболее популярен.
  • Абсорбционные . Это теплонасосы нового поколения, использующие в качестве рабочего тела пару абсорбент-хладон. Применение абсорбента повышает эффективность работы теплового насоса.

По источнику тепла выделяют тепловые насосы:

  • Геотермальные . Тепловая энергия берется из грунта или воды.
  • Воздушные . Тепло извлекается из атмосферы.
  • Использующие вторичное тепло . В качестве источника тепла используются воздух, вода, канализационные стоки.

По виду теплоносителя входного/выходного контура:

  • Тепловые насосы «воздух-воздух» . Этот вид тепловых насосов забирает тепло у более холодного воздуха, еще больше понижая его температуру, и отдает его в отапливаемое помещение.
  • Тепловые насосы «вода-вода» . Используется тепло грунтовых вод, которое передается воде для отопления и горячего водоснабжения.
  • Тепловые насосы «вода-воздух» . Используются зонды или скважины для воды и воздушная система отопления.
  • Тепловые насосы «воздух-вода» . Атмосферное тепло используется для водяного отопления.
  • Тепловые насосы «грунт-вода» . Трубы прокладываются под землей, и по ним циркулирует вода, забирающая тепло из грунта.
  • Тепловые насосы «лед-вода» . Для нагревания воды в системе отопления и горячего водоснабжения используется тепловая энергия, которая высвобождается при получении льда. Замораживание 100-200 л воды способно обеспечить обогрев среднего дома в течение часа.

Расчет эффективности тепловых насосов для отопления

Для того чтобы тепловой насос был эффективным, он должен давать тепловой энергии больше, чем потреблять электрической. Это соотношение называется коэффициентом преобразования. Коэффициент преобразования может меняться в зависимости от разницы температур входного и выходного контура. Чем холоднее снаружи, тем менее эффективна система. Для разных типов тепловых насосов коэффициент преобразования может варьироваться от 1 до 5. Для объективной оценки теплового насоса требуется дополнительный параметр годовой эффективности.

Эффективность конкретного теплового насоса будет зависеть от множества факторов, и ее расчет достаточно сложен. Дать обобщенную формулу, которая бы работала всегда, практически невозможно. Поэтому каждый конкретный случай требует обращения к экспертам, которые в зависимости от поставленной задачи и ее условий подберут необходимый тип теплового насоса и объем хладагента.

Сферы применения и степень распространения

Тепловые насосы востребованы прежде всего в случаях, когда другие способы организации системы отопления обходятся значительно дороже. Растущая распространенность тепловых насосов на производстве и в быту связана со следующими их преимуществами:

  • Экономичность . Для передачи в отопительную систему 1 кВт•ч тепловой энергии, установке требуется в среднем затратить всего 0,2-0,35 кВт•ч электроэнергии.
  • Простота эксплуатации.
  • Упрощение требований к системам вентиляции помещений, повышение уровня пожарной безопасности.
  • Возможность переключения с зимнего режима отопления на летний режим кондиционирования.
  • Компактность и бесшумность , что делает тепловой насос привлекательным для отопления частного дома.

По данным Европейской ассоциации тепловых насосов, до недавнего времени европейский рынок этого оборудования был в основном сосредоточен во Франции. В последние несколько лет рынки стали расширяться в Германии, Великобритании и Восточной Европе. По оценке Мирового энергетического комитета, уже в ближайшие пять лет доля отопления и горячего водоснабжения от тепловых насосов будет составлять в развитых странах не менее 75%.

Общий недостаток тепловых насосов – не очень высокая температура нагреваемой воды. Как правило, она составляет 50-60 o С.

Это интересно!

Впервые в Москве теплонасосная система горячего водоснабжения для многоэтажного дома была сдана в эксплуатацию в микрорайоне Никулино-2 в 2002 г. Проект был реализован при участии Министерства обороны РФ.

Стоимость оборудования

Традиционное решение для частных домов и коттеджей – газовое отопление. Однако вариант теплового насоса значительно выгоднее и удобнее. Чтобы установить газовый котел, требуются специальный дымоход, вентиляция, а также целый набор разрешительных документов. Применение тепловых насосов избавит вас от этих проблем и существенно сэкономит ваши средства. Чтобы провести газ в Подмосковье, потребуется около $20 000, и это в том случае, если ваш дом удален от газопровода менее, чем на 1 км, – иначе затраты вырастут в несколько раз! Помимо этого, придется учесть скорость работы отечественных газовщиков. Установка теплового насоса «под ключ» стоит от $15 000, а работы занимают всего 2-3 недели.

Из всего вышесказанного можно сделать однозначный вывод: использование тепловых насосов – это эффективное, простое в монтаже, экологичное и экономичное решение для организации отопления и горячего водоснабжения в частном доме.

Принцип работы теплового насоса, как работает тепловой насос

Как устроен геотермальный тепловой насос внутри

Виды тепловых насосов

Какие бывают виды тепловых насосов в в зависимости от источника тепла? Они делятся по способу отбора тепла из окружающей среды.

  • Геотермальные. Переносят тепло грунта и\или грунтовых вод в дом
  • Воздух-вода. Переносят тепло атмосферного воздуха в систему отопления.
  • Рекуператоры вторичного тепла: отбор тепла вытяжного воздуха, стоков канализации, другого бросового тепла

Тепловой насос с вертикальными скважинами (зондами)

Отбор тепла скважины

При отсутствии большой площади прилегающей территории, устанавливается вертикальный теплообменник (зонд) для работы с геотермальным тепловым насосом. Это наиболее компактный и популярный способ, который позволяет сохранить целостность ландшафта. Температура грунта на глубине бурения скважины стабильно находится на уровне +10ºС, поэтому эффективность таких тепловых насосов с вертикальным теплообменником выше. Недостатком является необходимость проведения бурильных работ, что повышает цену данного вида системы. При использовании в качестве источника тепла скважины, в нее опускается зонд из полиэтиленовой трубы, имеющий U-образную форму. Не обязательно использовать одну очень глубокую скважину, можно пробурить несколько неглубоких, более дешевых скважин, главное получить общую расчетную глубину.

