Контурное заземление это: традиционный, глубинный и наружный, схемы подключения
Контур заземления, его устройство, расчет и схема
Устройство контура заземления, установка и проверка уровня сопротивления контура – это работы, необходимость которых обусловлена спасением жизни человека и предохранением зданий от пожаров. Для производства работ следует выполнять требования ПУЭ, знать способы производства работ по монтажу защитного контура.
Каждый новичок хочет знать, что же это такое заземление и его контур.
Устройство и принцип действия заземления
Защитное устройство и его основное назначение – соединение всех потребителей электричества, при помощи заземляющего провода с контуром защиты. Систем заземления 3, но в жилом помещении наиболее часто устанавливают систему с маркировкой TN – 5. Эта система предусматривает проведение ноля и земли двумя отдельными проводами.
При коротком замыкании или утечке тока с корпуса приборов снимается опасное напряжение и по проводу подается на контур защитного заземления. Он должен монтироваться и изготавливаться, выполняя требования ГОСТа. Нормы, предусматривают оборудование контура с учетом уровня сопротивления. На его величину влияют:
- виды почвы;
- влажность и уровень грунтовых вод;
- глубина погружения заземлителей;
- количества заземлителей в контуре;
- материалы электрода и всех составляющих устройства.
По форме, контур заземления, согласно нормам СНиП, делают в форме равностороннего треугольника, из вертикальных заземлителей и горизонтальных электродов. Они должны располагаться на определенной глубине. Из этого значения и свойства грунта производится расчет контура заземления. Каждый вид грунта имеет свой уровень сопротивления растекания токов КЗ.
Для обустройства контура защиты лучшим вариантом будет:
- торфяник;
- суглинистая почва;
- глинистая, с близко расположенными грунтовыми водами.
Худшими свойствами обладают каменистые участки грунта и монолитные скалы. На выбор влияют климатические особенности региона установки.
Проведение расчета защитного контура
Сопротивление контура заземления следует проводить, определив несколько значений:
- Определить удельное сопротивление почвы на участке.
- Выявить влажность грунта.
- Уровень солености почвы.
- Средней температуры в регионе.
- Расстояние от фундамента до контура.
- Размеров заземлителей и других деталей устройства.
Методика расчетов «проста» — нужно знать множество физических формул и иметь инженерное образование. Но, как правило, никакая методика выполнения расчетов не может учитывать все значения. Поэтому, проведя монтаж наружного контура заземления и измерив, значение сопротивления защиты – вы увидите, что расчет не совпадает с фактическим результатом.
По этой причине, для обустройства в данном регионе выполняется типовой проект, остается только провести изменения, учитывая удаление устройства от здания. И затем проводят измерение сопротивления контура, вносят изменения до достижения номинального значения сопротивления, не более 4 Ом в жилищном строительстве.
Поэтому, выбрав лучшую схему, соблюдая все размеры и глубину забивания заземлителей, подобрав качественный материал, правильно сделать работу для вашего жилья не составит труда. А рассчитать заземление нужно обязательно для крупных промышленных и торговых зданий.
Объекты, требующие оснащения контуром
Для безопасного проживания и условий труда, каждое помещение, в котором установлены промышленные или бытовые электроустановки обязано быть защищено.
Для этого, оборудуется как внутренний контур заземления, так и наружный. Защита должна быть установлена в помещениях:
- С различными по мощности железными кожухами и корпусами приборов, станков и осветительных устройств.
- В электрощитовых, в которых находятся стальные корпуса щитков, шкафов и другого электротехнического оборудования, а также в комплектных трансформаторных подстанциях (ктп).
- В местах с металлоконструкциями, оболочками кабелей, проводов различного сечения, а также защитных стальных трубопроводов для кабелей.
- Вторичная обмотка измерительного трансформатора.
Заземление не проводится:
- для арматуры изоляторов и штырей, крепления их на опорах электропередачи;
- оборудования установленного на заземленные корпуса электроустановок;
- электроизмерительные устройства, автоматы защиты, установленные в электрощитках или на одной из стен камеры распределяющего устройства.
При особо оговоренных условиях может не заземляться металлическая защитная оболочка контрольного кабеля.
Наружный контур заземления потребует проведения земляных работ, поэтому, приготовьтесь к тяжелой и небыстрой работе.
Установка контура заземления
Способов установки несколько. Новая, но более затратная методика модульно-штырьевого монтажа всем хороша. Но этот способ мы рассмотрим несколько позже. Мы разберем классический монтаж контура заземления.
Сначала проводятся подготовительные работы.
Подготовка к монтажу
Определяемся с местом установки защиты. Лучшим решением будет расположение контура недалеко от здания и со стороны установки распределительного электрощита.
Исходя из требований пункта 1.7.111 ПУЭ — все вертикально и горизонтально расположенные электроды должны изготавливаться из меди, оцинкованного или обычного стального уголка или другого профиля. Окрашивать поверхность заземлителей нельзя, для лучшего токоотведения и обнаружения дефектов.
Для обустройства, нам потребуется 50 уголков толщиной полок — 5 мм и полоса шириной — 40 мм. Это основные материалы для изготовления самого контура. Также нам потребуются провода достаточного сечения, для обустройства внутреннего контура заземления и разделения проводки на нулевой провод и проводник земли.
Теперь готовим к работе лопату и начинаем выполнение основного этапа работ.
Монтаж защитного устройства
Копаем треугольную траншею — длиной стороны 3 м, на ширину штыка лопаты и глубиной не менее полуметра. Можно выполнить прямую траншею — длиной не менее 6 м (таким способом оснащаются устройства с недавнего времени). Если делаем по старой методе, в углах равностороннего треугольника кувалдой забиваем заземлители до необходимой глубины. Его нельзя засовывать в готовую скважину, он должен плотно и без зазоров погрузится на глубине не более 3 м.
При оснащении прямолинейной системы, через каждый метр, забиваем по 1-му заземлителю, но не более 5-ти штук. Для лучшего захода в землю, заострите края уголка на заточном станке или обрежьте их болгаркой. Погрузиться в грунт колья должны не полностью, над поверхностью земли должен быть отрезок уголка не менее 200 мм.
Надеваем сварочный костюм и маску, готовим аппарат и подвариваем к вертикальным заземлителям горизонтальные электроды, из полосы шириной не менее 40 мм. От нее, к стене здания, по выкопанной траншее проводим полосу или отрезок силового кабеля достаточного сечения. Теперь, заводим в здание и подводим к входящему электрощиту, а от него выполняем заземление внутридомовой системы.
При проведении заземляющего проводника, с помощью силового кабеля, работы выполняют следующим способом: на вертикальный заземлитель, болтом и гайкой с надежным гровером, закрепляем, запакованный в концевой контакт отрезок кабеля. Для выполнения этой работы понадобится:
- медная шина сечение которой более 10 мм2;
- алюминиевая, сечением более 16 мм2;
- металлический проводник более 75 мм2 сечением.
Все места сварки, проверив качество шва, покрываем грунтовкой или растопленной смолой. В месте сварки металл ослаблен из-за высокой температуры при сваривании и сильнее поддается коррозии. Выполнив все завершающие работы, засыпаем траншею. Сначала слоем песка, а потом заполняем вынутым грунтом.
Все основные работы выполнены, теперь нам остается выполнить измерение сопротивления контура заземления.
Замер сопротивления защитного устройства
Выполнять эту работу лучше в летнее или зимнее время. В эти моменты грунт имеет наибольшую величину электрического сопротивления. В разных условиях применения величина может быть различной. Для жилого здания, это значение не должно превышать 30 Ом. Для измерения сопротивления применяют специальные измерители сопротивления «МС- 08» или «М-416». Выполняется с использованием системы пробных электродов.
Выполнение замеров разбито на несколько этапов.
Между контуром и зданием расположен потенциальный зонд на расстоянии не менее 20–ти метров, а второй выносной электрод располагаем на прямой линии с потенциальным электродом и контуром, на расстоянии не более 40 метров. Подключаем напряжение и выполняем замер уровня сопротивления. Выполняем эту операцию несколько раз, приближая выносной кол на расстояние не менее 5 метров. Выполнив эти замеры, определяем сопротивление контура.
При замерах в обширных подземных коммуникациях, потребуется выполнение дополнительного измерения данной физической величины. Такие замеры проводятся на различных расстояниях между заземлителями и по разным направлениям.
Но во всех измерениях, номинальной величиной сопротивления заземления будет наихудший результат выполненных замеров. В любое время года и в различных погодных условиях, значение сопротивления защиты не должно быть выше наибольшей допустимой величины.
После выполнения замеров и определения сопротивления электрического тока цепи защитного устройства, комиссия составляет акт проведения и контрольного измерения заземления здания. В процессе пользования необходимо проверять надежность обтяжки болта на подключении к заземляющему проводнику, а также при очень высокой температуре, не забывайте смачивать места заглубления электродов.
Проведя все работы по монтажу и контрольному замеру, мы получаем безопасное жилое помещение, защищенное от токов короткого замыкания.
Назначение разных видов заземления и нормы по их установке
Заземление – система защитного контура, для предотвращения поражения током при замыкании фазы на корпус. Назначение, виды и способы его монтажа – это основные вопросы, стоящие перед каждым собственником жилья и производственного помещения.
Заземляющее устройство – это конструкция, оснащенная заземлителем и заземляющими проводниками.
Виды заземления в зависимости от удаления объекта от защитного контура
По этой характеристике, виды заземляющих устройств подразделяют:
- выносное;
- контурное устройство.
Разберем каждое из них подробнее.
Выносное устройство
При этом типе, расположение заземлителя производится за пределами помещения. Выносное (сосредоточенное) защитное устройство монтируют при невозможности оснащения контура на участке со скальным, каменистым грунтом, либо при наличии за участком наиболее подходящего для заземления качества земли.
Разброс производственного оборудования на значительном расстоянии друг от друга – это еще одна причина установки выносной системы.
К преимуществу этого типа, относят возможность выбора места установки с лучшими свойствами грунтов, с малым уровнем сопротивления. К таким грунтам относят – глинистый или песчаный влажный грунт. Но есть у способа существенный минус. Значение коэффициента касания проводника равно 1, из-за удаленности от производственных объектов.
Такой вид защиты монтируют для обслуживания объектов с малыми токами короткого замыкания (не более кВ). Потенциальное напряжение при касании поврежденного участка цепи не меньше потенциала заземлителей.
Контурное устройство
Заземляющие электроды располагаются равномерно, по границам контура обслуживаемого участка и на нем самом. Поэтому, второе название этого типа – распределенное.
