Наклон солнечного коллектора: Ориентация и угол наклона солнечных коллекторов |

Опубликовано в Разное
/
18 Окт 2019

Содержание

Ориентация и угол наклона солнечных коллекторов |

Что бы производительность гелиосистемы была максимальной очень важна ориентация и угол наклона солнечного коллектора на монтажной площадке. Для поглощения  максимального количества солнечной энергии плоскость солнечного коллектора должна быть всегда перпендикулярна солнечным лучам. Однако солнце светит на Земную поверхность в зависимости от времени суток и года всегда под различным углом. Поэтому для монтажа солнечных коллекторов необходимо знать оптимальную ориентацию в пространстве абсорбера солнечного коллектора.

Для оценки оптимального ориентирования коллекторов учитывается вращение Земли вокруг Солнца и вокруг своей оси, а так же изменение расстояния от Солнца. Для определения положения солнечного коллектора или солнечной батареи необходимо учитывать основные угловые параметры:

  • широта места установки φ;
  • часовой угол ω;
  • угол солнечного склонения δ;
  • угол наклона к горизонту β;
  • азимут α;

Широта места установки (φ) показывает, насколько место находится севернее или южнее от экватора, и составляет угол от 0° до 90°,отсчитываемый от плоскости экватора до одного из полюсов — северного или южного.

Часовой угол (ω) переводит местное солнечное время в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Земля поворачивается на 15° за один час. Утром угол солнца отрицательный, вечером — положительный.

Угол склонения Солнца (δ) зависит от вращения Земли вокруг Солнца, поскольку орбита вращения имеет эллиптическую форму и сама ось вращения тоже наклонена, то угол меняется в течение года от значения 23.45° до -23.45°. Угол склонения становится равным нулю два раза в год в дни весеннего и осеннего равноденствия.

Склонение солнца для конкретно выбранного дня определяется по формуле:

Где n – порядковый номер дня в году, отсчитанный от 1-го января.

Наклон к горизонту (β) образуется между горизонтальной плоскостью и солнечной панелью. К примеру, при монтаже на наклонной крыше угол наклона коллектора определяется крутизной ската крыши.

Азимут (α) характеризует отклонение поглощающей плоскости коллектора от южного направления, при ориентировании солнечного коллектора точно на юг азимут = 0°.

Угол падения солнечных лучей на произвольно ориентированную поверхность, имеющую определенное значение азимута α и угол наклона β, определяется по формуле:

Если в данной формуле заменить значение угла β на 0, тогда получится выражение для определения угла падения солнечных лучей на горизонтальную поверхность:

Интенсивность потока солнечного излучения для определенного положения поглощающей панели в пространстве вычисляется по формуле:

Где Js и Jdинтенсивность потоков прямого и рассеянного солнечного излучения  падающие на горизонтальную поверхность, соответственно.

 — коэффициенты положения солнечного коллектора для прямого и рассеянного солнечного излучения.

Для обеспечения попадания на абсорбер максимального (за расчетный период) количества солнечной энергии коллектор монтируют в наклонном положении с оптимальным углом наклона к горизонту β, который определяется расчетным методом и зависит от периода использования гелиосистемы. При южном ориентировании коллектора  для круглогодичных гелиосистем β = φ, для сезонных гелиосистем  β = φ–15°. Тогда формула примет вид, для сезонных гелиосистем:

Для круглогодичных:

Солнечные коллекторы, ориентированные в южном направлении и смонтированные под углом от 30° до 65° относительно горизонта, позволяют достичь максимального значения поглощения солнечного излучения в Украине. Но даже при определенных отклонениях от этих условий гелиосистема может вырабатывать достаточное количество энергии. Установка с небольшим углом наклона более эффективна в случае, если солнечные коллекторы или солнечные батареи нельзя ориентировать на юг.

К примеру, если солнечные панели ориентированы на юго-запад, с азимутом 45° и углом наклона 30°, то такая система сможет поглощать до 95% от максимального количества солнечного излучения. Или при ориентировании в восточном или западном направлении можно обеспечить до 85% попадания энергии на коллектор при установке панелей под углом 25-35°. Если угол наклона коллектора больше, то количество энергии, поступающее на поверхность коллектора, будет более равномерным, для поддержки отопления такой вариант установки более эффективен.

Зачастую ориентирование солнечного коллектора зависит от варианта монтажа солнечных коллекторов, установка коллектора производится на крыше здания, поэтому очень важно на стадии проектирования учесть возможность оптимально установки коллекторов.

Установка солнечного коллектора. Ориентация и угол наклона.

Для обеспечения предельной производительности работы солнечного коллектора, необходимо правильно определить, под каким углом он должен быть установлен.

Купить солнечный коллектор > > >

Ориентация и угол наклона солнечного коллектора.

Чтобы производительность солнечного коллектора была максимальной очень важна ориентация и угол наклона коллектора. Чтобы поглощать максимальное количество солнечной энергии плоскость солнечного коллектора должна быть всегда перпендикулярна солнечным лучам. Однако солнце светит на Земную поверхность в зависимости от времени суток и года всегда под различным углом.

Поэтому для монтажа солнечных коллекторов необходимо знать оптимальную ориентацию в пространстве абсорбера солнечного коллектора.

Для оценки оптимального ориентирования коллекторов учитывается вращение Земли вокруг Солнца и вокруг своей оси, а так же изменение расстояния от Солнца.

Для определения положения солнечного коллектора или солнечной батареи необходимо учитывать основные угловые параметры:

  • широта места установки φ;
  • часовой угол ω;
  • угол солнечного склонения δ;
  • угол наклона к горизонту β;
  • азимут α;

Широта места установки (φ) показывает, насколько место находится севернее или южнее от экватора, и составляет угол от 0° до 90°,отсчитываемый от плоскости экватора до одного из полюсов — северного или южного.

Часовой угол (ω) переводит местное солнечное время в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Земля поворачивается на 15° за один час. Утром угол солнца отрицательный, вечером — положительный.

Угол склонения Солнца (δ) зависит от вращения Земли вокруг Солнца, поскольку орбита вращения имеет эллиптическую форму и сама ось вращения тоже наклонена, то угол меняется в течение года от значения 23.45° до -23.45°. Угол склонения становится равным нулю два раза в год в дни весеннего и осеннего равноденствия.

Склонение солнца для конкретно выбранного дня определяется по формуле:

где n – порядковый номер дня в году, отсчитанный от 1-го января.

Наклон к горизонту (β) образуется между горизонтальной плоскостью и солнечной панелью. К примеру, при монтаже на наклонной крыше угол наклона коллектора определяется крутизной ската крыши.

Азимут (α) характеризует отклонение поглощающей плоскости коллектора от южного направления, при ориентировании солнечного коллектора точно на юг азимут = 0°.

Угол падения солнечных лучей на произвольно ориентированную поверхность, имеющую определенное значение азимута α и угол наклона β, определяется по формуле:

Если в данной формуле заменить значение угла β на 0, тогда получится выражение :

 

Интенсивность потока солнечного излучения для определенного положения поглощающей панели в пространстве вычисляется по формуле:

где Js и Jd интенсивность потоков прямого и рассеянного солнечного излучения падающие на горизонтальную поверхность, соответственно.

Для обеспечения попадания на абсорбер максимального (за расчетный период) количества солнечной энергии коллектор монтируют в наклонном положении с оптимальным углом наклона к горизонту β, который определяется расчетным методом и зависит от периода использования гелиосистемы. При южном ориентировании коллектора для круглогодичных гелиосистем β = φ, для сезонных гелиосистем β = φ–15°. Тогда формула примет вид, 

для сезонных гелиосистем:

для круглогодичных:

Солнечные коллекторы, ориентированные в южном направлении и смонтированные под углом от 30° до 65° относительно горизонта, позволяют достичь максимального значения поглощения солнечного излучения. Но даже при определенных отклонениях от этих условий гелиосистема может вырабатывать достаточное количество энергии.

Установка с небольшим углом наклона более эффективна в случае, если солнечные коллекторы или солнечные батареи нельзя ориентировать на юг.

К примеру, если солнечные панели ориентированы на юго-запад, с азимутом 45° и углом наклона 30°, то такая система сможет поглощать до 95% от максимального количества солнечного излучения. Или при ориентировании в восточном или западном направлении можно обеспечить до 85% попадания энергии на коллектор при установке панелей под углом 25-35°. Если угол наклона коллектора больше, то количество энергии, поступающее на поверхность коллектора, будет более равномерным, для поддержки отопления такой вариант установки более эффективен.