Преимущества:

  • Компактная система, не требующая большого участка
  • Самая эффективная с точки зрения температур. Стабильная температура на протяжении всего года.
  • Возможно реализация пассивного кондиционирования путем сброса летом тепла в скважин
  • Нет необходимости в большом участке
  • Не влияет на участок

Грунтовый тепловой насос

Бурение скважин под тепловой насосГрунтовый горизонтальный коллектор

Тепловой насос собирает тепло грунта с помощью коллектора, уложенного рядом со зданием на глубину около метра. Горизонтальный контур собирает солнечную энергию, накопившуюся за лето в грунте. Коллектор геотермальной отопительной системы размещается горизонтально глубже уровня промерзания почвы. Такой способ позволяет добиться высокой энергоэффективности, так как температура на глубине залегания коллектора колеблется от 3 до 12ºС. Но монтаж горизонтального теплообменника требует наличия значительной земельной площади и может повредить уже обустроенную придомовую территорию. Также из возможных минусов: Ваш газон позеленеет после зимы на пару недель позже, чем у соседа 🙂
Преимущества:

  • Более низкая стоимость установки по сравнению с вертикальным контуром заземления
  • Может также использоваться для извлечения тепла из озер
  • Контур поддерживает постоянную температуру в течение года
  • При реализации кондиционирования с помощью теплового насоса, в некоторых случаях, нужно устанавливать активный блок кондиионирования

Горизонтальный коллектор

Спиральный коллектор

Спиральный коллектор является комбинацией между вертикальными скважинами и горизонтальным коллектором. Применяется там, где в силу геологических причин бурение очень дорогое (например, залегание гранитной плиты). Дороже чем вариант горизонтального коллектора, так как требует предварительного изготовления спиралей более тонкой трубы (обычно 25 мм) высотой от 2 до 3 метров. Также возникает необходимость сборных колодцев, так как из-за уменьшения диаметра увеличивается общая длинна трубы в системе.

Тепловой насос вода-вода

Тепло грунтовых вод, тепло реки, тепло моря

Вода выкачивается с первой скважины по течению, через промежуточный теплообменник, отбирается тепло у воды (дельта температур 3-4 градуса). Затем вода сбрасывается во вторую скважину ниже по течению грунтовых вод.
К минусам можно отнести постоянное обслуживание системы, а также непрогнозируемое изменение геологических и водоносных параметров (дебит и состав воды в скважине может меняться в худшую сторону).

Аналогичная система может использоваться с глубоководной рекой. А также с морем, но это уже более сложная система с дорогим титановым теплообменником и фильтрацией, данная система оправдана только в промышленных масштабах.


Принцип работы теплового насоса воздух вода

Отбор тепла наружного воздуха

Наиболее часто встречающийся тип “воздух-воздух” – это традиционные кондиционеры. А для работы с водяной системой отопления (радиаторы или теплые полы) применяются тепловой насос воздух вода Thermia iTec. Они извлекают тепло посредством обдува атмосферным воздухом теплообменника в наружном блоке. Внутри теплообменнника циркулирует более холодный фреон. За счет того, что фреон более холодный, чем атмосферный воздух, происходит отбор тепла из воздуха. Данная модель может работать до -25 градусов наружного воздуха.


Рекуперация тепла вытяжного воздуха

Утилизация тепла вытяжки

Энергия отбирается от теплого вытяжного воздуха из здания. Это может быть тепло, как с вытяжного воздуховода (или шахты) естественной вытяжки, так и с принудительной системы вентиляции с рекуперацией. В таком случае это будет вторая ступень рекуперации тепла после основного рекуператора.

Какие могут быть схемы утилизации (рекуперации) тепла вытяжного воздуха с тепловым насосом?

Для небольших зданий, в том числе частных домов, в дополнение к геотермальному тепловому насосу устанавливается специальный аксессуар Thermia Vent, который является теплообменником типа “воздух-вода”. Обдуваемый вытяжным воздухом, он дополнительно нагревает входящий теплоноситель со скважин, повышая COP теплового насоса.

Для больших зданий, где объем тепла в вытяжном воздухе существенный, можно установить промышленный тепловой насос Thermia Mega, полноценно обеспечивающий горячей водой здание или частично его отапливая. Также данная система актуальна для предприятий с бросовым теплом от технологических процессов. Особенно эффективно работает с такой системой инверторный тепловой насос, который подстраивают свою мощность под текущее количество отбираемого технологического тепла вытяжки в данной момент.

Преимущества:

  • Снижает стоимость установки в целом (меньше скважин)
  • Встраивается в существующую систему вентиляции
  • Улучшает COP теплового насоса
  • Повышает категорию здания до отметки энергоэффективности “А”

Мы отвечаем на 8 самых распространенных вопросов о тепловых насосах

Тепловой насос Mitsubishi сохраняет на кухне прохладу летом и тепло зимой.

Тепловые насосы — это круто — все так говорят? Но они еще в некотором роде… волшебные? Не совсем, конечно. Но технология, которая приводит в действие тепловые насосы, загадочна, если вы не являетесь экспертом в физике, а также в области отопления и охлаждения. И большая часть литературы в Интернете либо предлагает вам купить тепловой насос, либо хочет, чтобы вы НЕ покупали тепловой насос и использовали масло или пропан для получения тепла.Поэтому мы решили демистифицировать тепловые насосы для всех и прямо ответить на вопросы, чтобы вы могли принимать собственные обоснованные решения о покупке. Вы готовы учиться? Поехали:

Что такое тепловой насос?

Тепловой насос — это автономное двухкомпонентное устройство, в котором используются холодильная техника и электричество для обогрева и охлаждения домов, предприятий и других приложений. Тепловой насос состоит из двух компонентов: конденсатора, который чаще всего находится вне дома, который производит обогрев или охлаждение, и внутреннего блока, который обычно устанавливается на стене и пропускает горячий или холодный воздух в дом; поскольку конденсатор и воздухообрабатывающий агрегат разделены или «разделены» линией хладагента, тепловые насосы иногда могут называться «мини-разветвителями».”Тепловые насосы предлагают чрезвычайно высокий КПД, а также возможность обеспечивать обогрев и охлаждение без необходимости прокладки воздуховодов в доме; поскольку использование воздуховодов не требуется, вы можете услышать, что тепловые насосы называют «бесканальными».

Вот пример обычного типа теплового насоса:

Настенная кассета Mitsubishi с тепловым насосом (внутренний блок) вверху и конденсатор (наружный блок) и пульт дистанционного управления внизу. Обратите внимание, что эти изображения непропорциональны, и конденсаторы обычно составляют два или более футов в поперечнике.

Как работает тепловой насос?

Как работает тепловой насос — на этой диаграмме показан процесс охлаждения.

Проще говоря, тепловой насос использует электричество и хладагент для перемещения тепла из одного места в другое.

Для обеспечения тепла тепловой насос работает, отбирая тепло из воздуха за пределами вашего дома и передавая его охлаждающему хладагенту — затем хладагент сжимается, что значительно увеличивает температуру; затем хладагент перемещается во внутренний блок теплового насоса, который затем пропускает воздух над горячим хладагентом, повышая его температуру, чтобы удовлетворить термостатический запрос тепла внутри дома.