При таком способе установки заземлителей, безопасность использования приборами обеспечивается понижением потенциалов на каждом заземлителе и потенциалы их выравниваются. Такой метод позволяет понижать пиковый ток КЗ. Одиночнорасположенные на территории контура заземлители позволяют решать эту проблему.
Каждый метод заземления, при долгой эксплуатации, может повысить сопротивление контура. Для раннего обнаружения неисправности, необходимо периодически осматривать контур и подтягивать гайки на креплении проводов.
Обустройство повторного заземления
Данный метод позволяет понижать опасное для человека значение тока замыкания и других повреждений проводки и электрических приборов. При этом, повторное заземление – это отдельно расположенная и независимая от основного контура система заземлителей.
Установка предусматривает срабатывание в аварийной ситуации ближайшего автомата защиты. Наиболее часто, повторным способом, обустраивается старое здание с устаревшей двухжильной алюминиевой проводкой. Проводку ведут к каждому потребителю от места сварки концевого контакта на основании контура. На корпус щита провода закреплены с помощью болтов и гаек с гроверами.
Виды заземления в зависимости от подведения проводки
До проведения работ по электропроводке здания, необходимо сделать выбор способа подключения к внутридомовой сети провода земли и вида контура защиты. Приведем расшифровку аббревиатур, применяемых в названии видов подводки кабеля:
- I – изолированная проводка;
- N – обозначает подключение к нейтральному проводу;
- Т – символ, обозначающий подключение к заземляющему проводу.
Принята мировая система заземления, в которую входят три основных вида.
IT- система
Практически неприменяемая система в жилищном строительстве. При ней используют сопротивление с большим номиналом или через воздушную прослойку. Применяется этот вид заземления в лабораторных и лечебных помещениях. Служит для обеспечения большого уровня защиты для оборудования и приборов, требующих при обслуживании значительного уровня безопасности и стабильности.
По правилам ПУЭ, для частного хозяйственного строительства, можно использовать систему с независимыми заземлителями.
Система ТТ
Провода подводят к щитовой, на вводе в здание с двумя заземлителями. Наиболее часто применяют для обслуживания систем источников напряжения в сети и на металлическом покрытии системы без изоляции. Значительные показатели работы нулевой проводки на расстоянии от трансформаторов тока до потребителя электроэнергии.
При монтаже может возникнуть сложность, связанная с подбором диаметра проводки для обеспечения безопасности самого заземления. Для этих целей в данный вид подведения провода, устанавливается система отключения.
TN-система
Это, наиболее распространенный вид проведения заземляющего проводника с заземлением нейтрального провода, позволяет подключать к нейтрали всех потребителей тока данного здания.
Подключается все оборудование к заземлению через провода ноля. Все токопроводящие корпуса оборудование и приборы в электрощитовых и других потребителей, при коротком замыкании на корпуса, выключаются от сети с помощью автоматов и предохраняют человека, находящегося в помещении от поражения электротоком.
Она подразделяется на следующие виды:
- Система TN – 5. Вид подведения заземления и нулевого провода двумя отдельными проводниками. Такой способ на сегодняшний день является наиболее безопасной для человека. Проводку от источника питания, при этом способе, ведут с использованием трехжильного медного провода с соответствующим сечением для данного здания и количества потребителей. Как правило, для подведения фазы используют коричневый или черный проводник, ноль подводят голубым или синим проводом, а для подведения заземления используется желто-зеленый цвет изоляции.
- Система TN-C-S, в ней подводятся к электрощиту два провода, а именно провод нейтрали и провод фазы. И уже в щитке производят разделение ноля на два проводника, один из которых ноль, а второй провод заземления. Для обеспечения надежной и безопасной защиты в щитке требуется устанавливать дополнительный автомат отключения после разводки проводников.
При использовании медных многожильных проводников в проводке старого здания, не оснащенного защитным контуром, появляется оснастить электросеть надежной защитой.
Такая система хорошо предохраняет проводку и бытовые приборы при попадании молнии. При установке УЗО повышается уровень безопасности человека. К минусам можно отнести — установка дополнительного оборудования и снижение безопасности при обслуживании загородного дома.
Сечение проводки и выбор конструкции заземляющих контуров – одни из основных характеристик при проведении монтажа одного из видов заземляющего контура.
Для проведения работ по изготовлению контура заземления используются различные заземлители из искусственных или натуральных металлов. Исходя из пункта 1,7,109 Правил установки, могут быть использованы железобетонный или металлический участок здания, находящиеся в земле защитные оболочки кабелей, погружаемые в скважины трубы и другие.
Нельзя подключать провода заземления к газовым трубопроводам, трубам канализации, отопительным трубопроводам. Но для выравнивания потенциалов тока, данные участки можно использовать.
При мощности электрической сети здания более кВт, его необходимо оборудовать системой заземления. Виды заземления используются для обеспечения безопасной работы сети тока, но величина сопротивления не должна превышать величины 4 Ом.
Заземлители (заземляющие колья, забиваемые в землю для создания контура заземления) обязательно выполняются из меди, оцинкованного или черного металла. Все значения размеров заземлителей и других составляющих контура, приведены в пунктах ПУЭ.
Горизонтальная перемычка контура заземления должна быть заглублена в грунт не менее полуметра, в случае легкого грунта заглублять его следует не менее метра. Горизонтальные перемычки на сопротивление контура влияют больше чем вертикальные заземлители.
При необходимости устанавливается повторный контур заземления электрической сети.
При выборе сечения необходимо ознакомится с требованиями ПУЭ, но провод заземления не может быть меньше провода фазы.
Заземление не сможет заменить автоматический разрыватель цепи и УЗО, а они не смогут выполнить работу заземления.
Контурное заземление — Большая Энциклопедия Нефти и Газа, статья, страница 3
Контурное заземление
Cтраница 3
Распределение потенциалов на поверхности земли вне контура заземления отличается от распределения их при растекании тока с одиночного заземлителя. При контурном заземлении точки поверхности земли, имеющие нулевой потенциал, удалены от контура заземления значительно дальше 20 м — расстояния до нулевых потенциалов при растекании тока с одиночного заземлителя. [32]
Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру ( периметру) площадки, на которой находится заземляемое оборудование, или распределяют на всей площадке ( зоне обслуживания оборудования) равномерно. Безопасность при контурном заземлении обеспечивается выравниванием потенциала основания и его повышением до значений, близких к потенциалу корпуса оборудования. В результате обеспечивается высокая степень защиты от прикосновения к корпусу оборудования, оказавшегося под напряжением, и от шагового напряжения. Контурное заземление применяют при высокой степени электроопасности и при напряжениях свыше 1000 В. [34]
Как видно из рис. 14 — 6 6, вокруг сложного заземлите-ля происходит своеобразное распределение потенциалов: между параллельно соединенными одиночными заземли-телями потенциалы во всех точках земли выше, чем они были бы для каждого заземлителя IB отдельности, — и величины этих потенциалов нигде не опускаются до нуля. Это свойство используется в контурном заземлении ( рис. 14 — 7), представляющем собой замкнутый ( или почти замкнутый) контур, охватывающий участок, на котором находятся заземленные части установок. При контурном заземлении зазем-лители располагаются по периметру защищаемой территории, а при большой ширине ее — закладываются также и внутри нее. Контурные заземлители выполняются из труб или уголков, соединенных полосами. [35]
Достигаемое этим снижение напряжений прикосновения и шага особенно важно для установок с большими токами замыкания на землю. Для этой цели устраивается так называемое контурное заземление, при котором заземляющие электроды располагаются по контурам вокруг заземляемых элементов, повышая тем самым потенциалы поверхности земли внутри этих контуров. Благодаря этому разность потенциалов между заземляемым объектом и местом возможного расположения человека при его соприкосновении с объектом уменьшается. [37]
Защита подстанций с распределительными устройствами 220 — 110 — 35 кв от прямых ударов молнии выполняется при помощи тросовых или стержневых молниеотводов, число и местоположение которых определяются расчетами. При этом расположение всех трех элементов молниеотвода ( молниеприемник, заземляющий спуск и заземляющее устройство) должно быть таким, чтобы вероятность обратных перекрытий по воздуху с элементов молниеотвода на токо-ведущие части и корпуса аппаратов, а также в земле от заземлений молниеотводов до контурного заземления подстанций была минимальной. [38]
Применяют два вида заземления: сосредоточенное ( выносное) и контурное. При сосредоточенном заземлении заземлители располагают в сырых, низких местах с наименьшим сопротивлением грунта. Контурное заземление отличается тем, что заземлители располагаются по контуру площадки, где размещено оборудование. [39]
Как видно из рис. 14 — 6 6, вокруг сложного заземлите-ля происходит своеобразное распределение потенциалов: между параллельно соединенными одиночными заземли-телями потенциалы во всех точках земли выше, чем они были бы для каждого заземлителя IB отдельности, — и величины этих потенциалов нигде не опускаются до нуля. Это свойство используется в контурном заземлении ( рис. 14 — 7), представляющем собой замкнутый ( или почти замкнутый) контур, охватывающий участок, на котором находятся заземленные части установок. При контурном заземлении зазем-лители располагаются по периметру защищаемой территории, а при большой ширине ее — закладываются также и внутри нее. Контурные заземлители выполняются из труб или уголков, соединенных полосами. [40]
Молниеотводы бывают стержневые, тросовые и сеточные. На [ ефтебазах применяют одиночные или двойные стержневые молние-иводы, которые действуют совместно. Число труб и длину соедини-ельных полос для контурного заземления подстанции в зависимости Т климатического района и удельного сопротивления грунта опре — [ еляют по специальным техническим условиям. [41]
Практически в цехах с встроенными или близко расположенными подстанциями, достаточно насыщенных технологическим оборудованием, Unp при замыканиях на корпус не превышает 10 — 12 В вследствие дополнительной проводимости, создаваемой многочисленными связями с землей через зануленные металлические части электроустановок и имеющийся с ними электрический контакт и трубопроводы различных коммуникаций. Однако для удаленных от подстанции небольших объектов без водопровода иар сохраняет опасное значение. Для снижения опасности эффективно устройство дополнительных местных очагов повторного заземления нулевого провода, выполняемых в виде контурного заземления. [42]
Напряжение на заземляющих устройствах при больших токах замыкания может достигать значительной величины и быть слишком большим, что может не обеспечить расчетные значения напряжений прикосновения и шага. По Правилам устройства электроустановок сопротивление заземляющих устройств в электроустановках с большими токами замыкания на землю должно быть в любое время года не более 0 5 ом. Значит, для защиты персонала, кроме мгновенного отключения поврежденного участка, надо принять дополнительные меры в виде устройства контурных заземлений, использования естественных заземлителей и соответствующих изолирующих приспособлений. [43]
Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру ( периметру) площадки, на которой находится заземляемое оборудование, или распределяют на всей площадке ( зоне обслуживания оборудования) равномерно. Безопасность при контурном заземлении обеспечивается выравниванием потенциала основания и его повышением до значений, близких к потенциалу корпуса оборудования. В результате обеспечивается высокая степень защиты от прикосновения к корпусу оборудования, оказавшегося под напряжением, и от шагового напряжения. Контурное заземление применяют при высокой степени электроопасности и при напряжениях свыше 1000 В. [44]
Страницы: 1 2 3
что это такое, пример выполнения для частного дома
Что такое заземляющее устройство?
