Как устроен магнетрон микроволновки: Как работает и как устроен магнетрон микроволновой печи | Электронные схемы

Опубликовано в Разное
/
1 Ноя 1974

Содержание

Что такое магнетрон, принцип его работы

Микроволновую печь в наше время можно встретить практически на каждой кухне. Однако не многие знают, как она работает, и что такое магнетрон. Чтобы понять, что представляют собой микроволны и как они образуются, необходимо разобраться с устройством этого прибора.

Как выглядит магнетрон

Назначение и принцип работы магнетрона

Магнетроном называют электронное устройство большой мощности, которое с помощью изменения потока электронов генерирует высокочастотные микроволны. Молекулы воды, которые обязательно присутствуют в продуктах, имеют хорошую электропроводность. Под действием сверхвысокочастотных магнитных колебаний, создаваемых магнетроном, они начинают двигаться с высокой скоростью, нагревая при этом пищу.

В бытовых приборах используется многорезонаторная разновидность магнетрона, в которой на электроны одновременно воздействуют три поля:

  1. сверхвысокочастотное;
  2. электрическое;
  3. магнитное.

Видео: что такое магнетрон

Магнетрон генерирует СВЧ колебания, обеспечивая высокую мощность на выходе, не смотря на небольшой вес и компактные габариты. В непрерывном режиме мощность устройства может достигать десятков киловатт. Максимальная мощность при импульсном режиме работы составляет – 5МВт. Мощность магнетронов, установленных в большинстве микроволновых печей, составляет 650-850 Вт.

Питание маломощных магнетронов осуществляется переменным током. Для более мощных устройств необходим выпрямленный оперативный ток. Магнетроны работают на различных частотах в диапазоне 0,5 – 100 ГГц.

Упрощенная схема работы магнетрона

Из чего состоит магнетрон

Все приборы, генерирующие СВЧ волны, независимо от их выходных характеристик, имеют идентичную конструкцию. Схема магнетрона состоит из следующих частей:

  • анодного блока, представляющего собой толстостенный цилиндр из металла, в стенках которого имеются отверстия (резонаторы), необходимые для образования кольцевой колебательной системы;
  • цилиндрического катода, во внутренней полости которого встроен подогреватель;
  • электромагнита или внешнего магнита, создающего магнитное поле;
  • проволочной петли, которая крепится к резонатору и служит для вывода энергии.

Резонаторы устройства выполняют замедляющую функцию. В них происходит столкновение электромагнитных волн с пучком электронов. В результате этого взаимодействия высокочастотное поле получает от электронов часть их энергии, вывод которой осуществляется посредством петли связи, закрепленной на анодном блоке.

Устройство будет работать бесперебойно только при условии, что разница между рабочей и резонансной частотами составит как минимум 10%. При небольшой разнице частот применяется разнорезонаторная колебательная система, в которой четные и нечетные резонаторы различаются по размеру.

Сферы применения магнетронов

Помимо обычных микроволновых печей магнетроны применяются в различных областях промышленности, а также при производстве радиолокационных систем. В зависимости от сферы применения магнетроны имеют определенные особенности:

  • Для работы в радарных установках устройство прикрепляется к антенне конической формы с параболическим отражателем. Управление осуществляется с помощью коротких импульсов высокой интенсивности. Излучаемая микроволновая энергия улавливается чувствительным приемником. Отображение обработанного сигнала происходит на электронно-лучевой трубке.
  • Для функционирования радиолокационных станций применяются коаксиальные магнетроны, характеризующиеся быстрым изменением частот. Их целесообразно использовать для расширения тактико-технических качеств локаторов.
  • В магнетронах, установленных в бытовых микроволновых печах, имеется прозрачное отверстие, которое выходит в рабочую камеру прибора. Использование пустой печи может способствовать поломке прибора, так как микроволны будут не отражаться, а поглощаться волноводом.

В промышленности магнетроны применяются для обеззараживания, сушки зерновых культур. СВЧ-технологии используются при пастеризации и стерилизации молока и других жидких продуктов. Они эффективны для поддержания технологического режима при сушке лекарственных трав или древесины. В химической промышленности магнетроны применяются при получении различных кислот и разложении нитратов.

Видео: как работает магнетрон

Основные преимущества магнетронов

Поскольку рабочие частоты микроволновых излучателей на несколько порядков ниже инфракрасных или световых источников, глубина проникновения излучаемых ими волн существенно выше. При высоких значениях частот объект, подвергающийся обработке, нагревается только снаружи, а остальной объем прогревается за счет процесса теплопроводности, что ведет к ухудшению качественных характеристик.

Использование микроволн предпочтительнее теплового излучения, когда требуется быстрый разогрев, варка или сушка продуктов. Использование магнетрона не влияет на их вкусовые характеристики и внешний вид, а содержание витаминов и других полезных веществ практически не изменяется.

Применение микроволновых печей помогает снизить затраты на электроэнергию. Это объясняется следующими преимуществами СВЧ-технологий:

  • точная регулировка температуры;
  • высокая плотность энергии и мощности;
  • хорошая фокусировка;
  • мгновенное отключение и включение.

Магнетрон

Возможные неисправности магнетрона и его замена

Поскольку магнетрон является основной деталью СВЧ-печи, необходимо знать основные причины его выхода из строя. Существует несколько видов поломок излучателя, после которых он не подлежит восстановлению:

  • короткое замыкание;
  • повреждение нити накаливания;
  • нарушение герметичности;
  • отсутствие генерации колебаний.

В некоторых случаях магнетрон можно вернуть в рабочее состояние. Например, можно устранить пробой конденсаторов на участке между корпусом и магнитным излучателем. Такое может произойти во время перепадов напряжения в сети. Для диагностики прибора необходимо отключить прибор от сети и провести проверку с помощью специального тестера.

Если СВЧ-печь долгое время работала без продуктов, ее мощность может значительно снизиться. Для ее восстановления можно добавить напряжение на накал. Однако конструкция некоторых микроволновых печей не позволяет этого сделать.

При возникновении СВЧ-разряда между корпусом микроволновой печи и излучателем, необходима срочная замена колпачка. Новая деталь должна быть абсолютно идентична сгоревшей.

Если восстановить вышедший из строя магнетрон не удалось, то его можно заменить. Перед покупкой нового излучателя необходимо внимательно изучить маркировку и технические характеристики устройства.

Видео: устройство и принцип работы микроволновой печи

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 14 чел.
Средний рейтинг: 4.6 из 5.

Магнетрон: устройство и принцип действия

Миллионы людей во всем мире ежедневно разогревают пищу в микроволновых печах, но при этом не задумываясь о том, как работает СВЧ-печь, а ведь это на самом деле интересно.
Кстати, первые микроволновые печи, вопреки расхожему мнению появились не в Германии, а в Америке. В Советском союзе они также выпускались с середины 80-х годов.


Как видно на рисунке, микроволновка устроено достаточно просто — в каждой модели есть дверца с защелками, лампа освещения камеры, поддон и тренога на которой вращается тарелка, панель управления и вентиляционные отверстия. А внутри агрегата скрывается конденсатор, трансформатор, волновод и самый главный элемент микроволновой печи — магнетрон. Вот об этом загадочном устройстве в этой статье мы поговорим подробнее.

Магнетрон — «сердце» микроволновой печи

Магнетрон переводится с греческого «магнит» и «электрон». Говоря простым языком, магнетрон — это мощная лампа, которая генерирует микроволны. Со школьного курса физики мы помним, что волна — это сочетание переменных магнитного и электрических полей. Любая пища содержит молекулы воды, а отрицательно и положительно заряженные частицы воды отлично проводят электричество, которое магнетрон преобразует в сверхчастотное электрическое поле, и греет пищу с помощью невидимых человеческому глазу волн.

Кстати, микроволны существуют и в природе — их испускает солнце.
Впервые термин появился почти 100 лет назад благодаря американскому ученому Асафу Холлу, но патент на изобретение магнетрона получил другой ученый только в 1924 году, и в дальнейшем ученые всего мира ломали головы как увеличить частоту колебания для генерации волн. Тут отлично сработали советские ученые, которые предложили использовать в его устройстве медь, что увеличило частоту колебаний вдвое.
С тех пор магнетрон успешно используется в радарах и радиолокационных приборах, и даже был очень полезен во времена Второй мировой войны. Но только через год после Победы магнетрон расплавил шоколад в кармане американского инженера, и именно таким случайным образом этот прибор начали использовать в быту, создав на его основе всем известную микроволновую печь. Правда первая в мире микроволновая печь весила более 300 кг и стоила 3 тысячи долларов.
 

Устройство магнетрона

Визуально магнетрон кажется не хитро устроенной деталью. Снаружи магнетрона возвышается колпачок антенны излучателя (№1 на рисунке). Внутри магнетрон состоит из двух кольцеобразных магнитов (№2), которые создают магнитное поле. Под №3 изображен радиатор, который избавляет устройство от излишков тепла. Под №4 — контакты, которые обеспечивают работу устройства. Изолятор (№5) защищает корпус от излучения, коробка фильтра (№6) защищает фильтр от внешнего воздействия. Корпус, изображенный под №7, делает устройство жестким, а значит, более защищенным. Сетка фильтра (№8) выполнена из медной проволоки, она не дает микроволнам покидать магнетрон, и обеспечивает контакт между магнетроном и печью. Изолятор (№9), соответственно изолирует устройство, а фланец, изображенный под №10 фиксирует магнетрон к корпусу печи.

Применение магнетрона в быту

Конечно магнетрон используемый для СВЧ-печей, работает несколько иначе, чем магнетрон в радиолокационных системах военных. И самое главное правило продления службы микроволновой печи — категорически нельзя включать пустую микроволновую печь. В противном случае может возникнуть искрение — микроволнам в таком случае некуда деться, и магнетрон может повредиться.
Скорость, при которой пища разогревается зависит исключительно от мощности магнетрона. Обычно она колеблется от 650 до 850 Вт. Чтобы проверить мощность, нужно закипятить в микроволновке стандартный стакан с водой, на это должно уйти от 2 до 3 минут.

Магнетрон распространяет радиацию?

Это один из самых распространенных мифов. В микроволновой печи попросту нет элементов, которые могут выделять радиацию, а микроволны заставляют молекулы усиленно «тереться», и за счет этого пища нагревается.

Микроволновых волн также не стоит бояться, хотя бы потому что любая микроволновая печь сконструирована так, чтобы защитить окружающих от них. Например, ни одна микроволновая печь не будет работать с открытой дверцей. В каком то количестве волны могут выходить наружу, но не дальше чем на расстояние 5 метров, а поэтому просто не стойте рядом с печью во время подогрева пищи. Питательные вещества из-за работы магнетрона также теряются не более, чем при любой другой термообработке.

Неисправности магнетронов

Магнетрон — это едва ли не главная деталь микроволновой печи, поэтому неудивительно, что когда он выходит из строя, хочется понять, подлежит запчасть ремонту или замене.
Сразу плохие новости — случаи поломки магнетрона, которые не подлежат ремонту. К ним относится обрыв нити накаливания, короткое замыкание, отсутствие генерации волн и нарушение вакуума.
Но бывают и такие неисправности магнетрона, которые можно устранить, например пробой конденсаторов, который определяется при выключенной внешней сети между магнетроном и корпусом с помощью тестера. Причиной такой поломки могут быть перепады напряжения в сети.
Также из-за того, что микроволновка долго работала «впустую» может заметно снизится мощность печи. В этом случае может помочь способ добавления напряжения на накал, если это позволяет конструкция вашей микроволновой печи.
Бывает, что в печи возникает СВЧ-разряд между антенной магнетрона и корпусом устройства. В такой ситуации нужно срочно заменить колпачок. Но учтите, что деталь должна быть идентичной сгоревшей.

Покупка магнетрона к СВЧ

Если магнетрон не подлежит ремонту, и вы решили его заменить, учтите, что он должен полностью соответствовать вышедшей из строя детали. Если вы собираетесь купить магнетрон самостоятельно, уточните его маркировку.
Кстати, при выборе магнетрона руководствуйтесь не столько маркой микроволновой печи, сколько мощностью детали.

что это, принцип работы, история изобретения, устройство

Магнетрон – это электронный прибор, преобразующий колебания со сверхвысокой частотой используя принцип модуляцию электронов в потоке. В магнетроне происходит взаимодействие магнитных и электрических полей со сверх большой силой. Самая распространенная форма магнетрона – это многорезонаторный тип. Создан был этот прибор в 1921 в США. Эксперименты с ним продолжались очень много времени, пока не были открыты его свойства нагревать.

В результате работ, были созданы самые различные его виды и разновидности, нашедшие свое применение в самых различных отраслях электроники. В статье будет рассказано о том, где они используются, чем отличаются друг от друга и какую структуру они имеют. В качестве дополнения, статья содержит два видеоматериала и одну научно-популярную статью.

Магнетрон для микроволновой печи.

Что такое магнетрон

Микроволновки могут сильно различаться между собой, но есть одна деталь, без которой не сможет работать ни одна существующая модель, будь то Самсунг, Филипс или другая известная марка. Именно от качественного магнетрона и зависит вся работа СВЧ-печки. Из чего же состоит эта деталь?

  1. Для излучения волн прибор оснащен специальной антенной.
  2. Для изоляции антенны от рабочей поверхности используется специальный цилиндр, изготовленный из качественного металла.
  3. За распределение магнитных полей отвечает особый магнитопровод.
  4. А вот за распределение потоков отвечают магниты.
  5. Для того чтобы деталь не перегревалась, важной комплектующей для нее является радиатор.
  6. Чтобы излучения микроволновой печи не приносили вреда, магнетрон оснащен специальными фильтрами.

Магнетрон – что такое.

Схема устройства

Такая конструкция как магнетрон, понятна только профессионалам. Ремонтировать ее самостоятельно – процесс трудоемкий и неблагодарный. Если вы уверены в том, что проблема именно в нем, лучше обратиться к специалисту. Изучив устройство магнетрона, становится понятно, что из строя выходит не вся деталь.

Возможно, не работает какая-то из его частей, что и необходимо установить. Существует несколько распространенных причин поломки. Как проверить магнетрон и узнать, где именно кроется неисправность?

  1. Одной из важных составляющих магнетрона является специальный колпачок, который сохраняет вакуумность трубы. Если проблема в нем, то заменить его не составит труда.
  2. Если деталь перегревается, то значит, из строя вышел радиатор.
  3. Из-за перегрева может произойти обрыв нити накаливания. Для диагностики этой неисправности потребуется специальный тестер. В рабочем состоянии нить показывает напряжение 5-7 Ом. Если она вышла из строя, то напряжение упадет до 2-3 Ом, если же произошел обрыв, то прибор покажет бесконечность.
  4. Поломка фильтра проверяется тестером. Если деталь исправна, прибор покажет бесконечность, в случае поломки – вы увидите численное сопротивление.

Существуют поломки, которые вы не сможете диагностировать самостоятельно. Для этого необходимо обладать не только знаниями, но и специальным оборудованием.

Устройство магнетрона.

Магнетрон – специальный электронный прибор, в котором генерирование сверхвысокочастотных колебаний (СВЧ-колебаний) осуществляется модуляцией электронного потока по скорости. Магнетроны значительно расширили область применения нагрева токами высокой и сверхвысокой частоты.

Как проверить прибор

Цена замены этой детали настолько высока, что многие предпочитают приобрести новую микроволновку, а не ремонтировать старую. Прежде чем отправить испортившийся прибор на помойку, необходимо убедиться в том, что проблема именно в этой дорогостоящей детали. Для этого необходимо проделать определенные манипуляции:

  1. Первое, что вы должны сделать, чтобы проверить магнетрон – это отключить питание в микроволновке, выключив устройство из сети.
  2. Осмотрите внутренние стенки микроволновой печи. В случае неисправности магнетрона, вы обнаружите оплавленные участки, потемневшие или сгоревшие стены.
  3. Если внешних признаков нет, необходимо произвести диагностику тестером.
  4. Проверьте, исправен ли предохранитель.

Основными признаками того, что магнетрон вышел из строя, являются странные звуки, дым или искры из печи. После таких внешних проявлений микроволновка перестает корректно работать. Если у вас дорогостоящая модель СВЧ, то разумней все же заменить поломавшуюся деталь, а не покупать новую печку. Конечно, лучше всего обратиться в сервисный центр, но можно попробовать произвести замену самостоятельно.

Покупая новый магнетрон, обратите внимание на то, чтобы совпадала мощность, соответствовали контакты и отверстия для крепления. В противном случае вы рискуете приобрести бесполезную деталь. В таблице ниже приведена мощность и взаимозаменяемость устройства.

Это интересно! Все о полупроводниковых диодах.

Подсоединить новый магнетрон не составляет труда, так как он имеет всего два основных контакта. Подробная информация обо всех обозначениях есть на схеме, главное, проверить соответствие следующих частей устройства:

  1. Антенна должна соответствовать диаметру заводской.
  2. Следите за плотным прилеганием нового устройства к волноводу.
  3. Длина неисправной антенны должна соответствовать новой.

Лучше всего, выкрутить старую деталь и отправиться в сервис с ней, чтобы специалисты подобрали вам нужную.

Микроволновка – незаменимая помощница на любой кухне. С ее помощью можно и быстро подогреть еду, и приготовить вкусное блюдо. Поломка этого технического чуда вызывает некоторый ступор и парализует привычный ритм жизни. Многие из существующих неисправностей СВЧ можно решить самостоятельно, но если из строя вышел магнетрон, обратитесь к специалисту. Производить ремонт самостоятельно опасно не только для техники, но и для вас.

Магнетроны резонансного типа состоят из:

  • Анодный блок. Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
  • Катод. Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
  • Внешние электромагниты или постоянные магниты. Они создают магнитное поле, которое параллельно оси прибора.
  • Проволочная петля. Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.

Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.

Из чего состоит магнетрон

Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов. Магнетроны разделяют по виду резонаторов:

  • Лопаточные.
  • Щель-отверстие.
  • Щелевые.

В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.

Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.

Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем. Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.

Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов. Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.

Внутреннее строение магнетрона.

Типы устройства

Основные виды магнетронов

  • Многорезонаторные устройства. Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
  • Обращенные устройства. Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.

Сфера использования магнетронов

  • В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
  • В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.
  • В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.

Проверка магнетрона тестером.

Выбор и приобретение детали

Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры. Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.

Можно ли заменить самостоятельно

Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства. Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.

Интересно по теме: Как проверить стабилитрон.

Работа микроволновки

Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.

Возможные неисправности

Внутренняя схема магнетрона содержит множество деталей, и, если случается поломка, то причина может крыться именно в них. Случается так, что одна из частей пришла в негодность, но влияет на работу всей лампы. Следует понять, в чем причина неисправности, и решить проблему в домашних условиях. Как именно, мы расскажем далее.

  • Металлический колпачок отвечает за сохранность вакуума внутри трубы.Зачастую он ломается, и требуется новая замена;
  • Радиатор может прийти в негодность, если деталь перегорает;
  • Нить накаливания в результате перегрева может оборваться. Для выявления такой неисправности нужен специальный прибор;
  • Фильтр может также перестать нормально функционировать, следует проверять тестером. Исправный элемент будет показывать бесконечность, а сломанный – численное сопротивление;
  • Изменение герметичности детали из-за перегрева;
  • Нарушение работы высоковольтного диода;
  • Неисправность конденсатора высокого напряжения;
  • Разлом контактов предохранителя, основная задача которого не допускать перегрева.

Установка и подключение нового устройства

Заменить магнетрон стоит после визуальной диагностики и попыток монтажа, если ничего не вышло – значит настало время установки новой детали. Помощь в подключении магнетрона вам могут предоставить в сервисном центре, но и сделать это своими руками будет несложно.

При покупке стоит быть внимательным: выбирайте аналогичную старой по мощности и расположению выходов деталь. Поскольку у магнетрона всего два контакта, то подсоединить его не составит труда. Во внимание стоит взять некоторые нюансы:

  • длина нового магнетрона, также как и диаметр антенны должны совпадать со сломанной деталью;
  • при установке убедитесь в достаточном примыкании детали к волноводу.