Тепловой насос состоит из двух основных частей — «настенной кассеты», которая устанавливается внутри вашего дома, и конденсаторного блока, который остается снаружи вашего дома. Настенные кассетные и конденсаторные блоки теплового насоса соединены линией хладагента.

Внутренняя настенная кассета с термостатическим управлением обеспечивает как обогрев, так и охлаждение. Когда требуется тепло, тепловой насос включает вентилятор в наружном блоке, чтобы начать процесс отвода тепла из воздуха за пределами вашего дома.Линия хладагента передает это тепло внутреннему блоку, который затем передает тепло воздуху внутри вашего дома через вентилятор внутри настенной кассеты. В режиме охлаждения процесс обратный: тепло выводится из дома, а холодный воздух возвращается внутрь.

В чем преимущество теплового насоса?

Тепловые насосы действительно экономят ваши деньги на расходах на электроэнергию.

Поскольку тепловой насос использует электричество только для выработки энергии, а не для выработки тепла, он обеспечивает исключительно высокий КПД.При использовании традиционного резистивного электрического нагрева — например, электрического плинтуса или обогревателей — количество выделяемого тепла пропорционально количеству используемой электроэнергии: одна единица тепла на единицу электроэнергии для 100% эффективности.

При использовании теплового насоса коэффициент полезного действия резко возрастает, поскольку потребляемая электроэнергия используется только для питания двух вентиляторов (испарителя и конденсатора), компрессора и насоса, чтобы сконцентрировать тепло снаружи и передать его в ваш дом. Благодаря этому тепловые насосы способны обеспечивать более 3 единиц тепла на каждую единицу электроэнергии, используемой при КПД более 300%.Средняя зимняя температура в штате Мэн составляет 37 градусов, поэтому сезонная эффективность Mitsubishi Hyper Heat составляет около 285%

.

Это означает более низкие счета за электроэнергию для комфортного дома — тепловые насосы очень недороги в эксплуатации, увеличивая ваши счета за электроэнергию в среднем на 75 долларов в месяц за тепловой насос, который постоянно работает в доме. Если вы используете тепловой насос вместе с основной системой отопления, такой как масляная, газовая или электрическая, вы получите дополнительную экономию, используя тепловой насос для компенсации расхода основного топлива: один тепловой насос может компенсировать до 300 галлонов масла. в обычном доме, экономя деньги на дорогих ископаемых видах топлива.Кроме того, тепловые насосы помогут снизить углеродный след вашего дома.

Как тепловой насос влияет на мои счета за отопление и электричество?

Heat Pumps повысит ваши счета за электроэнергию, но снизит ваши затраты на другие виды топлива для отопления.

Каждый отдельный блок (часто называемый индивидуальным) тепловой насос, который используется ежедневно, увеличивает ваш счет за электроэнергию на 50–100 долларов в месяц. Тем не менее, тепловой насос соответственно снизит ваш счет на отопительное топливо — для типичного домашнего хозяйства, которое использует 800 галлонов масла в год, тепловой насос может уменьшить количество используемого масла на 300 галлонов.Если нефть стоит 2,75 доллара за галлон, цена за миллион британских тепловых единиц (британских тепловых единиц, стандартная мера тепла в США) составит 28,06 доллара. Чтобы получить такое же количество тепла, 1 миллион БТЕ, от теплового насоса с текущим стандартным тарифом на электроэнергию 14,5 цента за киловатт-час, вам потребуется 14,71 доллара. Другими словами, отопление дома с помощью теплового насоса эквивалентно отоплению дома маслом по цене 1,44 доллара за галлон, или на 48% меньше.

Каковы преимущества теплового насоса при использовании солнечной энергии?

Дом с солнечной батареей на крыше

Преимущество солнечных панелей заключается в том, что днем, когда светит солнце, панели на крышах собирают солнечную энергию и преобразуют ее для использования в вашем доме в качестве электричества.Во многих домах электроэнергия, вырабатываемая массивом, которая не используется в доме, возвращается вам вашей электроэнергетической компанией и используется для компенсации вашего счета за электричество в конце каждого месяца. В большинстве домов по-прежнему будет выставляться счет за электроэнергию, использованную в ночное время, во время штормов или в периоды интенсивного использования, например, в очень жаркие периоды лета.

Однако ваш тепловой насос питается от электричества — и когда вы соединяете солнечные панели для электричества с тепловыми насосами для тепла (которые используют электричество для выработки электроэнергии), вы отапливаете свой дом в среднем примерно на 9 центов за кВтч по сравнению с14,5 цента за кВтч без солнечной энергии, что эффективно снижает ваши затраты на эксплуатацию теплового насоса почти на 40% в год.

Правда ли, что тепловые насосы перестают работать, когда становится очень холодно?

Сервисный техник True North с конденсаторным агрегатом теплового насоса

Да, но для того, чтобы тепловой насос полностью перестал работать, должно стать очень и очень холодно.

Различные модели тепловых насосов имеют разные характеристики того, насколько холодно может быть, прежде чем они перестанут быть эффективными.Для этого примера мы будем использовать рейтинг теплового насоса Mitsubishi Hyper Heat ™, который рассчитан на обеспечение достаточной тепловой мощности до -13 градусов по Фаренгейту.

Тепловые насосы рассчитаны на «мощность». В этом примере, когда температура составляет 30 градусов, тепловой насос легко будет производить 100% своей мощности с максимальной эффективностью. Однако, когда температура начинает падать, начинает падать и мощность, а когда мощность начинает падать, тепловой насос будет «усерднее работать», чтобы поддерживать температуру в вашем доме.Это похоже на то, как вам приходится нажимать на педаль газа, чтобы поднять машину на крутой холм, именно здесь эффективность тепловых насосов начинает падать — больше энергии используется, чтобы производить меньшую мощность.

При использовании теплового насоса Mitsubishi Hyper Heat ™ КПД начинает падать примерно при 2 градусах по Фаренгейту. При -2 градусах вы получите около 87% мощности устройства. А при -13 градусах вы получите около 76% мощности устройства. Неясно, при какой температуре устройство полностью перестанет работать — у нас еще не было достаточно холодного дня, чтобы продемонстрировать это с помощью тепловых насосов Hyper Heat ™, хотя в некоторых документах Mitsubishi предлагается точка остановки -18 градусов.