Заземляющее устройство (earthing arrangtmtnt), согласно ГОСТ 30331.1-2013 [1], — совокупность заземлителя, заземляющих проводников и главной заземляющей шины. Данный термин имеет жаргонизм «контур заземления», что некорректно.
Пример технологии выполнения для электроустановки индивидуального жилого дома.
На одном из форумов я наткнулся на типовой проект (далее ТП) серии 5.407-155.94, который был утвержден Департаментом электроэнергетики Минтопэнерго РФ и в котором, непосредственно, можно отыскать необходимую информацию о выполнении заземляющего устройства для электроустановки частного дома.
Этот проект не лишен недостатков, например, в плане терминологии, так как был выпущен до появления стандартов комплекса ГОСТ Р 50571, но, тем не менее, в нем можно найти нужную нам реализацию заземляющего устройства для индивидуального жилого дома. Показанные там эскизы схем заземлителей были разработаны и использовались еще со времен СССР, что говорит о достаточной проверке временем на практике и, следовательно, высокой надежности.
Далее, нам нужно знать удельное сопротивление типа почвы, в которой будут находится заземляющие электроды. К примеру, тип почвы – глинистый песок. Расчетное удельное сопротивление глинистого песка — ρ = 220 Ом*м. Тогда согласно 5.407-155.94.1-57 выбираем подходящий эскиз заземлителя (в нашем случае это схема N4). Я немного видоизменил его под стандарт ГОСТ Р 50571.5.54–2013 и получилось следующее:
Реализация заземляющего устройства (ГЗШ не показана на рисунке)Данное заземляющее устройство, согласно ТП, актуально для типов грунта с расчетным ρ ≤250 Ом*м и должно обеспечивать Rзу ≤ 30 Ом. И состоит оно из:
- 2 вертикальных заземляющих электродов, длинной 3 метра и расположенных на расстоянии L ≥ 6 м.
- одного горизонтального заземляющего электрода, соединенного с заземляющим проводником.
- Главной заземляющей шины (ГЗШ), установленной в здании (на эскизе не показана) и соединенной с заземляющим проводником. Саму ГЗШ подключают защитным проводником к защитной шине ВРУ, от которой «начинаются» все защитные проводники. К последним присоединяют открытые проводящие части (ОПЧ) электрооборудования.
Некоторые технические подробности:
- Заземляющие электроды углубляют так, чтобы верхняя их часть была на 0.5 метра ниже поверхности грунта.
- Минимальные размеры проложенных в земле электродов и заземляющего проводника можно найти в таблице 54.1 ГОСТ Р 50571.5.54–2013. К примеру, для круглого вертикального заземляющего электрода, выполненного в виде стержня из стали горячего цинкования минимальный диаметр составит – 16 мм. А для горизонтального заземляющего электрода и заземляющего проводника, выполненного в виде круглой проволоки из той же стали, минимальный диаметр составит – 10 мм.
- Части заземлителя, которые находятся в земле, cогласно ТП, следует соединять между собой посредством электросварки двойным швом. Длина сварочного шва, при этом, больше либо равна 6 наибольшим диаметрам при круглом сечении. То есть, если нам нужно сварить между собой два электрода диаметром 20 и 16 мм, то длина сварочного шва должна составить минимум 6*20=120 мм
- ГЗШ должна иметь зажимы для подключения защитных проводников и защитных проводников уравнивания потенциалов. Эти зажимы должны допускать подключение проводников сечением ≥ 16 кв.мм. ГЗШ должна иметь один или два зажима для подключения заземляющих проводников диаметром ≥ 10 мм.
- Число вертикальных электродов зависит от удельного сопротивления грунта и максимально допустимого сопротивления заземляющего устройства (ЗУ). Если электроустановка здания имеет тип заземления системы TN-C-S, сопротивление ЗУ не влияет на защиту от поражения электрическим током. Здесь необходимо обеспечить непрерывность электрической цепи PEN-проводник — защитный проводник. Поэтому сопротивление ЗУ может быть нормировано, например, требованиями к защите дома от молний.
Типовые часто задаваемые вопросы от читателей
Как проверить заземление выполненное для индивидуального жилого дома?
Начать нужно с того, что заземление, согласно его определения, представляет собой действие, а именно – выполнение электрического присоединения проводящих частей к локальной земле. Поэтому, если ориентироваться на ваш вопрос и дословно отвечать на него, то да — вам нужно проверить все электрические соединения проводящих частей соответствующего электрооборудования к локальной земле.
В ходе проверки, доступной в домашних условиях, могу порекомендовать вам лишь такие базовые мероприятия:
Произведите визуальный осмотр – целью данного действия является выявление видимого разрыва или повреждения каких-либо электрических цепей защитных проводников. Как правило, проверке подлежат видимые открытые участки защитного проводника, места его подключения и соединения с главной заземляющей шиной (ГЗШ) (у вас она должна быть если мы говорим о правильной реализации заземляющего устройства) и далее непосредственно с самим заземляющим устройством.
Нужно проверить заземляющий проводник, посредством которого ГЗШ соединяют с заземлителем;
Нужно проверить защитный проводник, посредством которого к ГЗШ присоединяют защитную шину вводно-распределительного устройства (ВРУ).
При отсутствии видимого разрыва, необходимо проверить «наличие цепи» между защитным проводником (ами) и ГЗШ. Для «прозвонки цепи» вам достаточно подключить выводы мультиметра, в соответствующем режиме, к защитному проводнику и к главной заземляющей шине. Также можно проверить цепь между защитным проводником и заземляющим устройством.
Наиболее эффективным вариантом, на мой взгляд, является измерение переходного сопротивления между заземляющими электродами и локальной землей. Но для этого вам понадобиться специальный прибор — «измеритель сопротивления заземлений», который подключается определенным образом. Но эту работу может выполнить только квалифицированное или обученное лицо — поэтому я не буду расписывать как это делать в пределах данного ответа.
Однако, даже при наличии сопротивления токам растекания в земле не более 4 Ом нельзя дать гарантию, что вы будете в безопасности. Так как никакие электрические приборы не должны подавать опасный потенциал на корпус при нормальных условиях эксплуатации. Поэтому помимо проверки заземляющего устройства я бы рекомендовал вам также проверить состояние изоляции самого используемого электрооборудования. Как правило, повреждение или дефект изоляции в самом электрооборудовании или цепи его питания могут приводить к появлению потенциала на на его корпусе.
Список использованной литературы
- ГОСТ 30331.1-2013
- Типовой проект серии 5.407-155.94
- ГОСТ Р 50571.5.54–2013
Цель и применение заземления электромашин. Выносное и контурное заземление.
Нужна помощь в написании работы?
В ЭУ переменного и постоянного тока защитное заземление обеспечивает защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции. Защитное заземление — это заземление металлических частей нормально не находящихся под напряжением электроустановки с целью обеспечения электробезопасности. Защитному заземлению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты. Так корпуса электрических машин , трансформаторов, светильников и др. нетоковедущие части могут оказаться под напряжением при замыкании на корпус. Если корпус не заземлен, то прикосновение к нему также опасно, как и прикосновение к фазе. При заземлении корпуса ток через тело человека при его прикосновении к корпусу будет тем меньше, сем меньше ток замыкания на землю и сопротивление цепи заземления и чем ближе человек стоит к заземлителю. Защитное заземление представляет собой заземляющее устройство. Заземляющее устройство — это совокупность проводников к заземлителю. Заземлитель — это проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей. В качестве заземлителя в первую очередь необходимо использовать естественные заземлители (железобетонные фундаменты). В качестве искусственных заземлителей применяют стальные стержни из уголка. В сетях напряжением выше 1000 В прикосновение к фазе опасно, а применение разделительных трансформаторов значительно повышает стоимость электроустановок. Поэтому в таких сетях применяют другие защитные меры. Целью разделения сетей является уменьшение тока замыкания на землю за счет высокого сопротивления изоляции фаз относительно земли, поэтому не допускается заземление нейтрали или обратного провода за разделительным трансформатором или преобразователем. Контурная схема более безопасна, т.к. ЭУ ближе к заземлению, выносная схемы м. применяться в сл. случаях: 1) если удельное сопротивление грунта по контуру велико, а на определенном расстоянии оно гораздо меньше 2) при необходимости заземления оборудования, устанавливаемого в существуемые здания, а по близости заземляющего устройства нет.
Расчёт заземляющего устройства
1) Rз — сопротивление растекания тока через трубу. Если Rз <= Rнорм, то расчёты закончены. Rнорм = 4 Ом
2) Сколько нужно труб без учёта экранирования (n’): n’ = Rз / Rнорм
3) к-т экранирования для заземлителя зз.
4) nфакт = n’ / зз
5) длина соединительной полосы: 1,05*А*n = ln
6) R полосы
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.
7) з для полосы
8) Rзу = (Rз*Rполосы) / (Rполосы* зз*n+Rз* зполосы) <= Rнорм
Поможем написать любую работу на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость Поделись с друзьямиСопротивление заземления
Сопротивление заземления (сопротивление растеканию электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в неё через заземлитель.
Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.
Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.
- для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом
При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)
Подробнее об этом на странице «Заземление дома».
- при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
(ПУЭ 1.7.103; для всех повторных заземлений)Подробнее об этом на странице «Заземление газового котла / газопровода».
- для заземления, использующегося для подключения молниеприёмников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
Подробнее об этом на странице «Молниезащита и заземление».
- для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)
- для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
- при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
не более 2 или 4 Ом - для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
Приведённые выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).
Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.
Например, при песчаных грунтах с удельным сопротивлением
500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).
Контур заземления | Заметки электрика
Здравствуйте, дорогие гости сайта «Заметки электрика».
Сегодня я расскажу Вам про контур заземления, для чего он необходим и как правильно выполнить его монтаж своими руками.
Покупая дачные участки для строительства домов и коттеджей, мы должны получить разрешение от энергоснабжающей организации на присоединение определенной мощности. И на данном этапе практически у всех возникает проблема с электромонтажом контура заземления, т.к. в технических условиях на электроснабжение дома он обязателен.