Самым оптимальным вариантом станет поход в сервисный центр со старой деталью, где обученные люди смогут подобрать нужный товар и установить его.

Устройство микроволновой печи.

Полезные советы

При работе микроволновки вы обнаружили нехарактерный треск и шум, появление искр – прекратите использование, отсоедините от сети. Такая ситуация может привести к возгоранию без должного монтажа. Причиной может стать перегрев и перегорание колпачка, из-за которого печь начинает искрить. Поиск поломки и ее ликвидация будет стоить в разы дешевле, чем приобретение новой детали, поэтому оттягивать не стоит.

Слюдяная накладка бережет гнездо волновода от попадания в него пищевых отходов. Она может прийти в негодность, при обнаружении неполадок в системе колпачка, а это влияет на работоспособность магнетрона. Основное требование к слюдяной накладке: она должна содержаться в чистоте, т.к. жир под действием температур может проводить электрический ток и, как следствие, образует искры в камере.

Нестабильное напряжение в помещении негативно сказывается на СВЧ-печи. В такой ситуации лучше осуществлять работу устройства через стабилизатор. При уменьшении мощности износ катода прибора происходит чаще, т.е. при напряжении в объеме 200 Вт в два раза падает сила работы электронной лампы.

Не всегда поломка микроволновки связана со схемой питания и магнетроном. Прежде чем искать причину сбоя в них, проверьте внешний вид слюдяной пластины и степень напряжения в местах подключения устройства к сети питания.

Микроволновая печь – это важный бытовой предмет в современном укладе жизни, с множеством функций и задач, которые облегчают жизнь человека. Но для долгой и качественной работы нужно следить за внешним видом прибора, содержать его в чистоте и эксплуатировать согласно рекомендациям производителя.

Устройство магнетрона.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробную информацию об устройстве и использовании магнетрона можно узнать из статьи  Что такое безнакальные магнетроны. Если у вас остались вопросы, можно задать их в комментариях на сайте.

А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrosam.ru

www.ekb-holod.ru

www.tehnika.expert

www.youtwig.ru

www.vsem-zapchast.ru

www.magnetronic.kiev.ua

Проекты каркасных домов с фото

 

Предыдущая

Вакуумные приборыЧто такое пентоды и где они применяются

Следующая

Вакуумные приборыЧто такое клистрон и как он работает

Устройство и принцип действия микроволновки

Микроволновка работает практически в каждой современной квартире. Этот удобный бытовой прибор умеет подогревать, размораживать, запекать. Некоторые модели способны поджаривать на гриле и выполнять сложные программы для изготовления внутри готовых блюд. Принцип действия микроволновки не поменялся с момента ее изобретения. Но благодаря достижениям технического прогресса выросла безопасность оборудования, а электрическая схема способна осуществлять комплексное управление и точный контроль параметров работы.

Общий принцип действия микроволновой печи

Физика процесса нагрева содержимого микроволновки достаточно проста. СВЧ излучение воздействует на молекулы продуктов, и благодаря их взаимному трению выделяется тепло. Но это слишком простое объяснение.

На самом деле, колебаниям подвергаются только молекулы воды. Но если поставить в микроволновку идеально чистый стакан с дистиллированной жидкостью, то ее температура при стандартном времени работы печи изменится достаточно мало. Так почему же нагреваются продукты? Это происходит благодаря трению молекул на границе сред, то есть, разных веществ. А так как строение любого материала, будь то съедобный продукт или кусок дерева, велико и обязательно имеет в структуре воду, возникают разноамплитудные колебания.

Важно! Частота микроволновой печи рассчитана так, чтобы оказывать максимальное воздействие на молекулы жидкости. Именно они своим интенсивным колебанием и трением об соседей способствуют выделению большого количества тепла. Материалы сухие и чистые по химическому составу нагреваются очень медленно, но таких в природе мало.

В микроволновку нельзя класть металлы. При воздействии на них СВЧ излучения образуются поверхностные токи и происходят искровые, дуговые пробои на стенки внутреннего отделения печи. Однако технический прогресс нашел выход. Сегодня множество компаний, например, Daewoo, выпускают микроволновки, в которые можно ставить металлические предметы. Также во многих моделях разрешено использование замкнутых контуров, в частности, тарелок с тиснением фольгой по краю или декоративных блюд с металлическим бортом.

Какие элементы есть в конструкции микроволновки

Устройство микроволновой печи только на первый взгляд кажется сложным. Владельца этого прибора вводит в заблуждение количество кнопочек, индикаторов, средств программирования. На самом деле, любая печь, с механическим управлением, сенсорной панелью, пультом, гибридным электронным контролем, состоит из одинаковых функциональных блоков:

  • блок генерации СВЧ излучения, магнетрон и волноводы;
  • система преобразования напряжения, главный модуль — повышающий высоковольтный трансформатор;
  • средства контроля в составе группы датчиков;
  • система вторичной защиты;
  • управляющая схема микроволновки.

Важно! В зависимости от сложности модели печи, в нее могут включаться самые разные опции. Например, гриль, вторичные рассеиватели волн, дополнительные узлы СВЧ генерации.

Стоит рассмотреть работу каждого блока отдельно, в порядке их задействования в стандартной схеме использования микроволновки.

Управляющая схема

Главная электросхема микроволновки, с которой имеет дело пользователь — это блок управления. В нем при помощи кнопок, механических переключателей, регуляторов задаются граничные параметры. То есть рабочая мощность или режим, время исполнения программы и так далее.

Схема управления может быть как угодно сложной. Самый простой вариант представляет собой круговые регуляторы, один из которых — реле таймера. С их помощью устанавливается мощность режима и время работы. Еще один знакомый пользователям вариант — гибридный, с кнопками. По сути, его функционал ненамного шире механической регулировки.

Сенсорная панель, в большинстве случаев, ничем по принципу действия не отличается от кнопок. Она просто более надежна и не требует обслуживания. Продвинутые схемы электронного управления включают программирование, то есть переключение по заданному алгоритму мощности излучения и времени ее выдачи.

Система преобразования напряжения

Микроволновка состоит из группы узлов, которые очень опасны для человека. Главный из них — повышающий трансформатор. Когда схема управления дает команду на включение режима, он выдает до 4 КВ напряжения. При этом рабочий ток может достигать 10А и выше. Такие параметры работы электросети представляют огромную опасность для человека.

Важно! Повышающий трансформатор — ключевой и самый дорогой узел системы преобразования напряжения. Он питает магнетрон, элемент, без которого невозможно реализовать основной принцип работы микроволновой печи.

Блок генерации СВЧ излучения

Магнетрон — это сердце микроволновки. По сути, это обычная вакуумная лампа, похожая на те, которые использовались в кинескопах старых телевизоров. Только магнетрон генерирует интенсивную электромагнитную волну высокой частоты, образуемой при прохождении электронов через магнитное поле.

Блок генерации излучения состоит не из одного СВЧ источника. Для, так сказать, подачи волн в рабочую зону печи устанавливаются волноводы. Именно они находятся за слюдяной пластиной, которую каждый видел на боковой стенке микроволновки, когда ставил в нее тарелку с завтраком.

Системы основной и вторичной защиты

Роль контрольных датчиков вполне понятна. Они следят, чтобы ни один из ключевых элементов электронной и аппаратной части не вышел в критический режим работы. Датчики гарантируют безаварийное функционирование прибора и предотвращают опасные сбои. Но у микроволновки есть системы защиты, разработанные для человека. Ниже будут подробно описаны их функции.

Итак, система управления инициализирует пуск магнетрона. Она же задает параметры работы, отсчитывает временные интервалы, меняет мощность и так далее. Есть и обратная связь между системами безопасности и управления. По сигналам первых может быть полностью остановлена работа печи, изменен режим, выдано служебное сообщение или звуковые оповещения.

Схемы распределения СВЧ волн

Сначала стоит остановиться на работе блока генерации СВЧ. Строение магнетрона представляет собой излучающий элемент и обмотку, генерирующую магнитное поле. Эта лампа, грубо говоря, постоянно изнашивается. Все сталкивались с ситуацией, когда с ходом эксплуатации микроволновка разогревает все слабее и слабее. Это нормальное явление, каждая модель рано или поздно требует замены магнетрона.

В печах разных производителей (или уровня сложности) может использоваться отличные друг от друга схемы распределения СВЧ волн. В стандартном варианте решения, который применяет компания LG и множество других производителей, от магнетрона в область продуктов идет только один волновод. Он закрыт слюдяной пластиной, чтобы предотвратить попадание мусора и пара.

Важно! В моделях с одним  волноводом, который излучает достаточно локализованный поток волн, используется отражатель на противоположной стороне отсека продуктов. Это вогнутая зона стенки. Она помогает более равномерно распределить СВЧ излучение по рабочему объему.

В некоторых микроволновках компании Samsung используется другой принцип: устанавливается основной волновод и несколько щелевых антенн. Это позволяет равномерно распределять поток энергии, формировать так называемое 3D излучение. Кроме этого, печь, варьируя мощность магнетрона, добивается плавного нагрева продуктов по всему объему.

Но самое главное в генерации волн СВЧ — их параметры. Частота излучения магнетрона в микроволновке составляет 2.45 ГГц — именно это значение является резонансным для молекул воды, заставляя их колебаться с большой амплитудой. Происходит нагрев продукта. Тепло от поверхностных слоев постепенно распространяется по всему объему продукта.

Есть некоторые решения, позволяющие ускорить разогрев пищи в рабочей области печи. Это так называемые диссекторы. По внешнему виду такой конструкционный элемент похож на вентилятор на потолке камеры микроволновки. Однако он делает другую работу, а именно рассеивает СВЧ волны.

Другие функциональные элементы печи имеют вполне понятное назначение. Например, микроволновка с грилем действует на пищу не только СВЧ, но и инфракрасным излучением. Она позволяет добиться на продуктах красивой запеченной корочки. Отдельные модели печей могут оснащаться дополнительными вентиляторами для отвода тепла.

Как работает система защиты

Также стоит подробно осветить функционирование систем безопасности. Они делятся на две значимые группы.

  1. Контроль параметров аппаратной части. Это датчик температуры магнетрона, предохранители, охлаждающие вентиляторы. Они решают задачу блокировки потенциально аварийных ситуаций и поддержания нормированных показателей работы электроники
  2. Защита человека от поражения электротоком и СВЧ излучением.

С системами защиты от электротока сталкивался каждый, кто хоть раз разбирал корпус своей микроволновки. В ключевых точках монтажа размещены микровыключатели. Сняв крышку, печку уже нельзя включить. Этого просто не позволит система защиты.

Но более интересна схема нейтрализации СВЧ волн. Стоит понимать, что излучение даже теоретически не может быть локализовано внутри камеры печи. Волны отражаются, в том числе от продуктов. Поэтому на передней дверке устанавливается стекло с нанесенной на него тонкой металлической решеткой. Это антенный модуль. Он подключен к разряднику, который отдает накопленную энергию бросками в основные электросети прибора.

Важно! Микроволновка генерирует помехи проводки. В некоторых домах это можно зафиксировать по работе других приборов (в частности, Wi-Fi роутеров), особенно, если эксплуатируется откровенно дешевая печь с плохим шумоподавителем.

Электрическая схема СВЧ

На основании изложенного выше нетрудно понять, как микроволновая печь устроена, просто рассматривая ее снаружи, заглядывая в камеру и в тыл. Но если захочется что-то починить, полезно в общих чертах понимать, как узлы взаимодействуют между собой. В этом поможет принципиальная схема микроволновой печи. Ее строение только на первый взгляд кажется сложным. Однако любая схема состоит из базовых блоков. В качестве примера стоит посмотреть на устройство модели с механическим аналоговым управлением.

Из схемы ясно видно, как преобразуется энергия и работают системы безопасности. Одним из самых первых контуров всегда выступает шумоподавитель (NOISE FILTER). Именно он гасит колебания, которые формирует разрядник энергии в дверке, защита человека от высокочастотного излучения.

Затем идет система основной безопасности. Это блок контактов в дверке, один отслеживает прилегание к корпусу, второй положение защелки, третий позицию ручки. При незамкнутом состоянии любого из них печь не будет работать.

Третий функциональный блок — приводы и подсветка. Здесь все просто. На двигатель, который крутит тарелку, на вентилятор и лампу, подается постоянное напряжение. Таймер размыкает цепь при окончании установленного временного интервала.

Последний рабочий контур — повышающий трансформатор, датчик контроля температуры магнетрона, его система защиты от пробоя и плавкий предохранитель. И заканчивается схема всегда одинаково. Главным рабочим органом печи, магнетроном.

В качестве заключения

Несмотря на то, что микроволновка может показаться крайне сложным и даже опасным устройством, ее рекомендуется регулярно обслуживать. Это безопасно и просто. Вскрывать корпус, чтобы удалить пыль с аппаратной части, не стоит. Достаточно держать в чистоте поверхность стенок отсека для продуктов, стекло дверки. Периодически аккуратно снимать и протирать слюдяную пластину, закрывающую волновод. И тогда микроволновка будет сохранять стабильные параметры весь срок, заявленный производителем.

Магнетрон устройство и принцип работы

Как работает микроволновка — принцип работы СВЧ и магнетрона

Микроволновая печь, более известная как микроволновка – полезный кухонный прибор, который в разы упрощает повседневную жизнь. Имея ее в своем арсенале, не придется подолгу возиться на кухне, подогревая пищу. Микроволновую печь еще называют СВЧ-печью.

Задача этого бытового электроприбора – быстрое приготовление или быстрый подогрев приготовленной пищи, размораживание продуктов. Если сравнивать с классической печью, например, духовкой, микроволновка разогревает продукты не с поверхности, а по всему объему.

Микроволны, глубоко проникая практически в любую пищу, в разы сокращают время разогрева. В статье пойдет речь о принципе работы и устройстве этой техники, незаменимой на кухне.

Принцип работы микроволновой печи

Чтобы разобраться с этим, необходимо немного вводных данных. Большинство продуктов питания в своем составе содержат следующие вещества: соли, жиры, сахар, воду. Чтобы микроволны «работали», то есть грели пищу, в продуктах должны быть дипольные молекулы.

С одной стороны у них положительный электрический заряд, с другой – отрицательный. В пище этих молекул достаточно – это жиры и сахар, но главный диполь – молекула воды.

В овощах, мясе, фруктах и рыбе содержится большое число дипольных молекул, количество которых достигает миллионов. Если электрического поля нет, молекулы располагаются в хаотическом порядке.

При наличии электромагнитного поля, они начинают «выстраиваться»: «плюс» направлен в одну сторону, «минус» в другую. Когда поле меняет полярность, молекулы «разворачиваются» на 180 градусов.

В СВЧ-печах микроволны имеют частоту 2450 Мгц. 1 герц = 1 колебанию за секунду. Мегагерц – миллион колебаний. Полярность меняется дважды за один период волны.

Когда на продукты воздействует микроволновое излучение, молекулы в них начинают вращаться чаще, буквально стираясь друг о друга. При этом выделяется тепло, которое и служит источником нагрева продуктов.

Но, тепло «идет» дальше – включается физика теплопроводности. Отсюда же следует совет: если нужно разогреть большой кусок мяса, лучше выставить микроволновую печь на среднюю мощность. Так он прогреется лучше, хоть на это и уйдет больше времени. Тепло из наружных слоев начнет проникать внутрь.

Аналогично дела обстоят и с супами: их лучше периодически вынимать из печи и перемешивать, помогая теплу пробиться внутрь.

В выпускаемых сейчас моделях печей может быть функция «Двойного излучения» — это говорит о раздвоенном источнике излучения. Благодаря этому разделению продукты прогреваются равномернее, а СВЧ-печь имеет повышенный КПД.

Схема СВЧ печи

Наглядным примером послужит модель микроволновки Samsung RE290D. Принципиальная электрическая схема поможет понять, как работают печи от любых производителей. Отличаться они могут разве что специфическими модификациями. Сама схема представлена на фото.

В левой части заметно, что заземляющий контакт вилки соединяется с корпусом, а тот подключен от средней точки конденсаторной развязки фильтра, снижающего помехи высокочастотного излучения.

В области входа питания находится предохранитель плавного типа – FU1. Для проверки его состояния пользуются электрическими методами – прозванивают цепь мультиметром, работающим в режиме омметра.

Чтобы магнетрон – источник излучения, начал «работать», контакты исправности дверцы размыкаются, а все остальные – замыкаются. Если их отключить, причем любой, то с высоковольтного трансформатора снимется питающее напряжение.

В схеме есть термические предохранители-датчики (2 шт.), которые, в зависимости от температуры корпуса магнетрона и рабочей камеры, размыкаются и замыкаются. У первого – периодическая работа. Он защищает магнетрон от перегрева. Второй срабатывает, если неисправен вентилятор или засорились вентиляционные отверстия.

Контакт страхующего реле обеспечивает подключение электродвигателей таймера и охлаждающего вентилятора. Если предохранитель «Monitor Fuse» перегорит, обмотка реле выходит из строя.

Переключатель, отвечающий за выбор мощности, находится на таймере. Он, следуя алгоритмам, снимает напряжение со схемы магнетрона.

Его задача – ограничение импульса, вызванного разрядом конденсатора (он может получить заряд до того, как включится). Это обеспечивает плавный запуск микроволновой печи.

Силовая схема этой печи от Самсунг проста для тех, кто в этом разбирается. Главное различие в СВЧ-печах – электронные блоки, с разной конструкцией и функциональными возможностями.

Устройство микроволновки

Внутри микроволновки есть несколько обязательных деталей, поэтому не лишним будет знать, какова их роль. Внутреннее строение имеет следующую конструкцию: металлическая камера, в которой происходит нагрев пищи и дверца, предотвращающая выход излучения наружу.

Чтобы продукты питания разогревались равномернее, для этого в камере предусмотрен вращающийся столик, работающий от мото-редуктора (мотора). Но есть и другие ответственные детали.

Блок управления

Панель управления бывает:

Блок управления поддерживает заданную мощность и выключает устройство по истечении заданного времени.

Внутри электронного блока – микроЭВМ с богатым потенциалом, поэтому в ходе производства печей ему находят другое применение. Например, встраивают часы или отрывки мелодий, которые сигнализируют об окончании работы.

Сама схема устроена по-разному. Простейшая представляет собой круговые регуляторы, один из которых – таймер. Бывает и гибридная система – с кнопками. Она, по сравнению с «механикой» более функциональна.

Все чаще встречается блок управления в виде сенсорной панели. Принципом работы она аналогична механическим кнопкам, только надежнее. Продвинутые схемы поддерживают «программирование» — настраивается мощность и время выдачи излучения.

Блок генерации СВЧ излучения

Это «сердце» микроволновой печи. Выглядит элемент как вакуумная лампа, которую можно было встретить в старых кинескопных телевизорах.

Блок генерации включает не единственный СВЧ-источник. Чтобы волны поступали в рабочую зону печи, в ней предусмотрены волноводы. Расположены они за слюдяной пластиной, которая «прячется» за боковой стенкой.

Системы основной и вторичной защиты

Контрольные датчики следят за тем, чтобы ключевые электронные и аппаратные части работали исправно, а не в аварийном режиме. Их функция – обеспечение безаварийной работы микроволновой печи и предотвращение опасных сбоев.

Чтобы защитить человека от воздействия микроволн, в СВЧ-печах есть запорный механизм, состоящих из нескольких выключателей:

  • Primary Switch;
  • Secondary Switch;
  • Door Switch;
  • Monitor Switch.

Задача дверного (door) выключателя – блокировать работу реле регулировки мощности. Устанавливается он преимущественно в технике с электронным блоком управления.

Функции микроволновки

Микроволновую печь большинство используют просто для нагрева пищи. Но эта техника способна на большее. С ее помощью можно даже готовить шашлык, курицу-гриль, выпекать картошку и так далее.