В старых домах с меньшей теплоизоляцией, большими потерями тепла или сквозняками тепловому насосу также потребуется больше работать, чтобы компенсировать быструю потерю тепла из-за этих проблем. Однако новые дома часто имеют отличную изоляцию и построены для предотвращения потерь тепла — в этих случаях тепло, создаваемое тепловым насосом, сохраняется внутри дома и помогает тепловому насосу работать с большей эффективностью.

Могу ли я отапливать дом с помощью тепловых насосов без других источников тепла?

В некоторых регионах с более теплым климатом тепловые насосы могут быть единственным источником тепла зимой.Однако здесь, в штате Мэн, мы рекомендуем, чтобы в большинстве домов был либо основной, либо резервный источник тепла на очень холодные дни или длительные периоды низких температур, в течение которых тепловые насосы будут иметь проблемы с восстановлением после потери тепла. Этими другими источниками могут быть нефть, газ, пропан, электричество или биомасса. True North предлагает тепло из древесных гранул из биомассы или тепло природного газа для снижения затрат на топливо для отопления и снижения выбросов углерода, которые способствуют изменению климата.

Что такое водонагреватель с тепловым насосом?

Этот водонагреватель с гибридным электрическим тепловым насосом Geospring Pro был установлен в подвале штата Мэн для обеспечения максимальной эффективности

Водонагреватель с тепловым насосом использует ту же технологию теплового насоса, которая описана выше, для нагрева горячей воды в доме.Водонагреватели с тепловым насосом очень хорошо изолированы, и вода может очень хорошо удерживать тепло — как таковые, водонагреватели с тепловым насосом могут обеспечить горячей водой типичную семью из четырех человек при очень низких эксплуатационных расходах, чаще всего 15 долларов или меньше в месяц.

Есть вопросы? Хотите узнать, подходит ли для вашего дома тепловой насос или водонагреватель с тепловым насосом? Позвоните нам в любое время по телефону 207-221-5677 или напишите нам по адресу [email protected]!

Страница 1 из 11

Как работает тепловой насос | Как работают тепловые насосы

Основные сведения о тепловом насосе

Один очень важный момент, который следует понимать, отвечая на вопрос «как работают тепловые насосы?» в том, что тепловые насосы не производят тепло — они перемещают тепло из одного места в другое.Печь создает тепло, которое распространяется по всему дому, но тепловой насос поглощает тепловую энергию из наружного воздуха (даже при низких температурах) и передает ее воздуху в помещении. В режиме охлаждения тепловой насос и кондиционер функционально идентичны, они поглощают тепло из воздуха в помещении и отводят его через наружный блок. Щелкните здесь, чтобы узнать больше о тепловых насосах и кондиционерах.

При рассмотрении того, какой тип системы лучше всего подходит для вашего дома, следует учитывать несколько важных факторов, включая размер дома и местный климат.У местного дилера Carrier есть опыт, чтобы должным образом оценить ваши конкретные потребности и помочь вам принять правильное решение.

Важные компоненты системы теплового насоса

Типичная система теплового насоса с источником воздуха состоит из двух основных компонентов: наружного блока (который выглядит так же, как наружный блок сплит-системы кондиционирования воздуха) и внутреннего блока обработки воздуха. Как внутренний, так и внешний блок содержат различные важные компоненты.

Наружный блок

Наружный блок содержит змеевик и вентилятор.Змеевик работает либо как конденсатор (в режиме охлаждения), либо как испаритель (в режиме нагрева). Вентилятор обдувает змеевик наружным воздухом для облегчения теплообмена.

Внутренний блок

Как и наружный блок, внутренний блок, обычно называемый блоком обработки воздуха, содержит змеевик и вентилятор. Змеевик действует как испаритель (в режиме охлаждения) или конденсатор (в режиме нагрева). Вентилятор отвечает за перемещение воздуха через змеевик и воздуховоды в доме.

Хладагент

Хладагент — это вещество, которое поглощает и отводит тепло при циркуляции в системе теплового насоса.

Компрессор

Компрессор нагнетает хладагент и перемещает его по системе.

Реверсивный клапан

Часть системы теплового насоса, которая меняет направление потока хладагента, позволяя системе работать в противоположном направлении и переключаться между нагревом и охлаждением.

Расширительный клапан

Расширительный клапан действует как дозирующее устройство, регулируя поток хладагента, когда он проходит через систему, что позволяет снизить давление и температуру хладагента.

Как работает тепловой насос — режим охлаждения

Одна из самых важных вещей, которые нужно понять о работе теплового насоса и процессе передачи тепла, заключается в том, что тепловая энергия естественным образом стремится переместиться в области с более низкими температурами и меньшим давлением. Тепловые насосы полагаются на это физическое свойство, позволяя теплу контактировать с более прохладной средой с более низким давлением, чтобы тепло могло передаваться естественным образом. Так работает тепловой насос.

Тепловой насос в режиме охлаждения.

Шаг 1

Жидкий хладагент перекачивается через расширительное устройство на внутреннем змеевике, которое функционирует как испаритель.Воздух из помещения проходит через змеевики, где тепловая энергия поглощается хладагентом. Получающийся в результате прохладный воздух обдувается воздуховодами дома. Процесс поглощения тепловой энергии приводит к нагреванию жидкого хладагента и его испарению в газообразную форму.

Шаг 2

Теперь газообразный хладагент проходит через компрессор, который сжимает газ. В процессе сжатия газа он нагревается (физическое свойство сжатых газов). Горячий хладагент под давлением проходит через систему к змеевику наружного блока.

Шаг 3

Вентилятор наружного блока перемещает наружный воздух через змеевики, которые служат змеевиками конденсатора в режиме охлаждения. Поскольку воздух снаружи дома холоднее, чем горячий сжатый газовый хладагент в змеевике, тепло передается от хладагента к наружному воздуху. Во время этого процесса хладагент снова конденсируется до жидкого состояния при охлаждении. Теплый жидкий хладагент перекачивается через систему к расширительному клапану внутренних блоков.

Шаг 4

Расширительный клапан снижает давление теплого жидкого хладагента, что значительно его охлаждает.В этот момент хладагент находится в холодном жидком состоянии и готов к перекачке обратно в змеевик испарителя внутреннего блока, чтобы снова начать цикл.

Как работает тепловой насос — режим отопления

Тепловой насос в режиме обогрева работает так же, как и в режиме охлаждения, за исключением того, что поток хладагента реверсируется с помощью реверсивного клапана, названного так же удачно. Реверсирование потока означает, что источником тепла становится наружный воздух (даже при низких температурах наружного воздуха), а тепловая энергия выделяется внутри дома.Внешний змеевик теперь выполняет функцию испарителя, а внутренний змеевик выполняет роль конденсатора.

