Огнестойкость материалов: Nothing found for Zaschita Teorija Stojkosti Ognestojkost Strojmaterialov%23Head_0

Опубликовано в Разное
/
18 Июл 2019

Содержание

Классификация строительных материалов и конструкций по возгораемости, зданий и сооружений по огнестойкости

        Пожарная безопасность зданий и сооружений, условия развития и распространения пожара в них существенно зависят от возгораемости и огнестойкости использованных при их строительстве материалов и конструкций. Возгораемость и огнестойкость строительных материалов и конструкций устанавливаются па стадии проектирования промышленных объектов в зависимости от категории взрыво- и пожароопасности помещений, размещаемых в проектируемых зданиях.
        Согласно строительным нормам и правилам строительные материалы и конструкции по возгораемости разделяются на несгораемые, трудносгораемые и сгораемые.
        Несгораемыми являются такие материалы и конструкции, которые под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются К ним относятся все естественные и искусственные неорганические материалы, которые при пожаре не горят.

        Трудно сгораемые материалы и конструкции под воздействием огня или  высокой температуры воспламеняются, тлеют или обугливаются и продолжают гореть, тлеть и обугливаться при наличии источника зажигания, а после его удаления эти процессы прекращаются. К ним относятся материалы, состоящие из несгораемых и сгораемых составляющих, содержащие более 8 % по массе органических заполнителей, а также горючие материалы, защищенные негорючими материалами.
        Сгораемые материалы и конструкции под воздействием огня или высокой температуры воспламеняются, тлеют или обугливаются, и эти процессы продолжаются после удаления источника зажигания. К ним относятся все органические материалы, не отвечающие требованиям, предъявляемым к несгораемым и трудносгораемым материалам.
        Огнестойкость отдельных строительных конструкций зданий и сооружений—это их свойство сохранять несущую способность во время пожара в течение определенного времени. Огнестойкость характеризуется двумя количественными показателями — пределом огнестойкости строительных конструкций и степенью огнестойкости зданий и сооружений.
        Предел огнестойкости строительной конструкции устанавливают экспериментальным путем, и он определяется временем в часах от начала ее испытания на огнестойкость до появления одного из следующих признаков:
        сквозные трещины или отверстия, через которые нагретые продукты горения или пламя могут проникать через конструкцию и распространяться в смежные помещения;
        повышение температуры на необогреваемой поверхности конструкции в среднем более чем на 140°С или в любой точке этой поверхности до температуры 180°С и более по сравнению с температурой до испытания;
повышение температуры на необогреваемой поверхности конструкции выше 200 °С независимо от ее температуры до испытания;
        потеря конструкцией несущей способности (обрушение).
        Важное практическое значение этого показателя заключается также в том, что он позволяет при планировании эвакуации работающих при возникновении пожара, а также во время его тушения предусмотреть соответствующие меры обеспечения безопасности.

        Степень огнестойкости промышленных зданий и сооружений определяется в зависимости от группы возгораемости и предела огнестойкости основных строительных конструкций (несущие стены, колонны, стены лестничных клеток, плиты настила, конструкции перекрытий и т.п.), а также скорости распространения огня по ним.
        Здания и сооружения по огнестойкости подразделяются на 5 степеней (СНиП 2.01.02—35). Минимальные пределы огнестойкости и группы горючести основных строительных конструкций для зданий и сооружений I— III степени огнестойкости приведены на рис. 21.
        Необходимая огнестойкость зданий и сооружений при их проектировании определяется исходя из катетории пожарной опасности размещаемых в них производств, их этажности и площади между противопожарными стенами на этажах в соответствии со СНиП2.09.02— 85. 

Рисунок 21 — Таблица степени огнестойкости зданий и сооружений

        Строительство зданий с категориями производств А в Б допускается только I и II степени огнестойкости и не выше 6 этажей. Для зданий с категориями производств В, Г и Д при I и II степенях огнестойкости число и площадь этажей не ограничиваются. Здания пищевых предприятий, как правило, проектируются не ниже II степени огнестойкости.


Полезная информация:

4.2 Горючесть и огнестойкость строительных материалов и конструкций

Все строительные материалы и конструкции по горючести в соответствии со СНиП 21-01-97 подразделяются на три группы:

Негорючие — все неорганические материалы: кирпич, глина, песок, гравий, асбест, бетон, железобетон и др.

Трудногорючие — материалы, состоящие из негорючих и горючих составляющих — асфальтобетон, фибролит, линолеум, древесина, пропитанная антипиренами

7(огнезащитными составами) и др. Эти материалы горят или тлеют только при наличии источника огня, после его удаления горение прекращается;

Горючие — все органические материалы: древесина, не обработанная огнезащитными составами; толь, рубероид, асфальт и др.

Пределом огнестойкости строительной конструкции называется время в часах, в течение которого она при пожаре не теряет своей несущей способности, т.е. не обрушивается, не дает сквозных трещин, а также не происходит разрушения узлов крепления конструкции. При этом температура на противоположной от огня стороне конструкции не должна превышать 140

°С.

Многие неорганические материалы хотя и не горят, но имеют сравнительно небольшую термическую стойкость. Так, известняки и мрамор разрушаются при 300÷400°С, граниты — при нагревании и резком охлаждении. Шифер и другие асбоцементные изделия при 300°С теряют воду, становятся хрупкими, а при 600÷700°С и попадании на них воды растрескиваются. Керамические плиты сохраняют свои свойства при нагревании до 1300÷1400°С, красный кирпич теряет свою прочность на 10-15% при 900

°С.