Единственное, режим «гриль» требует мощности в 1500 Вт, значит света «тянуть» печь будет немало. Да и магнетрон – блок, генерирующий излучение, не вечен.

Поэтому, чем реже пользоваться печью, тем дольше она прослужит. Сейчас редко кто полностью отказывается от традиционных плит в пользу микроволновок.

Перечь функций, доступных в СВЧ-печах и их назначение:

  • подвижный гриль. Позволяет менять угол наклона. Те, кто предпочитает курицу-гриль, выбирают печи с этой функцией;
  • конвекция. Обдув продуктов питания горячим воздухом. Как заявляют производители, эта функция предназначена для выпекания. Правда, модели печей с нею дорогие, тяжелые и громоздкие. Неудивительно, так как сзади техники ставится немаленький вентилятор, нагнетающий воздух;
  • биопокрытие. Иначе – керамическое покрытие, хотя производители именуют их по-разному. Его преимущества: стойкость, прочность, биологическая инертность (микробы не будут размножаться внутри печи, даже если долго ее не мыть). Чем дороже модель микроволновки, тем «навороченней» в ней покрытие;
  • автоприготовление. Это функция, встречающаяся в технике компании LG. Есть программы, полностью автоматизированные, предназначенные для готовки определенного блюда. К примеру, готовится каша. С этим режимом остается только выбрать вес продукта, а мощность и время зададутся автоматически;
  • размораживание. Все просто – печь работает на минимальной мощности, необходимой для разморозки продуктов;
  • Intellowave. Система, позволяющая равномерно прогреть еду, например, большой кусок мяса. Встроенные датчики «наблюдают» за отдельными участками продукта, определяя температуру поверхности и регулируя мощность;
  • подача пара. Дополнительная возможность, предотвращающая пересушивание пищи в ходе приготовления;
  • проветривание рабочей камеры. Полезно, если хочется, чтобы новое блюдо не пропиталось оставшимися запахами.

Что такое магнетрон

Магнетрон в микроволновке – это элемент, генерирующий высокочастотное излучение в рабочей камере. Излучаемые электромагнитные волны воздействуют на молекулы, содержащиеся в пище, из-за чего она разогревается. То есть для подогрева не требуется внешнее тепловое воздействие.

Именно по этой причине температура в микроволновках не превышает отметку в +100 градусов Цельсия. Магнетрон – основная деталь, которая иногда выходит из строя. Ее можно заменить на новую, но для этого учитывается полная совместимость по мощности, частоте, расположению клемм.

Принцип работы магнетрона

Микроволновая печь работает так: она преобразует электроэнергию в высокочастотное электромагнитное излучение. В результате, молекулы воды, содержащиеся в пище, начинают «двигаться», что приводит к разогреву. Устройство, генерирующее микроволны, называется магнетроном.

Нередко магнетрон сравнивают с электровакуумным диодом, который работает за счет явления термоэлектронной эмиссии. Явление образуется, если нагревается поверхность катода или эмиттера.

Высокая температура «вынуждает» активные электроны покинуть поверхность. Но для этого на анод должно подаваться напряжение.

Образуемое электрическое поле приводит электроды в движение, которые по силовым линиям направляются к аноду. Электрон, оказавшийся в области магнитного поля, меняет свою траекторию.

Их траектория нарушается, и они начинают вращаться вокруг катода. Электроны, проходящие около резонаторов, отдают им часть собственной энергии (взаимозаменяемость). В результате в полости образуется мощное сверхвысокочастотное поле, выводимое наружу посредством проволочной петли.

Магнетрон «запускается», когда на анод подается высокое напряжение – 3000 – 4000 В. По этой причине в бытовых электросетях магнетрон должен подключаться через высоковольтный трансформатор.

Устройство магнетрона

Магнетрон – элемент, ответственный за генерацию высокочастотных колебаний. Есть устройства с похожим принципом действия – клистроны и платинотроны, но они не получили должного распространения.

Впервые магнетрон задействовали в СВЧ-печи в 1960 году. Сейчас используется многорезонаторный элемент. Его компоненты и их описания:

  • анод. Цилиндр из меди, состоящий из нескольких секторов. В нем есть полости-резонаторы, которые создают кольцевую систему колебаний;
  • катод. Цилиндр с нитью накаливания, расположенный в центре магнетрона. Эта часть ответственна за эмиссию электронов;
  • кольцевые магниты. Расположены на торцах печи. Они создают магнитное поле, направленное параллельно они магнетрона. Электроны движутся в том же направлении;
  • проволочная петля. Находится в резонаторе, соединяется с катодом и выводится к антенне-излучателю. Задача петли – вывод высокочастотного излучения в волновод. Оттуда оно поступает в рабочую камеру микроволновки.

Подключение магнетрона

Схема включения – однополупериодное выпрямление высоковольтного напряжения. Выход трансформатора работает в режиме короткого замыкания выходной обмотки (не дольше 5 минут).

Испорченный магнетрон нет смысла нести в ремонт – даже хорошо оснащенные мастерские этим не занимаются. Поэтому приобретают новую деталь.

Извлекая ее из микроволновки, помечают контакты разъемов, чтобы не перепутать их при переустановке. При неправильном подключении выводов магнетрон работать не будет.

Но подойдет аналогичная деталь. Мощность выбирается та же или выше, крепления и разъемы подключения должны совпадать.

Независимо от производителя, магнетроны имеют единое устройство, отличается только конструкция. Поэтому, заменяя деталь, нужно убедиться, что аналог плотно прилегает к волноводу.

Благодаря серийному изготовлению СВЧ блоков микроволновка становится простой, но полезной в условиях кухни техникой, которая в разы облегчает процедуру приготовления или разогрева пищи. Обслуживать ее легко, а конструкция не предполагает незаменимых деталей, что повышает надежность. Бытует мнение, что излучения от микроволн – вредны, но это не более чем миф.

Магнетроны. Устройство и работа. Виды и применение. Как выбрать

Магнетроны называются электронные приборы, в которых образуются колебания сверхвысокой частоты при помощи модуляции потока электронов. Магнитные и электрические поля в нем действуют с большой силой. Наиболее распространенная модификация магнетрона – это многорезонаторный.

Впервые магнетрон был создан в Америке в 1921 году. С течением времени эксперименты с ним продолжались. В результате появилось множество видов магнетронов, использующихся в радиоэлектронике. В 1960 году приборы стали использоваться в печах сверхвысокой частоты для домашнего применения. Менее распространены клистроны, платинотроны, которые основаны на этом же принципе действия.

Устройство и принцип работы

1 — Анод
2 — Катод
3 — Накал
4 — Резонансная полость
5 — Антенна

Магнетроны резонансного типа состоят из:
  • Анодный блок . Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
  • Катод . Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
  • Внешние электромагниты или постоянные магниты . Они создают магнитное поле, которое параллельно оси прибора.
  • Проволочная петля . Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.

Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.

Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов.

Магнетроны разделяют по виду резонаторов:

  • Лопаточные.
  • Щель-отверстие.
  • Щелевые.

В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.

Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.

Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем.

Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.

Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.

Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.

Основные виды магнетронов
  • Многорезонаторные устройства . Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
  • Обращенные устройства . Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.
Сфера использования магнетронов
  • В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
  • В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.

1 — Магнетрон
2 — Высоковольтный конденсатор
3 — Высоковольтный диод
4 — Защита
5 — Высоковольтный трансформатор

  • В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.
Выбор и приобретение магнетрона

Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры.

Наиболее малую мощность имеет магнетрон 2М 213. Его мощность составляет 700 ватт при нагрузке и 600 ватт номинальная.

Приборы средней мощности в основном изготавливают на 1000 ватт. Марка такого магнетрона – 2М 214.

Наибольшая мощность магнетрона у модели 2М 246.

Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.

Можно ли магнетрон заменить самостоятельно

Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.

Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.

Работа микроволновки

Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.

Как работает магнетрон, как он выглядит, его предназначение

Микроволновую печь в наше время можно встретить практически на каждой кухне. Однако не многие знают, как она работает, и что такое магнетрон. Чтобы понять, что представляют собой микроволны и как они образуются, необходимо разобраться с устройством этого прибора.


Как выглядит магнетрон

Назначение и принцип работы магнетрона

Магнетроном называют электронное устройство большой мощности, которое с помощью изменения потока электронов генерирует высокочастотные микроволны. Молекулы воды, которые обязательно присутствуют в продуктах, имеют хорошую электропроводность. Под действием сверхвысокочастотных магнитных колебаний, создаваемых магнетроном, они начинают двигаться с высокой скоростью, нагревая при этом пищу.

В бытовых приборах используется многорезонаторная разновидность магнетрона, в которой на электроны одновременно воздействуют три поля:

  1. сверхвысокочастотное;
  2. электрическое;
  3. магнитное.

Видео: что такое магнетрон

Магнетрон генерирует СВЧ колебания, обеспечивая высокую мощность на выходе, не смотря на небольшой вес и компактные габариты. В непрерывном режиме мощность устройства может достигать десятков киловатт. Максимальная мощность при импульсном режиме работы составляет – 5МВт. Мощность магнетронов, установленных в большинстве микроволновых печей, составляет 650-850 Вт.

Питание маломощных магнетронов осуществляется переменным током. Для более мощных устройств необходим выпрямленный оперативный ток. Магнетроны работают на различных частотах в диапазоне 0,5 – 100 ГГц.


Упрощенная схема работы магнетрона

Из чего состоит магнетрон

Все приборы, генерирующие СВЧ волны, независимо от их выходных характеристик, имеют идентичную конструкцию. Схема магнетрона состоит из следующих частей:

  • анодного блока, представляющего собой толстостенный цилиндр из металла, в стенках которого имеются отверстия (резонаторы), необходимые для образования кольцевой колебательной системы;
  • цилиндрического катода, во внутренней полости которого встроен подогреватель;
  • электромагнита или внешнего магнита, создающего магнитное поле;
  • проволочной петли, которая крепится к резонатору и служит для вывода энергии.

Резонаторы устройства выполняют замедляющую функцию. В них происходит столкновение электромагнитных волн с пучком электронов. В результате этого взаимодействия высокочастотное поле получает от электронов часть их энергии, вывод которой осуществляется посредством петли связи, закрепленной на анодном блоке.

Устройство будет работать бесперебойно только при условии, что разница между рабочей и резонансной частотами составит как минимум 10%. При небольшой разнице частот применяется разнорезонаторная колебательная система, в которой четные и нечетные резонаторы различаются по размеру.

Сферы применения магнетронов

Помимо обычных микроволновых печей магнетроны применяются в различных областях промышленности, а также при производстве радиолокационных систем. В зависимости от сферы применения магнетроны имеют определенные особенности:

  • Для работы в радарных установках устройство прикрепляется к антенне конической формы с параболическим отражателем. Управление осуществляется с помощью коротких импульсов высокой интенсивности. Излучаемая микроволновая энергия улавливается чувствительным приемником. Отображение обработанного сигнала происходит на электронно-лучевой трубке.
  • Для функционирования радиолокационных станций применяются коаксиальные магнетроны, характеризующиеся быстрым изменением частот. Их целесообразно использовать для расширения тактико-технических качеств локаторов.
  • В магнетронах, установленных в бытовых микроволновых печах, имеется прозрачное отверстие, которое выходит в рабочую камеру прибора. Использование пустой печи может способствовать поломке прибора, так как микроволны будут не отражаться, а поглощаться волноводом.

В промышленности магнетроны применяются для обеззараживания, сушки зерновых культур. СВЧ-технологии используются при пастеризации и стерилизации молока и других жидких продуктов. Они эффективны для поддержания технологического режима при сушке лекарственных трав или древесины. В химической промышленности магнетроны применяются при получении различных кислот и разложении нитратов.

Видео: как работает магнетрон

Основные преимущества магнетронов

Поскольку рабочие частоты микроволновых излучателей на несколько порядков ниже инфракрасных или световых источников, глубина проникновения излучаемых ими волн существенно выше. При высоких значениях частот объект, подвергающийся обработке, нагревается только снаружи, а остальной объем прогревается за счет процесса теплопроводности, что ведет к ухудшению качественных характеристик.

Использование микроволн предпочтительнее теплового излучения, когда требуется быстрый разогрев, варка или сушка продуктов. Использование магнетрона не влияет на их вкусовые характеристики и внешний вид, а содержание витаминов и других полезных веществ практически не изменяется.

Применение микроволновых печей помогает снизить затраты на электроэнергию. Это объясняется следующими преимуществами СВЧ-технологий:

  • точная регулировка температуры;
  • высокая плотность энергии и мощности;
  • хорошая фокусировка;
  • мгновенное отключение и включение.


Магнетрон

Возможные неисправности магнетрона и его замена

Поскольку магнетрон является основной деталью СВЧ-печи, необходимо знать основные причины его выхода из строя. Существует несколько видов поломок излучателя, после которых он не подлежит восстановлению:

  • короткое замыкание;
  • повреждение нити накаливания;
  • нарушение герметичности;
  • отсутствие генерации колебаний.

В некоторых случаях магнетрон можно вернуть в рабочее состояние. Например, можно устранить пробой конденсаторов на участке между корпусом и магнитным излучателем. Такое может произойти во время перепадов напряжения в сети. Для диагностики прибора необходимо отключить прибор от сети и провести проверку с помощью специального тестера.

Если СВЧ-печь долгое время работала без продуктов, ее мощность может значительно снизиться. Для ее восстановления можно добавить напряжение на накал. Однако конструкция некоторых микроволновых печей не позволяет этого сделать.

При возникновении СВЧ-разряда между корпусом микроволновой печи и излучателем, необходима срочная замена колпачка. Новая деталь должна быть абсолютно идентична сгоревшей.

Если восстановить вышедший из строя магнетрон не удалось, то его можно заменить. Перед покупкой нового излучателя необходимо внимательно изучить маркировку и технические характеристики устройства.

Видео: устройство и принцип работы микроволновой печи


Магнетрон устройство и принцип работы

Термин «магнетрон» был предложен Альбертом Халлом, который в 1921 году впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в 1924 чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл (англ. John Randall ) и Гарри Бут (англ. Harry Boot ) изобрели резонансный магнетрон [1] Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты [2] . Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры [3] , что позволило устанавливать ее на самолетах [4] .

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон — генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования.

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N — число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π.

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные — другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

yourmicrowell.ru

Работа магнетрона — коротко

Принцип действия магнетрона основан на влиянии электрического и магнитного полей на траекторию движения электронов. По своей сути, магнетрон является электровакуумным диодом. Другими словами «электронной лампой» с двумя электродами. В основе работы электровакуумных приборов лежит явление термоэлектронной эмиссии. Термоэлектронная эмиссия возникает при разогреве поверхности эмиттера (катода), в следствии чего увеличивается количество электронов, способных совершить работу выхода. Для того, что бы выяснить, как электроны ведут себя в электрическом поле, рассмотрим принцип действия обычного электровакуумного диода.

На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.

Перейдем ко второй части рисунка. На части «Б» данного рисунка все та же схема, но ключ «К» на ней замкнут. Следовательно — на аноде появилось напряжение «Ua = x», поданное с положительного полюса батареи питания «В» через ключ «К». В результате чего, между электродами диода возникло электрическое поле. Под действием силы этого поля электроны начали покидать катод и устремились к аноду. Таким образом, цепь замкнулась и по цепи начал протекать ток анода определенной величины «Ia = y». Из выше изложенного можно сделать вывод, что электрическое поле заставляет электроны двигаться по прямой вдоль, своих силовых линий.

Магнитное поле ни как не действует на не подвижный электрон. Но если электрон, движущийся по прямой траектории под действием электрического поля, попадает в магнитное поле, то последнее влияет на траекторию движения электрона, отклоняя ее вдоль своих силовых линий. Таким образом, электрон двигавшийся по прямой, под действием магнитного поля начинает двигаться по дуге.

Теперь рассмотрим внутренности магнетрона. Отличительной особенностью конструкции магнетрона – является конструкция анода. Анод магнетрона представляет собой толстостенный медный цилиндр с системой резонаторов внутри. В поперечном сечении, вид конструкции анода напоминает колесо телеги со спицами. Каждая «спица» — является резонатором. В центре анода расположен катод с подогревателем. По краям анодного блока находятся два кольцевых магнита, которые образуют магнитную систему, между полюсами которой и располагается анод. Если бы данная магнитная система отсутствовала, то не было бы и магнитного поля и в этом случае, при подаче напряжения накала и анодного напряжения, электроны двигались бы по прямой, от катода — к аноду т. е. вдоль силовых линий электрического поля.

На рисунке сверху изображена очень упрощенная схема работы магнетрона. На ней голубым цветом выделена приблизительная форма траектории движения одного электрона покинувшего катод и стремящегося к аноду. На рисунке видно, что благодаря наличию магнитного поля, траектория движения электрона изменяется таким образом, что покинувший катод электрон достигает анода, далеко не сразу. Из-за такого влияния магнитного поля на движение электрона, в рабочей области образуется своеобразное «электронное облако», которое вращается вокруг катода – внутри анода. Пролетая мимо резонаторов, электроны отдают им часть своей энергии и наводят в них токи высокой частоты которые в свою очередь, создают сильное СВЧ поле в полостях резонаторов. В одну из таких полостей помещена петля связи (на схеме не показана), посредством которой энергия СВЧ поля выводится наружу.

Это очень краткое описание работы магнетрона. Для тех, кто хотел бы познакомиться с принципом его действия поближе, даю ссылки на более подробные описания.

Новости нашего магазина

Миллионы людей во всем мире ежедневно разогревают пищу в микроволновых печах, но при этом не задумываясь о том, как работает СВЧ-печь, а ведь это на самом деле интересно.
Кстати, первые микроволновые печи, вопреки расхожему мнению появились не в Германии, а в Америке. В Советском союзе они также выпускались с середины 80-х годов.

Как видно на рисунке, микроволновка устроено достаточно просто — в каждой модели есть дверца с защелками, лампа освещения камеры, поддон и тренога на которой вращается тарелка, панель управления и вентиляционные отверстия. А внутри агрегата скрывается конденсатор, трансформатор, волновод и самый главный элемент микроволновой печи — магнетрон. Вот об этом загадочном устройстве в этой статье мы поговорим подробнее.

Магнетрон — «сердце» микроволновой печи

Магнетрон переводится с греческого «магнит» и «электрон». Говоря простым языком, магнетрон — это мощная лампа, которая генерирует микроволны. Со школьного курса физики мы помним, что волна — это сочетание переменных магнитного и электрических полей. Любая пища содержит молекулы воды, а отрицательно и положительно заряженные частицы воды отлично проводят электричество, которое магнетрон преобразует в сверхчастотное электрическое поле, и греет пищу с помощью невидимых человеческому глазу волн.
Кстати, микроволны существуют и в природе — их испускает солнце.
Впервые термин появился почти 100 лет назад благодаря американскому ученому Асафу Холлу, но патент на изобретение магнетрона получил другой ученый только в 1924 году, и в дальнейшем ученые всего мира ломали головы как увеличить частоту колебания для генерации волн. Тут отлично сработали советские ученые, которые предложили использовать в его устройстве медь, что увеличило частоту колебаний вдвое.
С тех пор магнетрон успешно используется в радарах и радиолокационных приборах, и даже был очень полезен во времена Второй мировой войны. Но только через год после Победы магнетрон расплавил шоколад в кармане американского инженера, и именно таким случайным образом этот прибор начали использовать в быту, создав на его основе всем известную микроволновую печь. Правда первая в мире микроволновая печь весила более 300 кг и стоила 3 тысячи долларов.