Физика процесса такая же. Тепловая энергия поглощается в наружном блоке холодным жидким хладагентом, превращая его в холодный газ. Затем к холодному газу прикладывают давление, превращая его в горячий газ. Горячий газ охлаждается во внутреннем блоке за счет прохождения воздуха, нагрева воздуха и конденсации газа до теплой жидкости. Теплая жидкость сбрасывается под давлением, когда она входит в наружный блок, превращая ее в охлаждающую жидкость и возобновляя цикл.

Как работает тепловой насос — Обзор

Тепловой насос — это универсальная и эффективная система охлаждения и обогрева. Благодаря реверсивному клапану тепловой насос может изменять поток хладагента и либо нагревать, либо охлаждать дом. Воздух обдувается змеевиком испарителя, передавая тепловую энергию от воздуха хладагенту. Эта тепловая энергия циркулирует в хладагенте в змеевике конденсатора, где она высвобождается, когда вентилятор продувает воздух через змеевик. Благодаря этому процессу тепло перекачивается из одного места в другое.

Местный эксперт Carrier HVAC может помочь оценить ваши потребности в отоплении и охлаждении и порекомендовать подходящую систему теплового насоса.

ENERGY STAR Задайте вопрос экспертам | Продукция

Как работает тепловой насос?

Если вы хотите заменить систему кондиционирования или отопления в своем доме, вы можете рассмотреть возможность использования теплового насоса с воздушным источником. Эти изделия обеспечивают прохладу летом, как и стандартные кондиционеры, но также обеспечивают тепло зимой.Но как именно они делают и то, и другое?

Как работают тепловые насосы летом

В летние месяцы тепловой насос работает так же, как и обычный кондиционер. Стандартные кондиционеры используют хладагент для поглощения нежелательного тепла в вашем доме и передачи его наружному воздуху. Это происходит за счет изменения давления хладагента. При низком давлении хладагент легко поглощает любое тепло, имеющееся в воздухе, и испаряется из жидкости в газ.При высоких давлениях газовый хладагент имеет более высокую энергию, чем внешний воздух, поэтому он передает тепло окружающему воздуху, и при охлаждении хладагент снова конденсируется в жидкость. Контролируя давление хладагента, кондиционер может отводить тепло из вашего дома даже в очень жаркие дни.

Как работают тепловые насосы зимой

Тепловой насос использует этот же цикл «в обратном направлении» зимой для извлечения тепловой энергии извне и передачи ее в ваш дом.Даже когда на улице очень холодно, в воздухе все равно остается некоторое количество тепловой энергии. Поскольку у наружного воздуха больше энергии, чем у холодного хладагента под низким давлением, хладагент поглощает это тепло и испаряется. Как и в цикле кондиционирования воздуха, газовый хладагент может находиться под давлением, что приводит к повышению температуры. Когда хладагент подается обратно в ваш дом, он используется для нагрева воздуха внутри, пока тепло не будет извлечено, и он снова конденсируется в жидкость, и цикл продолжится.

Как тепловой насос экономит энергию?

Поскольку тепловой насос перемещает тепло из одного места в другое, а не генерирует его, тепловой насос потребляет меньше энергии для обогрева вашего дома, чем обычная электрическая или газовая система. Фактически, многие из них достаточно эффективны, чтобы получить ярлык ENERGY STAR. Если вы заменяете центральную систему кондиционирования воздуха, тепловые насосы могут работать с существующими воздуховодами в вашем доме или доступны в виде мини-сплит или «бесканальных» блоков, если в вашем доме нет воздуховодов.

Даже если вы не заменяете существующую систему отопления, добавляя кондиционер, тепловой насос может обеспечить охлаждение летом и более эффективно покрыть часть тепловой нагрузки в вашем доме. В самые холодные дни зимы даже небольшая система может компенсировать эксплуатационные расходы вашей основной системы отопления. При рассмотрении вопроса о модернизации или замене системы отопления и охлаждения вашего дома спросите своего подрядчика о тепловых насосах, сертифицированных ENERGY STAR.

Автор: Эбигейл Дакен, сертифицированные продукты ENERGY STAR

Как работают тепловые насосы | HowStuffWorks

Если вы регулярно пользуетесь тепловым насосом, вам следует менять фильтр примерно раз в месяц.Вам, вероятно, удастся заменить фильтр только один раз в три месяца, если вы будете запускать устройство только периодически. Следите, чтобы вентиляторы и змеевики были чистыми и свободными от мусора, а ваш тепловой насос должен проверять профессионал раз в год или два.

Общие проблемы с тепловыми насосами включают слабый воздушный поток, негерметичные или шумные воздуховоды, проблемы с температурой, использование неправильной заправки хладагента, дребезжание, скрип и скрежет. Если можете, попытайтесь определить место возникновения проблемы. Слабый воздушный поток выходит из одного регистра или все регистры имеют низкий воздушный поток? Неприятный шум исходит из воздуховодов или внутри самого теплового насоса?

Есть несколько вещей, которые вы можете сделать, чтобы определить и, возможно, решить проблему теплового насоса, прежде чем обращаться за профессиональной помощью.Во-первых, если устройство не работает, попробуйте перезагрузить его двигатель. Проверьте систему зажигания насоса на наличие проблем и убедитесь, что у вас нет сработавшего прерывателя цепи или перегоревшего предохранителя. Проверьте термостат, чтобы убедиться, что он работает правильно. Замените фильтр, если он грязный, и убедитесь, что нет препятствий для воздушного потока. Если воздуховоды издают шум при расширении и сжатии, вы можете попробовать сделать вмятину на боковой стороне воздуховода, чтобы сделать поверхность более жесткой. Погремушки можно устранить, закрепив незакрепленные детали, и если вы слышите скрип внутри устройства, вам может потребоваться заменить или отрегулировать ремень вентилятора, соединяющий двигатель и вентилятор.Скрежетание может указывать на износ подшипников двигателя, для устранения которого потребуется помощь профессионала.

Имейте в виду, что если у вас нет склонности к механике, вам, вероятно, не стоит пытаться выполнять такого рода ремонтные работы. А поскольку тепловые насосы могут содержать опасные материалы, это еще одна веская причина для получения профессиональной помощи. Утечка химического вещества — плохая новость, и вы можете легко пораниться, взяв сломанное устройство.

Тепловой насос должен прослужить от 10 до 30 лет, а геотермальные установки — лидеры по долговечности.Фактически, некоторые компоненты геотермальных тепловых насосов могут служить даже дольше. Имейте в виду, что технология может измениться до того, как ваш тепловой насос выйдет из строя, поэтому вы можете обнаружить, что срок службы вашего теплового насоса превышает возможности технического специалиста по его обслуживанию. Новые технологии могут сделать тепловые насосы более безопасными или более эффективными, поэтому вы можете следить за новыми видами тепловых насосов.