Также он необходим при реконструкции старой электропроводки. Более подробно об организации электропроводки в своем доме читайте в статье: электропроводка в деревянном доме.
Что такое контур заземления?
Для начала давайте разберемся, что такое заземление?
Заземление — это ЗУ (заземляющее устройство), предназначенное для электрического соединения с «землей» различных заземляемых частей электрооборудования.
Для каждой системы заземления (TN-C, TN-C-S, TN-S, TT и IT) существуют свои требования к сопротивлению заземляющего устройства (переходите по ссылкам соответствующих систем заземления и знакомьтесь).
Сопротивление ЗУ очень сильно зависит от:
- типа грунта
- структуры грунта
- состояния грунта
- глубины залегания электродов
- количества электродов
- свойств электродов
Контур заземления — это и есть, соединенные между собой, горизонтальные и вертикальные электроды, которые заложены на определенной глубине в грунте Вашего участка.
Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления.
Грунты, идеально подходящие для монтажа контура заземления:
- торф
- суглинок
- глина с высокой влажностью
Грунты, подходящие для монтажа контура заземления
Грунты, не подходящие для монтажа контура заземления:
Грунты, не подходящие для монтажа контура заземления
В зависимости от условий окружающей среды, даже один и тот же тип грунта может иметь разные свойства.
Поэтому производить монтаж контура заземления необходимо осознанно, а выбор количества и длины заземляющих электродов рассматривать по конкретному случаю.
В данной статье я опишу Вам самый распространенный и простой способ монтажа контура заземления. Существуют и более современные способы, например, модульно-штырьевая система заземления. Но к ним мы вернемся в других моих статьях. Чтобы не пропустить новые выпуски статей, подпишитесь.
Подготовка
Выбираем место для установки и монтажа заземляющего устройства.
Рекомендую выбирать место для заземления вблизи вводного распределительного устройства (сборки) Вашего дома.
Согласно ПУЭ (п.1.7.111), искусственные вертикальные и горизонтальные заземлители (электроды) должны быть либо медными, либо из черной или оцинкованной стали. Также их поверхность не должна быть окрашена.
Вот таблица (ПУЭ, табл.1.7.4) рекомендуемых размеров вертикальных и горизонтальных заземлителей (электродов) и заземляющих проводников для прокладки в земле:
В качестве вертикальных и горизонтальных заземлителей (электродов) мы используем:
- стальной уголок размером 50х50х5 (мм) с поперечным сечением 480 (кв.мм)
- стальную полосу размером 40х4 (мм) с поперечным сечением 160 (кв.мм)
Материалы для контура заземления
Вот мои заготовки материала для монтажа контура заземления для повторного заземления PEN-проводника жилого многоквартирного дома и дальнейшего его разделения: на защитный проводник РЕ и нулевой рабочий проводник N.
Монтаж контура заземления
Теперь нам необходимо взять лопату и выкопать траншею в виде треугольника с размерами (3 х 3 х 3) метра. Можно выкопать траншею в виде прямой линии длиной порядка 4-5 метров. Последнее время мы именно так и делаем.
Ширина траншеи составляет 0,3-0,5 метра, а глубина 0,5-0,8 метра.
Траншея для контура заземления
В вершины данного треугольника забиваем кувалдой стальной уголок (вертикальные заземлители) длиной 2,5-3 метра. Вместо кувалды можно использовать специальные буры. Если траншея у Вас выкопана в виде прямой линии, то забиваем вертикальные электроды в количестве 4-5 штук через каждый метр.
Чтобы легче забивать стальные уголки в землю, заострите их концы болгаркой.
Забиваем стальные уголки (вертикальные электроды) не полностью, а оставляем около 20 (см). Затем с помощью сварочного аппарата привариваем к нашим стальным уголкам по периметру треугольника или прямой линии горизонтальную стальную полосу, идущую в силовой электрический щиток на шину РЕ (ГЗШ).
Проводник, который соединяет заземляющее устройство с заземляющей частью электроустановки (вводным распределительным устройством или сборкой), называется заземляющим.
В нашем примере в качестве заземляющего проводника применяется стальная полоса размерами 40 х 4 (мм), что удовлетворяет требованиям ПУЭ.
В итоге у нас получается вот такая конструкция (схема). Кстати забыл сказать, что места сварки нужно обработать антикоррозийным составом, например, битумом, а траншею закопать однородным грунтом.
Далее стальную полосу прокладываем до шины РЕ (ГЗШ). Вот фотография для наглядности.
Можно сделать и по-другому, воспользовавшись ПУЭ, п.1.7.117. Выводим из земли горизонтальный заземляющий проводник в виде стальной полосы, а к нему с помощью болтового соединения подключаем проводник, который прокладываем до шины РЕ (ГЗШ):
- медный сечением не менее 10 кв.мм
- алюминиевый сечением не менее 16 кв.мм
- стальной сечением не менее 75 кв.мм
Я использовал заземляющий проводник из медной шины.
Окончание работ
После монтажа необходимо произвести замер его сопротивления. Как сделать это самостоятельно — читайте в статье замер контура заземления (заземляющего устройства).
P.S. В завершении хотелось бы Вам напомнить, что правильное и качественное заземление является Вашей защитой от поражения электрическим током.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Общие сведения о контурах заземления — Рекомендации по применению
Контуры заземления могут быть настоящей помехой в системах сбора данных HVAC, поскольку их трудно обнаружить. В большинстве случаев они не причиняют вреда, но могут вызвать непредсказуемые проблемы спустя годы после установки!
Что такое контур заземления?
Контур заземления образуется, когда между клеммами «заземления» двух или более единиц оборудования имеется более одного токопроводящего пути. Проводящая петля образует большую рамочную антенну, которая легко улавливает токи помех.Чем больше петля, тем больше помех; если вы используете стальной каркас здания в качестве основания, то петля может быть такой же большой, как и все здание. Сопротивление заземляющих проводов превращает токи помех в колебания напряжения в системе заземления. Земля больше не стабильна; поэтому сигналы, которые вы пытаетесь измерить, которые относятся к этой земле, также нестабильны и неточны.
Наземные символыНаземная мифология
Универсальная концепция, которой преподают в технических школах и инженерных колледжах, заключается в том, что «земля» всегда имеет нулевое напряжение, может бесконечно поглощать электрический ток и мгновенно безвредно рассеивать ток.Однако идеальная почва — это лабораторная абстракция, которой не существует в реальном мире.
Настоящее заземление — это проводник, поэтому между всеми точками заземления существует определенное сопротивление электрическому току. Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Сопротивление всегда может позволить электрическому напряжению существовать на нем. Сильные токи, проходящие через землю, вызовут падение напряжения в проводниках заземления, и потребуется время, чтобы рассеяться.
Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил, что на территории здания может изменяться напряжение до 2 вольт. Фактически, Национальный электротехнический кодекс (NEC) допускает изменение заземления на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока (дополнительную информацию об исследовании штата Мичиган и NEC см. В разделе «Ссылки» ниже. код).
Понимание того, что идеального заземления не существует в реальном мире, является первым шагом к устранению помех контура заземления, когда они возникают.Если вы помните, что каждое заземление в здании имеет разный и произвольный «нулевой» потенциал, вы можете спроектировать надлежащие системы заземления.
Если основания такие порочные, зачем вообще заземление?
Земля необходима по двум причинам: безопасность и безопасность.
Статья 250 NEC устанавливает, что изолированные вторичные обмотки понижающих распределительных трансформаторов должны быть заземлены на входе в здание. Земля представляет собой медный стержень, вбитый как минимум на 8 футов в землю.NEC требует, чтобы стальной каркас, водопроводные трубы и другие крупные металлические предметы были соединены с землей у входа в здание. Если изоляция провода выходит из строя или провод непреднамеренно отсоединяется и соприкасается с металлическим предметом, большие токи короткого замыкания протекают от распределительного трансформатора к земле. Эти чрезмерные токи размыкают предохранители и автоматические выключатели, предотвращая нахождение оборудования под более высоким потенциалом, чем у ближайшей раковины или строительной конструкции. Если заземление в распределительном щитке по какой-либо причине отключается, то заземление на входе электропитания здания на трансформаторе обеспечивает протекание чрезмерного тока короткого замыкания, размыкая предохранители и автоматические выключатели.Защита здания от огня и находящихся в нем людей от поражения электрическим током является основной функцией системы заземления распределения электроэнергии.
Вторая проблема безопасности заключается в том, чтобы поддерживать оборудование в пределах его нормального рабочего диапазона напряжения. Большинство современных прямых цифровых контроллеров (DDC) будут работать правильно без заземления где-либо. Единственная загвоздка в том, что незаземленное оборудование может накапливать большие статические заряды из-за утечки изоляции. Первый человек, который подходит и касается оборудования, получает очень неприятный шок.Если статический заряд становится достаточно высоким, он разряжается до ближайшего проводника с более низким потенциалом. Мгновенные токи разряда могут достигать нескольких тысяч ампер и разрушать электронные компоненты системы. Заземление системы позволяет зарядам рассеиваться без повреждений.
Помехи сигналам от контуров заземления
Контуры заземления позволяют электрическим и магнитным помехам создавать источники напряжения шума. Эти источники напряжения добавляют к измеряемому сигналу и неотличимы от правильного сигнала.Контроллер, не зная, что он считывает неправильное значение, выполняет неправильное управляющее действие. Это может создать неудобные условия для пассажиров. Он также может приводить в движение механическое оборудование, вызывая преждевременный износ оборудования.
Помехи сигналам от магнитной индукции
Основными источниками этих шумовых проблем являются магнитная индукция и дисбаланс грунта.
Любая петля из проводящего материала образует однооборотный трансформатор, если присутствует магнитное поле, и магнитные поля возможны везде, где используется напряжение переменного тока.Магнитные поля создаются переменным напряжением, текущим по проводу, двигателями или люминесцентными лампами. В цепях очень низкого уровня оборванные провода, движущиеся в магнитном поле земли, могут даже вызвать проблемы. Магнитное поле заставляет ток течь в петле из проводящего материала, а сопротивление петли создает напряжение из этого тока.
Чем сильнее магнитное поле или чем выше частота магнитного поля, тем сильнее протекает ток. Закон Ома гласит, что ток, умноженный на сопротивление, равен напряжению.Таким образом, чем больше ток, тем больше источник шума напряжения.
На левом рисунке ниже показан контур заземления под действием магнитного поля. Магнитное поле заставляет электрический ток течь в контуре заземления. Сопротивление контура преобразует ток в источник напряжения между входом заземления контроллера и клеммой заземления датчика, как показано на правом рисунке ниже.