Предел огнестойкости отдельных строительных конструкций зависит от их толщины или сечения и физико-химических свойств материала. Например, стены из красного кирпича толщиной 38 см имеют предел огнестойкости около 11 ч, а из естественного камня той же толщины — около 7 ч. Для перегородок из силикатного и красного кирпича толщиной 12 см предел огнестойкости 2,5 часа, гипсовых и гипсошлаковых толщиной 10 см — 2,7 часа, деревянных, оштукатуренных с двух сторон при толщине слоя штукатурки 2 см и толщине перегородки 12 см — 0,75 часа.

Способы повышения огнестойкости строительных материалов и конструкций

В настоящее время существует несколько способов защиты горючих материалов от воспламенения — термоизоляция, огнезащитная пропитка, огнезащитное покрытие.

Термоизоляция достигается при оштукатуривании деревянных конструкций, обшивке кровельной сталью по войлоку в глине (противопожарные двери), обшивке кровельной сталью по асбесту и т.п.

Огнезащитная пропитка создается водными растворами антипиренов (например, жидкого стекла, фтористого натрия, хлористого кальция).

Огнезащитное покрытие — это окраска древесины специальными красками.

Химическая промышленность выпускает атмосферостойкую краску ПВХО, водостойкую краску ХЛ-СЖ и неводостойкую силикатную краску СК-ХЭМ.

4.3 Огнестойкость зданий и сооружений

Классификация зданий и сооружений по степени огнестойкости

В соответствии со СНиП 21-01-97, существует восемь степеней огнестойкости зданий (I, II, III, IIIa, IIIб, IV, IVа, V).

Степень огнестойкости определяется в зависимости от минимальных пределов огнестойкости основных строительных конструкций и максимальных пределов распространения огня по эти конструкциям (Табл. 13).

Выбор степени огнестойкости зданий и сооружений

Степень огнестойкости зданий и сооружений, допустимое число этажей и допустимую площадь этажа между противопожарными стенами устанавливают в зависимости от категории производства согласно СНиП 2. 09.02-858.

Так, для производств категории А, Б здание должно быть не ниже I или II степени огнестойкости, а число этажей — не более шести, причем площадь этажа между противопожарными стенами не ограничивается. Для производств категории

В при I и II степенях огнестойкости допускается строить здания до восьми этажей (также без ограничения площади этажа между противопожарными стенами).

Здания полиграфических предприятий проектируют обычно многоэтажными I или II степени огнестойкости. Размещение цехов и отделений, относящихся к разным категориям производства, осуществляется в одном и том же производственном корпусе. Но в целях пожарной профилактики цехи с производствами, относящимися к категориям А и Б, располагают в многоэтажных зданиях на последнем этаже, а в одноэтажных — у наружных стен так, чтобы от других цехов и отделений они отделялись противопожарными стенами. В случаях, когда это вызвано технологической необходимостью, техническими и экономическими соображениями, допускается (по согласованию с органами Госпожнадзора и с соблюдением специальных противопожарных мероприятий) размещение этих цехов и отделений на других этажах многоэтажного здания.

Взрыво- и пожароопасные отделения, участки для смывки форм, валиков, изготовления фотополимерных форм и другие подобные им участки размещают согласно требованиям рациональной организации технологического процесса. Предусматривая при этом специальные противопожарные мероприятия: огнестойкие перегородки с пределом огнестойкости не менее 0,75 часа; двери с пределом огнестойкости не менее 0,6 часа; герметизацию оборудования; местную вентиляцию, предупреждающую образование взрывоопасных смесей паров жидкостей с воздухом; взрывозащищенное и взрывобезопасное электрооборудование и осветительную арматуру; автоматические средства пожаротушения, пожарной связи и сигнализации.

Рекуперационные помещения и красочные станции, обслуживающие цехи глубокой и флексографской печати, размещают, как правило, в огнестойких одноэтажных зданиях.

При определении этажности здания в число этажей включают подвальные и цокольные, если первый этаж возвышается над уровнем планировочной отметки земли более чем на 2 м.

Современные методики повышения огнестойкости зданий и сооружений, расчет огнезащиты

Главная — Статьи — Современные методики повышения огнестойкости зданий и сооружений, расчет огнезащиты

Журнал «Стройпрофиль» № 6 2010

Заочный круглый стол

Прокомментировали текущую ситуацию:
М. В. ГРАВИТ, к. т. н., заместитель генерального директора по научно-техническому сопровождению особо сложных и уникальных объектов ООО «Научный инновационный центр строительства и пожарной безопасности» (Санкт-петербург),
М. И. КЛЕЙМЕНОВ, заместитель руководителя ИЦ «Огнестойкость» (Москва),
В. М. РОЙТМАН, д. т. н., профессор кафедры технического регулирования Института строительства и архитектуры МГСУ (Москва)

М. В. ГРАВИТ:

— Фактические пределы огнестойкости конструкций, в том числе и с использованием средств огнезащиты для повышения этих пределов, определяются как интервал времени от начала испытания строительной конструкции на огнестойкость в состоянии, нагруженном нормативной нагрузкой, до наступления первого предельного состояния конструкции по огнестойкости:

• потеря несущей способности в результате обрушения или достижения предельных деформаций (R),
• потеря целостности в результате образования в конструкции сквозных трещин или отверстий, через которые на не обогреваемую поверхность проникают продукты горения или пламя (Е),
• потеря теплоизолирующей способности вследствие повышения температуры на не обогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от не обогреваемой поверхности конструкции (W).

Способы повышения пределов огнестойкости и снижения класса пожарной опасности несущих строительных конструкций за счет использования так называемой пассивной огнезащиты остаются в настоящее время традиционными. Применение конструктивных материалов обязательно в высотных зданиях, тоннельных сооружениях, атомных станциях и других технически сложных объектах, где нормируются высокие значения данного параметра — 150, 180, 240 мин.

В случае, когда требуемые пределы ниже (R90 и менее), приоритет остается за тонкослойными вспучивающимися покрытиями, преимуществом которых, бесспорно, является их декоративность и высокая производительность выполнения работ по нанесению таких составов. Согласно п. 10 ст. 87 ФЗ-123, пределы огнестойкости и классы пожарной опасности, аналогичные по форме, материалам и конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическими методами, установленными нормативными документами по пожарной безопасности.