Зачастую ориентирование солнечного коллектора зависит от варианта монтажа солнечных коллекторов, установка коллектора производится на крыше здания, поэтому очень важно на стадии проектирования учесть возможность оптимально установки коллекторов.

Обучающее видео. Монтаж коллектора на скатной  крыше

Обучающее видео: Монтаж солнечного коллектора на плоской крыше

Советы производителя

Ориентация солнечных коллекторов в пространстве, сравнение эффективности конструкций

Содержание страницы

1. Ориентация и угол наклона плоских солнечных коллекторов

Источником энергии работы солнечных тепловых коллекторов является Солнце. Если рассматривать плоские стационарные СК любого типа, то они жестко закреплены либо на склонах крыш, либо на плоской крыше, либо на поверхности земли. Солнце светит на поверхность земли под углом, зависящим от времени суток и времени года. Диапазоны изменения этих углов очень значительные и зависят от широты и долготы места размещения объекта. Для Москвы, минимальная продолжительность светового дня 7 часов, а максимальная – 17 часов 30 минут. С учетом того, что за час Солнце перемещается по горизонту на 15 градусов, суммарное угловое перемещение летом может достигать 265 градусов, в то время, как зимой, 105 градусов. По склонению над горизонтом, Солнце также изменяет свое положение в большом диапазоне от 11 до 57 градусов. В других точках расположения объектов, углы изменения направления солнечного света, другие.

Во второй главе мы рассматривали значения максимального КПД солнечного коллектора, при этом, предполагалось, что лучи Солнца падают на поверхность коллектора перпендикулярно. В реальности, соблюсти это требование невозможно. Даже, если вы выставили направление коллектора строго на юг для точки размещение объекта в момент летнего солнцестояния, то, через несколько дней, максимальные значения будут недостижимы, поскольку угол падения лучей по горизонту изменится за этот период на несколько градусов.

Под оптимальной ориентацией стационарно размещенного солнечного коллектора понимают положение, максимально близкое к положению Солнца в момент астрономического времени 12 часов. Напоминаем, что в каждом месте существует разница директивного и астрономического времени и для Москвы, к примеру, эта разница составляет около 34 минут.

Если вы используете солнечные коллекторы только в летнее время, то рекомендуется устанавливать угол наклона коллекторов градусов на 5 меньше значения угла широты места расположения объекта. Москва расположена на 56 градусе северной широты. Следовательно, оптимальное расположение угла наклона коллектора будет около 50 градусов. Но если вы используете коллекторы круглый год, то угол наклона коллектора к горизонту рекомендуется выбрать на 15 градусов меньше широты. В нашем случае, это примерно 40 градусов. На ориентированном склоне крыш выполнить такие требования очень сложно, поэтому, можно сказать, что уровень максимально возможного мгновенного КПД для стационарного солнечного коллектора практически никогда не достижим.

Если реальная ориентация солнечного коллектора на объекте отличается менее 15 градусов по горизонту от нулевой ориентации на астрономический юг, то потери не столь велики, но если технически невозможно реализовать данные требования, то, эффективность гелиосистем падает и инвестиции в них никогда не окупятся.

Угловая эффективная зона работы плоских и вакуумных трубчатых коллекторов составляет около 45 градусов в каждую сторону от перпендикуляра к поверхности, то есть в сумме около 90 градусов.

Характер изменения эффективности работы коллектора от угла падения солнечных лучей зависит от конкретной конструкции солнечного коллектора и определяется экспериментально. В идеальном варианте, в диапазоне изменения падения лучей –45 –0 + 45 градусов, при абсолютном перпендикуляре падения солнечных лучей в максимальной точке, мощность солнечного коллектора изменяется на 25 %, но в реальности это изменение значительно больше и составляет около 50 %, причем у плоских коллекторов этот показатель еще ниже, поскольку абсорбер, в крайних положениях солнца затеняется боковыми стенками коллектора.

Некоторые производители указывают в характеристиках оборудования угловые коэффициенты.

IAM (Incident Angle Modifier) – угловой коэффициент. Поправочный коэффициент, который помогает учесть конструктивные особенности конкретного коллектора, чтобы откорректировать количество солнечного излучения поступающего при различных углах падения относительно основной плоскости солнечного коллектора (учитывается все отражение, преломление и затенение солнечных лучей).

У открытых солнечных коллекторов данный коэффициент равен 1. Максимальный мгновенный КПД 0,5–0,9.

У закрытых плоских – IAM = 0,85–0,95 в зависимости от толщины воздушного слоя и высоты боковой стенки коллектора над плоскостью абсорбера. Максимальный мгновенный КПД 0,74–0,88. У вакуумных одностенных перьевых трубчатых коллекторов

IAM = 0,9–1,1, максимальный мгновенный КПД 0,65–0,80.

У вакуумных коаксиальных – IAM = 1,1–1,6, максимальный КПД прямого солнечного излучения 0,45–0,75. но вакуумные коаксиальные трубки с цилиндрическим абсорбером могут воспринимать не только прямое, но и рассеянное солнечное излучение. действие которого можно учесть поправочным коэффициентом интенсивности, равным для солнечной погоды 1,15.

В виде графиков корректировка значения мощности солнечного излучения представлена на рис. 25.

Графики зависимости мощности солнечного излучения от угла падения лучей для разных типов солнечных коллекторов

Графики зависимости мощности солнечного излучения от угла падения лучей для разных типов солнечных коллекторов

Рис. 25. Графики зависимости мощности солнечного излучения от угла падения лучей для разных типов солнечных коллекторов

Из графика видно, что площадь фигуры под графиком мощности трубчатого вакуумного коллектора больше аналогичной фигуры плоского коллектора примерно на 15 %, Поскольку движение Солнца равномерное, можно сказать, что энергия, выработанная коллектором на вакуумных трубках больше плоского коллектора на 15 % при равных габаритах и ориентации на Солнце.

Солнце движется по небосводу по двум координатам. Вводятся два угловых коэффициента Поперечный (IAMT – transversal) и Продольный (IAML – longitudinal). Обычно у плоских гелиоколлекторов оба эти коэффициента одинаковые, поэтому указывается только одно значение. У трубчатых вакуумных гелиоколлекторов может существенно отличается Поперечный коэффициент, а Продольный, примерно такой же, как и плоских коллекторов.

Данные угловых коэффициентов некоторых типов тепловых солнечных коллекторов получены в Институте солнечных технологий Solartechnik SPF (Рапперсвиль, Швейцария) и представлены на рис. 26.

Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторовГрафики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов

Рис. 26. Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов (Институт солнечных технологий Solartechnik SPF (Рапперсвиль, Швейцария) www.spf. ch (начало)

Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов

Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов

Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов

Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов

Рис. 26. Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов (Институт солнечных технологий Solartechnik SPF (Рапперсвиль, Швейцария) www.spf. ch (окончание)

Среднегодовая выработка тепловой энергии

Солнце в течении дня движется по сложной траектории, которая зависит от времени года, места расположения объекта. Конструкции солнечных коллекторов очень разнообразные, возможно разнообразное расположение коллектора на объекте. Все это очень сильно затрудняет расчет среднегодовой выработки тепловой энергии. Экспериментальные данные по производительности СК очень сильно зависят от погодных условий. Для оценки годовой выработки тепла солнечным коллектором применяются методы математического моделирования. Статистические экспериментальные данные по среднегодовой выработки требуют очень длительного периода времени.

Одной из доступных и наглядных программ является немецкая разработка GeoT*SOL basic 2.0. однако не понятны исходные формулы для математического моделирования, примененные в этой программе и на сколько они соответствуют реальным конструкциям солнечных коллекторов.

В любом случае это сложнейшая задача математического моделирования. В данном учебном пособии можно говорить только о качественном анализе среднегодовой выработки тепловой энергии солнечными коллекторами разных типов.

2. Сравнительный анализ применения солнечных коллекторов различных типов

Поскольку конструкции, место расположение, ориентация, особенности монтажа коллекторов очень разнообразные, то для анализа эффективности рассмотрим качественные характеристики мгновенного КПД различных типов тепловых солнечных коллекторов. На рис. 27 представлены усредненные значения КПД, оптических КПД, коэффициентов теплопотерь для основных типов СК.