Контур заземления в магнитном поле (вверху слева) и напряжение датчика и напряжение контура заземления (вверху справа)Помехи сигналам из-за дисбаланса грунта
Электрические нагрузки могут варьироваться в зависимости от здания, создавая различные токи в системе заземления.Если в системе заземления протекает большой ток и датчик помещен в цепь с заземлением, которая также имеет контур заземления, то к сигналу добавляется разница напряжений между двумя точками заземления.
На рисунке ниже слева показан источник тока повреждения, подающий ток в систему заземления. Если, как в исследовании штата Мичиган, напряжение в системе заземления составляет два вольта, то к сигналу датчика добавляется напряжение повреждения в два вольта, как показано на рисунке ниже справа.
Закрытие
Контуры заземления могут сделать лучшую систему управления неэффективной. Если вы считаете, что контуры заземления могут вызывать проблемы с вашей системой HVAC / R, позвоните своему представителю BAPI или загрузите примечание по применению BAPI: Избегайте контуров заземления с нашего веб-сайта по адресу www.bapihvac.com
Список литературы
ANSI / NFPA 70, Национальный электротехнический кодекс 2002 — Национальная ассоциация противопожарной защиты
Стратегии строительства для минимизации паразитного напряжения на молочных фермах, Университет штата Мичиган
Генри Отт, Методы снижения шума в электронных системах, 2-е издание, Wiley and Sons, Нью-Йорк, Нью-Йорк , 1988
Michigan State Univ.Исследование и код NEC
Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил:
«Если заземляющий стержень сервисной панели вбить на 8 футов во влажную землю, которая не является настоящим песком, сопротивление между заземляющим стержнем и землей может быть всего 20 Ом. Предположим, что когда в здании используется электроэнергия, одна десятая ампера нейтрального тока течет на землю через заземляющий стержень. Основной электрический закон, называемый законом Ома, гласит, что ток, умноженный на сопротивление, равен напряжению.Умножение тока заземляющего стержня (0,1 ампера) на сопротивление заземляющего стержня (20 Ом) дает 2 вольта. Если один щуп вольтметра касается заземляющего стержня, а другой щуп вольтметра вдавливается в землю так далеко от заземляющего стержня, насколько это возможно для проводов, измеритель будет показывать примерно 2 вольта ».
Код NEC
Национальный электротехнический кодекс (NEC) также не помогает решить эту проблему. Статья 250 NEC требует, чтобы параллельные цепи заземлялись до ближайшего местного заземления здания, где бы в здании ни находились панели ответвительных цепей.Цифры в статье 250 показывают заземление на строительную сталь. Как указано в статье штата Мичиган, «территория» здания может варьироваться в зависимости от их измерений на величину до 2 вольт. Статья 647.4 (D) NEC (статья 647 называется «Чувствительное электронное оборудование») позволяет заземлению изменяться на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока.
Версия этого документа в формате pdf для печати
Основы контура заземления
Что такое контур заземления?
Контур заземления возникает, когда есть более одного пути заземления между двумя единицами оборудования.В дублированные наземные пути образуют эквивалент рамочной антенны, которая очень эффективно улавливает помехи токи. Преобразование сопротивления свинца эти токи превращаются в колебания напряжения. Как следствие замыкания на землю наведенные напряжения, заземление в система больше не стабильная потенциал, поэтому сигналы движутся на шуме. Шум становится частью программы сигнал.
Контур заземления — это обычное состояние проводки, при котором ток заземления может проходить по нескольким путям, чтобы вернуться к заземляющему электроду на СЕРВИСНОЙ ПАНЕЛИ.Все компьютеры с питанием от переменного тока подключены друг к другу через заземляющий провод в общей проводке здания. Компьютеры также могут быть соединены кабелями передачи данных. Поэтому компьютеры часто соединяются друг с другом более чем одним путем. Когда существует многолучевое соединение между компьютерными цепями, результирующее устройство известно как «контур заземления». Всякий раз, когда существует контур заземления, существует вероятность повреждения из-за ВНУТРЕННЕГО ЗЕМНОГО ШУМА.
Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов, или потенциал земли между двумя частями оборудования не идентичный.
Обычно разность потенциалов в заземлении вызывает протекание тока. в межкомпонентных соединениях. Это, в свою очередь, модулирует вход схемы и обрабатывается как любой другой сигнал, подаваемый через нормальный входы. Вот пример ситуации, когда два заземляющего оборудования соединены между собой через заземление сигнального провода и заземляющий провод сети. В этой ситуации в проводе течет ток 1А. что вызывает разницу в напряжении 0,1 В между этими двумя устройствами. точки заземления.
Из-за разницы напряжений между электронными приборами сигнал в соединительном проводе видит эту разницу, добавленную к сигналу. Это можно услышать как гудение на проводе, потому что переменный ток привести к тому, что разность напряжений этих потенциалов земли также будет Напряжение переменного тока. Это одна из причин шума 50 или 60 Гц, который вы слышите. в аудиосигнале (или увидеть в видеосигнале раздражающие горизонтальные полосы).
Еще одна проблема — ток, протекающий в заземляющем проводе сигнального кабеля.Этот ток проходит через кабель и через оборудование. Из способ, которым curren parsses не разработан, это может вызвать много шума к оборудованию или другим проблемам (например, зависанию компьютера). Многие дизайнеры рассчитывают на то, что земля будет заземлена, и не оптимизируют их конструкция исключает их чувствительность к шумам от земли. Если вы дизайнер продукта, не забудьте позаботиться о том, чтобы контур заземления ток не вызывает проблем в вашем оборудовании, проектируя правильная схема заземления внутри оборудования.
Почему контур заземления является проблемой?
Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, чтобы сделать неприятный контуры заземления. Проблемы контура заземления — одна из самых распространенных проблем шума в аудиосистемах. Типичным признаком проблемы с контуром заземления является слышно 50 Гц или 60 Гц (в зависимости от частоты сетевого напряжения, используемой в ваша страна) шум в звуке. Наиболее частая ситуация, когда вы сталкиваетесь с проблемами контура заземления, когда ваш система включает оборудование, подключенное к заземленной розетке, и антенная сеть или оборудование, подключенное к разным заземленным розеткам по комнате.
Все подключено к единой электросети, которая обычно подключается к все контакты заземления во всех розетках в одной комнате. Тогда антенная сеть также заземлен к той же точке заземления. Обычно это нормально, поскольку заземления соединены друг с другом только звездообразным образом от центрального заземляющего провода (ведущего к реальной Земле через заземление). кабель или металлическая труба) кабели заземления проходят через силовые кабели в оборудование.
Как только вы примете во внимание, что часть вашего оборудования связана с экранированный кабель вы, скорее всего, столкнетесь с некоторыми проблемами.Вполне возможно, что токи могут течь от одной части оборудования в кабель заземления, в другую часть оборудования, а затем обратно в первую часть через экранированный аудиокабель. Эта проволочная петля также может улавливать помехи от близлежащих магнитных полей и радиопередатчиков.
В результате нежелательный сигнал будет усиливаться до тех пор, пока не будет слышно и явно нежелательно. Даже разница в напряжении ниже чем 1 мВ может вызвать раздражающий жужжащий звук в вашей аудиосистеме.
Проблема со слышимым шумом от вашей аудиосистемы, когда другой электронные компоненты (холодильник, кулер для воды и т. д.)) может быть результатом загрязненного заземляющего / нейтрального проводника в вашей проводке кондиционера и контур заземления в нашей аудиосистеме. Этот может произойти при включении определенного типа устройств. Обычно их мощность поставки нелинейны и выбрасывают мусор обратно на нейтраль и / или заземляющие проводники. Обычно линейные кондиционеры или устройства ИБП не подходят. что-нибудь, чтобы помочь решить эту проблему.
Распространенные причины неполадок компьютерной системы
Много раз, когда пользователь думает, что его система «плохая» или «испортилась» неисправность имеет электрическую или магнитную природу.Проблемы с монитором очень часто вызваны близлежащими магнитными полями, гармоники нейтрального провода или наведенные / передаваемые электрические помехи. Периодические зависания компьютеров очень часто вызваны: контур заземления, электрическое явление, которое иногда проявляется сам, когда система и ее периферийные устройства неправильно подключены к различных электрических цепей . Многие даже не знают, что их стена розетка правильно подключена и заземлена, что абсолютно необходимо для компьютера и периферийные устройства для надежной и безопасной работы.
Вы исключили заземление в своей компьютерной системе? Контуры заземления могут вызвать проблемы с подключениями к локальной сети, если не правильно подключен. Контур заземления, вызванный подключением RS-232 к другому компьютеру может вызвать зависание компьютера.
Когда контур заземления не является проблемой
Контур заземления не вызывает проблем при соблюдении всех перечисленных ниже условий. вещь верна:
- Ни один из проводов контура не пропускает ток
- Петля не подвергается воздействию внешних изменяющихся магнитных полей.
- Рядом отсутствуют радиопомехи
Если в каких-либо проводах есть ток, значит, есть потенциальная разница, которая заставляет ток течь и по другим проводам что вызывает проблемы.Петля также будет действовать как катушка и забирать ток из изменяющегося магнитного поля. поля вокруг него. Проволочная петля также действует как антенна, принимающая радио. сигналы.
О каком размере проблемы разности потенциалов земли идет речь?
В литературе говорится о синфазном шуме от 1 до 2 вольт в «хорошо заземленных» установках и более 20 Вольт в «слабо заземленных» установках. В литературе также говорится о токе, измеренном в сети. служебное заземление (в большом здании) в амперах.
Откуда эта разница тока и напряжения?
Утечка тока конденсаторов между горячим и заземленным и между нейтралью и землей в течение Например, основные фильтры, вызовите ток в заземляющих проводах (и контурах заземления). Ток утечки обычно измеряется в миллиамперах (обычно меньше чем 1 мА в компьютерном оборудовании) на одно оборудование. Когда вы подводите итог, может быть, сотни такого оборудования вы легко можете получить в амперах.
Емкость между линией и землей больших нагревателей и двигателей, для Например, может быть намного больше, чем емкость конденсаторов фильтра.Токи от этого источника обычно порядка 1 ампер (а не 0,1 А или 10 А)
Даже очень небольшое индуцированное напряжение может вызвать очень большой ток в контур заземления, потому что сопротивление (и индуктивность) очень низкий. Эти токи действительно могут составлять десятки ампер. Индукция тока может быть вызвана, например, кабелями, по которым проходят большие токи. и от трансформаторов.
Что могут сделать эти заземляющие токи и разность напряжений?
Небольшая разница в напряжении просто приводит к добавлению шума к сигналам.Это может вызвать жужжание звука и помехи для видеосигнала. и ошибки передачи в компьютерные сети.