Чтобы узнать больше о тепловых насосах, перейдите по ссылкам на следующей странице для получения дополнительной информации.

Первоначально опубликовано: 13 мая 2009 г.

Пошаговое руководство по принципу работы теплового насоса

Тепловые насосы, которые можно адаптировать практически к любому приложению, становятся все более популярными в домах и на предприятиях в Уилмингтоне, Северная Каролина.Для многих наших клиентов это возможность сэкономить на счетах за электроэнергию, что делает их такими привлекательными. Людям также нравится, как тепловые насосы обеспечивают комфорт в любую погоду. В этом пошаговом руководстве по технологии теплового насоса объясняется, как работает тепловой насос и почему установка теплового насоса является отличным вариантом для контроля микроклимата.

Холодильный цикл

Когда дело доходит до охлаждения, тепловые насосы и холодильники работают примерно одинаково. Тепло извлекается из воздуха внутри и перемещается за пределы помещения.Трехэтапный процесс заключается в преобразовании жидкого хладагента в газ, а затем обратно в жидкость. Ученые называют это фазовое преобразование или, попросту говоря, холодильным циклом. Тепловые насосы состоят из трех основных компонентов: испарителя, компрессора и конденсатора. Каждый из них играет решающую роль в том, как тепловые насосы перемещают тепло из одного места в другое.

  • ШАГ ПЕРВЫЙ: Компрессор, расположенный в наружном блоке, всасывает холодный газообразный хладагент и нагревает его под давлением.Затем компрессор закачивает горячий газ под высоким давлением в конденсатор.
  • ШАГ ВТОРОЙ: В конденсаторе используется вентилятор для охлаждения газа до жидкости, когда он проталкивается через спиральные металлические петли. Выделяемое тепло уходит в наружный воздух через металлические ребра на внешней стороне конденсатора.
  • ШАГ ТРЕТИЙ: Охлажденная жидкость поступает во внутренний испаритель через узкий клапан, замедляя поток хладагента. Затем он испаряется в газ, проходя через охлаждающие змеевики устройства, удаляя тепло из окружающего воздуха.

Вентилятор, подключенный к испарителю, направляет охлажденный воздух в систему распределения воздуха теплового насоса. Цикл охлаждения повторяется до тех пор, пока в вашем доме или на работе не будет достигнута температура, установленная на вашем термостате.

Типы тепловых насосов

Тепловые насосы с реверсивным режимом работы могут обеспечивать как обогрев, так и охлаждение. Некоторые модели могут даже увеличить объем горячего водоснабжения. Принцип работы тепловых насосов в холодную погоду зависит от выбранного вами типа установки теплового насоса.

  • Тепловые насосы «воздух-воздух» отбирают тепло из наружного воздуха и конденсируют его до тех пор, пока он не станет достаточно горячим, чтобы всем было комфортно тепло.
  • Геотермальные модели используют тепловую энергию, хранящуюся под поверхностью земли, для обогрева вашего дома или офиса.
  • В отличие от систем центрального кондиционирования, бесканальные тепловые насосы доставляют теплый воздух непосредственно в жилые помещения через отдельные кондиционеры.

Если у вас уже есть центральная воздушная печь, тепловой насос только для охлаждения предлагает энергоэффективный способ оставаться прохладным все лето.Какими бы ни были ваши потребности в комфорте в помещении, профессионалы Airmax Heating & Cooling помогут вам выбрать идеальную систему с тепловым насосом.

Комплексное обслуживание теплового насоса

Правильная установка важна для длительного использования новой системы теплового насоса. Важно, чтобы размер оборудования соответствовал вашим уникальным потребностям в комфорте. Негабаритная система приведет к потере энергии и ваших денег из-за частых циклов включения / выключения. Тепловые насосы меньшего размера не могут поддерживать желаемый уровень комфорта.В Airmax Heating & Cooling мы проводим расчет нагрузки, чтобы вы чувствовали себя комфортно, не тратя слишком много энергии.

Наши специалисты по HVAC также могут проводить регулярные плановые настройки для повышения эффективности и производительности. Заброшенные тепловые насосы потребляют на 25 процентов больше энергии, чем хорошо обслуживаемые системы. Наши планы технического обслуживания позволяют легко поддерживать тепловой насос в отличном состоянии и экономить деньги на отоплении и охлаждении. Мы также предлагаем профессиональный ремонт теплового насоса, который вам понадобится, если ваша система когда-нибудь выйдет из строя.

Как работают тепловые насосы? Короткий ответ — замечательно! Для получения дополнительной информации о преимуществах этих энергоэффективных систем посетите наш раздел обслуживания тепловых насосов. Чтобы назначить бесплатную консультацию, позвоните в Airmax Heating & Cooling сегодня по телефону 910-795-4359.

Что такое тепловой насос и как он работает?

Если вы строите, ремонтируете или заменяете оборудование HVAC, существует больше, чем когда-либо, возможностей для обогрева и охлаждения вашего помещения. Вы уже знакомы со старыми вариантами режима ожидания: котлы, газовые печи, электрическое плинтусное отопление и кондиционеры сплит-системы.Но если кто-то предложил тепловой насос, эта технология может быть для вас новой.

Что такое тепловой насос? И это правильный выбор для вашего помещения?

В этой статье мы объясним все, что вам нужно знать простым языком.

Что такое тепловой насос?

Проще говоря, тепловой насос — это тип оборудования HVAC, которое может обеспечивать как тепло, так и охлаждение. Тепловой насос использует механическую энергию для отвода тепла из воздуха и его перемещения внутрь или наружу, в зависимости от того, требуется ли вашему помещению тепло или кондиционер.

Тепловые насосы энергоэффективны и экологически безопасны, поскольку для выработки тепла не нужно сжигать ископаемое топливо.

Тепловые насосы уже давно используются в не очень холодных местах. Здесь, в районе Нью-Йорка, люди не так хорошо знакомы с тепловыми насосами. Это потому, что до недавнего времени тепловые насосы не могли обеспечить достаточное количество тепла в климате, где температура часто опускается ниже 20 градусов.

Сегодня это меняется, потому что технология тепловых насосов улучшилась до такой степени, что они могут быть эффективными и действенными даже здесь, на северо-востоке.

Как работает тепловой насос?

Тепловой насос — это, по сути, кондиционер, который также может работать в обратном направлении для обеспечения тепла.