Упрощенный расчет КПД коллекторов можно произвести по формуле:

КПД = КПДопт – Ктп·У. (3)

Средние значения оптического КПДопт для позиций на рис. 27, составляют 1 – 0,95; 2 – 0,85; 3 – 0,75; 4 – 0,8; 5 – 0,75.

Средние значения коэффициента теплопотерь Ктп, соответственно, 1 –15; 2 – 7; 3 – 5; 4 – 3,5; 5 – 2 измеряется – Вт/(м2·°С).

У – соотношение разности температур теплоносителя на входе и выходе из коллектора Т, деленное на интенсивность солнечно излучения, измеряется в м2·°С/Вт.

Мгновенный КПД солнечных коллекторов в зависимости от интенсивности солнечной радиации и разности температур на входе и выходе коллектора

Мгновенный КПД солнечных коллекторов в зависимости от интенсивности солнечной радиации и разности температур на входе и выходе коллектора

Рис. 27. Мгновенный КПД солнечных коллекторов в зависимости от интенсивности солнечной радиации и разности температур на входе и выходе коллектора [1]: 1 – абсорбер; 2 –коллектор с однослойным остеклением; 3 –коллектор с двухслойным остеклением; 4 — плоский коллектор с высокоселективным покрытием абсорбера; 5 – трубчатый вакуумный коллектор

Оптический КПД характеризует конструктивную способность СК воспринимать солнечную энергию и зависит только от способности прозрачного защитного слоя пропускать энергию, наличию прослойки воздуха между защитным прозрачным слоем и абсорбером и КПД абсорбера.

Интенсивность солнечного излучения сильно зависит от атмосферных факторов. Напоминаем: 1000 Вт/м2 – ясная солнечная погода летом. 800–600 Вт/м2 – небольшая облачность, летом, 300 Вт/м2 – пасмурно летом, зимой эти показатели ниже примерно в 2 раза.

Также напоминаем, что на рис. 27 указаны значения МГНОВЕННОГО МАКСИМАЛЬНОГО КПД. Реальные средние значения примерно в два раза ниже.

Из рис. 27 видно:

Открытые солнечные коллекторы – эффективное использование возможно только в солнечную погоду при подогреве воды на 5–10 °С, при температуре окружающего воздуха выше 20 °С.

Плоские закрытые солнечные с остеклением в 1 слой – применение целесообразно для подготовки горячей воды для нужд приусадебных и дачных участков в летний период при температуре окружающего воздуха не ниже 12–15 °С, способны прогреть воду на 15–25 °С.

Плоские закрытые солнечные с остеклением в 2 слоя – применяются, как и в предыдущем случае, но способны прогреть воду до 35 градусов.

Современные плоские солнечные коллекторы с высокоселективням покрытием абсорбера и хорошей термоизоляцией корпуса – могут эффективно использоваться при температуре окружающего воздуха от 5–10 °С и способны создавать перепад температур в коллекторе до 40 °С.

Трубчатые вакуумные солнечные коллекторы

Могут эффективно использоваться при температурах окружающего воздуха ниже нуля градусов Цельсия (всесезонные) при обеспечени перепада температур в коллекторе выше 80 °С.

Относительно возможности использования солнечных коллекторов в системах бытового нагрева воды на дачных участках, систем ГВС, систем отопления и технологических системах, можно представить следующие диапазоны изменения параметра У.

Зона А при У < 0,03 м2·°С/Вт – обогрев воды на дачных участках, летом,

Зона Б при У = 0,03–0,08 м2·°С/Вт – для систем ГВС в летний период.

Зона В при У > 0,08 м2·°С/Вт – системы отопления и ГВС капитальных сооружений.

При значениях У > 0,12, возможно использование систем солнечных коллекторов в многоквартирных домах и технологических промышленных процессах.

Литература:

1. Харченко Н.В. Индивидуальные солнечные установки. М., Энергоатомиздат, 1991, 208 с.

ЗАКЛЮЧЕНИЕ

Суммарное количество всей потребляемой энергии человечеством составляет всего около 0,0125 % доли процента от энергии возобновляемых источников, имеющихся на планете Земля, главная из которых энергия Солнца.

Теплоэнергетика, наряду с другими отраслями, вносит большой вклад в накопление парниковых газов, поскольку именно при сжигании ископаемого топлива в котлах коммунального хозяйства и индивидуальных домов, происходит выброс диоксида углерода. Применение, при решении вопросов теплоснабжения, энергосберегающих высокоэффективных технологий и экологически чистых возобновляемых источников энергии, позволит сохранить планету.

По данным института АЕЕ INTEC, на конец 2012 г. в мире установлено 383 млн квадратных метров солнечных тепловых установок общей тепловой мощностью 268,1 ЕВт с годовой выработкой тепловой энергии 225 ТВт·ч. С каждым годом эти показатели только возрастают. К сожалению, в России общая площадь солнечных тепловых установок оценивается в 30 тыс. м2.

Более 60 % территории России, в том числе и многие северные районы, характеризуются среднегодовым поступлением солнечной радиации от 3,5 до 4,5 кВт·ч/м2 в день, а регионы Приморья и юга Сибири от 4,5 до 5,0 кВт·ч/м2 в день, что не сильно отличается от аналогичных показателей центральной Европы (5,0– 5,5 кВт·ч/м2 в день).

Солнечные тепловые коллекторы успешно применяются для подготовки горячей воды на дачном участке, в системах отопления и горячего водоснабжения индивидуальных и коллективных домов, промышленных системах теплоснабжения.

В настоящее время наибольшее распространение получили:

  • солнечные тепловые коллекторы открытого типа;
  • плоские закрытые солнечные трубчатые тепловые коллекторы;
  • закрытые трубчатые и объемные солнечные коллекторы;
  • вакуумные трубчатые солнечные коллекторы.

Доля последних составляет более 62 % от всего объема выпускаемых в мире солнечных коллекторов.

С точки зрения эффективности использования различных типов солнечных коллекторов и их применения в хозяйстве, можно рекомендовать.

Открытые солнечные коллекторы – эффективное использование возможно только в солнечную погоду при подогреве воды на 5–10 °С, при температуре окружающего воздуха выше 20 °С.

Плоские закрытые солнечные с остеклением в 1 слой – применение целесообразно для подготовки горячей воды для нужд приусадебных и дачных участков в летний период при температуре окружающего воздуха не ниже 12–15°С, способны прогреть воду на 15–25°С. Плоские закрытые солнечные с остеклением в 2 слоя – применяются, как и в предыдущем случае, но способны прогреть воду до 35 градусов. Современные плоские солнечные коллекторы с высокоселективням покрытием абсорбера и хорошей термоизоляцией корпусамогут эффективно использоваться при температуре окружающего воздуха от 5–10°С и способны создавать перепад температур в коллекторе до 40°С.

Трубчатые вакуумные солнечные коллекторы

Могут эффективно использоваться при температурах окружающего воздуха ниже нуля градусов Цельсия (всесезонные) при обеспечении перепада температур в коллекторе выше 80 °С.

Вопросы работы гелиосистем с использованием солнечных тепловых коллекторов будут рассмотрены в следующих частях учебного пособия «Комбинированные тепловые гелиосистемы».

 

Просмотров: 278

Угол наклона солнечного коллектора |

Для наиболее эффективного использования солнечного излучения необходимо установить солнечный коллектор точно под прямым углом к направлению солнечных лучей. Однако Солнце постепенно движется, и в зависимости от сезона меняется его высота над горизонтом. Поэтому в идеальном случае солнечный коллектор следовало бы установить таким образом, чтобы он следовал за Солнцем и постоянно сохранял положение, перпендикулярное по отношению к падающим лучам. Устройство такого солнечного коллектора с системой слежения за Солнцем технически возможно, однако оно обошлось бы довольно дорого, поглотив большую часть сметных расходов на строительство дома. Практически такие солнечные коллекторы не изготовляют, они существуют лишь в экспериментальных вариантах.

В настоящее время при использовании солнечных коллекторов в солнечных домах их устанавливают неподвижно, в одном положении, выбирая оптимальный угол наклона солнечного коллектора к горизонту в зависимости от назначения солнечной установки.

Горячее водоснабжение

Площадь тепловоспринимающей пластины солнечного коллектора малая — 2…6 м2, угол наклона солнечного коллектора к горизонту соответствует широте местности.