Более высокие токи могут вызвать более серьезные проблемы, такие как искрение в соединениях, повреждает оборудование и сгорает проводка. Мой собственный опыт в этой области ограничен к искрообразующим разъемам, нагревательным кабелям и поврежденным платам последовательного порта компьютера. Я читал о сгоревших сигнальных кабелях и дымящих компьютерах из-за перепад заземления и вызванные ими большие токи.Так что будьте осторожны об этой потенциальной проблеме и не выполняйте глупых установок.
Томи Энгдал <[email protected]>
Контуры заземления и неизолированные объекты общего пользования
Любой установщик оборудования для управления промышленными процессами скажет вам, что контуры заземления являются одной из самых неприятных ошибок подключения сигналов, которые необходимо диагностировать и исправить. Шаги, необходимые для их устранения, часто приравниваются к чему-то столь же загадочному, как магические заклинания. Аналогичным образом рассматриваются проблемы, связанные с совместным использованием неизолированных общин.Проблемы с совместным возвратом сигнала часто даже путают с контурами заземления. Контуры заземления и общие общие могут вызвать непредсказуемые сигналы и сделать ваш текущий контур непригодным для использования.
Лучший и наиболее практичный способ исправить эти проблемы с сигналом — это в первую очередь предотвратить их возникновение, спланировав правильную разводку устройства и следуя конкретным передовым методикам. Однако, если вы подозреваете, что у вас есть проблемы с сигналом, связанные с контурами заземления или общими общими узлами в существующей сети, нет необходимости вытаскивать книгу и волшебную палочку «Контуры заземления и неизолированных общин» и волшебную палочку, есть некоторые предсказуемые симптомы, которые вы можете ищите, чтобы диагностировать проблему.
Прежде всего, вам необходимо знать определение контуров заземления и общих общих линий. Контур заземления — это поток тока от одной сигнальной земли к другой из-за разницы напряжений между двумя заземлениями. Это может произойти, если два устройства в сети заземлены в разных местах, и в одном из этих мест сигнальная земля испытывает более высокий потенциал напряжения. Любой инженер-электрик скажет вам, что любой перепад напряжения приведет к протеканию тока.Именно этот ток вызывает симптомы замыкания на землю.
Общий неизолированный общий провод может стать проблематичным при неправильном подключении. Устройства с несколькими входами и выходами, особенно те, через которые проходит более одного цикла, печально известны трудностями, связанными с общим доступом. Их обычно называют «контурами заземления» из-за схожести их симптомов, но они не являются настоящими контурами заземления, поскольку они не возникают из-за проблем с заземлением. Проблемы такого рода возникают, когда узлы создаются, намеренно или нет, до достижения всех применимых устройств в цепи, требующих чистого, предсказуемого сигнала.Это приведет к смешанному потоку тока и усреднению сигнала, что приведет к появлению непригодного для использования сигнала процесса.
На рисунке 1 выше показан источник питания 24 В постоянного тока, обеспечивающий напряжение в токовой петле. Этот контур подключается параллельно к двум парам датчик уровня / локальный дисплей, предположительно, на разных резервуарах в совершенно разных местах на промышленном объекте. Два датчика используют подаваемое на них напряжение для генерации технологического сигнала 4–20 мА, который затем проходит по проводу, соединяющему их с локальным дисплеем, отображающим переменную процесса.Схема замыкается путем возврата к источнику питания.
Все это звучит как типичная функциональная токовая петля, пока вы не заметите, что оба входа питания локальных дисплеев заземлены в их отдельных местах. Заземление 2, поскольку среда, в которой он расположен, испытывает больше шума и имеет худшие соединения для его заземляющих шин, чем другое место, имеет более высокий потенциал напряжения, чем земля 1. Это приводит к протеканию тока, обозначенному выше IGND.Этот ток проходит по тем же проводам, которые должны передавать на дисплеи только технологический сигнал 4-20 мА, в результате чего два тока смешиваются, и технологический сигнал становится непредсказуемым и, следовательно, непригодным для использования.
В примере, показанном на Рисунке 1, это было устройство в контуре 4–20 мА, которое вводило ток заземления в контур. Однако возможно, что причиной может быть устройство, не расположенное на шлейфе. Подумайте, подключено ли какое-либо устройство в контуре через неизолированный RS-485 или через вход / выход питания к устройству, имеющему потенциал земли с более высоким напряжением.Как правило, лучше избегать многоточечного заземления устройств в токовой петле. Потенциалы заземления часто не равны из-за различных электрических шумов, сопротивления пути заземления и плохой первоначальной установки шины питания.
Контур заземления также может возникать в системе с одноточечным заземлением. Рассмотрим систему, в которой не используются изолированные провода витой пары, например, показанная на рисунке 2. Могут быть внесены любые электрические помехи, воспринимаемые заземляющим проводом, такие как паразитные магнитные поля или шум источника питания переменного тока 50/60 Гц на токовый контур и приведет к непредсказуемому сигналу.Этот тип контура заземления чаще всего возникает из-за неправильной прокладки пути и отсутствия экранированной витой пары.
На рис. 3 показана правильно смонтированная токовая петля, а на рис. 4 — неправильно смонтированная токовая петля. На рисунке 3 потенциал напряжения, подаваемый источником питания, вызывает прохождение тока к каждому из трех параллельных передатчиков. Этот ток используется для создания токового сигнала 4-20 мА, который отправляется на локальные дисплеи, отображающие переменную процесса.
На рисунке 4 устройства были подключены бессистемно, потому что в последовательной электрической цепи порядок устройств обычно не имеет значения.Однако на общем общем устройстве с несколькими входами был создан узел, соединяющий текущие сигналы. Это приводит к смешиванию и усреднению токов технологического сигнала, в результате чего на всех дисплеях отображается одно и то же значение. На этих изображениях проблема такого типа кажется тривиальной для устранения
: просто удалите дополнительный переход из цепи. Однако, когда сложные сети оборудования сталкиваются с той же проблемой, решение не всегда бывает таким интуитивным.
Подобные проблемы чаще всего возникают из-за использования неизолированных устройств с несколькими входами, таких как недорогие ПЛК.Поскольку устройство имеет несколько физических токовых входов, установщик может предположить, что каждый вход изолирован. Однако, если эти входы соединены внутри, токовые сигналы сливаются, что приводит к усреднению тока перед продолжением по цепи. Эта проблема также может быть вызвана неправильной разводкой трехпроводных устройств или сложных многоконтурных сетей.
Из-за природы проблем с сигнальным соединением и уникальных переменных, присутствующих на промышленных объектах, симптомы, вызванные этими проблемами, также будут уникальными.Тем не менее, есть некоторые общие признаки, на которые можно обратить внимание, если вы подозреваете, что испытываете одну из этих проблем с существующей сетью.
НЕПРЕДСКАЗУЕМЫЕ КОЛЕБАНИЯ СИГНАЛА 4-20 МА
Непредсказуемые колебания сигнала — верный признак того, что что-то мешает работе вашего токового контура. Вероятно, это результат электрических помех или замыкания на землю.
ДОБАВЛЯЕТ, ОБНАРУЖИВАЕТ ИЛИ ВЫВОДИТ ДИСПЛЕЙНЫЙ СИГНАЛ ЗА ПРЕДЕЛЫ ДИАПАЗОНА
Сигнал может также испытывать сложение или вычитание на некоторое значение от одной точки цикла к другой.Это сложение или вычитание может даже вывести сигнал за пределы диапазона устройств, предназначенных для измерения сигнала.
ОБЩИЕ ОБЩИЕ ОБЩИЕ, ВЫЗЫВАЮЩИЕ УСРЕДНИЕ СИГНАЛА
Проблемы с общими неизолированными общими элементами обычно усредняют сигнал процесса, вызывая регистрацию одной и той же переменной значения на устройствах, которые должны получать разные переменные процесса.
ФИЗИЧЕСКОЕ ПОВРЕЖДЕНИЕ КОМПОНЕНТОВ
Наиболее серьезным (и, к счастью, редким) признаком этих проблем является физическое повреждение устройств в сети.Например, если разница напряжений между двумя заземлениями окажется значительной, это может привести к перегрузке чувствительной сигнальной электроники таких устройств, как сигнальные входы и выходы. Повреждение электроники более высокого уровня, такой как блоки питания и реле, чрезвычайно редки из-за их способности выдерживать очень высокие потенциалы напряжения.
Как упоминалось ранее, лучший способ ремонта контуров заземления — это в первую очередь избегать их. Проблемы с многоточечным заземлением можно решить, используя только одноточечное заземление.Любые два места заземления будут иметь разные потенциалы напряжения, хотя серьезность этой разницы зависит от среды, в которой они расположены. По возможности используйте плавающие (незаземленные) устройства. Если возникает ситуация, когда несколько устройств в сети должны быть заземлены (по соображениям безопасности и т. Д.), Убедитесь, что заземление выполнено по всей системе, по возможности, с помощью экранированного кабеля через кабелепровод.
Все провода в системе должны быть экранированной витой парой, в которой используются оба провода.По возможности и в рамках бюджета все сигналы должны быть изолированы с помощью устройств с изолированными входами и выходами. Наконец, всегда помните о неизолированных многоконтурных устройствах и проявляйте особую осторожность при планировании проводки. Следуя этим нескольким передовым методам установки всякий раз, когда вы устанавливаете оборудование для управления технологическим процессом, вы избавитесь от головной боли, пытаясь диагностировать и устранять эти проблемы в будущем.
Контуры заземления и неизолированные общие контуры могут доставлять неудобства как установщикам оборудования управления производственными процессами, так и обслуживающему персоналу, но их можно легко избежать с помощью правильного планирования и установки.Контуры заземления создают проблемы для систем, когда несколько устройств заземлены в разных местах, которые имеют разные потенциалы напряжения, или при неправильном подключении заземленных устройств возникает шум, создаваемый их заземлением. Неизолированные общие ресурсы общего пользования могут стать проблемой, когда текущие пути пересекаются и становятся непредсказуемыми. Эти две проблемы подключения сигналов могут привести к непредсказуемым, неправильным, выходящим за пределы диапазона или усредненным сигналам процесса и, в редких случаях, к повреждению устройств. Всего этого можно избежать, не используя магические заклинания, а следуя стандартным передовым методам установки, которые могут уменьшить или потенциально устранить текущее затруднительное положение.
Если у вас есть идея для будущей темы, которая будет представлена в «Текущем затруднительном положении», свяжитесь с Precision Digital по телефону [электронная почта защищена]
Саймоном Паонессой — техническим писателем, Precision Digital Corporation
Загрузите это приложение Примечание в формате PDF.
проводка — Что такое контур заземления в электросети?
«Контур заземления» — это фраза из аудиодизайна. Спросите звукорежиссера.