Устройство магнетрона

Визуально магнетрон кажется не хитро устроенной деталью. Снаружи магнетрона возвышается колпачок антенны излучателя (№1 на рисунке). Внутри магнетрон состоит из двух кольцеобразных магнитов (№2), которые создают магнитное поле. Под №3 изображен радиатор, который избавляет устройство от излишков тепла. Под №4 — контакты, которые обеспечивают работу устройства. Изолятор (№5) защищает корпус от излучения, коробка фильтра (№6) защищает фильтр от внешнего воздействия. Корпус, изображенный под №7, делает устройство жестким, а значит, более защищенным. Сетка фильтра (№8) выполнена из медной проволоки, она не дает микроволнам покидать магнетрон, и обеспечивает контакт между магнетроном и печью. Изолятор (№9), соответственно изолирует устройство, а фланец, изображенный под №10 фиксирует магнетрон к корпусу печи.

Применение магнетрона в быту

Конечно магнетрон используемый для СВЧ-печей, работает несколько иначе, чем магнетрон в радиолокационных системах военных. И самое главное правило продления службы микроволновой печи — категорически нельзя включать пустую микроволновую печь. В противном случае может возникнуть искрение — микроволнам в таком случае некуда деться, и магнетрон может повредиться.
Скорость, при которой пища разогревается зависит исключительно от мощности магнетрона. Обычно она колеблется от 650 до 850 Вт. Чтобы проверить мощность, нужно закипятить в микроволновке стандартный стакан с водой, на это должно уйти от 2 до 3 минут.

Магнетрон распространяет радиацию?

Это один из самых распространенных мифов. В микроволновой печи попросту нет элементов, которые могут выделять радиацию, а микроволны заставляют молекулы усиленно «тереться», и за счет этого пища нагревается.
Микроволновых волн также не стоит бояться, хотя бы потому что любая микроволновая печь сконструирована так, чтобы защитить окружающих от них. Например, ни одна микроволновая печь не будет работать с открытой дверцей. В каком то количестве волны могут выходить наружу, но не дальше чем на расстояние 5 метров, а поэтому просто не стойте рядом с печью во время подогрева пищи. Питательные вещества из-за работы магнетрона также теряются не более, чем при любой другой термообработке.

Неисправности магнетронов

Магнетрон — это едва ли не главная деталь микроволновой печи, поэтому неудивительно, что когда он выходит из строя, хочется понять, подлежит запчасть ремонту или замене.
Сразу плохие новости — случаи поломки магнетрона, которые не подлежат ремонту. К ним относится обрыв нити накаливания, короткое замыкание, отсутствие генерации волн и нарушение вакуума.
Но бывают и такие неисправности магнетрона, которые можно устранить, например пробой конденсаторов, который определяется при выключенной внешней сети между магнетроном и корпусом с помощью тестера. Причиной такой поломки могут быть перепады напряжения в сети.
Также из-за того, что микроволновка долго работала «впустую» может заметно снизится мощность печи. В этом случае может помочь способ добавления напряжения на накал, если это позволяет конструкция вашей микроволновой печи.
Бывает, что в печи возникает СВЧ-разряд между антенной магнетрона и корпусом устройства. В такой ситуации нужно срочно заменить колпачок. Но учтите, что деталь должна быть идентичной сгоревшей.

Покупка магнетрона к СВЧ

Если магнетрон не подлежит ремонту, и вы решили его заменить, учтите, что он должен полностью соответствовать вышедшей из строя детали. Если вы собираетесь купить магнетрон самостоятельно, уточните его маркировку.
Кстати, при выборе магнетрона руководствуйтесь не столько маркой микроволновой печи, сколько мощностью детали.

Принцип работы микроволновой печи: схемы, частота и видео

Как именно работает микроволновая печь? Что заставляет нагреваться еду, воду и другие вещества, в то время как воздух или стекло в микроволновке почти не нагреваются? Как правильно обращаться с микроволновкой, чтобы не испортить ее саму и приготавливаемое блюдо? Ответы на эти вопросы вы найдете в нашей статье!

Принцип работы микроволновки

Правильное полное название микроволновки – печь с токами сверхвысокой частоты (СВЧ). Внутри нее (за приборной панелью) есть специальное устройство для излучения радиоволн – магнетрон, что можно увидеть из схемы:

Когда работает магнетрон, выделяемые им электромагнитные колебания определенной частоты заставляют дипольные молекулы внутри печи колебаться с той же частотой. Самой распространенной в природе дипольной молекулой является молекула воды (в продуктах – еще жиры и сахара). На молекулярном уровне высокая частота колебаний превращается в повышение температуры, поэтому любые продукты с высоким содержанием воды быстро разогреваются. Если же молекул воды внутри продуктов (или материалов) очень мало или нет совсем, нагрев почти не происходит.

Глубина проникновения микроволн небольшая – 2-3 сантиметра, однако поверхность приготовляемого блюда СВЧ-волны пронзают легко, а в глубине они встречают сопротивление молекул воды, поэтому продукт фактически прогревается изнутри.

Любые токопроводящие материалы внутри микроволновки нагреваются. Разная способность проводить ток в нашем случае обозначает разную скорость нагревания.

Чтобы нагрев продуктов происходил равномерно, используется несколько подходов:

  • Диск из жаропрочного стекла в нижней части СВЧ-печи. Он вращается вместе с блюдом, подставляя под излучение магнетрона все его стороны.
  • Микроволны. Они подаются по специальному волноводу (широкой трубке) от магнетрона на вращающийся отражатель, расположенный обычно в верхней части СВЧ-печи. В таких микроволновках можно разогревать неподвижные блюда большого размера и веса.

Еще бывают так называемые инверторные СВЧ-печи. Они отличаются от обычных моделей тем, что магнетрон работает непрерывно, но со снижением потребляемой мощности. Это достигается за счет использования в печи так называемого инвертора (преобразователя постоянного тока в переменный) вместо традиционного трансформатора.

В инверторных печах лучше сохраняются витамины, и меньше разрушается структура поверхности блюда, но принципиальной разницы нет.

Во многих моделях микроволновок магнетрон закрыт специальной полупрозрачной пластинкой. Она прозрачна для СВЧ-лучей, но не позволяет пару, брызгам жира и прочим посторонним веществам попадать внутрь микроволновки через отверстие в экранировании. Не вынимайте эту пластину, а если это требуется для чистки от жира, то после полного высыхания обязательно верните на место.

Всё о чистке микроволновой печи ищите в этой статье: https://sovetexpert.ru/chistka-mikrovolnovoj-pechi.html.

Несмотря на распространенное мнение, СВЧ-излучение не убивает микробы. По крайней мере, научно это не доказано. С другой стороны, комплексное воздействие высокой температуры и микроволн на молекулы воды внутри бактерий и вирусов в течение нескольких минут уменьшает их количество многократно, а с теми, что остались, ваша иммунная система справляется самостоятельно.

Частота работы микроволновки

Большинство магнетронов излучает волны на частоте 2450 МГц (мегагерц, или миллионов колебаний в секунду). Это волны дециметровой длины (длиной в 12,25 см). Некоторые промышленные установки, например в США, работают с частотой 915 МГц. Вынужденные колебания молекул воды не являются резонансными колебаниями, так как для них резонансная частота на порядок выше – 22,24 ГГц (гигагерц, или миллиардов колебаний в секунду).

Бояться вредного излучения от микроволновки не надо. Первый массовый выпуск микроволновок был произведен в Японии фирмой «Sharp» в 1962 г. С тех пор прошло очень много лет, десятки миллионов японцев десятилетиями разогревают еду в СВЧ-печах и при этом средняя продолжительность жизни японцев является предметов зависти всего мира.

На дистанции в полметра от СВЧ-печи воздействие микроволн ослабевает в 100 раз, поэтому при опасении получить облучение достаточно держаться от микроволновки на расстоянии вытянутой руки.

Больше информации о влиянии микроволновой печи на человека вы можете найти тут. Только научные факты!

Как работает гриль в микроволновке?

Гриль позволяет вам жарить продукты в СВЧ-печи с помощью обычного жара, а не микроволн. Именно она делает на блюдах аппетитную корочку, которая при обычной СВЧ-обработке не появляется.

Спираль гриля находится в верхней части печи и бывают двух видов:

  • ТЭНы (теплоэлектронагреватели). ТЭН – это металлическая трубка, внутри которой находится тонкая спираль из сплава никеля и хрома. Через спираль проходит ток, и она нагревается.
  • Кварцевые. Кварцевый гриль – это тоже ТЭН, только вместо металлической трубки – стеклянная оболочка, между спиралью и трубкой – изолирующий кварцевый песок.

Обычные металлические ТЭНы часто можно регулировать – перемещать к задней стенке или опускать, зато стеклянную поверхность кварцевого гриля легче чистить (жир и нагар не въедается в стекло так, как в металл).

Бывают конструкции СВЧ-печей с грилем и конвекцией. Конвекция – это просто обдув горячим воздухом вашего блюда во время приготовления. Для такого обдува в микроволновке устанавливают вентилятор, сдувающий разогретый воздух от спирали гриля в сторону блюда.

Большинство моделей микроволновок позволяют одновременно использовать и ТЭН, и СВЧ. Однако имейте в виду, что такая комбинация может сильно нагревать розетку и провода в вашем помещении.

Читайте в следующей статье о принципах выбора микроволновой печи под свои запросы: https://sovetexpert.ru/kakuyu-kupit-mikrovolnovku.html.

Инструкция по работе с микроволновой печью

Чтобы правильно обращаться со своей микроволновой, нужно внимательно подходить ко всем пунктам – начиная с выбора посуды и заканчивая правильным выключением после применения.

Какую посуду использовать?

Лучший материал для разогрева в микроволновке – жаропрочная стеклянная посуда. Также хорошо подходят фарфор и другие керамические изделия, бумага (картон). Сквозь них микроволны проходят очень легко и почти не нагревают их. А вот от посуды из следующих материалов надо отказаться:

  • Пластика. Хорошо пропускает СВЧ-излучение, но из-за токсичных компонентов при изготовлении (например, пенополистирол) может представлять опасность для вашего здоровья.
  • Металла. Они проводят электрический ток, не пропуская микроволны. Так что приготовить или просто разогреть блюдо в алюминиевой кастрюле или чугунном горшке не получится. Металл просто не пропустит электромагнитные волны к продуктам, и они останутся холодными. Сам металл при этом, конечно, нагреется, и от его тепла могут нагреться и продукты. Но это может привести к поломке СВЧ-печи, да и ждать приготовления блюда придется долго. Инструкцию по ремонту микроволновых печей читайте тут.

Некоторые материалы могут содержать металлы, и об этом заранее бывает трудно догадаться. Например, это хрусталь. Так стоит внимательно на ярлыке прочитать, какие материалы использовались при производстве конкретной посуды.

  • Меламина. Это легкий и красивый материал для посуды, похожий на фарфор, но его нельзя ставить в СВЧ-печь. Дело в том, что при нагреве он выделяет токсины, опасные для вашего здоровья.

Что касается формы посуды, то она может быть любой, но не с узким горлом, поскольку при использовании для разогрева в микроволновке она может быть опасной. Дело в том, что некоторые жидкости нагреваются до температуры кипения, но бурного перемешивания внутри объема при этом не происходит. А вот когда вы достанете такой кувшин или колбу из СВЧ-печи, жидкость мгновенно взбурлит, кипящая пена выльется из емкости, и можно получить ожог. Например, так ведут себя при некоторых условиях дистиллированная вода и некоторые очищенные масла растительного происхождения.

Рекомендуем прочесть статью о том, какая посуда подойдет для микроволновки.

Правильное обращение с продуктами

Изначально стоит точно определить, что нельзя размораживать в микроволновке:

  • Сливочное масло. Если его положить в микроволновку и оставить надолго, оно не просто растает, а еще и вскипит, испачкав всю печь изнутри. Так происходит потому, что внутри масла есть не только собственно масло, но и вода. Она вскипает при 100 градусах, а масло примерно при 120. Так что вода может перейти в пар еще до таяния масла, и водяной пар разнесет масло по всей печке.

Примерно то же самое может происходить с другими продуктами, которые иногда нужно растопить, например, с шоколадом, поэтому это лучше делать не в микроволновке, а на пару.

  • Продукты с плотной оболочкой. Например, это яйца, помидоры, цельная печень птицы. При нагреве некоторая часть воды не просто постепенно нагревается, а сразу превращается в пар. Если греть продукты долго, то еще больше пара образуется от прямого нагрева. Этому пару некуда выйти, поэтому давление внутри емкости растет и приводит к взрыву.
  • Герметично закрытую посуду. Например, консервы и бутылки. Причина та же, что и в предыдущих пунктах – высока вероятность взрыва.

Далее во внимание стоит принять советы, как правильно обращаться с продуктами при разогреве или готовке в микроволновке:

  • Сосиски, плотно упакованные в оболочку, перед СВЧ-разогревом обязательно нужно проткнуть вилкой, чтобы создать отверстия для выхода пара, иначе он разворотит сосиски изнутри.
  • В яйцах и другие продуктах нужно разрушить все внешние и внутренние оболочки, например, сделать омлет или разрезать печень.
  • Для варки яиц и других продуктов в микроволновке используются специальные кастрюльки с экранированием. В нее наливается вода, она-то и греется от СВЧ-волн, а до яиц электромагнитное излучение не доходит – их закрывает экран.
  • Если в микроволновку ставится небольшое по объему блюдо, следует добавить к нему обычный стакан с водой. Так вы избежите перегрева магнетрона.
  • Любые жидкие блюда в микроволновке лучше посолить заранее, а не после приготовления. Так вы сэкономите время и электроэнергию. Дело в том, что дистиллированная (несоленая) вода в микроволновке греется и закипает, но дольше, чем обычная вода.
  • Очень сильно замороженный продукт (мясо, например) будет размораживаться в микроволновке довольно долго, и включать СВЧ-печь при этом нужно на минимальную мощность. Причина в том, что молекулы льда – не молекулы воды, СВЧ-волны не расшатывают их так интенсивно. Кроме того, молекулы льда образуют достаточно жесткую структуру и их не так легко «раскачать», как молекулы воды.

Сухой хлеб часто рекомендуют «размягчить» в микроволновке, но он может загореться при длительном воздействии и максимальной мощности СВЧ-излучения. Это же может произойти даже с попкорном, рассчитанным на приготовление именно в микроволновке. Следовательно, когда в микроволновую печь помещаются такие продукты, нужно быть бдительным.

Правила включения/выключения

Нельзя включать пустую микроволновку, тем более на полную мощность:

  1. Внутри печи все стенки (и даже дверца) являются специальным металлизированным экраном, отражающим микроволны обратно внутрь микроволновки. Единственное место, где нет экрана – отверстие для выхода электромагнитных волн из магнетрона.
  2. Когда на поддоне находятся продукты, микроволны расходуют свою энергию на нагрев этих продуктов. Если же энергию впитывать нечему, СВЧ-излучение отражается от стенок экранирующих поверхностей, при этом плотность волн возрастает все больше.
  3. СВЧ-излучение попадает обратно в магнетрон, и если он состоит из металла, то просто перегреется и может выйти из строя.

Считается, что после разогрева блюда в СВЧ-печи лучше дать ему постоять 3-5 минут. Тогда успевают нейтрализоваться так называемые «свободные радикалы», то есть части молекул, распавшихся на части под воздействием микроволн.

Видео: Как работает микроволновка?

Все вышесказанное о принципе работы устройства хорошо иллюстрируется в следующем видео:

После прочтения нашей статьи вы стали намного лучше разбираться в принципе работы СВЧ-печи. Теперь вы знаете, что она может делать лучше обычной духовки и электроплитки, а что не может, и какие действия вообще недопустимы при работе с микроволновкой.

Как работает микроволновая печь —

Устройство микроволновки

Устройство и конструкция СВЧ-печи

Главная деталь в любой СВЧ печи – это магнетрон. Магнетрон – это такая специальная вакуумная лампа, которая создаёт СВЧ-излучение. СВЧ-излучение весьма интересным образом воздействует на обычную воду, которая содержится в любой пище.

При облучении электромагнитными волнами частотой 2,45 ГГц молекулы воды начинают колебаться. В результате этих колебаний возникает трение. Да, обычное трение между молекулами. За счёт трения выделяться тепло. Оно то и разогревает пищу изнутри. Вот так вкратце можно объяснить принцип действия микроволновки.

Конструкция микроволновки.

Конструктивно микроволновая печь состоит из металлической камеры, в которой приготавливается пища. Камера снабжена дверцей, которая не позволяет излучению выйти наружу. Для равномерного разогрева пищи внутри камеры установлен вращающийся столик, который приводится в движение мото-редуктором (мотором), который сокращённо называется T.T.Motor (Turntable motor).

СВЧ-излучение генерируется магнетроном и через прямоугольный волновод подаётся в камеру. Для охлаждения магнетрона во время работы служит вентилятор F.M (Fan motor), который прогоняет холодный воздух через магнетрон. Далее нагретый воздух от магнетрона через воздуховод направляется в камеру и также используется для нагрева пищи. Через специальные неизлучающие отверстия часть нагретого воздуха и водяной пар выводится наружу.

В некоторых моделях СВЧ-печей для формирования равномерного нагрева пищи используется диссектор, который устанавливается в верхней части камеры микроволновки. Внешне диссектор напоминает вентилятор, но он предназначен для создания определённого типа СВЧ-волны в камере так, чтобы осуществлялся равномерный прогрев пищи.

Электрическая схема микроволновки.

Давайте взглянем на упрощённую электрическую схему рядовой микроволновки (кликните для увеличения).

Как видим, схема состоит из управляющей части и исполнительной. Управляющая часть, как правило, состоит из микроконтроллера, дисплея, кнопочной или сенсорной панели, электромагнитных реле, зуммера. Это «мозги» микроволновки. На схеме всё это изображено отдельной платой с надписью Power and Control Curcuit Board. Для питания управляющей части микроволновки используется небольшой понижающий трансформатор. На схеме он отмечен как L.V.Transformer (показана только первичная обмотка).

Микроконтроллер через буферные элементы (транзисторы) управляет электромагнитными реле: RELAY1, RELAY2, RELAY3. Они включают/выключают исполнительные элементы СВЧ-печи в соответствии с заданным алгоритмом работы.

Исполнительные элементы и цепи — это магнетрон (Magnetron), мото-редуктор столика T.T.Motor (Turntable motor), охлаждающий вентилятор F.M (Fan Motor), ТЭН гриля (Grill Heater), лампа подсветки O.L (Oven Lamp).

Особо отметим исполнительную цепь, которая является генератором СВЧ-излучения.

Начинается эта цепь с высоковольтного трансформатора (H.V.Transformer). Он самый здоровый в микроволновке. Собственно, это и не удивительно, ведь через него нужно прокачать мощность в 1500 — 2000 Вт (1,5 — 2 kW), необходимых для магнетрона. Выходная же (полезная) мощность магнетрона 500 — 850 Вт.

К первичной обмотке трансформатора подводится переменное напряжение сети 220V. С одной из вторичных обмоток снимается переменное напряжение накала 3,15V. Оно подводится к накальной обмотке магнетрона. Накальная обмотка необходима для генерации (эмиссии) электронов. Стоит отметить, что ток, потребляемый этой обмоткой, может достигать 10A.

Другая вторичная обмотка высоковольтного трансформатора, а также схема удвоения напряжения на высоковольтном конденсаторе (H.V.Capacitor) и диоде (H.V. Diode) создаёт постоянное напряжение в 4kV для питания анода магнетрона. Ток анода небольшой и составляет где-то 300 мА (0,3A).

В результате электроны, эмитированные накальной обмоткой, начинают своё движение в вакууме.

Особая траектория движения электронов внутри магнетрона создаёт СВЧ-излучение, которое и нужно нам для нагрева пищи. СВЧ-излучение отводится из магнетрона с помощью антенны и поступает в камеру через отрезок прямоугольного волновода.

Вот такая несложная, но весьма изощрённая схема является неким СВЧ-нагревателем. Не стоит забывать, что сама камера СВЧ-печи является элементом данного СВЧ-нагревателя, так как представляет, по сути, резонатор, в котором возникает электромагнитное излучение.