При таком положении, когда угол наклона будет примерно соответствовать широте местности, солнечный коллектор в течение всего года будет получать большое количество тепла. При изменении угла наклона от 20 до 35° не наблюдается значительной разницы в теплопроизводительности в течение года, и если наклон крыши здания лежит в этих пределах, то ею вполне можно воспользоваться. Однако, если у солнечного коллектора, используемого для горячего водоснабжения, площадь тепловоспринимающей пластины будет значительно больше (6…10 м), то летом получатся излишки тепла. Если учесть, что максимальное потребление горячей воды приходится на зиму, целесообразно установить угол наклона солнечного коллектора 45…60°, что выгоднее для зимних условий, в результате можно повысить КПД солнечного коллектора в течение всего года.

Отопление и горячее водоснабжение

Поскольку в зимний период тепловая нагрузка максимальна, целесообразно угол наклона солнечного коллектора установить в пределах 45…50°. Этот угол должен соответствовать широте местности ±15°. В пределах диапазона ±15° существенных изменений в выработке тепла не наблюдается, и поэтому, если угол наклона крыши находится в этих границах, можно установить солнечный коллектор, не нарушая дизайна здания.

В солнечных широтах, где выпадает много снега, солнечный коллектор устанавливают под большим углом наклона к горизонту, т.е. более вертикально.

Представляют интерес устройства, собирающие отражаемые от снега солнечные лучи, что увеличивает выработку тепла.

Теплохладоснабжение и горячее водоснабжение

Поскольку для систем охлаждения требуется наибольшее количество тепла, необходимо, ориентируясь на летний сезон, выбирать угол наклона солнечного коллектора к горизонту в пределах 20…25°. Оптимальный угол наклона соответствует φ — 10°, а отклонения до +10 не приводят к существенной разнице в выработке тепла. Однако, если принять во внимание, что при столь малом угле наклона на поверхности остекления солнечного коллектора собирается много пыли, что ухудшает условия его работы, полагают. что целесообразнее фиксировать угол наклона солнечного коллектора в пределах 25…35°.

В идеальном варианте солнечный коллектор ориентируют на юг, но, учитывая рельеф местности, условия застройки (соседние дома) и другие факторы, зависящие от окружающей солнечный коллектор среды, это требование не всегда выполнимо. Рекомендуются отклонения от южной ориентации в пределах до ±30°, чтобы выработка тепла не слишком отличалась от нормы.

Очевидно, что угол наклона солнечного коллектора к горизонту меняется в зависимости от назначения солнечной установки или типа системы.

Угол наклона солнечных панелей — получаем максимальный эффект

Солнечная панель сделана из фотоэлектрических элементов. Принцип работы фотоэлектрического модуля – преобразование энергии солнца в электрическую энергию.

Чем больше энергии несет падающий на фотоэлектрическую ячейку луч солнца, тем больше электричества она вырабатывает. Электроэнергия, которую можно снять с контактов модуля, во многом зависит от ориентации солнечной батареи. Выбор оптимального угла наклона солечных панелей

Для повышенного получения КПД от солнечных панелей необходимо правильно подбирать угол наклона, по горизонту, по азимуту и прочим параметрам

Конечно, хотелось бы получать максимальную возможную электрическую мощность, которую способна выработать панель. К сожалению, не на все параметры, определяющие выработку электричества, возможно повлиять.Угол наклона солнечных панелей по временам года и азимуту

Солнечный свет освещает поверхность земли неравномерно, что объясняется шарообразной формой Земли. На экваторе энергия, передаваемая солнечным лучом, будет гораздо выше, чем, например, на полюсах. Это не означает, конечно, что нельзя использовать солнечные элементы, находясь в широтах, удаленных от экватора. Просто нужно внимательно отнестись к способу их ориентации в пространстве.

Что важно учесть при монтаже солнечной панели

Чтобы «собрать» максимальное количество солнечной энергии, нужно выполнить следующие условия:

  • обеспечить максимально возможную освещенность фотоэлементов, без малейшего их затемнения окружающими объектами, например, деревьями или конструкциями зданий;
  • ориентировать плоскость фотоэлектрических ячеек строго перпендикулярно солнечным лучам.

Если с первым пунктом обычно не возникает особых проблем, так как типовая установка панели предполагает монтаж на крыше зданий, то точно выполнить второй пункт оказывается не слишком просто.

Влияние основного и отраженного света на эффективность солнечных панелей

От правильно выбранного угла наклона солнечных панелей зависит КПД и эффективность получения электроэнергии, так как в разное время года и суток оно неодинаковое

Угол падения солнечных лучей меняется как в течение дня, так и при смене времен года. Значит, идеальная солнечная панель должна тоже постоянно менять свой угол наклона, поворачиваясь к солнцу. Другой вопрос, насколько сильно изменится производительность реальной панели при некоторых отличиях от идеальной, вызванных конструктивными ограничениями установки.

Способы установки

Фотоэлектрические модули, исходя из способов их использования можно разделить, во-первых, на два основных типа:

  • стационарные, постоянной установки;
  • мобильные, передвигаемые по мере необходимости с места на место.

И хотя использование мобильных модулей набирает обороты, их все шире используют в полевых условиях туристы, геологи, их размещают на крышах трейлеров и передвижных домов, самым распространенным является первый вариант — стационарный. Такие элементы могут быть установлены:

  • на крыше зданий и сооружений, сюда же относятся козырьки и навесы;
  • на стенах домов;
  • на земле.

Каждый и способов имеет свои преимущества и недостатки, например, модуль, стоящий на земле, дешевле в установке и более прост в обслуживании, но зато отнимает полезную площадь участка, а также может затеняться находящимися рядом объектами. Крышные же сооружения сложней смонтировать и обслужить, зато риск повреждения панели гораздо меньше.

Варианты конструкций

На практике, видов расположения солнечной панели всего два:

  1. Неподвижный.
  2. Подвижный.

При неподвижной установке фотоэлектрического модуля обеспечить следование модуля за солнцем практически невозможно. Самый простой пример такой установки – монтаж солнечных панелей в плоскости крыши. Чуть более продвинутый вариант, позволяющий поймать больше солнечной энергии – установка на кронштейны, обеспечивающие заранее рассчитанный оптимальный угол. Иногда такое устройство позволяет вручную менять угол наклона фотоэлементов два раз в год – зимой и летом.

Подвижные устройства для монтажа модулей называются трекеры. Это платформы, которые могут вращаться в одной или двух плоскостях, следуя за солнцем. Такой способ установки максимально близок к идеальному, однако имеет свои подводные камни: трекеры дороги в установке и эксплуатации и потребляют электрическую энергию. Вполне возможно, что в случае применения в частном доме, повышение производительности солнечной батареи будет в стоимостном выражении меньше, чем стоимость содержания трекера.

Практические исследования

Теоретические рассуждения хороши, когда они подтверждены практикой. В Канаде провели масштабное исследование зависимости выработки электроэнергии солнечными батареями в зависимости от углов наклона.

Батарея расположена в местности, широта которой близка к широте Москвы, и имеет похожий климат. Результаты исследований очень интересны, и могут с успехом быть применены в наших условиях, так как кроме всего прочего, исследовалось влияние снега на выработку электроэнергии. Исходные данные опытных батарей были следующими:

  • батареи ничем не затенялись;
  • ориентация фотоэлементов строго южная;
  • шесть пар солнечных элементов были установлены на разные углы;
  • минимальный угол установки солнечных батарей был 14 градусов, максимальный – 90 градусов;
  • промежуточные углы были близки к популярным углам наклона крыш;
  • исследовался также угол 53 градуса, равный широте местности;
  • для изучения влияния снега на одной из панелей с одинаковым углом наклона снег удалялся, а на другой нет.

Самый удивительный результат исследований заключается в том, что чистка панелей от снега дала прибавку в выработке энергии не более, чем 5,31%, и это на самых производительных панелях.

Исследования угла наклона солнечных панелей показали, что:

  • самый производительный угол наклон летом (в период с 01.04 по 31.09) – 27 градусов;
  • самый производительный угол зимой (в период с 01.10 по 31.03) — 53 градуса;
  • самый производительный угол по году — 53 градуса.

Рекомендации по установке

В том случае, если скат крыши дома ориентирован на юг и имеет угол наклона, близкий к широте местности, самый простой способ – установка фотоэлементов непосредственно на плоскость крыши. Это стоит недорого, просто в обслуживании, и потери энергии будут незначительными.