Это практически не предмет в электросети, и давайте подумаем, почему.Зона безопасности имеет две должности:
- Возврат естественный ток (электростатический разряд, молния) к источнику (являющемуся землей)
- Возврат вызванного человеком отказ ток к источнику (нейтраль).
Тема «контура заземления» — это управление и координация токов, протекающих по защитному заземлению — это логика, да? Какие это токи? Нет токов . Конструкция системы не требует никакого тока на защитном заземлении, за исключением условий неисправности (которые должны быть достаточно продолжительными, чтобы сработать выключатель или GFCI).
С точки зрения проектирования сети, защитное заземление — это тот случай, когда нам нужна «паутина» соединений. Это нормально, когда площадки пересекаются между разными схемами и даже услугами. Мы протягиваем провод заземления к пристройке, у которой тоже есть заземляющий стержень (частично: мы не хотим, чтобы молния проходила через провод к основному зданию). Чем больше, тем веселее, тем безопаснее.
И поэтому мы даем звукорежиссерам изолированные площадки 🙂
Теперь «контуры заземления» важны в аудио- и компьютерных сетях; но поймите, что в мире электроники «GND» — это совершенно другое животное: GND — это «общий» или «опорный сигнал нулевого напряжения» или то, что мы в сети называем «нейтралью».И это часто используется в качестве «сигнала земли», или «нулевой точки» в ссылочном сигнале (например, RS-232, который имеет 1 общие и многие сигнальных провода). В отличие от «дифференциального» сигнала, такого как RS-422 (который имеет 2 сигнальных провода на сигнал, и имеет значение только разница между ними).
В частности, при сетевой / дистанционной передаче сигналов, если этот «общий» мост соединен с защитным заземлением сети переменного тока в двух местах , он становится уязвимым для разницы в напряжении в этой сети защитного заземления, которой не должно быть.
Но возможно постоянное замыкание на землю, которое слишком мало для срабатывания выключателя, а GFCI не установлены … и это может вызвать градиент милливольт в сети защитного заземления, пульсирующий, конечно, с частотой 50/60 Гц. Или устройство обработки сигналов может пропускать шум обратно через свой источник питания в сеть переменного тока, которая затем может подавать его на защитное заземление через емкостную связь.
Урок состоит в том, что проектировщики аудио и сетей должны быть осторожны, рассматривая защитное заземление сети переменного тока как своего рода опорный нулевой сигнал.Кроме того, они должны быть осторожны с привязкой проводов или экранов в своем кабеле к защитному заземлению сети переменного тока, чтобы этот провод внезапно не потребовал от этого провода десятки или сотни ампер во время замыкания на землю с болтовым креплением.
Основы заземления | Что такое контур заземления?
Контур заземления — это нежелательный путь тока в электрической цепи. Контуры заземления возникают всякий раз, когда заземляющий провод электрической системы подключается к заземляющей пластине в нескольких точках.
Не только контуры заземления могут вызывать шум в сигнальных кабелях прибора, но в тяжелых случаях могут даже перегревать сигнальный кабель прибора и, таким образом, представлять опасность возгорания!
Явление контуров заземления показано на схематической диаграмме ниже:
Причины замыкания на землю
Существует несколько причин возникновения контуров заземления в любой установке КИПиА.Некоторые из них перечислены ниже:
- Разница потенциалов между точками заземляющего провода, к которым были подключены выводы заземления.
- Индуктивная муфта
- Емкостная муфта
- Использование инструментов с внутренним заземлением внутри уже заземленного контура
- Экраны кабелей заземлены с обоих концов
- Заземленные термопары с неизолированными преобразователями
- Четырехпроводные передатчики, используемые в качестве входа для приемного прибора, заземленного на другое заземление
Существует несколько методов ограничения контуров заземления, которые вносят нежелательное шумовое напряжение в сигнальные кабели прибора.
Однако есть два наиболее эффективных метода уменьшения контуров заземления:
- Одноточечное заземление
- Использование дифференциальных входов
Одноточечное заземление включает заземление контрольно-измерительной аппаратуры в одной точке. Такой подход значительно снижает шумовое напряжение, создаваемое контурами заземления из нескольких точек заземления.
Дифференциальные входы используются для подавления напряжения шума, которое может появиться в измерительной цепи.
Одним из очень эффективных способов полной изоляции измерительной системы от контуров заземления является использование инструментов с батарейным питанием. Однако из-за ограниченного срока службы батареи они используются редко.
Импедансная муфта (или кондуктивная муфта)
Если две или более электрических цепей имеют общие проводники, между разными цепями может быть некоторая связь.
Когда сигнальный ток из одной цепи возвращается по общему проводнику, он создает напряжение ошибки на обратной шине, которое влияет на другие сигналы.Напряжение ошибки связано с сопротивлением обратного провода.
Один из способов уменьшить влияние импедансной связи — минимизировать импеданс обратного провода.
Второе решение — избежать контакта между цепями и использовать отдельные возвратные линии для каждой отдельной цепи.
Индуктивная муфта
Когда по проводу проходит электрический ток, он создает магнитное поле; если этот провод находится рядом с другим проводом, по которому также проходит электрический ток или сигнал, создаваемые ими магнитные поля взаимодействуют друг с другом, в результате чего в проводах индуцируется шумовое напряжение.
Это принцип, по которому происходит индуктивная связь в проводке сигнального кабеля КИП.
Как мы уже знаем, индуктивность — это свойство, присущее любому проводнику, благодаря которому энергия накапливается в магнитном поле, образованном током, протекающим через провод.
Взаимная индуктивность между параллельными проводами образует мост. посредством чего переменный ток через один провод может индуцировать переменное напряжение по длине другого провода.
Это становится еще более явным, если у нас есть силовые кабели и сигнальные кабели инструментов, проходящие через один и тот же канал или канал.
Простой способ уменьшить индуктивную связь сигналов — просто разделить проводники, несущие несовместимые сигналы.
Вот почему электрические силовые проводники и сигнальные кабели инструментов почти никогда не встречаются в одном и том же кабелепроводе или работают вместе.
Наиболее практичный метод уменьшения индуктивной связи и обеспечения устойчивости к магнитному полю сигнальным проводам прибора — скручивать пару проводов, а не позволять им лежать вдоль параллельных прямых линий.Это значительно снижает влияние электромагнитной индукции.
Электромагнитная индукция снижается, потому что, когда провода скручены так, чтобы создать серию петель вместо одной большой петли, индуктивные эффекты внешнего магнитного поля имеют тенденцию нейтрализоваться, тем самым уменьшая наведенное шумовое напряжение на сигнальных проводах прибора из-за внешнее магнитное поле.
Ground Loops — устранение системного шума и гудения
Вы только что подключили свою систему, и гудение или гул не утихают.Вы запускаете свое оборудование через кондиционеры и бьетесь головой о стену, пытаясь понять, в чем дело. Поздравляем — вы только что вошли в зону The Ground Loop Zone ..
Несколько недель назад я рвал на себе волосы после того, как установил новый компонент в Reference System 3 для обзора. Это был усилитель с трехконтактным кабелем питания. Сразу после установки усилителя в мою систему из моих динамиков начал поступать очень заметный гул с частотой 60 Гц.
Если это случилось с вами, скорее всего, это контур заземления между вашим кабельным телевидением и другим компонентом в вашей системе (например, усилителем или активным сабвуфером). Теперь, как решить эту проблему? Во-первых, это помогает точно определить, что такое контур заземления и как он может повлиять на нашу систему домашнего кинотеатра.
Диагностика и устранение неисправностейEd itorial Замечание по контурам заземления
Когда два или более устройства подключены к общей земле через разные пути может возникнуть шум на пути заземления или петля заземления.Таким образом, система, заземленная в двух разных точках, с разность потенциалов между двумя землями может вызвать нежелательный шум напряжение в цепях трактов. Токи текут через эти множественные пути и создают напряжения, которые могут вызвать повреждение, шум или 50 Гц / 60 Гц в аудио или видео оборудовании. Контур заземления может быть устранено одним из двух способов:
- Удалите один из путей заземления, таким образом преобразовав систему в одноточечное заземление.
- Изолируйте один из путей заземления с помощью изолирующего трансформатора, общий режимный дроссель, оптический ответвитель, симметричная схема или частотно-селективный заземление.
Наиболее практичным и обычно наиболее экономичным методом для бытовых аудиоприложений является использование изолирующего трансформатора. Изолирующий трансформатор — это устройство, которое в случае кабеля сигналов, позволяет всем желаемым сигналам проходить свободно, в то время как нарушение целостности заземления, следовательно, разрушение контуров заземления. При использовании изолирующего трансформатора напряжение шума заземления теперь будет появляются между обмотками трансформатора, а не входом цепи. Шумовая связь в первую очередь зависит от паразитной емкости. между обмотками трансформатора и может быть уменьшена путем размещения экрана между обмотками.Это эффективный метод реализовать, предполагая, что трансформатор имеет достаточную пропускную способность, не слишком дорогостоящий или громоздкий, и прямой путь сигнала постоянного тока не требуется для заявление.
Чтобы точно определить правильное решение проблемы, сначала необходимо найти и изолировать ее. Например, если вы просто начнете драться, меняя местами оборудование, кабели и все сразу, вы никогда не узнаете, что на самом деле вызвало (или устранило) проблему.Кроме того, вы можете в конечном итоге выполнять все больше и больше работы, поскольку вы тратите энергию в областях, которые не имеют никакого отношения к решаемой проблеме.
Начни с простого. Устранение неисправностей контуров заземления включает в себя наведение порядка и проверку нескольких основных, общих элементов, чтобы увидеть, является ли проблема простой или сложной. Например, если регулировка громкости на вашем процессоре / ресивере не изменяет уровень шума, проблема должна возникать после этой точки. Если это произошло раньше, то приемник / процессор обычно увеличивает общий уровень шума.Есть смысл?
Методически работать следующим образом:
- Начните с процессора-приемника, чтобы определить, связано ли гудение / гудение с источником или с контуром заземления, возникающим после каскада усиления.
- Обратите внимание на любые недавние изменения в системе, которые привели к этой проблеме. Скорее всего, вам будет легче локализовать проблему, если она только начинается с добавления нового оборудования.
- Что вы можете сделать быстро и легко, чтобы изолировать или идентифицировать проблему и указать правильное решение (т.е. отсоединив кабель от стены, чтобы проверить, не является ли кабельное телевидение источником контура заземления.)
Еще один тест для устранения вашего ресивера или процессора — проверить, изменяется ли гудение в зависимости от того, какой вход вы выбрали (DVD-плеер , Кабельное телевидение и т. Д.) Гудение меняется или исчезает при выборе другого входа? Нет? Тогда ваша проблема возникает на более позднем этапе в системе (скорее всего, это контур заземления, вызванный добавлением усилителя или активного сабвуфера с трехконтактным силовым кабелем.)