  • В теплую погоду тепловой насос поглощает тепло из воздуха внутри и перемещает его наружу, обеспечивая тем самым кондиционирование воздуха.
  • В более прохладную погоду тепловой насос вырабатывает тепло, отводя тепло из воздуха снаружи и перемещая его внутрь.

Эта идея может показаться противоречащей логике… отвод тепла снаружи в холодную погоду? Дело в том, что даже в холодную погоду в воздухе всегда присутствует тепловая энергия.Его просто меньше, чем в жаркую погоду. Вот почему тепловые насосы наиболее эффективны в мягком климате. Чем холоднее на улице, тем тяжелее тепловой насос должен поглощать тепловую энергию и передавать ее внутри помещения.

Однако, как мы упоминали ранее, технология тепловых насосов настолько улучшилась, что они могут обеспечивать теплом даже здесь, в Нью-Йорке.

Типы систем тепловых насосов

Тепловые насосы, которые мы здесь описываем, называются воздушными тепловыми насосами , поскольку они поглощают тепло из воздуха.Существуют также водные или геотермальные тепловые насосы, использующие водопроводные трубы и тепло из-под земли. Это может быть очень эффективным, но обычно не практичным выбором здесь, в Нью-Йорке. У нас не часто бывает возможность копать под городскими постройками для прокладки водопровода!

Среди тепловых насосов с воздушным источником можно выбрать несколько различных типов тепловых насосов.

Тепловой насос сплит-системы

Тепловой насос сплит-системы состоит из двух частей: внутреннего блока и внешнего блока, как и традиционная бытовая центральная воздушная установка.

Разница в том, что тепловой насос сплит-системы имеет змеевики, которые поглощают тепло (змеевики испарителя) и отводят тепло (змеевики конденсатора) как во внутренних, так и во внешних блоках.

Это означает (в отличие от кондиционера сплит-системы) тепловой насос сплит-системы может поглощать тепло изнутри или снаружи и отдавать тепло внутри или снаружи. Он может отводить тепло, чтобы охладить ваше пространство, или добавлять тепло, чтобы согреть его.

Узнайте больше о: тепловые насосы и кондиционеры

Объединенный тепловой насос (также известный как блок на крыше)

Объединенный тепловой насос работает одинаково, но все змеевики расположены в одном «упакованном» блоке который часто находится на крыше здания.(Вот почему его также называют блоком на крыше.)

Нагретый или охлажденный воздух подается внутрь здания по воздуховодам, проходящим через крышу и / или стены.

Хотите знать, почему вы выбрали сплит-систему с тепловым насосом, а не комплектную? Ответ зависит от вашего пространства. Если у вас есть легкий доступ к крыше, комплектный блок может быть дешевле в установке и обслуживании. Однако они не столь эффективны в зданиях высотой более 10 этажей.

Канальные или бесканальные тепловые насосы

Большинство тепловых насосов доставляют нагретый или охлажденный воздух через воздуховоды.Однако иногда использование воздуховодов нецелесообразно, особенно при ремонте старого здания. Или добавить обогрев и охлаждение в дополнительное пространство, например, в гараж или новое здание.

В этом случае отличным решением может стать бесканальный мини-сплит-тепловой насос. Вместо воздуховодов эти системы передают тепло через трубопроводы хладагента к блоку вентилятора / змеевика, установленному в стене или потолке. Обратной стороной этих агрегатов является то, что фанкойлы необходимы в каждой комнате, где требуется климат-контроль. Кроме того, они не так эффективно удаляют влагу, как воздуховоды.

Тепловые насосы с переменным потоком хладагента (VRF)

VRF — это новый тип технологии тепловых насосов, обладающий некоторыми удивительными преимуществами по сравнению с традиционными системами отопления и охлаждения. Системы VRF более энергоэффективны, тише и могут точно контролировать комфортные условия в нескольких зонах с различными потребностями в обогреве и / или охлаждении. Фактически, они могут одновременно обеспечивать обогрев и охлаждение различных зон!

Преимущества теплового насоса

Так почему же выбрать тепловой насос вместо отдельных систем отопления и кондиционирования?

Снижение затрат на электроэнергию. По данным energy.gov, тепловой насос может передавать в помещение в 3 раза больше тепловой энергии, чем используемая им электрическая энергия. Это приводит к значительному сокращению ваших счетов за электроэнергию. Средний дом может сэкономить до 1000 долларов в год.

Снижение затрат на ремонт и техническое обслуживание. Если вы используете тепловой насос в качестве единственного источника тепла и холода, вам нужно будет обслуживать только одну систему и одну систему, которую нужно диагностировать и ремонтировать, если что-то пойдет не так. Это также снижает ваши общие расходы на эксплуатацию.

Более экологически чистый. Тепловые насосы используют электричество, но не используют ископаемое топливо для производства тепла. Когда вам не нужно полагаться на печь для сжигания нефти или газа, вы вносите свой вклад в сокращение использования ископаемого топлива.

Ограничения теплового насоса

Как мы упоминали ранее, большой недостаток тепловых насосов заключается в том, что они теряют эффективность в климатических условиях с длительными периодами, когда температура опускается ниже нуля.

Это может означать, что вам понадобится дополнительный источник тепла в самые холодные дни года.В существующем помещении у вас уже может быть старый котел, который можно использовать только при необходимости. В новом помещении можно было установить теплый пол.

В зависимости от того, где вы находитесь, и от ваших конкретных потребностей в отоплении и охлаждении, возможно, все же удастся сэкономить деньги на эксплуатационных расходах на HVAC с помощью новой технологии теплового насоса. Опытный подрядчик HVAC поможет вам сравнить варианты и сделать правильный выбор.

Узнайте больше о: тепловых насосах сплит-систем для холодного климата

Стоимость теплового насоса

Теперь приходит то, чего вы, вероятно, ждали… как насчет стоимости теплового насоса по сравнению с другими системами отопления, вентиляции и кондиционирования воздуха.

Опять же, это зависит от вашей ситуации.

Тепловой насос сплит-системы может стоить на несколько тысяч долларов больше, чем традиционный кондиционер сплит-системы. Однако, если вы сравните это со стоимостью кондиционера и системы отопления, вы можете обнаружить, что тепловой насос дешевле (при условии, что вам не нужно покупать дополнительную систему отопления в зоне с холодным климатом).

Налоговая скидка на тепловой насос

Однако есть хорошие новости, о которых вы, возможно, не знали! В этом году есть коммерческий налоговый кредит на HVAC, который может компенсировать большую часть затрат.