Метод расчета предела огнестойкости несущей конструкции состоит в решении сначала статической части задачи огнестойкости (с целью определения величины критической температуры конструкции, при которой ее несущая способность уменьшится при нагреве до величины нормативной нагрузки на конструкцию), а затем второй части расчета — теплотехнической, где определяют время прогрева с учетом применяемого средства огнезащиты до наступления критической температуры конструкции. Для конструктивных материалов уже порядка 40 лет используется известная в пожарно-технической практике методика, разработанная во ВНИИПО МЧС России д. т. н., профессором Яковлевым А. И.

Что касается тонкослойных вспучивающихся материалов, то у каждого производителя таких средств огнезащиты имеется своя методика расчета пределов огнестойкости конструкций — в зависимости от их определенных типоразмеров (сортамента), нагрузок, толщины слоя покрытия и т. д. Все эти методики имеют несколько «слабых мест», одно из которых — сложность определения в нестационарном режиме огневых испытаний коэффициента теплопроводности образующегося пенококса (вспученного слоя). Как правило, этот параметр определяется из экспериментальных данных, полученных при огневых испытаниях. Понятно, что чем больше будет статистика таких испытаний, тем точнее будет применяемая расчетная методика, при этом количество экспериментов ограничивается экономическим фактором — испытания такого плана достаточно дороги.

Инженерные таблицы, составленные на основе таких расчетов, лежат в основе проектирования толщины слоя огнезащитного состава, соответствующей принятой группе огнезащитной эффективности состава (по сертификату пожарной безопасности), и определяют зависимости толщины слоя покрытия от приведенной толщины элемента конструкции.

М. И. КЛЕЙМЕНОВ:

— В качестве несущих элементов в строительстве часто применяются металлоконструкции. В соответствии с требованиями ФЗ-123 от 22 июля 2008 г. «Технический регламент о требованиях пожарной безопасности», предел огнестойкости несущих элементов должен составлять от R15 до R120 (в зависимости от степени огнестойкости здания). В некоторых случаях требования к пределу огнестойкости несущих элементов могут быть и выше (при проектировании особо ответственных объектов). Известно, что предел огнестойкости незащищенных стальных несущих элементов составляет менее 15 мин. В связи с этим для увеличения предела огнестойкости стальных несущих элементов необходимо предусматривать огнезащиту.

Как правило, для стальных конструкций могут быть использованы следующие типы огнезащитных покрытий:
• лакокрасочные термореактивные покрытия,
• штукатурные покрытия,
• конструктивная огнезащита — плитные материалы (волокнистые, листовые и т. д.).

Выбор огнезащитного покрытия зависит от удобства применения и условий эксплуатации. Для выбора огнезащитного покрытия и необходимой его толщины следует провести температурно-деформационный расчет исходного несущего элемента. Для этого надо знать марку стали, технические характеристики, в т. ч. температурные, а также условия нагружения несущего элемента. На основании расчета специалисты будут рекомендовать огнезащитное покрытие определенной группы огнезащитной эффективности и укажут толщину этого покрытия.

Выбор требуемого огнезащитного покрытия можно провести без дополнительных испытаний — при наличии сертификата на огнезащитное покрытие, с установленной группой огнезащитной эффективности и рекомендуемой толщиной.

Пределы огнестойкости несущих элементов, в т. ч. металлических, устанавливают в соответствии с требованиями ГОСТ 30247.0-94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247.1-94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции». Испытания покрытий на огнезащитную эффективность проводят в соответствии с ГОСТ Р 53295-2009 «Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности».

При выборе огнезащитного покрытия необходимо также учесть условия эксплуатации несущего элемента с огнезащитным покрытием, которое должно обеспечивать устойчивость к воздействию окружающей среды. В документации на огнезащитное покрытие должно быть указание на возможность его применения на открытом воздухе, а также гарантийный срок эксплуатации.

Все необходимые характеристики покрытий должны быть указаны в сопроводительных документах на эти материалы (ТУ, Инструкция по применению, Технологические регламенты и т. д.). При проектировании огнезащитных мероприятий необходимо предусмотреть возможность восстановления или замены огнезащитного покрытия по истечении гарантийного срока эксплуатации.

В. М. РОЙТМАН:

— С учетом проходящей реформы технического регулирования пожарной безопасности, появления новых, прогрессивных строительных материалов и конструктивно-планировочных решений, строительства уникальных высотных многофункциональных комплексов проблема оценки огнестойкости зданий и сооружений является в нашей стране весьма актуальной. В этой области знаний накопилось много вопросов, требующих разрешения. Представляется важным решение вопроса о целесообразности использования такой характеристики, используемой при определении требуемой степени огнестойкости, как класс конструктивной опасности здания. Как показывает практика, эта характеристика малопонятна, дублирует ряд нормируемых показателей пожарной опасности строительных материалов, необоснованно усложняет и удорожает процесс проектирования объектов. Целесообразно для этих целей использовать уже имеющиеся нормируемые показатели пожарной опасности объектов,такие, как класс функциональной пожарной опасности объектов и категория помещений и зданий по взрывопожарной и пожарной опасности.

Требует рассмотрения проблема оценки огнестойкости эксплуатируемых и реконструируемых зданий и сооружений. Эта проблема имеет важное практическое значение в связи с массовой реконструкцией зданий различного назначения в городах и населенных пунктах, а также с учетом изменения функциональных, эксплуатационных санитарно-бытовых и других требований. В МГСУ разработаны теоретические основы, методы и средства для решения такого рода задач.