Кроме этих элементов в схеме микроволновой печи есть множество защитных элементов (см. термовыключатели KSD и аналоги.). Так, например, термовыключатель контролирует температуру магнетрона. Его штатная температура при работе где-то 80 0 – 100 0 C. Этот термовыключатель крепится на магнетроне. По умолчанию он не показан на упрощённой схеме.

Другие защитные термовыключатели подписаны на схеме, как OVEN THERMAL CUT-OUT (устанавливается на воздуховоде), GRILL THERMAL CUT-OUT (контролирует температуру гриля).

При наличии нештатной ситуации и перегреве магнетрона термовыключатель размыкает цепь, и магнетрон перестаёт работать. При этом термовыключатель выбирается с небольшим запасом — на температуру отключения 120 – 145 0 С.

Весьма важными элементами микроволновой печи являются три переключателя, которые встроены в правый торец камеры СВЧ-печи. При закрытии передней дверцы два переключателя замыкают свои контакты (PRIMARY SWITCH – главный выключатель, SECONDARY SWITCH– вторичный выключатель). Третий – MONITOR SWITCH (контрольный выключатель) – размыкает свои контакты при закрытии дверцы.

Неисправность хотя бы одного из этих выключателей приводит к неработоспособности микроволновки и срабатыванию плавкого предохранителя (Fuse).

Чтобы снизить помехи, которые поступают в электросеть при работающей СВЧ-печи, имеется сетевой фильтр — NOISE FILTER.

Дополнительные элементы микроволновки.

Кроме базовых элементов конструкции, микроволновка может быть оснащена грилем и конвектором. Гриль может быть выполнен в виде нагревательного элемента (ТЭН’а) или инфракрасных кварцевых ламп. Эти элементы микроволновки очень надёжны и редко выходят из строя.

Нагревательные элементы гриля: металло-керамический (слева) и инфракрасный (справа).

Инфракрасный нагреватель представляет собой 2 последовательно включенные инфракрасные кварцевые лампы на 115V (500 — 600W).

В отличие от микроволнового нагрева, который происходит изнутри, гриль создаёт тепловое излучение, которое разогревает пищу снаружи внутрь. Гриль разогревает пищу медленнее, но без него невозможно приготовить поджаристую курочку .

Конвектор — это, не что иное, как вентилятор внутри камеры, который работает в паре с нагревателем (ТЭН’ом). Вращение вентилятора обеспечивает циркуляцию горячего воздуха в камере, что способствует равномерному прогреву пищи.

Про фьюз-диод, высоковольтный конденсатор и диод.

Элементы в цепи питания магнетрона обладают интересными свойствами, которые нужно учитывать при ремонте микроволновки.

Так, по умолчанию, высоковольтный конденсатор (H.V.Capacitor) имеет встроенный резистор.

Он служит для разряда конденсатора. Дело в том, что конденсатор находится под высоким напряжением (2 кВ), и поэтому после выключения СВЧ-печи требуется его разряд. Это предохранительная мера. Также бывает, что резистор внутри конденсатора перегорает, и конденсатор не разряжается. Поэтому перед проведением ремонта микроволновки рекомендуется принудительно разряжать конденсатор на корпус.

Внешний вид высоковольтного конденсатора 1.0µF * 2100V AC.

Высоковольтный диод (H.V. Diode) является комбинированным элементом и состоит из целой вереницы последовательно включенных диодов. Это позволяет составному диоду работать с высоким напряжением. Но в этом кроется подвох. Дело в том, что протестировать такой диод стандартной методикой проверки не удастся. Мультиметр просто не сможет «открыть» такой диод из-за того, что пороговое (прямое) напряжение отпирания (VF) диодов складываются. В результате в прямом и обратном включении высоковольтный диод будет иметь высокое сопротивление.

Так, например, для диода HVR-1X3 максимальное прямое напряжение (VF) составляет 11V. Если учесть, что обычно падение напряжения на переходе в прямом включении (VF) у кремниевых диодов составляет 1 — 1.1V, то получается, что в диоде HVR-1X3 ориентировочно смонтировано 10 последовательно включенных диодов.

Максимальное постоянное обратное напряжение такого диода — 12kV!

В некоторых микроволновых печах параллельно высоковольтному конденсатору устанавливается фьюз-диод (защитный диод). По сути, фьюз-диод — это двунаправленный высоковольтный супрессор. Он служит для того, чтобы защитить конденсатор от завышенного рабочего напряжения, которое чревато выходом из строя последнего. Но на практике чаще бывает так, что он сам и выходит из строя. В таком случае ремонтники просто удаляют его из цепи, как ненужный аппендикс. На деле оказалось, что микроволновки прекрасно работают и без такого диода.

Для тех, кто желает более детально разобраться в устройстве СВЧ-печей, подготовлен архив с сервисными инструкциями микроволновых печей (Daewoo, SANYO, Samsung, LG). В инструкции приведены принципиальные схемы, схемы разборки, рекомендации по проверке элементов, список комплектующих.

Также рекомендуем ознакомиться с книгой «Ремонт микроволновых печей».

Как устроена микроволновая печь

Микроволновка работает практически в каждой современной квартире. Этот удобный бытовой прибор умеет подогревать, размораживать, запекать. Некоторые модели способны поджаривать на гриле и выполнять сложные программы для изготовления внутри готовых блюд. Принцип действия микроволновки не поменялся с момента ее изобретения. Но благодаря достижениям технического прогресса выросла безопасность оборудования, а электрическая схема способна осуществлять комплексное управление и точный контроль параметров работы.

Общий принцип действия микроволновой печи

Физика процесса нагрева содержимого микроволновки достаточно проста. СВЧ излучение воздействует на молекулы продуктов, и благодаря их взаимному трению выделяется тепло. Но это слишком простое объяснение.

На самом деле, колебаниям подвергаются только молекулы воды. Но если поставить в микроволновку идеально чистый стакан с дистиллированной жидкостью, то ее температура при стандартном времени работы печи изменится достаточно мало. Так почему же нагреваются продукты? Это происходит благодаря трению молекул на границе сред, то есть, разных веществ. А так как строение любого материала, будь то съедобный продукт или кусок дерева, велико и обязательно имеет в структуре воду, возникают разноамплитудные колебания.

В микроволновку нельзя класть металлы. При воздействии на них СВЧ излучения образуются поверхностные токи и происходят искровые, дуговые пробои на стенки внутреннего отделения печи. Однако технический прогресс нашел выход. Сегодня множество компаний, например, Daewoo, выпускают микроволновки, в которые можно ставить металлические предметы. Также во многих моделях разрешено использование замкнутых контуров, в частности, тарелок с тиснением фольгой по краю или декоративных блюд с металлическим бортом.

Какие элементы есть в конструкции микроволновки

Устройство микроволновой печи только на первый взгляд кажется сложным. Владельца этого прибора вводит в заблуждение количество кнопочек, индикаторов, средств программирования. На самом деле, любая печь, с механическим управлением, сенсорной панелью, пультом, гибридным электронным контролем, состоит из одинаковых функциональных блоков:

  • блок генерации СВЧ излучения, магнетрон и волноводы;
  • система преобразования напряжения, главный модуль — повышающий высоковольтный трансформатор;
  • средства контроля в составе группы датчиков;
  • система вторичной защиты;
  • управляющая схема микроволновки.

Стоит рассмотреть работу каждого блока отдельно, в порядке их задействования в стандартной схеме использования микроволновки.

Управляющая схема

Главная электросхема микроволновки, с которой имеет дело пользователь — это блок управления. В нем при помощи кнопок, механических переключателей, регуляторов задаются граничные параметры. То есть рабочая мощность или режим, время исполнения программы и так далее.

Схема управления может быть как угодно сложной. Самый простой вариант представляет собой круговые регуляторы, один из которых — реле таймера. С их помощью устанавливается мощность режима и время работы. Еще один знакомый пользователям вариант — гибридный, с кнопками. По сути, его функционал ненамного шире механической регулировки.

Сенсорная панель, в большинстве случаев, ничем по принципу действия не отличается от кнопок. Она просто более надежна и не требует обслуживания. Продвинутые схемы электронного управления включают программирование, то есть переключение по заданному алгоритму мощности излучения и времени ее выдачи.

Система преобразования напряжения

Микроволновка состоит из группы узлов, которые очень опасны для человека. Главный из них — повышающий трансформатор. Когда схема управления дает команду на включение режима, он выдает до 4 КВ напряжения. При этом рабочий ток может достигать 10А и выше. Такие параметры работы электросети представляют огромную опасность для человека.

Блок генерации СВЧ излучения

Магнетрон — это сердце микроволновки. По сути, это обычная вакуумная лампа, похожая на те, которые использовались в кинескопах старых телевизоров. Только магнетрон генерирует интенсивную электромагнитную волну высокой частоты, образуемой при прохождении электронов через магнитное поле.

Блок генерации излучения состоит не из одного СВЧ источника. Для, так сказать, подачи волн в рабочую зону печи устанавливаются волноводы. Именно они находятся за слюдяной пластиной, которую каждый видел на боковой стенке микроволновки, когда ставил в нее тарелку с завтраком.

Системы основной и вторичной защиты

Роль контрольных датчиков вполне понятна. Они следят, чтобы ни один из ключевых элементов электронной и аппаратной части не вышел в критический режим работы. Датчики гарантируют безаварийное функционирование прибора и предотвращают опасные сбои. Но у микроволновки есть системы защиты, разработанные для человека. Ниже будут подробно описаны их функции.

Итак, система управления инициализирует пуск магнетрона. Она же задает параметры работы, отсчитывает временные интервалы, меняет мощность и так далее. Есть и обратная связь между системами безопасности и управления. По сигналам первых может быть полностью остановлена работа печи, изменен режим, выдано служебное сообщение или звуковые оповещения.

Схемы распределения СВЧ волн

Сначала стоит остановиться на работе блока генерации СВЧ. Строение магнетрона представляет собой излучающий элемент и обмотку, генерирующую магнитное поле. Эта лампа, грубо говоря, постоянно изнашивается. Все сталкивались с ситуацией, когда с ходом эксплуатации микроволновка разогревает все слабее и слабее. Это нормальное явление, каждая модель рано или поздно требует замены магнетрона.

В печах разных производителей (или уровня сложности) может использоваться отличные друг от друга схемы распределения СВЧ волн. В стандартном варианте решения, который применяет компания LG и множество других производителей, от магнетрона в область продуктов идет только один волновод. Он закрыт слюдяной пластиной, чтобы предотвратить попадание мусора и пара.

В некоторых микроволновках компании Samsung используется другой принцип: устанавливается основной волновод и несколько щелевых антенн. Это позволяет равномерно распределять поток энергии, формировать так называемое 3D излучение. Кроме этого, печь, варьируя мощность магнетрона, добивается плавного нагрева продуктов по всему объему.

Но самое главное в генерации волн СВЧ — их параметры. Частота излучения магнетрона в микроволновке составляет 2.45 ГГц — именно это значение является резонансным для молекул воды, заставляя их колебаться с большой амплитудой. Происходит нагрев продукта. Тепло от поверхностных слоев постепенно распространяется по всему объему продукта.

Есть некоторые решения, позволяющие ускорить разогрев пищи в рабочей области печи. Это так называемые диссекторы. По внешнему виду такой конструкционный элемент похож на вентилятор на потолке камеры микроволновки. Однако он делает другую работу, а именно рассеивает СВЧ волны.

Другие функциональные элементы печи имеют вполне понятное назначение. Например, микроволновка с грилем действует на пищу не только СВЧ, но и инфракрасным излучением. Она позволяет добиться на продуктах красивой запеченной корочки. Отдельные модели печей могут оснащаться дополнительными вентиляторами для отвода тепла.

Как работает система защиты

Также стоит подробно осветить функционирование систем безопасности. Они делятся на две значимые группы.

  1. Контроль параметров аппаратной части. Это датчик температуры магнетрона, предохранители, охлаждающие вентиляторы. Они решают задачу блокировки потенциально аварийных ситуаций и поддержания нормированных показателей работы электроники
  2. Защита человека от поражения электротоком и СВЧ излучением.

С системами защиты от электротока сталкивался каждый, кто хоть раз разбирал корпус своей микроволновки. В ключевых точках монтажа размещены микровыключатели. Сняв крышку, печку уже нельзя включить. Этого просто не позволит система защиты.

Но более интересна схема нейтрализации СВЧ волн. Стоит понимать, что излучение даже теоретически не может быть локализовано внутри камеры печи. Волны отражаются, в том числе от продуктов. Поэтому на передней дверке устанавливается стекло с нанесенной на него тонкой металлической решеткой. Это антенный модуль. Он подключен к разряднику, который отдает накопленную энергию бросками в основные электросети прибора.

Электрическая схема СВЧ

На основании изложенного выше нетрудно понять, как микроволновая печь устроена, просто рассматривая ее снаружи, заглядывая в камеру и в тыл. Но если захочется что-то починить, полезно в общих чертах понимать, как узлы взаимодействуют между собой. В этом поможет принципиальная схема микроволновой печи. Ее строение только на первый взгляд кажется сложным. Однако любая схема состоит из базовых блоков. В качестве примера стоит посмотреть на устройство модели с механическим аналоговым управлением.

Из схемы ясно видно, как преобразуется энергия и работают системы безопасности. Одним из самых первых контуров всегда выступает шумоподавитель (NOISE FILTER). Именно он гасит колебания, которые формирует разрядник энергии в дверке, защита человека от высокочастотного излучения.

Затем идет система основной безопасности. Это блок контактов в дверке, один отслеживает прилегание к корпусу, второй положение защелки, третий позицию ручки. При незамкнутом состоянии любого из них печь не будет работать.

Третий функциональный блок — приводы и подсветка. Здесь все просто. На двигатель, который крутит тарелку, на вентилятор и лампу, подается постоянное напряжение. Таймер размыкает цепь при окончании установленного временного интервала.

Последний рабочий контур — повышающий трансформатор, датчик контроля температуры магнетрона, его система защиты от пробоя и плавкий предохранитель. И заканчивается схема всегда одинаково. Главным рабочим органом печи, магнетроном.

В качестве заключения

Несмотря на то, что микроволновка может показаться крайне сложным и даже опасным устройством, ее рекомендуется регулярно обслуживать. Это безопасно и просто. Вскрывать корпус, чтобы удалить пыль с аппаратной части, не стоит. Достаточно держать в чистоте поверхность стенок отсека для продуктов, стекло дверки. Периодически аккуратно снимать и протирать слюдяную пластину, закрывающую волновод. И тогда микроволновка будет сохранять стабильные параметры весь срок, заявленный производителем.

Как работает микроволновая печь

Микромир богат тайнами. Бодро рассуждаем об электронах, не зная в точности, что это такое. Удивителен принцип неопределенности Гейзенберга. Ученые, чем дальше, тем сильней начинают дивиться собственным открытиям. Теория Эйнштейна частью несостоятельна, значит, масса не растет с увеличением скорости, скорость света преодолима. Что недавно доказано экспериментально. Как работает микроволновая печь, если ничего не известно об элементарных частицах кроме непредсказуемости поведения? Попробуем заглянуть в мир удивительных и непонятных явлений.

Принцип действия активной СВЧ печи

Электроны и микроволновые печи

Технические характеристики микроволновых печей различны, в основе лежит общее явление – поглощение энергии электромагнитной волны молекулами воды. Принцип работы микроволновой печи остается прежним. Говорят, что концепция отобрана Америкой у разгромленной фашистской Германии. Пару слов о работе микроволновой печи.

В физике принята двойственная корпускулярно-волновая теория, согласно которой электромагнитная волна ведет себя, как частица. С понижением частоты всплывают эффекты, характерные для морей и рек: сложение волн не количественно, а с учетом фазы, в результате интерференционная картина примет причудливый вид. Свет ведет себя часто подобно частицам. Квант – кусочек света.

Однажды в лаборатории ученые решили проверить: что такое кванты. Взяли специальную пушку, испускающую элементарные частицы. Последовательность опытов:

    Из пушки начали обстреливать щель в листе непрозрачного материала, позади поставили чувствительный экран и начали регистрировать интенсивность. Получился отпечаток исходной щели, спроецировавший лучи пушки.

Ученые выдвинули теории: частица проходит одновременно через обе щели, либо через единственную. В результате электрон словно ударяется сам о себя, образуя картину интерференции. Что касается волновой теории, известно нечто подобное. Стали говорить, что частица «знает» о наблюдении. Нам ближе теория комментатора видео на Ютуб, сказавшего, что телескоп забирает энергию фотона, потому нельзя продемонстрировать волновую картину. Экран не является аналогичным средством измерения, отсюда результат разный.

Магнетрон в микроволновой печи работает за счет упорядоченного (если корректно так говорить) движения электронов. Не видим противоречий в опыте, забавно, что ученые не хотят видеть дальнейших аналогий с волной. В магнетроне микроволновой печи процесс управляется иначе.

Вне зависимости от природы частиц установлено, что в магнитном поле испущенные термокатодом электроны начинают двигаться по кругу. Чтобы создать равномерное распределение напряженности, используется два постоянных магнита по обе стороны шайбообразной рабочей камеры магнетрона.

Внутри царит вакуум, чтобы не создавать помех движению элементарных частиц. В результате придумали сделать нечто наподобие револьверного барабана, где каждая камера соединяется с центральным каналом узкой щелью. Недолго думая, ученые рассчитали размеры и создали резонатор для магнетрона микроволновой печи. В результате, гонимые электричеством и управляемые магнитом, электроны стали порождать колебания разного толка. Но выживала лишь частота резонатора магнетрона микроволновой печи, прочие быстро затухали.

Поданное на катод напряжение 3 кВ со схемной землей на аноде магнетрона микроволновой печи вызывает вращающиеся колебания заданной частоты в камерах. Съем сигнала происходит через специальный штырь в одной из множества. Добавим, что для облегчения электронам процесса покидания поверхности анода пользуются двумя уловками:

  1. С умом выбирают материал катода: вольфрам и торий.
  2. Подают напряжение подогрева (6,3 В 50 Гц) на нить накала.

Подобным образом работает магнетрон микроволновой печи. Заметьте, о природе электронов ничего в точности не известно, физики-теоретики до сих пор бьются над решением задачи, практики уже давно пользуются результатом.

Воздействие волн на пищу

Как используются колебания высокой частоты в микроволновой печи

Колебания покидают магнетрон и немедленно попадают в волновод. Размеры круглого или прямоугольного сечения выбраны так, чтобы затухания оказались наименьшими. Волна, двигаясь под углом к оси волновода и постоянно отражаясь от верхней и нижней стенок, достигает рабочего отсека. Напряженность поля велика, посторонние предметы внутри приведут к возникновению электрических пробоев в виде молний. Исключая описанное, выход волновода в рабочую камеру прикрывается слюдяной тканью, в обиходе, слюдой.

Указанный диэлектрик прозрачен для волн, свободно проходящих в отсек. Размер рабочей камеры печи выбирается, исходя из частоты магнетрона. Но быстро стало замечено: если оставить неподвижное тело греться, температура на разных участках варьируется в широких пределах. Понятно, что людям не нравится факт: первый кусок горячее второго. Объясняется явление наличием стоячих волн. В узлах амплитуда колебания поля равна нулю, на горбах максимальна. В результате получается нечто вроде интерференционной картины.

Объясним происходящее. Энергия передается молекулам воды: атом кислорода, ближе к одному боку прилепились две частички водорода. Получается нечто вроде головы с двумя шишками на боковинах черепа. Электрический отрицательный момент находится в районе основания. Когда полем захватывается эта результирующая, молекула увлекается силовыми линиями. Напряженность волны постоянно меняется, конструкция начинает проворачиваться, заваливаться вперед. Потом назад. Получается неваляшка.

Скорость колебаний чрезвычайно высока.