Если параметры крыши далеки от идеальных, или планируется установка солнечных батарей на землю, можно применить такой способ расчета лучшего угла наклона:

  1. Для широт, находящихся в диапазоне до 25 градусов, значение широты нужно умножить на коэффициент 0,87. Это будет лучший угол по году, если не планируется его менять.
  2. Для широт, находящихся в диапазоне от 25 до 50 градусов, значение широты нужно умножить на коэффициент 0,76 и добавить 3,1 градуса.

Если конструкция для ориентации солнечных панелей предполагает изменение угла наклона вручную, можно применить такой способ:

  • весной и осенью выставляют угол наклона солнечной панели, равный широте местности;
  • зимой к широте прибавляем 10-15 градусов;
  • летом от широты отнимается 10-15 градусов.

Следует понимать, что максимальное количество энергии обеспечивает все же трекер. Но выработка установок без трекера, ориентированных правильно (на юг, с соблюдением угла наклона по широте) составляют 70-75 % от выработки установок с трекером. Конечно, для установок большой мощности применение трекеров оправдано. А вот солнечная панель для личных потребностей может быть смонтирована простым способом, так как применение трекера не окупит себя.

ОПТИМАЛЬНЫЙ УГОЛ НАКЛОНА К ГОРИЗОНТУ ПРИ УСТАНОВКЕ СОЛНЕЧНОГО КОЛЛЕКТОРА

Жилые дома с автономным солнечным теплохладо — снабжением

Для наиболее эффективного использования солнечного излу­чения необходимо установить коллектор точно под прямым углом к направлению солнечных лучей. Однако Солнце посте­пенно движется, и в зависимости от сезона меняется его высота над горизонтом. Поэтому в идеальном случае коллектор следо­вало бы установить таким образом, чтобы он следовал за Солн­цем и постоянно сохранял положение, перпендикулярное по отношению к падающим лучам. Устройство такого коллектора с системой слежения за Солнцем технически возможно, однако оно обошлось бы довольно дорого, поглотив большую часть смет­ных расходов на строительство дома. Практически такие коллек­торы не изготавливают, они существуют только в эксперимен­тальных вариантах.

В настоящее время при использовании коллекторов в солнеч­ных домах их устанавливают неподвижно, в одном положении, выбирая определенный оптимальный угол наклона коллектора к горизонту в зависимости от назначения солнечной установки.

1- й случай: использование солнечного тепла исключительно для нужд горячего водоснабжения. Площадь ^тепловосприни­мающей пластины коллектора малая — от 2 до 6 м, угол наклона к горизонту составляет 30-35°. При таком положении, когда угол наклона будет примерно соответствовать широте местнос­ти, коллектор в течение всего года будет получать большое количество тепла. При изменении угла наклона от 20 до 35° не наблюдается значительной разницы в теплопроизводительности в течение года, и если наклон крыши здания лежит в этих преде­лах, то ею вполне можно воспользоваться. Однако если у кол­лектора, используемого для горячего водоснабжения, площадь тепловоспринимающей пластины будет значительно больше (6-10 iv?), то летом получатся излишки тепла. Если учесть, что максимальное потребление горячей воды приходится на зиму, целесообразно установить угол наклона коллектора 45-60°, что выгоднее для зимних условий, в результате чего можно повы­сить КПД коллектора в течение всего года.

2- й случай: использование солнечного тепла для отопления и горячего водоснабжения. Поскольку в зимний период тепловая нагрузка максимальна, целесообразно угол наклона коллектора установить в пределах 45-50°. Этот угол соответствует широте местности +15°. В пределах диапазона +15° существенных из­менений в выработке тепла не наблюдается, и поэтому, если угол наклона крыши находится в таких границах, можно уста­новить коллектор, не нарушая дизайна здания.

В северных широтах, где выпадает много снега, солнечный коллектор устанавливают под большим углом наклона к гори­зонту, т. е. более вертикально.

Представляют интерес выдвигаемые сейчас разработки про­ектов устройств, которые собирали бы отражаемые от снега лучи, что увеличивало бы выработку тепла.

3-й случай: использование солнечного тепла для систем теплохладоснабжения, а также горячего водоснабжения. По­скольку для систем охлаждения требуется наибольшее количе­ство тепла, необходимо, ориентируясь на летний сезон, выбирать угол наклона коллектора к горизонту в пределах 20-25°. Опти­мальный угол наклона соответствует «широте-10», а отклоне­ния до +10° не приводят к существенной разнице в выработке тепла. Однако если принять во внимание, что при столь малом угле наклона на поверхности стекла коллектора собирается много грязи, что ухудшает условия работы коллектора, а зимой заметное падение теплопроизводительности, полагают, что целесообразнее фиксировать угол наклона коллектора в преде­лах 25-35° (рис. 2.25).

В идеальном варианте коллектор ориентируют на юг, но, учитывая рельеф местности, условия застройки (соседние дома) и другие факторы, зависящие от окружающей коллектор среды, это требование не всегда возможно выполнить. Рекомендуются отклонения от южной ориентации в пределах до ±30°, чтобы вы­работка тепла не слишком отличалась от нормы.

Оптимальные углы наклона коллекторов к горизонту в зави­симости от использования вырабатываемого тепла с учетом теп­ловоспринимающей площади коллектора приведены в табл. 2.5.

РИС. 2.25. РЕКОМЕНДУЕМЫЙ УГОЛ НАКЛОНА ПРИ УСТАНОВКЕ СОЛНЕЧНОГО КОЛЛЕКТОРА

А — использование тепла, вырабатываемого солнечным колле»ором, для отопления и горячего водоснабжения; б — использование тепла, вырабатываемого солнечным коллектором, для охлаждения, отопления и горячего водоснабжения; К — широта местности

Очевидно, что угол наклона коллектора к горизонту меняется в зависимости от назначения солнечной установки или типа системы.

Таблица 2.5. Рекомендуемый угол наклона установки

Солнечных коллекторов с учетом площади тепловоспринимающих пластин

(Токио, жилой дйм’їОО—1200 м2)

Система

Рекомендуе­мый угол накло­на, град-

Тепловоспри- нимающая площадь, м2

Горячее водоснаб­жение

Стандартный нагрева­тель

30-35

Около 2

Высокоэффективный водонагреватель

20-45

2,5-4

Система горячего водо­снабжения

30-60

4-6

Отопление и горя­чее водоснабжение

Только система отопле­ния

(широта +15)

15-20

Система отопления и го­рячего водоснабжения

±15

20-30

Теплохладоснабже — абсорбционная система (широта-10) 50—70

Ние и горячее водо — +15

Снабжение

Наши клиенты или просто интересующиеся люди домами из морских модулей часто имеют ошибочные убеждения о таких постройках…

Сегодня, 26.04.2015 года мы провели такие испытания солнечных вакуумных трубок: Исходные материалы: — Солнечный вакуумные трубки 58мм на 1800мм, 47мм внутренний диаметр — 8шт. — Нержавеющая гофрированная сталь 15мм, подробнее …

В книге С. Танака, Р. Суда «Жилые дома с автономным солнечным теплохладо- снабжением» кратко, но достаточно четко представлены большинство разработан­ных в настоящее время устройств, позволяющих за счет солнечного излучения (в …

ОРИЕНТАЦИЯ СОЛНЕЧНОГО КОЛЛЕКТОРА — Мегаобучалка

Правильная ориентация солнечных коллекторов (направление и угол наклона) увеличивает их производительность. Земная атмосфера поглощает и отражает значительную часть солнечной радиации. Поэтому максимальное количество энергии поступает в полдень, когда прямой поток лучей меньше всего задерживается атмосферой. В северном полушарии оптимальным направлением в полдень является географический юг. Хотя для максимальной производительности коллекторов их нужно направлять на географический юг, допускается отклонение на 20 градусов к востоку или западу без увеличения площади поверхности коллекторов.

«Следящий» (поворачивающийся) за солнцем коллектор собирает на 20% солнечной радиации больше, чем ориентированный строго на юг. Однако этот выигрыш в производительности не окупает затрат на сооружение следящего устройства. Обычно выгоднее бывает увеличить площадь коллектора на 20%.

Местные особенности погоды (например, утренние туманы либо преобладающая облачность после обеда) должны также учитываться при размещении коллектора. Если местные погодные условия не играют особой роли, а коллектор невозможно повернуть к югу, рекомендуется обратить его к западу, чтобы воспользоваться более теплым послеобеденным временем (тепловые потери коллектора снижаются при высокой внешней температуре).