Одной из основных трудностей для проектировщиков и инженеров, занимающихся решением вопросов огнестойкости зданий и сооружений, является отсутствие пособия, в котором содержались бы систематизированные, соответствующим образом обобщенные и приведенные к виду, удобному для использования в практических целях, современные данные о фактических пределах огнестойкости строительных конструкций. Последний вариант такого рода пособия был издан в 1985 г. и нуждается в срочном обновлении, дополнении и переиздании.

Из актуальных новых научных направлений выделю Оценку стойкости объектов при комбинированных особых воздействиях (СНЕ) с участием пожара. Сейчас в МГСУ совместно с Академией ГПС МЧС России проводятся исследования в этой области. Результаты уже проведенных исследований свидетельствуют об особой опасности СНЕ (с учетом террористической угрозы) для высотных и многофункциональных объектов, а также о необходимости учета этой опасности при оценках устойчивости зданий в этих условиях.

1. Какие способы повышения огнестойкости и снижения класса пожарной опасности несущих строительных конструкций (сталь, дерево, ЖБ и прочие) использует ваше предприятие?

Н. В. АКУЛОВА:

— По статистике МЧС, за год в России при пожарах гибнет порядка 15 тыс. человек, пострадавших насчитывается сотни тысяч. Поэтому в мае 2009 г. вступил в силу новый Федеральный закон «Технический регламент о требованиях пожарной безопасности» (далее ФЗ ТР), положениям которого должны соответствовать все без исключения строительные объекты на территории России. Одними из важнейших разделов ФЗ ТР являются статьи, определяющие требования к огнестойкости и пожарной опасности строительных конструкций зданий и сооружений. Очень часто при возникновении пожара здание рушится, и люди, не успевая эвакуироваться, оказываются погребенными под завалами. Чтобы несущие конструкции здания выстояли во время пожара, сохранилась возможность для безопасной эвакуации людей и работы пожарных расчетов, необходимо проводить комплекс мер по повышению огнестойкости несущих строительных конструкций — т. е. одним из сертифицированных материалов должна быть выполнена огнезащита строительных конструкций.

Специалистами нашей фирмы разработаны, сертифицированы и серийно производятся высокоэффективные огнезащитные материалы и составы для различных элементов строительных конструкций (металлических, железобетонных и деревянных, а также для воздуховодов систем вентиляции и кабельных коробов). Выпускаемые материалы обеспечивают огнестойкость от 30 до 240 мин. и отвечают современным нормативным требованиям по пожарной безопасности зданий и сооружений. В ассортименте продукции имеются рулонные и плитные, мастичные и комбинированные материалы, различные по ценовой категории и технологическим свойствам.

В. Н. КАПРАЛОВ:

— Значение повышения огнестойкости строительных конструкций огромно: в случае пожара жизнь людей напрямую зависит от качества огнезащитных систем. На рынке представлен широкий спектр огнезащитных материалов как импортного, так и отечественного производства. Практика последних лет показала преимущества именно конструктивных способов огнезащиты строительных конструкций и инженерных сетей, так как они наиболее отвечают повышенным требованиям Федерального закона №123-ФЗ от 22 июля 2008 г. В работах по повышению огнестойкости наша компания с 2004 г. использует тонкослойные конструктивные системы огнезащиты (как железобетонных, так и металлических конструкций) Уральского завода ОАО «ТИЗОЛ».

В. В. ПОПЛАВСКИЙ:

— В арсенале известной компании КНАУФ имеется достаточно большое количество технических и конструктивных решений по повышению огнестойкости и снижению класса пожарной опасности строительных конструкций (как стальных и железобетонных, так и деревянных). Однако их всемерное использование в России затруднено из-за различия в проведении экспериментальных исследований опытных образцов у нас и на Западе, а также из-за отсутствия единой методики адаптации ранее полученных за рубежом результатов к условиям их использования в России. Поэтому с первых шагов начала инвестиционной деятельности КНАУФ в России (1993 г.) были начаты широкомасштабные испытания материалов и конструкций КНАУФ на полигоне ФГУ ВНИИПО МЧС России. Первоначально были получены сертификаты пожарной безопасности на листовые гипсовые материалы — гипсокартон (ГКЛ) и гипсоволокно (ГВЛ). Затем была продолжена работа по проведению огневых испытаний конструкций различных перегородок с обшивками из ГКЛ и ГВЛ, мансардных перекрытий и покрытий с обшивками из ГВЛ, огнезащитных облицовок стальных колонн листами ГВЛ. С появлением новых листовых материалов (таких, как внутренняя и наружная аквапанель) были также проведены соответствующие огневые испытания как материала, так и конструкций на его основе. В прошлом году компания КНАУФ начала производство в России листовых негорючих строительных материалов (НГ) класса пожарной опасности КМ (0) — плиты «Файерборд». Результаты огневых испытаний подтвердили их высокие показатели.

Р. А. ХАЙДАРОВ:

— Основными способами огнезащиты несущих строительных конструкций считаются конструктивный способ и применение тонкослойный лакокрасочных покрытий. Конструктивные способы повышения огнестойкости и снижения класса пожарной опасности несущих строительных конструкций подразумевают под собой устройство дополнительных конструктивных элементов, что приводит к увеличению нагрузки на несущие металлоконструкции. Также у конструктивной защиты есть такие недостатки, как необходимость нанесения толстых слоев, а иногда возникают и технические сложности в устройстве необходимого покрытия. В большинстве случаев немаловажным фактором является неэстетичный внешний вид готового покрытия.

Я бы хотел отметить использование специальных покрытий, так называемых огнезащитных вспучивающихся красок композиций. Какие плюсы у этого способа? Во-первых, удобство в нанесении, во-вторых, малый вес, в-третьих, декоративность; есть и другие достоинства.