Магнетрон генерирует на частоте 2,45 ГГц, происходит 2,45 млрд. движений в секунду. Образуется избыточная кинетическая энергия, быстро передаваемая окружающим молекулам. Почему выбрана частота 2,45 ГГц. Чтобы создавать побольше помех сотовым телефонам и домашней сети WiFi? Нет! Просто у любой системы собственная резонансная частота.

Усиленная многократно, волна приводит в негодность здания.

Аналогично происходит с молекулой воды. Есть частоты, не вызывающие колебаний. Район связных на 2,4 ГГц отлично передает энергию пару. Воду в любом агрегатном состоянии нагревает ударно. На факте и основан принцип действия микроволновой печи. Добавим, что эффект стоячей волны блокируется вращающимся столом. Пища постоянно двигается, различные участки попадают попеременно то в минимумы, то в максимумы волны. Что обеспечит равномерный нагрев.

Как реализуются режимы микроволновой печи

Поговорили о генерации, рассказали, как энергия ведет себя внутри рабочей камеры, раскрыли процесс передачи тепла еде. Рассмотрим, как варьируется интенсивность нагрева. Магнетрон не генерирует колебания постоянно, а возбуждается импульсами высоковольтного напряжения. В результате, регулируя скважность или периодичность, добиваются приемлемых режимов.

Инверторные микроволновые печи идут дальше. Стоящий в рабочем отсеке датчик температуры сообщает системе о состоянии пищи, в результате частота следования импульсов гибко регулируется, режим получается максимально плавным. Принцип действия датчика основан на приеме инфракрасных волн: чем выше частота, тем теплее в помещении. Если говорить еще точнее, принимается одна частота, но измеряется интенсивность. С повышением температуры спектр сдвигается вверх. Общая форма является горкой с единственной вершиной. Сам датчик сечет спектр постоянно на одной частоте. Сначала гора чуть наползает подошвой на эту линию, но по мере продвижения вправо больше и больше покрывает место. В результате фиксируется рост интенсивности. Холодная пища в инфракрасном диапазоне не излучает вообще.

Режим инвертора возможно выключить, в результате правильное использование микроволновой печи гарантирует положительный результат, если обрели опыт обращения с оборудованием. Надеемся, рассказ оказался интересен, несмотря на всеобщую неразбериху в физике. Возможно, читатели разгадают загадку наблюдателя и выложат ответ в комментариях. А мы походатайствуем о присвоении аудитории Нобелевской премии перед ответственным комитетом.

Как работает микроволновка — принцип работы СВЧ и магнетрона

Микроволновая печь, более известная как микроволновка – полезный кухонный прибор, который в разы упрощает повседневную жизнь. Имея ее в своем арсенале, не придется подолгу возиться на кухне, подогревая пищу. Микроволновую печь еще называют СВЧ-печью.

Задача этого бытового электроприбора – быстрое приготовление или быстрый подогрев приготовленной пищи, размораживание продуктов. Если сравнивать с классической печью, например, духовкой, микроволновка разогревает продукты не с поверхности, а по всему объему.

Микроволны, глубоко проникая практически в любую пищу, в разы сокращают время разогрева. В статье пойдет речь о принципе работы и устройстве этой техники, незаменимой на кухне.

Принцип работы микроволновой печи

Чтобы разобраться с этим, необходимо немного вводных данных. Большинство продуктов питания в своем составе содержат следующие вещества: соли, жиры, сахар, воду. Чтобы микроволны «работали», то есть грели пищу, в продуктах должны быть дипольные молекулы.

С одной стороны у них положительный электрический заряд, с другой – отрицательный. В пище этих молекул достаточно – это жиры и сахар, но главный диполь – молекула воды.

В овощах, мясе, фруктах и рыбе содержится большое число дипольных молекул, количество которых достигает миллионов. Если электрического поля нет, молекулы располагаются в хаотическом порядке.

При наличии электромагнитного поля, они начинают «выстраиваться»: «плюс» направлен в одну сторону, «минус» в другую. Когда поле меняет полярность, молекулы «разворачиваются» на 180 градусов.

В СВЧ-печах микроволны имеют частоту 2450 Мгц. 1 герц = 1 колебанию за секунду. Мегагерц – миллион колебаний. Полярность меняется дважды за один период волны.

Когда на продукты воздействует микроволновое излучение, молекулы в них начинают вращаться чаще, буквально стираясь друг о друга. При этом выделяется тепло, которое и служит источником нагрева продуктов.

Но, тепло «идет» дальше – включается физика теплопроводности. Отсюда же следует совет: если нужно разогреть большой кусок мяса, лучше выставить микроволновую печь на среднюю мощность. Так он прогреется лучше, хоть на это и уйдет больше времени. Тепло из наружных слоев начнет проникать внутрь.

Аналогично дела обстоят и с супами: их лучше периодически вынимать из печи и перемешивать, помогая теплу пробиться внутрь.

В выпускаемых сейчас моделях печей может быть функция «Двойного излучения» — это говорит о раздвоенном источнике излучения. Благодаря этому разделению продукты прогреваются равномернее, а СВЧ-печь имеет повышенный КПД.

Схема СВЧ печи

Наглядным примером послужит модель микроволновки Samsung RE290D. Принципиальная электрическая схема поможет понять, как работают печи от любых производителей. Отличаться они могут разве что специфическими модификациями. Сама схема представлена на фото.

В левой части заметно, что заземляющий контакт вилки соединяется с корпусом, а тот подключен от средней точки конденсаторной развязки фильтра, снижающего помехи высокочастотного излучения.

В области входа питания находится предохранитель плавного типа – FU1. Для проверки его состояния пользуются электрическими методами – прозванивают цепь мультиметром, работающим в режиме омметра.

Чтобы магнетрон – источник излучения, начал «работать», контакты исправности дверцы размыкаются, а все остальные – замыкаются. Если их отключить, причем любой, то с высоковольтного трансформатора снимется питающее напряжение.

В схеме есть термические предохранители-датчики (2 шт.), которые, в зависимости от температуры корпуса магнетрона и рабочей камеры, размыкаются и замыкаются. У первого – периодическая работа. Он защищает магнетрон от перегрева. Второй срабатывает, если неисправен вентилятор или засорились вентиляционные отверстия.

Контакт страхующего реле обеспечивает подключение электродвигателей таймера и охлаждающего вентилятора. Если предохранитель «Monitor Fuse» перегорит, обмотка реле выходит из строя.

Переключатель, отвечающий за выбор мощности, находится на таймере. Он, следуя алгоритмам, снимает напряжение со схемы магнетрона.

Его задача – ограничение импульса, вызванного разрядом конденсатора (он может получить заряд до того, как включится). Это обеспечивает плавный запуск микроволновой печи.

Силовая схема этой печи от Самсунг проста для тех, кто в этом разбирается. Главное различие в СВЧ-печах – электронные блоки, с разной конструкцией и функциональными возможностями.

Устройство микроволновки

Внутри микроволновки есть несколько обязательных деталей, поэтому не лишним будет знать, какова их роль. Внутреннее строение имеет следующую конструкцию: металлическая камера, в которой происходит нагрев пищи и дверца, предотвращающая выход излучения наружу.

Чтобы продукты питания разогревались равномернее, для этого в камере предусмотрен вращающийся столик, работающий от мото-редуктора (мотора). Но есть и другие ответственные детали.

Блок управления

Панель управления бывает:

Блок управления поддерживает заданную мощность и выключает устройство по истечении заданного времени.

Внутри электронного блока – микроЭВМ с богатым потенциалом, поэтому в ходе производства печей ему находят другое применение. Например, встраивают часы или отрывки мелодий, которые сигнализируют об окончании работы.

Сама схема устроена по-разному. Простейшая представляет собой круговые регуляторы, один из которых – таймер. Бывает и гибридная система – с кнопками. Она, по сравнению с «механикой» более функциональна.

Все чаще встречается блок управления в виде сенсорной панели. Принципом работы она аналогична механическим кнопкам, только надежнее. Продвинутые схемы поддерживают «программирование» — настраивается мощность и время выдачи излучения.

Блок генерации СВЧ излучения

Это «сердце» микроволновой печи. Выглядит элемент как вакуумная лампа, которую можно было встретить в старых кинескопных телевизорах.

Блок генерации включает не единственный СВЧ-источник. Чтобы волны поступали в рабочую зону печи, в ней предусмотрены волноводы. Расположены они за слюдяной пластиной, которая «прячется» за боковой стенкой.

Системы основной и вторичной защиты

Контрольные датчики следят за тем, чтобы ключевые электронные и аппаратные части работали исправно, а не в аварийном режиме. Их функция – обеспечение безаварийной работы микроволновой печи и предотвращение опасных сбоев.

Чтобы защитить человека от воздействия микроволн, в СВЧ-печах есть запорный механизм, состоящих из нескольких выключателей:

  • Primary Switch;
  • Secondary Switch;
  • Door Switch;
  • Monitor Switch.

Задача дверного (door) выключателя – блокировать работу реле регулировки мощности. Устанавливается он преимущественно в технике с электронным блоком управления.

Функции микроволновки

Микроволновую печь большинство используют просто для нагрева пищи. Но эта техника способна на большее. С ее помощью можно даже готовить шашлык, курицу-гриль, выпекать картошку и так далее.

Единственное, режим «гриль» требует мощности в 1500 Вт, значит света «тянуть» печь будет немало. Да и магнетрон – блок, генерирующий излучение, не вечен.

Поэтому, чем реже пользоваться печью, тем дольше она прослужит. Сейчас редко кто полностью отказывается от традиционных плит в пользу микроволновок.

Перечь функций, доступных в СВЧ-печах и их назначение:

  • подвижный гриль. Позволяет менять угол наклона. Те, кто предпочитает курицу-гриль, выбирают печи с этой функцией;
  • конвекция. Обдув продуктов питания горячим воздухом. Как заявляют производители, эта функция предназначена для выпекания. Правда, модели печей с нею дорогие, тяжелые и громоздкие. Неудивительно, так как сзади техники ставится немаленький вентилятор, нагнетающий воздух;
  • биопокрытие. Иначе – керамическое покрытие, хотя производители именуют их по-разному. Его преимущества: стойкость, прочность, биологическая инертность (микробы не будут размножаться внутри печи, даже если долго ее не мыть). Чем дороже модель микроволновки, тем «навороченней» в ней покрытие;
  • автоприготовление. Это функция, встречающаяся в технике компании LG. Есть программы, полностью автоматизированные, предназначенные для готовки определенного блюда. К примеру, готовится каша. С этим режимом остается только выбрать вес продукта, а мощность и время зададутся автоматически;
  • размораживание. Все просто – печь работает на минимальной мощности, необходимой для разморозки продуктов;
  • Intellowave. Система, позволяющая равномерно прогреть еду, например, большой кусок мяса. Встроенные датчики «наблюдают» за отдельными участками продукта, определяя температуру поверхности и регулируя мощность;
  • подача пара. Дополнительная возможность, предотвращающая пересушивание пищи в ходе приготовления;
  • проветривание рабочей камеры. Полезно, если хочется, чтобы новое блюдо не пропиталось оставшимися запахами.

Что такое магнетрон

Магнетрон в микроволновке – это элемент, генерирующий высокочастотное излучение в рабочей камере. Излучаемые электромагнитные волны воздействуют на молекулы, содержащиеся в пище, из-за чего она разогревается. То есть для подогрева не требуется внешнее тепловое воздействие.

Именно по этой причине температура в микроволновках не превышает отметку в +100 градусов Цельсия. Магнетрон – основная деталь, которая иногда выходит из строя. Ее можно заменить на новую, но для этого учитывается полная совместимость по мощности, частоте, расположению клемм.

Принцип работы магнетрона

Микроволновая печь работает так: она преобразует электроэнергию в высокочастотное электромагнитное излучение. В результате, молекулы воды, содержащиеся в пище, начинают «двигаться», что приводит к разогреву. Устройство, генерирующее микроволны, называется магнетроном.

Нередко магнетрон сравнивают с электровакуумным диодом, который работает за счет явления термоэлектронной эмиссии. Явление образуется, если нагревается поверхность катода или эмиттера.

Высокая температура «вынуждает» активные электроны покинуть поверхность. Но для этого на анод должно подаваться напряжение.

Образуемое электрическое поле приводит электроды в движение, которые по силовым линиям направляются к аноду. Электрон, оказавшийся в области магнитного поля, меняет свою траекторию.

Их траектория нарушается, и они начинают вращаться вокруг катода. Электроны, проходящие около резонаторов, отдают им часть собственной энергии (взаимозаменяемость). В результате в полости образуется мощное сверхвысокочастотное поле, выводимое наружу посредством проволочной петли.

Магнетрон «запускается», когда на анод подается высокое напряжение – 3000 – 4000 В. По этой причине в бытовых электросетях магнетрон должен подключаться через высоковольтный трансформатор.

Устройство магнетрона

Магнетрон – элемент, ответственный за генерацию высокочастотных колебаний. Есть устройства с похожим принципом действия – клистроны и платинотроны, но они не получили должного распространения.

Впервые магнетрон задействовали в СВЧ-печи в 1960 году. Сейчас используется многорезонаторный элемент. Его компоненты и их описания:

  • анод. Цилиндр из меди, состоящий из нескольких секторов. В нем есть полости-резонаторы, которые создают кольцевую систему колебаний;
  • катод. Цилиндр с нитью накаливания, расположенный в центре магнетрона. Эта часть ответственна за эмиссию электронов;
  • кольцевые магниты. Расположены на торцах печи. Они создают магнитное поле, направленное параллельно они магнетрона. Электроны движутся в том же направлении;
  • проволочная петля. Находится в резонаторе, соединяется с катодом и выводится к антенне-излучателю. Задача петли – вывод высокочастотного излучения в волновод. Оттуда оно поступает в рабочую камеру микроволновки.

Подключение магнетрона

Схема включения – однополупериодное выпрямление высоковольтного напряжения. Выход трансформатора работает в режиме короткого замыкания выходной обмотки (не дольше 5 минут).

Испорченный магнетрон нет смысла нести в ремонт – даже хорошо оснащенные мастерские этим не занимаются. Поэтому приобретают новую деталь.

Извлекая ее из микроволновки, помечают контакты разъемов, чтобы не перепутать их при переустановке. При неправильном подключении выводов магнетрон работать не будет.

Но подойдет аналогичная деталь. Мощность выбирается та же или выше, крепления и разъемы подключения должны совпадать.

Независимо от производителя, магнетроны имеют единое устройство, отличается только конструкция. Поэтому, заменяя деталь, нужно убедиться, что аналог плотно прилегает к волноводу.

Благодаря серийному изготовлению СВЧ блоков микроволновка становится простой, но полезной в условиях кухни техникой, которая в разы облегчает процедуру приготовления или разогрева пищи. Обслуживать ее легко, а конструкция не предполагает незаменимых деталей, что повышает надежность. Бытует мнение, что излучения от микроволн – вредны, но это не более чем миф.

Как работает микроволновка: главные узлы, принцип действия

Как работает микроволновка — бытовой электроприбор для быстрого подогрева и разморозки продуктов, знают далеко не все ее владельцы. Это часто становится причиной поломок и даже несчастных случаев. Зная устройство микроволновой печи, пользователь будет предупрежден о возможных неполадках и об опасностях, подстерегающих его во время самостоятельного ремонта.

Принцип микроволнового воздействия

Принцип работы микроволновки кардинально отличается от обычных духовок. Продукты, пронизанные волнами сверхвысокочастотного диапазона, греются по всему объему, а не по поверхности, как при тепловом воздействии. Именно поэтому процесс разогрева/разморозки так краток.

Нагревание еды происходит благодаря физическому явлению — электромагнитные СВЧ-поля преобразуются в тепло. В СВЧ-печке греется только сам продукт, не тратится энергия на нагрев самой камеры, а значит, экономится энергия.

Микроволновое действие способно за минуты поднять температуру объекта до величины, необходимой пользователю. Это особенно удобно при разморозке: огромный кусок замороженного мяса можно разогреть за считаные минуты, не изменив его свойств.

Нагрев пищи спровоцирован действием высокочастотных волн, их частота — 2 450 МГц. Эти микроволны, проходя внутрь объекта, поляризуют молекулы воды. Под действием излучения молекулы строятся вдоль силовых линий электромагнитного поля.

Направленное перемещение молекул вызывает повышение температуры продукта по всему объему. Микроволны, проникая в глубину объекта на 2,5–3 см, разогревают молекулы воды, а разогретые участки объекта передают тепло далее — таким путем прогревается весь объем.

Как устроена микроволновка

Составные части СВЧ-печки:

  • Камера. Сделана из металла. Оборудована металлизированной дверцей. Здесь сконцентрировано СВЧ-излучение. Сюда помещают еду для разогрева. Требует ухода.
  • Магнетрон . Излучатель высокочастотных микроволн.
  • Трансформатор. Источник питания магнетрона.
  • Коммуникации и управляющая система.
  • Волновод. Передает микроволны от излучателя в камеру.
  • Поддон. Вращаясь, он способствует равномерному прогреванию объектов готовки.
  • Вентилятор. Для проветривания камеры и охлаждения магнетрона.

Работа микроволновой печи сводится к выделению магнетроном энергии, преобразуемой в тепло. Устройство подключено к трансформатору-стабилизатору. Когда-то этот прибор был самым дорогим в СВЧ-печке, сегодня его стоимость снизилась и микроволновки стали гораздо доступнее.

Принципиальная электрическая схема у всех СВЧ-печек практически одинакова, разные у них только характеристики, возможности и дизайн.

Что такое магнетрон

Его назначение — генерация излучения заданной частоты. По сути, это — электровакуумный диод. Его строение:

  • Он имеет анод в форме цилиндра. У него круглое сечение и десять секторов с медными стенками.
  • По центру диода — катод. Внутри него — накаливающаяся нить. Функция катода — испускание электронов.
  • По краям магнетрона — магнитные элементы кольцевидной формы. Их задача — создание магнитного поля в излучателе. Это поле является генератором высокочастотных волн.
  • Напряжение, прикладываемое к аноду, составляет 4 000 В, а к катодной нити — 3 В.

Благодаря разнице напряжений катод испускает электроны, которые ловит электрическое поле с высокой напряженностью. Частота генерации зависит от конфигурации резонаторных камер и от напряжения анода.

Энергия снимается посредством петли из проволоки, которая соединяется с катодом и выводится в излучающую антенну. Излучение от антенны направляется к волноводу, по которому и проходит внутрь СВЧ-печки.

В обычных микроволновках применяют магнетроны мощностью 0,8 кВт. Бывает, чтобы приготовить блюдо, нужна мощность, меньше 0,8 кВт, тогда устройство включается на короткие промежутки времени, перемежаемые паузами.

Такой принцип действия известен как широтно-импульсная модуляция. Так как магнетрон, работая, нагревается, он помещается в радиатор пластинчатого типа, который постоянно обдувает вентилятор. Перегрев может стать причиной поломки. Чтобы этого не случилось, устанавливают специальный термопредохранитель.

Из чего состоит термопредохранитель

Эти устройства известны также как термореле. Их выпускают для разных номиналов температур.

Термореле состоит из алюминиевого корпуса, который крепится к месту контроля температуры фланцевым соединением, и биметаллической пластины, настроенной на определенное значение температуры. Когда нагрев превышает допустимый порог, пластина, изгибаясь, запускает элемент, размыкающий контакты — питание печки прекращается.

Когда магнетрон остынет, биметаллическая пластина примет исходную форму и контакты замкнутся — печь включится.

Описание работы вентилятора

Без вентилятора работа невозможна. Его функции:

  • Обдувание источника излучения и других компонентов электронной схемы, выделяющих тепло.
  • Если есть гриль, то вентилятор обдувает и его.
  • В камере, во время приготовления продуктов, образуется много тепла и пара. Благодаря вентилятору, создается повышенное давление, выдавливающее теплый воздух и пар сквозь отверстия для вентиляции.

Вентилятор располагают возле задней стенки прибора. Засасывая воздух из помещения, он направляет воздушный поток по воздуховодам к пластинам магнетрона, а далее в камеру. В движение лопасти вентилятора приводятся асинхронным двигателем переменного тока.