Позвольте мне вкратце объяснить, как это работает:

Согласно предыдущим налоговым правилам, предприятия могут амортизировать стоимость капитального оборудования, такого как системы HVAC, в течение срока службы оборудования (обычно много лет для таких систем, как тепловые насосы). Это хорошо, но не сильно сказывается на расходах.

Теперь есть новое налоговое правило, которое позволяет вычесть полную стоимость оборудования HVAC, плюс его установку, в налоговой декларации. Теперь это имеет большое значение для вашей стоимости!

Это особенно полезно для тех, кто заменяет старые системы отопления, вентиляции и кондиционирования с хладагентом R22, которые выводятся из эксплуатации.Получите это полезное руководство, которое объясняет больше.

Тепловые насосы — как они работают для отопления и охлаждения

Что нужно знать об эксплуатации теплового насоса

Тепловой насос 101

Тепловой насос становится очень простым, если вы понимаете основную концепцию. Как следует из названия, тепловой насос передает или перекачивает тепло из одного места в другое (обратите внимание на использование слова «насос», тепло не генерируется, а перемещается).

Как говорится, «картинка стоит тысячи слов», так что готово:

В приведенном выше примере:

  1. Пламя нагревает воду.
  2. Горячая вода перекачивается в радиатор.
  3. Вентилятор нагнетает холодный воздух через горячий радиатор, нагревая таким образом воздух.

Вода становится холодной, потому что тепло передается от воды к воздуху. Затем холодная вода перекачивается обратно в резервуар для воды, где снова нагревается (шаг 1).

Обратите внимание, что в этом примере пламя генерирует тепло. Мы передаем это тепло воздуху с помощью среды (в данном случае воды), прокачиваемой через радиатор.Насосное тепло — тепловой насос!

Настоящий тепловой насос не сильно отличается от этого простого примера, мы просто заменяем воду хладагентом (R410A) и заменяем водяной насос компрессором.

Настоящий тепловой насос в действии

Режим охлаждения (кондиционер)

Подожди минутку — Означает ли это, что обычный кондиционер считается тепловым насосом?

Что ж, посмотрим:

Тепло генерируется внутри вашего дома, от солнца, падающего через окна, до бытовых приборов и даже от вашего тела.Это эквивалент пламени, нагревающего воду в нашем первом примере.

Ваш кондиционер передает тепло изнутри вашего дома наружу. Это аналог помпы и радиатора

Так что теоретически да, любой обычный кондиционер можно считать тепловым насосом. Мы не советуем делиться этой информацией с вашим мастером по ремонту, это может просто сбить его с толку!

Так чем же отличается ваш обычный кондиционер от теплового насоса?

Прежде чем обсуждать, давайте посмотрим, как тепловой насос работает в режиме охлаждения:

Разница:

Обратите внимание на три вещи:

  1. Положение реверсивного клапана.
  2. Направление потока хладагента.
  3. Впускной и выпускной патрубки компрессора (никогда не изменятся).

Для продолжения начнем с точки 1 на диаграмме:

Точка 1
В начале цикла хладагент (например, фреон) находится в жидкой форме и очень холодный (газ, содержащийся под давлением, становится жидкостью, точно так же, как пропан в баке, который вы используете для барбекю, который сочный стейк). Он входит в змеевик испарителя, расположенный внутри вашего дома.Горячий воздух в вашем доме движется по змеевику, и воздух начинает терять тепло и остывать.

Точка 2
После того, как хладагент покидает змеевик внутреннего испарителя, он поглощает тепло и становится газом. Точно так же, как когда вы нагреваете воду на плите, и она превращается в пар, газообразный хладагент также испаряется, когда он поглощает все тепло в доме. Вот почему мы называем этот змеевик испарителем. Хладагент поступает в компрессор, который механически сжимает газ. Этот процесс повысит его температуру, так что хладагент будет покидать компрессор в виде горячего газа.

Точка 3
Затем хладагент поступает в змеевик конденсатора, расположенный за пределами дома. Поскольку температура снаружи ниже, чем температура горячего газа, тепло передается или «отклоняется» от хладагента в змеевике наружному воздуху. При понижении температуры газообразного хладагента он образует жидкий конденсат — точно так же, как капли воды, которые образуются на стакане холодной соды. Вот почему мы называем эту катушку конденсатором.

Точка 4
Хладагент покидает змеевик наружного конденсатора в виде теплой жидкости.Затем нам нужно сделать теплый жидкий хладагент холодным, чтобы он мог поглощать больше тепла. Для этого он поступает к дозирующему устройству, которое понижает давление на теплую жидкость и тем самым понижает ее температуру. Хладагент покидает дозирующее устройство в виде холодной жидкости, готовой к повторению цикла снова.

Ну, это было неплохо, правда? Вы поняли или вам нужно повторить еще раз?

Для веселого (и безопасного!) Эксперимента возьмите руку и почувствуйте воздух, выходящий из вашего конденсаторного блока (большой коробки, стоящей на заднем дворе или над крышей).Летом вы почувствуете, как выходит горячий воздух, то есть тепло изнутри дома. Если вы не чувствуете выходящего горячего воздуха, это означает, что либо ваш компрессор не работает, либо у вас закончился хладагент, и ваш кондиционер необходимо заправить дополнительным хладагентом.

А как насчет отопления — как это работает?

Давайте посмотрим на следующую диаграмму:

Вы заметили, что только что произошло?

Вот две диаграммы, расположенные рядом.Посмотрите внимательно на этот раз:

Посмотрите на реверсивный клапан, он поворачивается на 90 градусов, что изменяет направление потока хладагента (R410A). Он идет в обратном направлении, и это противоположно циклу охлаждения. Вместо того, чтобы поглощать тепло изнутри дома, он поглощает тепло из воздуха снаружи и «отклоняет» (или передает) это тепло в воздух в помещении. Теперь внутренний змеевик стал конденсатором, а наружный змеевик — испарителем.

Обратите внимание, что тепло не генерируется масляной горелкой или газовой печью.Он просто перемещается (или перекачивается) из наружного воздуха внутрь дома. Вот почему тепловой насос так популярен в умеренном климате. Вам не нужно иметь печь или доставлять нефть или газ. Благодаря реверсивному клапану вы можете использовать ту же электрическую систему, что и кондиционер, и обогреватель!

Попробуйте это для веселого (и безопасного!) Эксперимента. Возьмите обычный оконный блок, который вы покупаете в любом универмаге. Установите его в противоположном направлении так, чтобы панель управления была обращена наружу.Несмотря на то, что это кондиционер, в ваш дом будет поступать горячий воздух. Кондиционер фактически является обогревателем, когда он реверсируется, это функция и действие реверсивного клапана.

Оставить комментарий