Для защиты металлоконструкций от воздействия огня наше предприятие выпускает материалы серии ПЛАМКОР. Вспучивающиеся покрытия ПЛАМКОР — на сегодняшний день единственные огнезащитные материалы, прошедшие огневые испытания в системе ССПБ не только с традиционной грунтовкой типа ГФ-021, но и с цинконаполненными грунтовками, такими, как: ЦИНЭП, ЦВЭС, ЦИНОТАН. Технология ПЛАМКОР рекомендована для комплексной долговременной защиты металлоконструкции от коррозии и огня. Также возможно применение ряда высокоэффективных укрывных материалов, способных длительное время противостоять агрессивным средам в условиях промышленной атмосферы.

2. Помогают ли расчетные методы при определении фактических пределов огнестойкости различных строительных конструкций (стальных, железобетонных, деревянных и т. д.)?

Н. В. АКУЛОВА:

— Фактические пределы огнестойкости строительных конструкций должны подтверждаться результатами огневых испытаний конструкций. Однако, наряду с экспериментальными методами их огнестойкость также может быть оценена на основе расчетных методов. Тем более что расчетный метод определения пределов огнестойкости конструкций имеет ряд преимуществ перед экспериментальным, в частности, он более экономичен и дает возможность проверить различные варианты решений, а также провести оценку огнестойкости конструкций, огневые испытания которых выполнить практически невозможно (например, элементы монолитных железобетонных каркасов зданий и др.). Поэтому, расчетные методы могли бы существенно облегчить и упростить жизнь как производителям огнезащитных работ, так и производителям огнезащитных материалов. Однако до настоящего времени не разработаны и официально не утверждены методики экспериментальной оценки эффективности огнезащиты строительных конструкций. Поэтому вслед за принятием Федерального закона «Технический регламент о требованиях пожарной безопасности» на государственном уровне должны быть разработаны и утверждены единые методики расчета огнестойкости строительных конструкций, чтобы исключить разночтения между различными методиками, которые существуют сегодня.

В. Н. ДЕМЕХИН, Н. В. ДЕМЕХИН

— При разработке проектов на строительство (реконструкцию, капитальный ремонт, перепланировку) зданий необходимо обосновать соответствие фактических пределов огнестойкости основных конструктивных элементов и строительных конструкций здания противопожарным требованиям нормативных документов (ст. 87123-ФЗ). Часто при этом возникает проблема — как эффективно решить такую задачу при ограниченных материальных возможностях. Данная тема приобретает наиболее актуальный характер, когда идет речь о применении нетрадиционных конструктивных решений. Это связано с тем, что проверка их пожарно-технических характеристик требует проведения весьма дорогостоящих и длительных огневых испытаний. Необходимость в проведении стандартных испытаний на огнестойкость строительных конструкций может во многих случаях отпасть при использовании расчетных методов. Со вступлением в силу СНиП 21-01-97* стало возможным применение расчетных методов для определения не только фактических пределов огнестойкости строительных конструкций, но и классов их пожарной опасности (п. 5.20*). В п. 10 ст. 87 Технического регламента также указано: «Класс пожарной опасности строительных конструкций, аналогичных по форме материалам и конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, может определяться расчетно-аналитическими методами, установленными нормативными документами по пожарной безопасности».

Определение классов пожарной опасности строительных конструкций, полностью выполненных из негорючих материалов (НГ) либо из горючих материалов группы Г4, не представляет сложностей, поскольку п. 10.6 ГОСТ 30403-96 допускает принимать их К0 и К3, соответственно, без проведения испытаний. А как быть, если строительная конструкция (либо конструктивный элемент здания) выполнены с применением и тех и других материалов? Можно, конечно, провести натурные огневые испытания, но для этого, во-первых, не всегда есть возможность (например, как испытать на пожарную опасность перекрытие реконструируемого здания?), во-вторых, такие испытания трудоемки, требуют значительных затрат времени и материальных ресурсов. В подобных случаях целесообразно применять расчетные методы.

Например, при переводе первых этажей жилых зданий в нежилой фонд зачастую возникает проблема по соблюдению противопожарных требований в части отделения нежилой от жилой части здания противопожарным перекрытием (особенно, если существующее перекрытие — деревянное). Если п. 3.2 ранее действующих СНиП 2.01.02-85* совсем не допускал наличие в противопожарных преградах горючих материалов, то п. 5.14* СНиП 21-01-97* уже содержал положение о том, что противопожарная преграда должна обладать классом пожарной опасности К0; допускается в специально оговоренных случаях применять противопожарные преграды 2–4 типов класса К1.

Это же требование было подтверждено п. 5.3.3 СП 2.13130-2009. Следовательно, конструктивный элемент здания (строительная конструкция класса К0) в течение всего времени проведения огневого испытания (согласно п. 9.5 ГОСТ 30403-96 — 45 мин.) не только не должен распространять огонь по поверхности, но даже не должны гореть материалы, из которых он состоит (в данном случае — древесина, при испытании перекрытия снизу). В противном случае придется учесть и три показателя пожарной опасности горящего материала (группы материала по горючести, воспламеняемости и дымообразующей способности). Если древесина будет гореть под слоем огнезащитного материала, т. е. нагреется до температуры самовоспламенения (начала процесса тления) в течение времени испытания перекрытия на класс пожарной опасности, то учет отмеченных показателей пожарной опасности древесины (а они очень высокие) приведет к тому, что анализируемый конструктивный элемент здания будет соответствовать лишь самому высокому классу пожарной опасности — К3, что не позволит его использовать в качестве противопожарной преграды. Если же древесина будет защищена от нагрева слоями огнезащитных материалов достаточной толщины, чтобы она за все время испытания на класс пожарной опасности не успела нагреться до указанной температуры, то самовоспламенение ее не произойдет (или беспламенное горение — тление не начнется), не будет необходимости учитывать и показатели ее пожарной опасности, т. е. перекрытие будет обладать классом пожарной опасности К0, что отвечает нормативному требованию к противопожарному перекрытию.