Поскольку высота Солнца над горизонтом в течение года значительно меняется в зависимости от географической широты, угол наклона коллекторов по отношению к высоте Солнца зависит от конкретной установки. В целом, сезонные изменения количества радиации должны приниматься в расчет для всех солнечных энергоустановок. Наклон поверхности коллектора на 30-50 градусов к югу в Северном полушарии либо к северу — в Южном приносит лучшие результаты в зимнее время и некоторые потери летом. Установки для отопления помещений размещают так, чтобы получить максимум от зимнего Солнца. В тропиках, где Солнце стоит высоко, наиболее выгодно устанавливать поверхность коллектора почти горизонтально. Оптимальный угол наклона солнечного коллектора равен широте местности. Положительная разность между широтой и углом наклона крыши приводит к лучшим эксплуатационным качествам системы зимой. Угол наклона коллектора меньший, чем значение местной широты, способствует лучшей работе системы летом. Отклонения угла наклона коллекторов из архитектурных соображений можно компенсировать дополнительной площадью коллектора.



Аккумулирующий бак

Солнечное тепло аккумулируется в баке за счет того, что в нем хранится горячая вода. Баки бывают разные по объему. Все они подсоединены к впускной трубе для холодной воды и выпускной — для горячей, а также к циркуляционным трубам. Наиболее эффективен вертикальный бак с градиентом температуры по высоте, при этом холодная вода на входе не смешивается с горячей водой в верхней части бака. При наличии горизонтального бака производительность системы снижается на 10-20%.

Тепло из солнечного коллектора передается воде в баке с помощью теплообменника. В качестве теплообменника обычно используется змеевик на дне бака либо оболочка вокруг бака с жидкостью-теплоносителем. В системах с естественной циркуляцией и малыми потоками жидкости обычно используется оболочка. В случае малых потоков жидкость-теплоноситель медленно протекает через оболочку бака-накопителя, что позволяет добиться градиента температуры жидкости в оболочке в соответствии с распределением в баке. Благодаря этому улучшается теплообмен, а значит, возрастает эффективность по сравнению с традиционными системами.

Бак-накопитель обязательно должен быть хорошо теплоизолирован, чтобы ночью вода в нем не остывала. Потери тепла зависят от множества факторов (температура воздуха, ветер, время года и т.д.) и составляют около 0,5-1 градуса Цельсия в час в течение ночи. Изоляция бака должна быть настолько надежной, чтобы вода, нагретая за солнечный день, оставалась горячей в течение двух дней. Особенное внимание нужно обращать на изоляцию верхней части бака и отсутствие тепловых мостиков. Опыт показывает, что минимальная толщина слоя изоляционного материала должна составлять 100 мм.

Нужно следить за тем, чтобы система труб, подведенных к баку, не допускала самопроизвольной циркуляции, из-за которой он может опустеть, даже если горячая вода не использовалась. Трубка для слива горячей воды должна подводиться к трубам с холодной водой, а к верхней части бака. Выходное отверстие бака-накопителя снабжается регулятором максимальной температуры, чтобы к потребителю поступала вода с температурой не выше, например, 60 оС независимо от температуры воды в баке.

Объем бака-накопителя солнечной установки должен составлять 80 литров на человека, при уровне потребления горячей воды 50 литров в день. Это средние значения. Если в доме имеется посудомоечная или стиральная машина, если есть несколько детей, ежедневно принимающих ванну, эти нужды также должны учитываться при расчете общего расхода воды.

Солнечный коллектор для установки на черепичной крыше (ilhc-5815h)

Солнечный коллектор для монтажа на черепичной крыше

Характеристика

1. Со специальными медными тепловыми трубками, быстрой теплопередачей, более надежной, более высокой эффективностью

2. Антифриз с идеальным внешним видом, может использоваться в очень холодных условиях площадь

3. Нет воды в вакуумных трубках, даже одна стеклянная вакуумная трубка сломана, вся система по-прежнему может работать в обычном режиме, утечек нет

4.Может быть подключен напрямую к водопроводу высокого давления (максимальное рабочее давление достигает 700 кПа).

5. Солнечный коллектор и накопительный бак — раздельная установка.

6. Довольно бесплатная установка солнечного коллектора и накопительного бака в зависимости от здания.

7. Простая установка и бесплатное обслуживание

Спецификация:

Номер позиции Солнечная тепловая трубка Апертура Размер коллектора Жидкость Упаковка Загрузка контейнера
Кол-во пробирок Размер трубки / мм Площадь (м2) Д * Ш (мм) Литр (Д) Объем / куб.м 20GP 40HQ
ILHC-5812H 12 Φ58 * 1800 1,12 1950 * 960 0,8 0,21 138 334
ILHC-5815H 15 Φ58 * 1800 1,40 1950 * 1185 0,9 0,24 122295
ILHC-5818H 18 Φ58 * 1800 1.68 1950 * 1410 1,1 0,30 98 237
ILHC-5820H 20 Φ58 * 1800 1,87 1950 * 1560 1,2 0,32 92 221
ILHC-5824H 24 Φ58 * 1800 2,24 1950 * 1860 1,6 0,34 84 204
ILHC-5830H 30 Φ58 * 1800 2.80 1950 * 2130 1,8 0,45 64 155

1. Прямоточный коллектор: высококачественная красная медь, вход и выход Φ22 мм
2. Корпус коллектора: высококачественный черный / серый алюминиевый сплав 2 мм
3. Изоляция: минеральная вата высокой плотности, формованная прессованием, 50 мм
4. Тепловая трубка: вакуумная трубка с тремя целями, медный конденсатор Φ14 или 24 мм тепловая трубка, алюминиевое ребро
5.Монтажная рама: черный / серый алюминиевый сплав 1,8 мм, подходит для установки на крышу или наружную стену.
6. Аксессуары: термопаста, медные соединители
7. Рабочее давление: 6,0 бар
8. Наклон коллектора Угол: 20 ° ~ 90 ° (вертикальное / горизонтальное смещение: -5 ° / -5 °)
9. Устойчивость к граду: <Φ30 мм
10. Защита от замерзания:> — 40 ° C

.

Урок 3: Солнечные водонагревательные системы; Размещение и калибровка

Введение

Видимый свет ( инсоляция ) — основной источник энергии, собираемый системами, которые обеспечивают тепло помещений, тепло воды и электричество для домов. Из-за наклона оси Земли количество солнечной инсоляции, падающей на любую точку на поверхности Земли, меняется в течение года. Ежедневно и сезонно количество световой энергии, падающей на поверхность, изменяется от восхода до захода солнца.Атмосферные условия и высота над уровнем моря также являются факторами, влияющими на количество света, достигающего поверхности Земли.

Для участков выше и ниже экватора сезонные колебания обычно отмечаются весенним и осенним равноденствиями, а также летним и зимним солнцестоянием. Равноденствия определяются как время года, когда солнце пересекает экватор (март и 21/22 сентября). В это время наблюдается равное количество часов светового дня и ночи. Летнее и зимнее солнцестояние определяются как время, когда солнце достигает своей самой высокой / самой низкой широты.В северных широтах летнее солнцестояние приходится на 21/22 июня, а зимнее солнцестояние — 21/22 декабря. Летнее солнцестояние — это дата, когда количество световых часов самое длинное, а зимнее солнцестояние — самое короткое количество световых часов. В южном полушарии солнцестояние как раз наоборот.

Перед установкой солнечной водонагревательной системы вы должны сначала рассмотреть солнечные ресурсы участка, так как эффективность и конструкция солнечной водонагревательной системы зависят от того, сколько солнечной энергии достигает строительной площадки.Вам также необходимо правильно подобрать размер системы, чтобы обеспечить потребности дома в горячей воде. В этом уроке вы узнаете, как разместить и определить размер солнечной водонагревательной системы.

Энергетические расчеты и единицы

Мы должны уметь измерять и сравнивать энергию и другие величины, чтобы иметь возможность оценить размер солнечных водонагревательных и солнечных электрических систем. Следовательно, нам необходимо понять, какие энергетические расчеты и единицы энергии мы используем для этих оценок.

Таблица преобразования

Определения:

Тепло:
Британская тепловая единица (БТЕ): количество энергии для подъема 1 фунта воды на 1 градус Фаренгейта

Therm: 100 000 британских тепловых единиц

DekaTherm (DKT) : 1 000 000 британских тепловых единиц
Природный газ содержит около 1 DKT энергии на 1000 кубических футов газа.