Как работает дверца

Благодаря блокировке, срабатывающей при открывании дверцы, пользователи защищены от облучения. Устройство дверцы достаточно сложное — от исправности ее работы зависит безопасность владельца. Конструкция дверцы предусматривает меры защиты:

  • Плотное прилегание к корпусу. Печку с большими зазорами использовать нельзя. Излучение способно выйти за пределы камеры через щели. Металлический корпус аппарата и специальный паз дверцы должны быть разделены зазором, ширина которого равна ¼ длины микроволны. В таком зазоре формируется электромагнитная волна стоячего типа, которая имеет нулевую амплитуду в месте прилегания двери к корпусу, именно поэтому она не выходит за пределы камеры. Такой способ защиты — от волн с помощью самих волн — называют СВЧ-дросселем.
  • По периметру дверцы имеется дроссельный высокочастотный заслон, понижающий излучение до безопасного уровня.
  • При отливке корпуса дверцы используют разные присадки, благодаря которым металл лучше поглощает излучение. Они не обеспечивают 100%-е поглощение, но ослабленные волны однозначно не несут опасности человеку.
  • Чтобы предотвратить включение печки в момент, когда дверка открыта, в аппарате имеется система переключателей, которые контролируют ее положение. Как правило, имеется три переключателя — для выключения магнетрона, для включения подсвечивающей лампочки и для передачи сигнала на блок управления. Настройка и расположение микропереключателей не позволяет им срабатывать при открытой дверце.

Система защиты

Всякая микроволновка — источник мощного излучения, способного нанести большой ущерб организму человека и всего живого. Чтобы оградить окружающих от воздействия, аппарат экранирован металлическим корпусом, сквозь который высокочастотное излучение пройти не может.

Дверца оснащена прозрачным стеклом, чтобы пользователь мог наблюдать за процессами разогрева, приготовления, разморозки. Стекло также экранировано — на нем металлическая мелкоячеистая сетка, препятствующая проникновению микроволн.

Конструкция блока управления

Задачи блока управления — «мозга» СВЧ-печи:

  • Поддерживать заданную мощность.
  • Отключать печь по окончании процесса.

В ранних версиях управление осуществлялось двумя механическими переключателями: одним задавали мощность, другим — время. Сегодня аппараты оснащают электронными и микропроцессорными блоками управления, которые управляют, помимо двух названных, множеством функций — важных и неважных. Например:

  • встроенные часы;
  • звуковой сигнал об окончании процесса;
  • отображение мощности;
  • готовка блюд по специальным программам, «вшитым» в памяти блока.

Виды микроволновок

Рассмотрим основные типы печек, которые вы можете купить.

Эти аппараты имеют нагревательный элемент — тэновый или кварцевый. Первый ставят в разных местах камеры и в разном положении, он довольно надежный и недорого стоит. Кварцевый устанавливают только вверху. Он более мощный, чем тэновый, но стоит дороже.

В печках с грилем можно запросто готовить шашлык или запекать курицу с хрустящей корочкой.

Пример микроволновки с грилем — LG MH6022D. Эта модель оснащена кварцевым грилем на 600 Вт и имеет механическое управление. Ее характеристики:

Что такое магнетрон? (с иллюстрациями)

Магнетрон — это устройство, которое использует взаимодействие потока электронов, направляемого магнитным полем, с полостями внутри блока меди для получения микроволнового излучения. Частотный диапазон излучения зависит от размера полостей. Эти устройства используются в радарах и микроволновых печах, где излучение заставляет молекулы в пище, особенно молекулы воды, вибрировать, что приводит к быстрому повышению температуры, достаточному для приготовления пищи.

Как это работает

Магнетрон состоит из короткого медного цилиндра с множеством полостей, которые открываются в центральную вакуумную камеру, содержащую металлический катод.Постоянный магнит создает магнитное поле, идущее параллельно оси цилиндра. Катод нагревается постоянным током высокого напряжения, заставляя его производить электроны, которые устремляются к стенке цилиндра под прямым углом к ​​магнитному полю. Электроны отклоняются полем по изогнутым траекториям, заставляя их создавать круговые токи внутри полостей. Эти токи создают микроволновое излучение на частотах, которые зависят от размера полостей.

Затем микроволны должны быть направлены туда, где они необходимы.Это достигается с помощью металлической конструкции, известной как волновод, по которой распространяются волны. Обычно он выходит за пределы основного корпуса из одной из полостей, улавливая микроволны и направляя их по своей длине. В случае магнетрона, используемого для радара, волновод подключается к антенне, которая передает волны. В микроволновой печи он направляет волны в камеру духовки, чтобы их можно было использовать для приготовления пищи.

использует

Магнетроны используются для генерации микроволн для радаров, поскольку они могут достигать требуемой выходной мощности.Недостатком простого магнетрона является то, что, хотя диапазон производимых частот определяется размером полостей, в этом диапазоне есть отклонения из-за флуктуаций тока и изменений температуры. Хотя это не проблема, когда производимая энергия используется для обогрева, это влияет на точность радиолокационных изображений. Этого можно избежать, используя регулируемые проводящие материалы, которые можно вставлять в полости для настройки излучения по мере необходимости.

Наиболее часто магнетроны используются в микроволновых печах.Они направляют волны в небольшую камеру для приготовления пищи, где пищу можно приготовить очень быстро. Некоторые молекулы в пище полярны, что означает, что они имеют положительный заряд с одной стороны и отрицательный — с другой. Эти молекулы при бомбардировке электромагнитным излучением в микроволновом диапазоне выравниваются по переменным электрическим и магнитным полям, создаваемым волнами, заставляя их быстро вибрировать, что приводит к быстрому нагреву. Одна из таких молекул — вода, которая в значительных количествах присутствует в большинстве пищевых продуктов.

История

В 1920-х годах Альберт Халл, сотрудник известной электрической компании, исследовал вакуумные лампы, когда создал магнетрон.Однако Халл не мог придумать, как использовать свое изобретение, и какое-то время оно оставалось в основном неиспользованным. В конце 1930-х — начале 1940-х годов два инженера по имени Гарри Бут и Джон Рэндалл решили продолжить изучение устройства. Более ранние версии состояли из катода и анодов внутри стеклянной трубки, но Бут и Рэндалл вместо этого использовали медь, хороший электрический проводник, для создания корпуса с полостями, которые также действовали как анод. В результате получилось устройство, которое было намного более мощным и производило выходную мощность 400 Вт на площади менее четырех дюймов (10 см).

Когда Бут и Рэндалл разработали более мощные магнетронные трубки, они обнаружили, что они идеально подходят для радаров. Во время Второй мировой войны их начали использовать подводные лодки США, что позволило радарному оборудованию быстрее обнаруживать вражеские корабли.В конце 1940-х годов доктор Перси Спенсер, американский инженер и изобретатель, дополнительно проверил мощность магнетронных трубок в своей лаборатории. Он отметил, что шоколадный батончик в его кармане полностью расплавился, пока он работал с лампами. Он решил поставить несколько зерен попкорна рядом с оборудованием, чтобы посмотреть, что произойдет, и заметил, что от этого ядра лопаются.

Доктор.Спенсер позвал своего помощника, и двое мужчин решили положить рядом с устройством целое яйцо. Когда яйцо взорвалось, доктор Спенсер понял, что открыл для себя увлекательную форму приготовления пищи. Спенсер помог создать первую в мире микроволновую печь в 1947 году. Первоначальная модель весила более 700 фунтов (318 кг), была более пяти футов (1,5 метра) в высоту и стоила более 5000 долларов США.

Магнетрон

, Часть 1: Применение и принципы работы

Магнетрон с вакуумной трубкой почти устарел (за исключением миллионных бытовых микроволновых печей).Его разработка стала ключом к созданию высокоэффективных радаров времен Второй Мировой войны, а также привела к появлению других электронно-лучевых радиочастотных / микроволновых устройств.

Электронные лампы такие «вчерашние», не так ли? Они были устаревшими и заменены твердотельными устройствами по многим причинам, за исключением некоторых узкоспециализированных приложений, таких как некоторые радиолокационные передатчики. Точно так же почтенная электронно-лучевая трубка (ЭЛТ), которая десятилетиями использовалась в домашних телевизорах, осциллографах, пользовательских консолях, мониторах и всевозможных дисплеях, была заменена устройствами с плоским экраном

.

Конечно, ЭЛТ больше не существует, но есть еще одна электронная лампа, которая выживает благодаря широкому использованию в конкретном приложении — хотя во многих других она в значительной степени устарела.Как так? Если у вас есть микроволновая печь на кухне, у вас дома есть вакуумная трубка, называемая магнетроном. Тем не менее, по мнению многих экспертов и историков, это скромное, непритязательное действующее устройство также изменило ход Второй мировой войны.

В: Что такое магнетрон?

A: Магнетрон — это специализированная электронная лампа, которая выполняет одно действие: это источник генератора мощности для частот от нескольких сотен МГц до нескольких ГГц. В зависимости от размера и других факторов он может производить от десятков и сотен ватт до киловатт.

Q: Зачем вообще изучать это уникальное и несколько устаревшее устройство?

A: Есть по крайней мере три причины: он все еще широко используется, и ежегодно производятся миллионы; большие используются для радиолокационных и радиовещательных операций; он научил ученых и инженеров электронным устройствам, в которых используются электромагнитные принципы и сочетаются электрические и магнитные радиочастотные поля и многое другое, в результате чего создаются важные радиочастотные / микроволновые устройства, такие как лампа бегущей волны (ЛБВ).

Q: Каков физический принцип и основная конструкция магнетрона?

A: В отличие от генератора, построенного вокруг резонансного контура, состоящего из дискретных катушек индуктивности и конденсаторов, магнетрон использует уникальную физическую структуру в сочетании с комбинацией электрических полей, движения электронов и магнитных полей в ограниченной металлической полости.Хотя магнетрон представляет собой вакуумную трубку, он очень сильно отличается от обычной вакуумной трубки, в которой используются электроны, испускаемые нагретым катодом и движущиеся по прямой к положительно заряженному аноду, причем их путь движения модулируется электрическим полем промежуточная сетка.

В обычной вакуумной лампе нет магнитного аспекта. Напротив, магнетрон представляет собой устройство «скрещенного поля», которое использует электрическое поле в сочетании с магнитным полем с линиями поля-энергии, расположенными под прямым углом друг к другу.(Название «магнетрон» представляет собой сочетание «магнитного» и «электронного»)

Q: Как работает магнетрон?

A: Анализ магнетрона может варьироваться от качественного объяснения до высокотехнологичного анализа с использованием передовой теории электромагнитного поля и математики. Мы будем использовать более качественный подход.

Q: Каково физическое устройство магнетрона?

Рис. 1. Магнетрон с вакуумной трубкой использует резонансные полости на аноде, в которые электроны, испускаемые нагретым катодом, направляются мощным статическим магнитным полем под прямым углом.(Изображение: Hyperphysics / Georgia State University)

A: В основном, первом магнетроне — и, конечно, существует множество вариаций — использовался сплошной медный блок (для рассеивания тепла), просверленный с отверстиями (называемыми полостями) (Рисунок 1) . Размер этих полостей имеет решающее значение для установления рабочей частоты магнетрона. Эта физическая конструкция и устройство радикально отличаются от вакуумной трубки со стеклянной оболочкой, которая использовалась в попытке эффективно генерировать короткие волны и высокие частоты, необходимые для ВЧ / СВЧ-схем (1 ГГц = 1000 МГц = 0.3 метра = 30 см).

Q: Как это устройство работает при подаче напряжения?

A: Катод в центре (который нагревается нитью накала) испускает электроны так же, как катод стеклянной вакуумной трубки, но на этом их сходство заканчивается. Эти электроны обычно притягиваются и движутся как радиальные спицы к внешнему кольцу как к аноду, который заряжен положительно (как пластина трубки). Однако имеется мощное статическое магнитное поле (синие линии), направленное вдоль оси сердечника магнетрона.Это поле заставляет электроны двигаться по круговой схеме потока к внешнему кольцу (красные линии). Магнитное поле изначально создавалось электромагнитами, но, поскольку годы спустя были разработаны более мощные постоянные магниты, они стали использоваться вместо них.

Q: Кажется, что все, что было сделано, — это сдвинуть статический электрический поток, а колебаний нет — так как же магнетрон производит колебания?

A: Магнитное поле отклоняет электроны, и они «кружатся» по кругу.При этом они «качают» на собственной резонансной частоте резонаторов. Результирующий ток вокруг полостей заставляет их излучать электромагнитную энергию на резонансной частоте полостей.

В: Это все? Как можно использовать эту резонансную энергию?

A: С точки зрения физики, работа выполняется над электронами, и они поглощают энергию от приложенного к аноду источника питания. Электроны продолжают движение и достигают уровня энергии, на котором имеется избыточный отрицательный заряд, и этот заряд выталкивается обратно вокруг полости.Это, в свою очередь, передает энергию колебаниям на собственной частоте резонатора (накачка). Полость аналогична резонансному ЖК-резервуару: положительно заряженное поле находится вдоль одного края открытой стороны полости, а отрицательно заряженное поле выровнено вдоль другого края, поэтому отделенная строка функционирует как конденсатор с вакуумом. зазор для интервала.

Q: Как энергия колебаний извлекается из полости магнетрона и используется в системе?

A: Коаксиальная муфта с датчиком точного размера вставляется сбоку в одну полость для захвата энергии от блока, Рис. 2 ; он функционирует как приемная антенна для электромагнитной энергии.

Рис. 2: Зонд с согласованной частотой вставляется в отверстие в одной из полостей для перехвата и извлечения колеблющейся высокочастотной энергии в магнетроне. (Изображение: EU Radar Tutorial)

Q: Что устанавливает частоту колебаний магнетрона?

A: Размер и расположение полостей определяют частоту, поскольку они действуют как резонансные камеры. Магнетроны обычно имеют небольшой регулировочный винт для изменения размера полости, поэтому физические размеры могут быть отрегулированы для резонанса с точной желаемой частотой, несмотря на неизбежные производственные допуски.Обратите внимание, что магнетрон — это устройство с фиксированной частотой и не настраивается, хотя есть несколько продвинутых и более сложных версий, которые имеют скромный диапазон настройки.

Часть 2 этого FAQ посвящена истории и роли магнетрона, а также его будущему и возможной кончине.

EE World Online Справочные материалы

Список литературы

  • Википедия, «Полостной магнетрон» (есть ссылки на многие исторические ссылки)
  • Объясните этот материал, «Как работают магнетроны»
  • Государственный университет Джорджии, Гиперфизика, «Магнетрон»
  • Государственный университет Джорджии, Гиперфизика, «Микроволновые печи»
  • Микроволны101, «Магнетроны»
  • Вики по истории инженерии и технологии, «Полостной магнетрон»
  • Музей клапанов, «CV64»
  • Лампы и трубки, «CV64 Ранний британский магнетрон с резонаторами S-диапазона»
  • Radar Tutorial EU, «Magnetron»
  • Амплеон Н.В., «РФ твердотельная кулинария»
  • ARMMS RF and Microwave Society, «Краткое изложение разработки магнетронов»

Что такое магнетрон в микроволновой печи?

Что такое магнетрон в микроволновой печи по технологии и как он работает? Вы когда-нибудь помещали что-то metal в свою микроволновую печь и задавались вопросом, почему все пошло не так?

Ответ на второй вопрос заключается в ответе на первый. В этом посте я объясню, почему нельзя класть что-либо металлическое в микроволновую печь, и почему это имеет прямое отношение к магнетрону в микроволновую печь.

Так что же такое магнетрон в микроволновой печи? Микроволновая печь имеет внутри резонаторный магнетрон, который запускает электроны со скоростью в магнитном поле, которое быстро проходит через полости. Это генерирует микроволны, которые направляются в микроволновую печь. Эти микроволны возбуждают молекулы воды в пище, создавая тепло, которое быстро готовит пищу.

Итак, микроволновая печь использует магнетрон для приготовления пищи на высокой скорости . Приведенное выше объяснение дает самую основную информацию о том, как это происходит.

Ниже я подробно остановился на деталях о том, как магнетрон генерирует микроволны . Я также предоставил некоторую интересную информацию об изобретении магнетрона и о том, кто изобрел , что мы сегодня знаем как отдельную микроволновую печь, совершенно случайно .

Как работает магнетрон в микроволновой печи?

работы магнетрона невероятно сложны .Когда я изучил это, я почувствовал, что мне нужна степень инженера, чтобы понять объяснение .

Я изо всех сил старался предоставить то, что я считаю разумно понятным объяснением ниже. Я разбил объяснение, используя различные части магнетрона .

Катод

Прямо в центре магнетрона находится нечто, называемое катодом . Это цельный стержень из металла .Катодом является электрод , от которого ток , созданный электричеством , течет от к аноду .

Анод

Вокруг катода представляет собой петлю или кольцо из металла . Проще говоря, когда работает магнетрон, электрически заряженные частицы или электроны прыгают от катода к аноду . Звучит достаточно просто, правда? Ситуация несколько усложняется с введением в магнетрон магнитов и полостей .

Магнит

Под анодом в магнетроне находится мощный магнит . Этот магнит движется вдоль магнетрона прямо параллельно катоду.

Полости

Тип магнетрона, используемого в микроволновой печи, называется магнетроном с полостью , и здесь мы увидим, почему. Полости имеют форму отверстий , прорезанных в ранее обсуждавшемся аноде .

Когда электронов заряжены , и прошли между катодом и анодом, добавление полостей и мощного магнита значительно усложняет задачу.

Электроны проходят не только через электрическое поле , заключенное между катодом и анодом , но также через магнитное поле , созданное с введением магнита .

Из-за добавления магнитного поля на электроны оказывает влияние , чтобы они двигались по траектории, которая является изогнутой , а не по прямой линии.Электроны движутся по кругу в пространстве между катодом и анодом. Это происходит на невероятно высокой скорости .

По мере того, как электроны перемещаются в этом пространстве по кругу , , полости, созданные в аноде, начинают резонировать с . Когда они это делают, они создают нечто, называемое микроволновым излучением .

Волновод

После того, как магнетрон создал микроволновое излучение, его нужно направить куда-нибудь.Здесь на помощь приходит волновод .

Это волновод , который направляет микроволны, создаваемые в пространство для приготовления пищи внутри микроволновой печи. В радарной технологии эти микроволны излучаются через волновод в воздух.

Как микроволновая печь готовит пищу в микроволновой печи?

Вышеупомянутое — действительно самое простое объяснение, которое я мог дать для создания микроволн с использованием магнетрона .Как хоть эти микроволновки готовят пищу в микроволновке? Опять же, следующее — мое собственное понимание того, как это работает. Не стесняйтесь добавлять к этому в комментариях ниже.

Как только микроволны проходят в камеру для приготовления пищи микроволновой печи с помощью волновода , они отражаются стенками внутри микроволновой печи. Так эффективно они отскакивают внутри микроволновой печи, постоянно отражаясь от сторон.Волновод в планшетной микроволновой печи работает несколько иначе, чем в обычной или одиночной.

Как только продукт помещается в микроволновую печь, он затем поглощает микроволн, которые отскакивают вокруг него. Как только микроволны поглощаются пищей , они заставляют молекул воды внутри пищи чрезвычайно быстро вибрировать .

Эти колебания затем производят тепла , и именно это тепло готовит пищу .

Любая пища с высоким содержанием воды будет приготовлена ​​в микроволновой печи очень быстро . Чем больше молекул воды, , пища состоит из большего количества молекул, чтобы вибрировали , вызывая больше тепла на быстрее . Такие продукты, как овощи, , с высоким содержанием воды, быстро приготовятся в микроволновой печи.

Как упоминалось выше, микроволны не могут быть поглощены металлом .Вот почему они подпрыгивают внутри зоны готовки в микроволновой печи. Именно поэтому в микроволновую печь нельзя класть какие-либо металлические предметы.