В последние годы часто возникает необходимость в решении аналогичной задачи, связанной с надстраиванием существующего здания мансардным этажом. Ведь при условии отделения его от существующего верхнего этажа противопожарным перекрытием 2-го типа противопожарные нормы в зданиях I–III степеней огнестойкости допускают для устройства мансардных этажей применять несущие деревянные конструкции, подвергнутые конструктивной огнезащите, обеспечивающей требуемый предел огнестойкости и класс пожарной опасности К0 (45). Применение расчетных методов в данном случае может позволить определить, до какой температуры успеет нагреться поверхность деревянного элемента конструкции под слоем предлагаемого в проекте огнезащитного материала, и тем самым сделать вывод о достаточности его толщины. Либо можно будет решить обратную задачу: расчетом определить необходимую толщину огнезащитного слоя (из одного либо нескольких видов материалов), которая не позволит в течение 45 мин. стандартных испытаний нагреться поверхности деревянного элемента до температуры самовоспламенения (тления) древесины. Для указанных целей можно использовать, например, известные методы решения тепло-технической задачи огнестойкости строительных конструкций, разработанные ФГУ ВНИИПО МЧС России.

В. Н. КАПРАЛОВ:

— Расчетные методы в частных случаях просто необходимы, так как позволяют определить фактическую огнестойкость конструкции. Особенно важно это для конструкций, испытывающих нагрузку на изгиб и растяжение (балки перекрытия, связи, фермы). Сертификационные образцы испытываются в основном без нагрузки (определение огнезащитной эффективности средств огнезащиты для стальных конструкций по ГОСТ Р 532905-2009). В реальных условиях конструкция под нагрузкой может не обеспечить в условиях пожара заявленный предел огнестойкости. Кроме того, расчетный метод позволяет построить на основании проведенных испытаний по крайним точкам зависимость огнестойкости конструкции от толщины слоя огнезащитного покрытия и от приведенной толщины металла. Это позволяет, избегая дополнительных испытаний, экономить на толщине огнезащитного слоя при защите конструкций с большой приведенной толщиной.

В. В. ПОПЛАВСКИЙ:

— Существующие расчетные методы для определения фактических пределов огнестойкости, например, перегородок, предполагают использование эмпирических зависимостей с известными допущениями и отклонениями. В итоге получаемые результаты можно считать условно приближенными, и их можно использовать только для ориентировочной оценки той или иной конструкции.

Пока в России, на наш взгляд, база экспериментальных данных для уточнения методики расчета еще мала, к тому же законодатели в области огнезащиты (ФГУ ВНИИПО МЧС России) неохотно отдают предпочтение расчетным данным и всегда требуют проведения натурных огневых испытаний предлагаемых конструкций. А это дорого и, главное, требует больших затрат времени, в том числе на согласования. Хотя современные методы и программное обеспечение, накопленный экспериментальный и практический опыт позволяют довольно квалифицированно и методически верно смоделировать огневое воздействие на материал и поведение конструкции.

Р. А. ХАЙДАРОВ:

— Расчеты нам не только помогают при определении фактических пределов огнестойкости элементов металлоконструкций, они являются для нас неотъемлемой частью работы при определении необходимой толщины покрытия. При проведении расчетов также определяется теоретический и фактический расход материалов и стоимостное выражение как на квадратный метр, так и на всю конструкцию. Все строительные конструкции состоят из множества элементов. При проведении расчетов специалисты определяют величины по каждому элементу, что очень удобно для заказчика.

3. Насколько важно использовать экспериментальную базу и проводить испытания на пожарную опасность и огнестойкость конструкций, по каким методикам?

Н. В. АКУЛОВА:

— Согласно Федеральному закону «Технический регламент о требованиях пожарной безопасности» (статьи 146–150), сертификация продукции проводится органами, аккредитованными в соответствии с порядком, установленным Правительством РФ. Организация, претендующая на аккредитацию в качестве испытательной лаборатории, осуществляющей сертификацию, должна быть оснащена соответствующим оборудованием, средствами измерений, а также расходными материалами (химическими реактивами и веществами) для правильного проведения испытаний. Испытательное оборудование и средства измерений должны соответствовать требованиям, установленным законодательством Российской Федерации, методики измерений должны отвечать требованиям нормативных документов на методы испытаний.

Поскольку наше предприятие производит выпуск огнезащитных материалов с 2000 г., у нас есть собственная научно-производственная лаборатория, в которой производятся все промежуточные испытания строительных конструкций на огнестойкость. При разработке новых материалов специалисты нашего предприятия (кандидаты и доктора технических наук) проводят множество экспериментальных испытаний с построением зависимости прогрева строительных конструкций в зависимости от вида применяемого материала, его технических характеристик и толщины огнезащитного покрытия. Эти данные ложатся в основу сертификационных испытаний каждого материала. Методики, по которым проводятся испытания, также регламентируются ФЗ ТР, и отступление от них незаконно.

В. Н. КАПРАЛОВ:

— Использование экспериментальной базы и накопленного опыта позволяет предсказать, как поведет себя аналогичная конструкция в условиях пожара. Особенно это актуально для конструкций, которые невозможно испытать в лабораторных условиях.

В. В. ПОПЛАВСКИЙ:

— В связи с вышеизложенным очень важно не только проводить экспериментальные исследования по существующим методикам, но и обобщать полученные результаты, а также корректировать ранее известные данные с целью их уточнения и повышения достоверности. Известно, что ежегодно, например во ВНИИПО и его филиалах, проводится большой объем испытаний, результаты которых обобщаются, анализируются и распространяются на аналогичные конструкции. Назрела необходимость использовать результаты испытаний типовых конструкций, например, перегородок и колонн, при их последующей реализации в строительной практике без изменения первоначальных параметров в течение длительного срока, не прибегая к периодическому продлению срока действия протоколов испытаний. Ведь никто не заставляет, например, дипломированного специалиста периодически подтверждать полученные в вузе знания и умения — как известно, выданный диплом действителен в течение всей жизни специалиста.