Электроэнергия и энергия
1 ватт = 1 вольт * 1 ампер в чисто резистивных цепях

1000 Вт = 1 киловатт (кВт) (это мощность)

1 кВт * 1 час = 1 киловатт-час (это энергия)

В начало

Размещение солнечной водонагревательной системы

Географическая ориентация и наклон коллектора могут влиять на количество солнечного излучения, которое получает система.

Солнечные водонагревательные системы используют как прямое, так и рассеянное солнечное излучение. Несмотря на более холодный северный климат, Пенсильвания по-прежнему предлагает достаточные солнечные ресурсы. Обычно, если место установки не затемнено с 9 до 15 часов. и выходит на юг, это хороший кандидат на установку солнечной водонагревательной системы.

PVWatts (www.pvwatts.org) — полезный онлайн-калькулятор, который помогает понять солнечные ресурсы в данном месте. В таблице ниже показаны средние значения солнечной радиации летом, зимой и за год для Уилкс-Барре, штат Пенсильвания.PVWatts может помочь вам определить солнечный ресурс, доступный на вашем конкретном участке, а также помочь вам оценить размер солнечной системы, необходимой для обеспечения необходимой солнечной энергии для солнечных водонагревательных или солнечных электрических систем. ( Совет: чтобы преобразовать киловатт-часы в британские тепловые единицы, умножьте на 3413. Чтобы преобразовать квадратные метры в квадратные футы, умножьте на 10,76 ).

Среднее дневное излучение Солнца
за январь и июль и ежегодно для различных углов наклона и азимута в Уилкс-Барре, Пенсильвания (кВтч / м2 / день)
Источник: PV Watts Website
www.pvwatts.org

Угол наклона Азимутальный угол Январь июля Ежегодно
25 180 2,50 5,58 4,19
25 210 2.40 5,81 4,12
25 270 1,72 5,52 3,59
40 180 2,81 5,47 4,19
40 210 2,66 5,45 4.09
40 270 1,69 5,08 3,37
55 180 2,89 4,82 3,98
55 210 2,79 4,85 3,88
55 270 1.62 4,55 3,09

Ориентация коллектора
Ориентация коллектора критически важна для достижения максимальной производительности солнечной энергетической системы. В целом, оптимальная ориентация солнечного коллектора в северном полушарии — истинный юг (азимут 1800). Однако недавние исследования показали, что, в зависимости от местоположения и наклона коллектора, коллектор может смотреть на угол до 90 к востоку или западу от истинного юга без значительного снижения его производительности.

Местные климатические условия могут сыграть значительную роль в выборе ориентации коллекторов к востоку или западу от истинного юга, а также при определении правильного угла наклона коллекторов. Ориентация и наклон крыши зданий, факторы затенения, эстетика и местные условия также играют важную роль в установке оборудования для сбора солнечных систем.

Вы также должны учитывать такие факторы, как ориентация крыши (если вы планируете установить коллектор на крыше), местные особенности ландшафта, которые затеняют коллектор ежедневно или сезонно, и местные погодные условия (например, туманное утро или облачный день), например эти факторы также могут повлиять на оптимальную ориентацию коллектора.

Наклон коллекторов
Большинство жилых солнечных коллекторов представляют собой плоские панели, которые можно установить на крыше или на земле. Называемые плоскими коллекторами , они обычно фиксируются в наклонном положении, соответствующем широте местоположения. Это позволяет коллекционеру лучше всего фиксировать солнце. Эти коллекторы могут использовать как прямые лучи солнца, так и отраженный свет, проходящий через облака или от земли. Поскольку плоские коллекторы используют весь доступный солнечный свет, они являются лучшим выбором для многих северных штатов.

Оптимальный угол наклона солнечного коллектора — это угол, равный широте.

Хотя оптимальным углом наклона коллектора является угол, равный широте, установка коллектора плоско на наклонной крыше не приведет к значительному снижению производительности системы и часто желательна по эстетическим соображениям. Однако вы захотите принять во внимание угол наклона крыши при определении размеров системы.

Затенение
Как упоминалось ранее, солнечные коллекторы следует устанавливать на участке, не затененном с 9 а.м. до 15:00 и смотрит на юг. Затенение от гор, деревьев, зданий и других географических объектов может значительно снизить производительность коллектора. Перед установкой солнечной энергетической системы вы должны сначала составить схему движения солнца, чтобы оценить влияние затенения на годовую производительность системы.

В начало

Расчет солнечной водонагревательной системы

Чтобы правильно определить размер солнечной водонагревательной системы, вам необходимо определить общую площадь коллектора и объем хранилища, необходимые для удовлетворения от 90 до 100 процентов потребностей домашнего хозяйства в горячей воде в летний период.Один программный инструмент, который доступен для расчета размеров солнечной системы водяного отопления, — это RetScreen (www.retscreen.net/ang/home.php). Если вы планируете проектировать несколько систем солнечного нагрева воды, вы можете загрузить программное обеспечение для горячего водоснабжения с веб-сайта www.retscreen.net/ang/t_software.php. Это программное обеспечение можно использовать для определения размеров солнечных водонагревательных систем, и мы будем использовать его для проверки приведенного ниже примера расчета практических правил.

Размер площади коллектора
Хорошее практическое правило для определения размера площади коллектора в северных климатических условиях, например в Пенсильвании, заключается в том, чтобы оставить 20 квадратных футов (2 квадратных метра) площади коллектора для каждого из первых двух членов семьи и от 12 до 14 квадратных метров. футов для каждого дополнительного человека.

Выбор размера для хранения
Небольшого (от 50 до 60 галлонов) резервуара для хранения обычно достаточно для одного-двух человек. Средний (80 галлонов) резервуар для хранения хорошо подходит для трех-четырех человек. Большой бак (120 галлонов) подходит для четырех-шести человек.

Для активных солнечных водонагревательных систем размер солнечного накопительного бака увеличивается с размером коллектора, обычно 1,5 галлона на квадратный фут коллектора. Это помогает предотвратить перегрев системы при низкой потребности в горячей воде.

На веб-сайте Solar Rating and Certification Corporation результаты тепловых характеристик протестированных солнечных коллекторов можно найти по адресу www.fsec.ucf.edu/solar/testcert/collectr/tprdhw.htm. На сайте представлены данные о производительности в диапазоне температур, который подходит для выбора коллектора для нагрева потребности в горячей воде. Ниже приводится страница с этого сайта. Имейте в виду, что эти коллекционеры сертифицированы в соответствии с условиями Флориды. Чтобы выбрать правильный размер коллектора для Пенсильвании, необходима процедура проб и ошибок.


Сертификат коллектора (A)


Коллектор


Остекление


Абсорбер

Площадь брутто

Тепловые характеристики
Промежуточный номинальный диапазон температур

Производитель

Модель

ФСЭК №

Тип

Материал

Покрытие

кв. Ft

БТЕ / день

БТЕ / фут²

ACR Solar International Corp

Скайлайн 20-01

00030

1

Прозрачный жесткий пластик

Медные трубы и ребра

Выборочный

20.07

14800

736

ACR Solar International Corp

Скайлайн 10-01

00212C

1

Прозрачный жесткий пластик

Медные трубы и ребра

Выборочный

10.00

7500

747

AMK-Collectra AG


OPC 10 MK-III

00083

1


Вакуумная стеклянная трубка

Медные трубы и алюминиевые ребра

Выборочный

15.67

12500

800

Alfa Casting Corp

* AC-419

83128

1

Стекло

Медные трубы и алюминиевые ребра

Неселективный

18.41

14200

770

Alfa Casting Corp

* ACC-419

83129

1

Стекло

Медные трубы и ребра

Неселективный

18.41

16400

893

ООО «Альтернативные энергетические технологии»

АЕ-21

00081N

1

Стекло

Медные трубы и ребра

Выборочный

20.77

17600

849

ООО «Альтернативные энергетические технологии»

AE-26

00088N

1

Стекло

Медные трубы и ребра

Выборочный

25.35

21700

856

ООО «Альтернативные энергетические технологии»

AE-32

00089N

1

Стекло

Медные трубы и ребра

Выборочный

31.91

27500

862

ООО «Альтернативные энергетические технологии»

AE-40

00090N

1

Стекло

Медные трубы и ребра

Выборочный

39.79

34400

866

ООО «Альтернативные энергетические технологии»

AE-32-E

00036C

1

Стекло

Медные трубы и ребра

Умеренно селективный

31.85

22300

701

ООО «Альтернативные энергетические технологии»

AE-40-E

00037C

1

Стекло

Медные трубы и ребра

Умеренно селективный

39.71

27900

704

ООО «Альтернативные энергетические технологии»

ST-32E

00119C

1

Стекло

Медные трубы и ребра

Умеренно селективный

30.91

22900

742

ООО «Альтернативные энергетические технологии»

ST-40E

00120C

1

Стекло

Медные трубы и ребра

Умеренно селективный

38.62

28400

735

ООО «Альтернативные энергетические технологии»

МСК-21

00213N

1

Стекло

Медные трубы и ребра

Выборочный

21.50

17400

810

ООО «Альтернативные энергетические технологии»

МСК-32

00214N

1

Стекло

Медные трубы и ребра

Выборочный

32.67

27200

833

ООО «Альтернативные энергетические технологии»

МСК-40

00215N

1

Стекло

Медные трубы и ребра

Выборочный

42.15

35100

833

American Solar Network, Ltd.