Последний тест — отсоединить кабель кабельного телевидения от стены. Гул уходит? Так оно и было в случае системы ссылок 3. Eureka! В системе должен быть контур заземления, связанный с линией кабельного телевидения.
Устранение проблемыДругие распространенные причины Гул и жужжание
Хотя в этой статье рассматривается очень распространенный контур заземления проблема, поймите, что существует множество способов, которыми система жужжит и гул может войти в установку вашего домашнего кинотеатра.Общая проблема № 1: Проверьте, есть ли у вас толстый шнур питания или розетка в стене. который изношен и не будет держаться.Если контакты под напряжением / нейтралью / заземлением включены вилка заземления делает прерывистый или световой контакт с хвостовиком на внутренней стороне выпускного отверстия, это может вызвать гул через систему. Лучшее решение для этого — заменить розетку с промышленной версией, доступной в Home Depot примерно за 4 доллара. В промышленные розетки лучше удерживают силовые кабели надежно. Если вы устанавливаете потолочное крепление для фронтальной проекционной системы, эта розетка обязательна.
Общая проблема № 2: Проверьте полярность розетки — возможно, она подключена наоборот.Вы можете Купите устройство для проверки полярности в Home Depot примерно за 5 долларов. Это один из Прежде всего, вы можете проверить, не помогает ли отключение кабельной приставки. удалите гул (и в некоторых случаях обратная полярность может быть по-прежнему виновата.)Общая проблема № 3: Диммеры, люминесцентные лампы и другие приборы, та же цепь или общее заземление с оборудованием домашнего кинотеатра может вызвать мычание.
Существует как минимум два практических способа решить проблему контура заземления в вашей системе.Как только вы узнаете, что проблема связана с заземлением кабельного телевидения и заземлением усилителя, как в этом случае (и во многих случаях), вы можете поднять заземление на любом устройстве на линейном уровне. Я считаю, что намного легче поднять землю на линии кабельного телевидения, чем на многоканальных входах 5.1, идущих в усилитель!
НИКОГДА не используйте адаптер переменного тока с тремя на два контакта для устранения проблемы с контуром заземления. Эти устройства предназначены для обеспечения безопасного заземления (через винт крышки на заземленную розетку) в случае использования трехконтактной вилки с двухконтактной розеткой.Лучше всего безопасно поднимать землю на уровне линии.
Используйте изолятор заземления кабельного телевиденияEd itorial Примечание о методе сигнального заземления
Можно попробовать использовать грунтовый подъемник в ситуациях, когда два заземленные части оборудования с несбалансированными подключениями Проблемы с гудением, связанные с контуром заземления. Подъем грунта в неуравновешенном состоянии соединения работают эффективно только тогда, когда оба элемента оборудования правильно заземлен в той же точке. В некоторых случаях проблема с гудением может становится хуже, если используется грунтовый подъемник.Таким образом, это так называемое «исправление» следует использовать с особой осторожностью и обычно только в качестве временного решение. Если соответствующее оборудование правильно заземлено, просто поднимите сигнальное заземление между оборудованием, может вызвать сильное жужжание и потенциально повредить входной усилитель приемного оборудования из-за протекания паразитных токов на незаземленном оборудовании. Лучший метод использования заземления — это модифицировать кабель, чтобы включить путь переменного тока между заземлением или небольшой конденсатор.Это уменьшит возможность захвата заземленного кабеля. Радиочастотные помехи, но также могут вызывать колебания частотной характеристики в зависимости от размера конденсатора и импеданса источника оборудования. Потому что это, по нашему мнению, лучшее решение для устранения несбалансированного соединения в контурах заземления используется изолирующий трансформатор аудиолинии.
Наиболее распространенным и простым решением является установка изолятора заземления кабельного телевидения.Jensen Transformers существует уже более 30 лет и является одним из лучших (рекомендованная производителем розничная цена 59,95 долларов США), поскольку имеет плоскую частотную характеристику в диапазоне от 2 до 1300 МГц, охватывающую спектр VHF / FM / UHF / CATV. Почему это важно? Ну, для начала, если вы планируете использовать цифровой кабель, кабельный модем или услуги по запросу, вам лучше не покупать дешевый радиочастотный фильтр в местном магазине электроники, поскольку он, скорее всего, отфильтрует больше, чем вы рассчитывали. Кроме того, мы уважаем компанию, которая измеряет свои продукты и готова опубликовать график частотной характеристики в подтверждение своих заявлений.Плоская частотная характеристика от 2 МГц до 1300 МГц гарантирует отсутствие потери качества сигнала и отличный результат.
Мы уже там?Дешевые решения, которые звучат слишком хорошо, чтобы быть правдой — вероятно,
Один из самых популярных методов устранения заземления петли — взять преобразователь 75 Ом на 300 Ом, подключенный ко второму согласующий трансформатор с двумя винтовыми зажимами на стороне 300 Ом, и поместив его в канал кабельного телевидения.Хотя это может сломать контур заземления, если вы просто не подписываетесь на основной кабель и не даете Хочу сказать о качестве сигнала, мы бы порекомендовали избегать этой магии МакГайвера.
Одним словом — да. Это лекарство примерно для 80% проблем с контуром заземления. Для этих других проблем есть другие решения, но мы хотели охватить этот часто встречающийся сценарий и наметить несколько быстрых и простых решений, чтобы выбраться из тупика контура заземления.Если у вас есть контур заземления, вызванный вашим кабельным телевидением , запуском , не ходите и возьмите одну из этих красавиц — вы не пожалеете об этом.
Turtle Tough | Что такое контур заземления и как с ним бороться?
Были ли у вас проблемы с управлением технологическим процессом и электрическими приборами? Источником могут быть контуры заземления. Что это?
Потенциально вредная петля, образующаяся, когда две или более точек в электрической системе, обычно находящихся под потенциалом земли, соединены токопроводящей дорожкой, так что одна или обе точки не имеют одинакового потенциала земли.«Нежелательные контуры заземления могут вызвать неточные показания датчика, отрицательно влияя на сигналы приборов.
Контур заземления существует, когда цепь подключена к заземлению в двух или более точках. Поскольку потенциал земли меняется от точки к точке, два или более соединения с землей вызывают протекание токов. Если ток течет по сигнальному проводу, в результате получается зашумленный сигнал смещения.
Классическим признаком контура заземления является датчик, который правильно считывает данные в буферах, но дает показания с большой ошибкой при помещении в технологическую жидкость.При типичном технологическом измерении датчик pH подключается через технологическую жидкость и трубопровод к заземлению. Если цепь в анализаторе pH подключается ко второму заземлению, через электрод сравнения будет протекать ток. На электроде сравнения возникает напряжение, пропорциональное току и сопротивлению электрода. Поскольку напряжение идет последовательно с напряжениями других элементов, ток контура заземления приводит к тому, что показание pH существенно отличается от ожидаемого значения.Токи, создаваемые контурами заземления, часто нестабильны, поэтому показания pH, на которые влияют контуры заземления, часто бывают зашумленными.
Проверка контура заземления!
Если система приборов начинает работать странно или беспорядочно, убедитесь, что вы устранили все непредусмотренные заземляющие соединения. Или если ваши показания колеблются, когда вы касаетесь кабеля или перемещаете датчик. Это может произойти при добавлении или замене двигателя или мешалки. Любая электрическая деталь, с которой работают — может нарушить баланс и требует повторной проверки.
Используйте следующую процедуру для проверки контуров заземления:
- Извлеките датчик pH из технологической жидкости.
- Откалибруйте датчик в буферах. Убедитесь, что нет прямого электрического соединения между контейнером, содержащим буфер, и технологической жидкостью или трубопроводом.
- Зачистите концы толстого провода.
- Подсоедините один конец провода к технологическому трубопроводу или, лучше, поместите его в технологическую жидкость. Другой конец провода поместите в емкость с буфером и датчиком.Провод обеспечивает электрическое соединение между технологическим процессом и датчиком
Если показание pH изменилось или стало шумным после подключения, значит, существует контур заземления. Если никаких симптомов не наблюдается, петли заземления, вероятно, не существует.
Наличие контуров заземления — это не просто то, что искажает показания, но, скорее, то, что также поляризует и повреждает датчик. Поляризация датчика может привести к ошибочным показаниям даже после удаления из контура заземления.Поляризация может со временем рассеяться, чтобы вернуться к более нормальному отклику, хотя из-за этого может потребоваться повторная калибровка. Со временем наличие контура заземления, в котором установлен датчик, полностью нарушит чувствительность датчика и приведет к преждевременному выходу из строя. Эта ситуация требует немедленных корректирующих действий.
Что дальше?
- Намного легче избежать контуров заземления во время установки и планирования проекта, чем диагностировать и устранять их в полевых условиях после установки.
- Часто разные земли и часто разделены расстоянием
- Не всегда только в контуре 4-20 мА
- Учитывать неизолированный RS-485 сигнальных проводов
- Учитывать неизолированные земли питания / выходной мощности на входе
- Потенциалы земли НЕ равны
- RGND вызвано несколькими факторами, такими как:
- Шум
- Сопротивление заземляющего тракта
- Плохая начальная установка шин питания
Итак, если вы не можете устранить условия для контуров заземления, что делать дальше? Вы можете использовать изоляторы сигналов.Эти устройства прерывают гальванический путь (непрерывность постоянного тока) между всеми заземлениями, позволяя аналоговому сигналу распространяться по контуру. Изолятор также может устранить электрические помехи при непрерывности переменного тока (синфазное напряжение).
Есть несколько способов сделать это, но независимо от выбранного вами метода изоляции изолятор должен обеспечивать изоляцию входа, выхода и питания. Если у вас нет этой трехсторонней развязки, может возникнуть дополнительный контур заземления между источником питания изолятора и входным и / или выходным сигналом процесса.
Остановка заземления в будущем!
Чтобы свести к минимуму опасность введения этих петель в сложную сеть, вам следует использовать специальную шину заземления контрольно-измерительной системы и подключить к ней заземление от общего сигнала, заземления шкафа и заземления источника переменного тока КИП. Автобус привязан к земле через строительную землю и решетку заземления растений.
Но это может быть намного сложнее, чем кажется. Например, у вас редко будет только один цикл инструментовки.Фактически, у вас могут быть сотни или даже тысячи.
Многие из них упакованы вместе в шкафах для измерительных систем, поставляемых поставщиками. Как правило, они содержат общую шину сигнала постоянного тока и общую шину источника питания. Производитель обычно связывает эти шины вместе в шкафах на главной шине заземления.