4. Какие рекомендации по применению огнезащитных материалов (веществ) для повышения огнестойкости несущих конструкций зданий и сооружений из различных материалов Вы могли бы дать?

Н. В. АКУЛОВА:

— При выборе того или иного материала для огнезащиты строительных конструкций, как правило, руководствуются необходимым пределом огнестойкости и конструктивными особенностями объекта строительства. Каждый материал, который производится нашей компанией, имеет пожарный сертификат, который подтверждает его огнезащитные свойства. При приобретении материалов все клиенты получают инструкцию по монтажу огнезащитного покрытия. В этом документе пошагово расписан не только способ монтажа того или иного покрытия, но и такие важные особенности, как проходка через ограждающие конструкции, способы защиты элементов крепления строительной конструкции (например, воздуховода или кабельного короба) к несущим конструкциям здания и т. п. Поэтому производителям работ по огнезащите строительных конструкций эту инструкцию нужно строго соблюдать. Мы, как производители огнезащитной продукции, гарантируем своим потребителям заявленные свойства огнезащитных материалов при строгом соблюдении инструкции по монтажу покрытий.

В. Н. ДЕМЕХИН, Н. В. ДЕМЕХИН:

— Отдельного внимания требует тема повышения фактического предела огнестойкости несущих стальных конструкций, что, как правило, достигается посредством применения огнезащитных составов (материалов). Однако не все понимают, как правильно подобрать огнезащитный состав (материал) для повышения предела огнестойкости металлических конструкций конкретного здания, а самое главное, как верно определить необходимую толщину огнезащитного слоя. Такая ситуация приводит к значительным перерасходам финансовых средств заказчика либо понижает пожарную безопасность здания (при строительстве зданий с несущим металлическим каркасом). При разработке методики расчетного определения минимально необходимой толщины огнезащитного слоя для несущих стальных конструкций надо исходить из следующих предпосылок.

1. В нашей стране нормируют пределы огнестойкости строительных конструкций, огнезащитную эффективность как лишь сравнительный показатель различных средств огнезащиты не нормируют (п. 3 НПБ 236-97).

2. Результат огневого испытания огнезащитного средства для несущей металлической конструкции, приведенный в Сертификате пожарной безопасности, не являются фактическим пределом огнестойкости конструкции (п. 1 НПБ 236-97), как и указанный в Сертификате соответствия (п. 1 ГОСТ Р 53295-2009), т. к. испытанию подвергают стандартный образец из двутавра длиной 1,7 м, № 20 НПБ 236-97 или № 20Б1 ГОСТ Р 53295-2009 (а не реальную конструкцию; марка стали наиболее распространенная — С 245, а не та, из которой может быть изготовлена конструкция), испытывают его в ненагруженном состоянии до момента прогрева огнезащитного слоя до условной критической температуры конструкции 500 °С.
Этот результат устанавливает лишь условную группу эффективности огнезащитного средства при определенной толщине его высохшего слоя, предварительно нанесенного на стандартный образец конструкции, при стандартном значении приведенной толщины стального профиля этого образца — 3,4 мм (применительно к четырехстороннему обогреву его поперечного сечения) к эквивалентной расчетной толщине стальной пластины (иные значения этого параметра, встречающиеся в Сертификатах пожарной безопасности, по существу являются отступлением от нормативных требований п. 6.3.2 НПБ 236-97 и п.5.3.2 ГОСТ Р 53295-2009).

3. Встречающиеся в Сертификатах пожарной безопасности записи о том, что огнезащитное средство соответствует требованиям пожарной безопасности, установленным в НПБ 236-97, а также в ГОСТ 30247.0-94 — некорректны, поскольку ни НПБ ни ГОСТ требования к пожарной безопасности огнезащитных средств не устанавливают (огнезащитные средства по определению должны быть пожаробезопасными), а регламентируют метод определения группы эффективности огнезащитного средства и метод испытания конструкции на огнестойкость, соответственно.

4. Те величины толщины сухого огнезащитного слоя вспучивающейся краски, которые приведены в Сертификатах пожарной безопасности и таблицах, разработанных на их основе применительно к нормативным временным интервалам для пределов огнестойкости конструкций (30, 45, 60, 90, 120 мин.), практически не имеют отношения к нормируемым пределам огнестойкости для реальных конструкций, поскольку основаны лишь на сравнительных условных лабораторных испытаниях огнезащитных средств применительно к абстрактной величине критической температуры 500 °С. Однако на практике огнезащиту стальных конструкций, преимущественно, осуществляют по сертификационным (табличным) величинам огнезащитного слоя. Сертификационные величины толщин огнезащитного слоя можно использовать лишь для сравнительной оценки эффективности огнезащитных средств, а в проектах огнезащиты строительных конструкций зданий следует указывать требуемые величины слоев огнезащитного средства, рассчитанных для каждой конкретной конструкции здания (это также указывалось в Заключении нормативно-технического совета УГПН МЧС России, Протокол № 11 от 20.09.2007 г., и письме ГУ ГПС МВД России от 28.02.2002 г. за № 20/9/521).

5. Величина критической температуры прогрева реальных стальных конструкций при стандартном испытании на огнестойкость может колебаться в широких пределах, которые зависят от многих факторов, основные из которых: величина нормативной (рабочей) нагрузки на конструкцию, характер ее приложения, марка стали (предел текучести), площадь поперечного сечения конструкции, величина статического момента сопротивления изгибу профиля конструкции (для изгибаемых конструкций).