ASN30A

89011

1

Прозрачный жесткий пластик

EPDM, стабилизированный УФ-излучением

Нет

31.17

21100

676

American Solar Network, Ltd.

ASN45A

89018C

1

Прозрачный жесткий пластик

EPDM, стабилизированный УФ-излучением

Нет

46.50

31600

680

American Solar Network, Ltd.

ASN60A

C

1

Прозрачный жесткий пластик

EPDM, стабилизированный УФ-излучением

Нет

61.83

41600

673

Apricus Solar Co., Ltd.

АП-10

00202N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Выборочный

14.45

8500

589

Apricus Solar Co., Ltd.

АП-20

00106N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Выборочный

29.16

17300

594

Apricus Solar Co., Ltd.

АП-22

00203N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Выборочный

32.11

19100

594

Apricus Solar Co., Ltd.

АП-30

00204N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Выборочный

43.63

27600

636

Aqua Sol Components Ltd.

6536

00068

1

Стекло

Медные трубы и алюминиевые ребра

Неселективный

36.46

Термосифонная система
Чистая поставленная энергия:
27,300 БТЕ
Коэффициент тепловых потерь:
3,7 БТЕ / час ° F

* Скорость потока через солнечный коллектор влияет на его производительность, но может влиять или не влиять на производительность системы, в которой он установлен. Некоторые из перечисленных здесь коллекторов были протестированы при расходах, отличных от указанных в стандартах тестирования.Эти модели коллекторов помечены звездочкой (*), непосредственно перед номером модели.

Сравнивая суточную потребность в тепле для горячей воды с тестированными показателями тепловой производительности коллектора, мы хотим выбрать солнечные коллекторы, которые будут производить 45 081 БТЕ / день. Заглянув в столбец БТЕ / день, мы видим, что нам потребуются два коллектора, чтобы соответствовать нашей нагрузке, каждый из которых может обеспечить около 22 541 БТЕ / день.Коллектор AE-32 от компании Alternate Energy Technologies рассчитан на 27 500 БТЕ / день. Каждый из этих коллекторов имеет площадь около 32 квадратных футов. Этот пример выгодно отличается от представленных ранее общих рекомендаций по количеству солнечных коллекторов для установки 20 квадратных футов площади коллектора для первых двух человек и 12 квадратных футов для каждого дополнительного жителя.

Для Пенсильвании резервуар для хранения воды, соединяющий с солнечным коллектором площадью 64 квадратных фута, должен быть не менее 80 галлонов, но лучше будет резервуар емкостью более 90 галлонов.

В начало

Вопросы

  1. Используя программное обеспечение RETScreen, коллекторы AET AE-32 будут производить 0,98 МВтч с июня по август, или 36 347 БТЕ в сутки. Это не соответствует нашей расчетной нагрузке на нагрев воды, поэтому нам нужно выбрать другой коллектор. Поскольку у нас дефицит около 8 734 БТЕ в день, или 24%, нам нужно выбрать коллекционеров примерно на 24% больше, чем наша первоначальная оценка. Мы попробуем коллектор AET AE-40 площадью 40 квадратных футов. Используя программное обеспечение RET Screen, мы видим, что коллекторы AE-40 произведут 1.08 МВтч с июня по август или около 40 055. Что случилось? Почему мы увеличиваем площадь солнечного коллектора на 25% и получаем только на 10% больше горячей воды? Ответ заключается в том, что по мере того, как количество произведенной энергии приближается к количеству потребляемой энергии, эффективность системы падает, поскольку более высокие температуры системы приводят к большим потерям тепла. Система с двумя коллекторами AE-32 имеет КПД системы 35 процентов, обеспечивая при этом 86% энергии, необходимой в летнее время (86% называется солнечной фракцией).Система с двумя коллекторами AE-40 имеет КПД 31%, обеспечивая при этом 95% энергии, необходимой в летнее время. Помните, мы начали с того, что рассчитали систему, чтобы обеспечить 100% летней энергии для нагрева воды.

    Другой параметр конструкции системы, на который нам нужно обратить внимание, — это размер солнечного резервуара для хранения воды. Предыдущий анализ был проведен с использованием RETScreen для резервуара на 120 галлонов. Каковы были бы КПД и доля солнечной энергии, если бы мы установили резервуар для хранения на 80 галлонов? Модель RETScreen предсказывает, что при использовании резервуара для хранения емкостью 80 галлонов доля солнечной энергии снижается до 93%, а эффективность в летнее время остается на уровне 31%.Таким образом, бак для хранения меньшего размера снижает долю солнечной энергии в системе.

    Как наша система работает ежегодно?

    Среднесуточная солнечная радиация
    за январь и июль и ежегодно для различных углов наклона и азимута в Уилкс-Барре, штат Пенсильвания (кВтч / м2 / день)
    Источник: веб-сайт PV Watts
    www.pvwatts. org

    Угол наклона Азимутальный угол Январь июля Ежегодно
    25 180 2.50 5,58 4,19
    25 210 2,40 5,81 4,12
    25 270 1,72 5,52 3,59
    40 180 2,81 5,47 4.19
    40 210 2,66 5,45 4,09
    40 270 1,69 5,08 3,37
    55 180 2,89 4,82 3,98
    55 210 2.79 4,85 3,88
    55 270 1,62 4,55 3,09
  2. Используя данные для Уилкс-Барре в приведенной выше таблице, какова разница в процентах между среднегодовой дневной солнечной инсоляцией, падающей на поверхность, обращенную на истинный юг (азимутальный угол 1800) с наклоном 25 градусов по сравнению с наклоном 55 градусов? Для наклона 25 градусов по сравнению с поверхностью, наклоненной на 40 градусов?
  3. Какова разница в процентах между среднегодовым значением для поверхности, наклоненной на 25 градусов и обращенной на истинный юг, и той же поверхности, с таким же наклоном, но с азимутальным углом 210 градусов?
  4. Какова разница в процентах между среднегодовым значением для поверхности, наклоненной на 25 градусов и обращенной на истинный юг, и той же поверхности, такого же наклона с азимутальным углом 270 градусов? Для поверхностей с уклоном 40 и 55 градусов?
  5. Учитывая процентные различия, указанные в вопросе 3, какой угол наклона более разумно принять, если у вас не было другого выбора, кроме как установить солнечную систему с азимутальным углом 270 градусов? Пожалуйста, объясните свой ответ.
  6. Если бы вы жили в Уилкс-Барре и хотели максимально улавливать солнечную инсоляцию зимой, с какими углами наклона и азимута вы бы установили солнечные коллекторы? И наоборот, если вы хотите максимизировать летний сбор солнечной энергии, под каким углом наклона и азимута вы бы установили солнечные коллекторы?
  7. В примере определения размеров солнечной системы общая суточная потребность в тепловой энергии для 80 галлонов горячей воды была рассчитана на уровне 45 081 БТЕ. Какова была бы общая потребность в тепловой энергии для 80 галлонов при температуре горячей воды, установленной на уровне 1400F, при такой же температуре холодной воды?
  8. Какова будет потребность в дополнительной энергии для 80 галлонов горячей воды с температурой горячей воды, установленной на уровне 1200F, и солнечной системой нагрева воды, обеспечивающей 1000F воды на входе холодной воды обычного нагревателя горячей воды для бытового потребления? При расчете принимайте тепловые потери для установленной температуры 120 градусов от обычного нагревателя.

В начало

ответы

.

Оставить комментарий