Подробнее об этом читайте в моем посте о преимуществах и недостатках микроволновых печей.

Кто изобрел магнетрон?

Тип магнетрона, который используется в современных микроволновых печах , называется полостным магнетроном. Многополостный магнетрон, используемый в микроволновых печах, приписывается работам Джона Рэндалла и Генри Бута .Рэндалл и Бут были инженерами Бирмингемского университета .

Еще до того, как они стали использоваться в микроволновых печах, магнетроны имели еще одно очень важное применение. Использование магнетронов сыграло очень важную роль на протяжении Второй мировой войны . Мы можем отследить от происхождения магнетрона до работы Randal и Boot .

Широко известно, что первый магнетрон был задуман и разработан H.Гердиен в 1910 г. г., задолго до появления резонаторного магнетрона в микроволновых печах.

Генрих Грайнахер

В 1921 году швейцарский физик по имени Генрих Грайнахер попытался продолжить эту работу, используя диодную лампу . В конечном итоге его исследования не увенчались успехом из-за недостаточного вакуума в трубке.

Однако он смог предоставить письменное описание с математическими уравнениями того, как этот магнетрон мог изменять электроны в магнитном поле.

В 1921 году Альберт Халл , сотрудник General Electric Company , смог использовать работу, предоставленную Greinacher , для дальнейшего исследования. Он смог изучить управление электрическим током путем изменения магнитного поля. Своим изобретением он назвал магнетрон .

Исследование Альберта Халла было исследовано и основано на Эрихе Хабане в Германии и Напсале Зазеке в Праге.Они оба смогли разработать значительно более мощные устройства. Zazek смог создать устройство, которое генерировало гораздо более высокие частоты, до 1 ГГц .

Hans Enrich Hollman

В 1935 году Hans Enrich Hollman подал патент в Германии на первый «мультирезонаторный магнетрон ». Патент на это устройство в США был зарегистрирован и выдан в 1938 .

Это возвращает нас к работе John Randall и Henry Boot .Они придумали магнетрон, который состоял из более чем четырех резонаторов , показанных в работе Холлмана . В результате получилось устройство с водяным охлаждением и , которое использовалось в качестве радара и устанавливалось на самолетов во время Второй мировой войны.

Использовались в войне против немецких подводных лодок . Они позволили пилотам видеть целей даже ночью. Это был значительный прорыв для союзных войск во время войны.

Кто изобрел микроволновую печь?

Изобретение микроволновой печи произошло совершенно случайно . Это был американский инженер-электрик по имени Перси Спенсер , который в конечном итоге считается изобретателем микроволновой печи.

Микроволновая печь — случайное открытие!

До случайного открытия Спенсера уже проводилось тестов на использование радиоволн для приготовления пищи.Такие компании, как Bell Labs и General Electrics , уже начали работу над этой формой технологии для приготовления пищи .

В 1933 было продемонстрировано Westinghouse , что можно готовить пищу между двумя металлическими пластинами . Они использовали коротковолновое радио для приготовления стейков и картофеля. Несмотря на то, что это было продемонстрировано, на данном этапе на самом деле дальше этого не пошло.

Итак, вернемся к открытию Перси Спенсера .Есть противоречивые сообщения о том, что было у него в кармане в день его открытия. Некоторые сообщают о арахисе , а некоторые сообщают о плитке шоколада . Ясно лишь то, что он совершенно случайно обнаружил, что микроволны от магнетрона могут приготовить пищу .

Спенсер работал в Raytheon Manufacturing Company . В то время эта компания преимущественно работала с магнетронами как часть радиолокационной технологии . Они создали радары, которые помогали кораблям и самолетам ориентироваться в темноте или в плохих погодных условиях.

История шоколадного батончика

Во время работы над этим днем ​​в 1945 история гласит, что у Спенсера в кармане был либо арахис , либо шоколадный батончик . Я не уверен, что правда. Плитка шоколада звучит более правдоподобно, поэтому я выберу ее.

Итак, стоя перед магнетроном и включив его, Спенсер обнаружил, что плитка шоколада быстро начала плавиться . Это навело его на мысль, что эти микроволн , созданные магнетроном, возможно, могут готовить пищу .

На следующий день он вырезал край котла и поместил внутрь сырое яйцо . Затем он продемонстрировал, что может использовать микроволны магнетрона для приготовления яйца. Он работал , как он и предсказывал!

Его следующим шагом было приготовить попкорна с помощью магнетрона. Как только он понял, что это возможно, он продолжил исследование.

В начале 1950-х годов он подал серию из патентов .Он подал заявку на номер 1952 на кофеварку для микроволновой печи , которая была предоставлена. В январе 1950 года он также подал заявку на «Метод обработки пищевых продуктов ».

Дальнейшие разработки в технологии микроволновых печей

В наши дни микроволновые печи — это крошечных . Вы можете разместить их в самых маленьких местах на кухне. Однако оригинальная микроволновая печь Spencer была примерно высотой 1,5 метра . Это 5 футов в высоту, как некоторые взрослые люди!

К середине 1950-х годов Raytheon лицензировала свою микроволновую технологию .Микроволновые печи уже использовались в ресторанах и ресторанах до этого. Эти микроволны были огромными , и их приходилось постоянно охлаждать из-за перегрева.

Первая микроволновая печь для непосредственного использования широкой публикой поступила в продажу в 1955 и была произведена компанией под названием Tapan . он назывался Tappan RL-1 . Он поступил в продажу по цене $ 1 295 . По тем временам это были огромные деньги, и сегодня они выходили бы примерно на долларов, 10 000 долларов.

К 1960-м годам они снизились до немного более доступной цены — около $ 500 . Это все еще очень дорого, учитывая, что в наши дни вы можете получить микроволновую печь менее чем за $ 50 .

Заключение

Вот и все. Полное подробное описание магнетрона в технологии микроволновых печей и того, как именно он работает.

Теперь я вовсе не ученый ! будь одним из них и читаешь это, думая, что это не вся история, или что я пропустил что-то ! Если да, не стесняйтесь оставлять комментарии ниже, и я добавлю вашу информацию в свой текст! Спасибо за прочтение!

Определение магнетрона по Merriam-Webster

mag · ne · tron | \ ˈMag-nə-ˌträn \ : вакуумная трубка, в которой поток электронов управляется приложенным магнитным полем для выработки энергии на микроволновых частотах.

Magnetron — обзор | Темы ScienceDirect

5.2 Механизм микроволнового нагрева

Как указано в международном соглашении, предпочтительные частоты микроволнового нагрева составляют 915 МГц ( λ = ~ 33 см) и 2,45 ГГц ( λ = ~ 12 см) [15]. Электромагнитное излучение, генерируемое магнетроном, заставляет дипольные молекулы пытаться вращаться синхронно с переменным электрическим полем. На молекулярном уровне сопротивление этому вращению приводит к трению между молекулами и вызывает эффект нагрева [16].

При обычном термическом нагреве процесс регулируется температурой поверхности, а также некоторыми физическими свойствами нагреваемого материала, такими как теплоемкость, плотность и температуропроводность. Тогда как при микроволновом нагреве эффект нагрева обусловлен взаимодействием диполей с электромагнитным излучением. При микроволновом нагреве материал получает высокие температуры и скорости нагрева [17]. Эффективность преобразования электрической энергии в тепловую при микроволновом нагреве высока (80–85%) [18].

Техника микроволнового нагрева — это метод объемного нагрева, который включает в себя другие процедуры нагрева, такие как нагрев за счет теплопроводности в диапазоне рабочих частот 0–6 Гц и нагрев за счет индукции в диапазоне рабочих частот 50 Гц – 30 кГц. Омический нагрев происходит в диапазоне частот между индукцией и проводимостью. Радиочастотный нагрев в диапазоне частот 1–100 МГц используется для нагрузок с высоким удельным сопротивлением при размещении между электродами [15]. Мередит [19] дает типичный электромагнитный спектр с примерами приложений, выполняемых в различных частотных диапазонах.

В учебниках есть много принципов и теорий, объясняющих механизм микроволнового нагрева. В общем, существует три механизма, с помощью которых достигается эффект нагрева в методах микроволнового нагрева, которые резюмируются следующим образом.

Дипольная переориентация или поляризация: этот механизм объясняет, как достигается эффект нагрева в полярных соединениях. Когда полярное соединение подвергается микроволновому излучению, оно смещает атомные ядра из их положения равновесия (атомная поляризация) или электроны вокруг ядер (электронная поляризация), образуя индуцированные диполи.Эти диполи имеют тенденцию переориентировать себя под действием переменного электрического поля. Эта перестройка происходит со скоростью триллион раз в секунду [15, 20]. В результате между вращающимися молекулами возникает трение, в результате чего выделяется тепло во всем объеме материала.

Диполярная ориентация была четко объяснена в разделе «Основы микроволн» от Denshi CO, Ltd. [21], например, вода содержит атом кислорода и два атома водорода под углом 104.5 градусов [22]. Это неравномерное разделение электронов придает молекуле воды легкий отрицательный заряд, близкий к ее атому кислорода, и легкий положительный заряд, близкий к ее атомам водорода. Диполь образовался из-за того, что атомы берут на себя небольшой заряд каждого плюса (+) и минуса (-). Этот диполь или диэлектрический материал подвергается воздействию электрического поля, такого как радиоволны или микроволны; он вибрирует более или менее 2450 миллионов раз, чтобы заменить его в секунду [23].

На более низкой частоте радиоволны вода не может генерировать тепло, потому что постоянный диполь внезапно следует направлению электрического поля.Точно так же в высокочастотном диапазоне диполи не смогут отслеживать быстрые изменения направления электрического поля. Таким образом, вода не производит тепла. В умеренном диапазоне частот вода подвергается дипольной ориентации. В этом случае за электрическим полем постоянный диполь немного изменяется. Вода забирает энергию из радиоволны и выделяет тепло в течение времени задержки в этом номинальном частотном диапазоне [21].

Межфазная поляризация или поляризация Максвелла-Вагнера: этот механизм объясняет, как достигается эффект нагрева в гетерогенных системах.Здесь поляризация возникает из-за различий в диэлектрической проницаемости и проводимости веществ на границах раздела. Диэлектрические потери и искажения поля из-за накопления объемного заряда приводят к эффекту нагрева.

Механизм проводимости: В электропроводящем материале электрические токи заряженных частиц или носителей (электронов, ионов и т. Д.) Перемещаются через материал из-за приложенного извне электромагнитного поля. Эти движущиеся электрические токи проходят через относительно высокое электрическое сопротивление в структуре материала, выделяя тепло [15, 20].

Диэлектрические свойства необходимы для определения максимального нагрева материала при воздействии электромагнитного излучения (микроволнового излучения). На тангенс угла диэлектрических потерь (Tan δ ) поглотителя микроволн в основном влияют диэлектрическая проницаемость ( ε ′ ) и коэффициент диэлектрических потерь ( ε ″ ). Диэлектрическая проницаемость определяет, сколько энергии поглощается и сколько отражается, тем самым показывая способность материала поляризоваться электрическим полем.Коэффициент диэлектрических потерь определяет эффективность преобразования. Отношение этих двух величин дает коэффициент рассеяния материала.

(5.1) Tanδ = ε ″ ε ′

Таким образом, хороший микроволновый приемник должен иметь материал с высоким значением ε ″ и умеренным значением ε ′ [15].

Магнетрон

Магнетрон — это мощный микроволновый генератор, использующий взаимодействие электрического и магнитного полей в резонаторе для создания колебаний очень большой мощности.Его изобрели Рэндалл и Бут. Конструкция резонаторного магнетрона показана на рисунке.

Конструкция магнетрона

Как показано на приведенной схеме, магнетрон состоит из анодного блока из меди или латуни. Он имеет цилиндрическую форму, благодаря которой четное количество полостей одинакового размера по направлению к внешней окружности выполнено в центре анодного блока. Есть отверстие, в котором находится катод. Центральное отверстие анодного блока соединено с каждой полостью щелевым соединением.Выход магнетрона снимается с помощью петлевой связи. Вокруг анодного блока расположен сильный постоянный магнит поперек катода с противоположными концами.

Работа магнетрона

Когда мы включаем схему, катод начинает излучать электроны постоянного магнита, которые не присутствуют, электроны, испускаемые катодом, собираются анодом, как при нормальном действии диода, теперь из-за наличия сильного магнита. поперек катода будет сильный магнитный поток вокруг катода, электроны, испускаемые катодом, будут иметь свое магнитное поле, которое будет реагировать с полем постоянного магнита.Теперь испускаемые электроны будут вынуждены двигаться вокруг катода, пока не соединятся с катодным элементом.

В результате вокруг катода образуется скопление электронов, а перед полостями создается сильное электрическое поле. Это сильное поле будет возбуждать резонатор, и колебания будут происходить с очень высокой частотой. Этот сигнал высокого уровня мощности достигается или снимается с помощью контура связи из любого резонатора для требуемой операции. O / p магнетрона находится в диапазоне длин частот микроволн, а его мощность o / p очень высока в киловаттах.
Следовательно, он в основном используется в радиолокационных системах для передачи энергии. Обычно используется в микроволновых печах. Он также используется в промышленных целях отопления.

Магнетрон — Academic Kids

От академических детей

Магнетрон — это мощная вакуумная лампа, которая генерирует когерентные микроволны.

Строительство и эксплуатация

Отсутствует изображение
Magnetron2.jpg

Магнетрон в поперечном сечении

Магнетрон состоит из горячей нити накала (катода), удерживаемой при высоком отрицательном потенциале или пульсирующего до высокого отрицательного потенциала источником постоянного тока высокого напряжения.Катод встроен в центр вакуумированной лопастной круглой камеры. Перпендикулярное магнитное поле создается постоянным магнитом. Магнитное поле заставляет электроны, притянутые к (относительно) положительной внешней части камеры, двигаться по спирали наружу по круговой траектории, а не двигаться непосредственно к этому аноду. По краю камеры расположены цилиндрические полости. Полости открыты по своей длине и, таким образом, соединяют общее пространство полости. Проходя мимо этих отверстий, электроны создают резонансное высокочастотное радиополе в полости, которое, в свою очередь, заставляет электроны группироваться в группы.Часть этого поля извлекается с помощью короткой антенны, подключенной к волноводу (металлическая трубка, обычно прямоугольного сечения). Волновод направляет извлеченную радиочастотную энергию к нагрузке, которой может быть камера для приготовления пищи в микроволновой печи или антенна с высоким коэффициентом усиления в случае радара.

Размер полостей определяет резонансную частоту и, следовательно, частоту излучаемых микроволн радиочастотной энергии. Таким образом, частоту нельзя точно контролировать, что не является проблемой для многих приложений, таких как нагрев (где это не имеет значения; обычно микроволновые печи настроены примерно на 2450 МГц = 2.450 ГГц, где облученная пища нагревается из-за диэлектрических потерь) и радар (где приемник может быть синхронизирован с неточным выходом). (Если требуются точные частоты, используются другие устройства, такие как клистрон.) Приложенное напряжение и характеристики катода определяют мощность устройства.

Приложения

Отсутствует изображение
Magnetron1.jpg

Магнетрон в коробке

Радар

См. Также История РЛС (Магнетрон)

В радарных устройствах волновод соединен с антенной, которая может быть щелевым волноводом или коническим рупором, направленным на параболический отражатель.Магнетрон работает с очень короткими импульсами приложенного напряжения высокой интенсивности, в результате чего излучается короткий импульс микроволновой энергии. Небольшая часть этой энергии отражается обратно в антенну и волновод, где направляется на чувствительный приемник. При дальнейшей обработке сигнала сигнал в конечном итоге отображается в виде радиолокационной карты на электронно-лучевой трубке (ЭЛТ) или жидкокристаллическом дисплее.

Отопление

В микроволновых печах волновод ведет к радиочастотному прозрачному отверстию в варочной камере.Важно, чтобы во время работы печи в печи находилась пища, чтобы эти волны поглощались, а не отражались обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Дуга, если она может возникать в течение длительного времени, разрушит магнетрон. Если по какой-либо причине очень маленький объект нагревается в микроволновой печи, вероятно, лучше всего добавить стакан воды в качестве раковины для микроволн.

История

Отсутствует изображение
Influence_Magnetron.jpg

Влияние магнетрона на DVD

Простые двухполюсные магнетроны были разработаны в 1920-х годах, но обеспечивали относительно низкую выходную мощность. Версия с полостью оказалась гораздо более полезной.

Во время Второй мировой войны во время разработки радара возникла острая необходимость в мощном микроволновом генераторе, работающем на более коротких длинах волн — около 10 см, а не 150 см — доступном от генераторов того времени. В 1940 году в Бирмингемском университете в Великобритании профессор Джон Рэндалл и доктор Гарри Бут создали рабочий прототип резонаторного магнетрона (правильное название — -резонансный магнетрон ) и вскоре сумели увеличить его выходную мощность в 100 раз. .

Ранняя версия мощностью 6 кВт, построенная G.E.C. и переданный правительству США в августе 1940 года был назван «самым ценным грузом, когда-либо доставленным к нашим берегам». В то время мощность самого мощного аналогичного микроволнового устройства, доступного в США (клистрона), составляла десять ватт. Любопытно, что, чтобы не привлекать внимание к стоимости посылки, ее отправляли не под охраной, а обычной почтой. Магнетрон с резонатором широко использовался во время Второй мировой войны в микроволновом радиолокационном оборудовании, и ему часто приписывают значительное преимущество в характеристиках радаров союзников по сравнению с немецкими и японскими радарами, что напрямую повлияло на исход войны.Действительно, во время битвы за Британию радар (тогда называвшийся радиопеленгацией или RDF) имел решающее значение для исхода битвы, хотя эти ранние радары фактически предшествовали магнетрону полости и давали только грубые показания. Немцы были убеждены, что для достижения любой защиты в небе британские королевские военно-воздушные силы (RAF) должны будут летать постоянными патрулями, что будет дорого обходиться как людям, так и машинам. Вместо этого RAF могли оставаться в резерве на земле, и немцы изначально не могли понять, почему истребители RAF ждали за первым облаком, когда они пролетали над берегами Великобритании.

С тех пор было произведено много миллионов резонаторных магнетронов; некоторые для радара, но подавляющее большинство для другого приложения, которое было совершенно неожиданным в то время, — микроволновой печи.

Опасности для здоровья

Среди других спекулятивных опасностей, по крайней мере, одна, в частности, хорошо известна и задокументирована. Поскольку роговица глаза не имеет охлаждающего кровотока, она особенно подвержена перегреву при воздействии микроволнового излучения. Это нагревание, в свою очередь, может привести к более высокой заболеваемости катарактой в более позднем возрасте.Микроволновая печь с деформированной дверцей или плохой герметизацией может быть опасной.

Список литературы

  • T. J. Morgan — RADAR — The Mechanical Age Library — Mullen — около 1952 г.
  • A. P. Rowe: One Story of Radar — Camb Univ Press — 1948
  • Дадли Савард, Бернард Ловелл: биография — Роберт Хейл — 1984

См. Также

  • Циклотрон — атомный ускоритель, который также направляет частицы по спирали с поперечным магнитным полем.
  • Клистрон — устройство для усиления или генерации микроволн с большей точностью и контролем, чем те, которые доступны в магнетроне.
  • Лазер — устройство для генерации когерентного света, эволюция мазера
  • Мазер — устройство для генерации микроволн, которое производит очень низкий уровень шума и стабильный сигнал, предшественник лазера.

Внешняя ссылка

Информация

Патенты

  • US2315313 ( http: // patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r=1&f=G&l=50&s1=2315313.WKU.&OS=PN/2315313&15 —=PN/2315313&15) Полостной резонатор — Х. Бушхольц
  • US2357313 ( http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r=1&f=G&l=50&OS.W=235 PN / 2357313 и RS = PN / 2357313 ) — Высокочастотный резонатор и контур для него — P.

Оставить комментарий