6. Фактические пределы огнестойкости,в частности, несущих стальных строительных конструкций (в том числе и стальных с огнезащитой) как интервал времени от начала стандартного испытания строительной конструкции на огнестойкость (в состоянии, нагруженном нормативной нагрузкой) по ГОСТ 30247.0-94 до наступления первого предельного состояния конструкции по огнестойкости R (потеря несущей способности в виде обрушения либо деформации, превышающей допустимую) определяют путем проведения стандартных испытаний конструкций на огнестойкость по ГОСТ 30247.0-94 и ГОСТ 30247.1-94; при этом ст. 35 Федерального закона № 87123-ФЗ и п. 11 ГОСТ 30247.0-94 (п. 5.20* СНиП 21-01-97*) разрешают определять фактические пределы огнестойкости конструкций с применением расчетных методов.

7. О разрешении применения расчетных методов для оценки параметров огнестойкости конструкций, защищенных огнезащитными покрытиями, разработанными организациями, имеющими лицензию на проведение работ по огнезащите, также говорилось в письмах ГУ ГПС МВД России от 15. 12.1998 г. за № 20/2.2/3024 и от 28.02.2002 г. за № 20/9/521.

В. Н. КАПРАЛОВ:

— Исходя из собственного опыта, для повышения огнестойкости строительных конструкций мы рекомендуем использовать продукцию, разработанную отечественным производителем ОАО «ТИЗОЛ». Для железобетонных конструкций мы предлагаем «ЕТ БЕТОН» — систему конструктивной огнезащиты многопустотных и полнотелых железобетонных конструкций с пределом огнестойкости REI 240 при толщине всего лишь 30 мм благодаря высокоэффективному огнезащитному материалу «EURO ЛИТ». Для огнезащиты стальных конструкций мы предлагаем несколько систем — в зависимости от планировки интерьера: «ЕТ МЕТАЛЛ» — с пределами огнестойкости R 90–240 мин., «ЕТ ПРОФИЛЬ» — с пределами огнестойкости R 45–120 мин., «ЕТ КОМПОЗИТ» — с пределами огнестойкости R 90–180 мин. Для повышения огнестойкости воздуховодов и систем дымоудаления мы рекомендуем тонкослойные системы огнезащиты ET Vent с пределами огнестойкости 30–150 мин. В состав упомянутых систем конструктивной огнезащиты входят экологически чистые негорючие материалы на основе базальтовых горных пород, что и обеспечивает их высокие эксплуатационные свойства.

В. В. ПОПЛАВСКИЙ:

— Проведенные на полигонах ФГУ ВНИИПО МЧС России и ЦНИИСК им. В. А. Кучеренко испытания позволили получить апробированные и рекомендованные для практического применения следующие огнезащитные конструкции:
• наружные стеновые панели с каркасом из термопрофилей «ИНСИ» с наружной обшивкой из цементно-минеральных плит «Аквапанель наружная» для малоэтажных зданий различного назначения,
• межкомнатные перегородки (пустотные и с минераловатным утеплителем) на металлическом и деревянном каркасах с одно- и многослойными обшивками из гипсокартонных (ГКЛ) и гипсоволокнистых (ГВЛ) листов,
• каркасно-обшивные наружные стены с каркасом из термопрофилей «Сталдом» с применением различных листовых материалов КНАУФ для многоэтажных зданий различного назначения с несущим каркасом,
• перегородки с применением армированных цементно-минеральных плит «Аквапанель внутренняя»,
• каркасно-обшивные конструкции поэлементной сборки с применением гипсовых негорючих плит «КНАУФ-Файерборд» для зданий различного назначения,
• покрытия и перекрытия мансардных этажей на деревянном каркасе,
• теплая стена с утеплителем из пенополистирольных плит,
• огнезащитные каркасные и бескаркасные облицовки из ГВЛ для металлических колонн.

В последнее время в связи с ужесточением пожарного надзора в проектировании и строительстве участились запросы на получение этих материалов с целью их применения на практике, что придает результатам испытаний особенную весомость и актуальность.

Р. А. ХАЙДАРОВ:

— Предел огнестойкости металлоконструкций, окрашенных вспучивающимися огнезащитными красками серии ПЛАМКОР, достигает 90 мин. ПЛАМКОР-1 — водно-дисперсионная огнезащитная краска. Ее преимуществами являются нетоксичность, взрыво- и пожаробезопасность. Она незаменима для применения в закрытых и плохо проветриваемых помещениях. ПЛАМКОР-2 — органо-разбавляемая полимерная огнезащитная композиция. Материал можно наносить как при положительных, так и при отрицательных температурах. ПЛАМКОР-1 и ПЛАМКОР-2 были применены при защите таких объектов, как: модульные здания ЦПС Ванкорского нефтегазового месторождения, ангары Западно-Таркосалинского газоконденсатного месторождения, механический цех Уфимского НПЗ, Большой киноконцертный зал и и др.

В качестве грунтовок под огнезащитные краски мы допускаем использование 2-х типов материалов: традиционной грунтовки ГФ-021 и цинкнаполненных грунтовок для «холодного» цинкования стали. ГФ-021 является наиболее распространенным и дешевым материалом для грунтования металлоконструкций при огнезащите. Однако мы рекомендуем ее использование только в условиях минимального технологического разрыва между грунтованием металлоконструкции и нанесением огнезащитного покрытия. Обусловлено это тем, что срок службы грунтовки ГФ-021 в открытой атмосфере не превышает 1 года, а временной разрыв между грунтованием конструкций, их монтажом и нанесением на них огнезащитной краски зачастую достигает нескольких месяцев, иногда он растягивается и на несколько лет. В такой ситуации к моменту нанесения огнезащитной краски очень часто на металлоконструкциях уже наблюдаются коррозионные повреждения, что противоречит технологическим условиям нанесения огнезащитного покрытия и снижает его эффективность. Для предотвращения подобной ситуации в качестве грунтовки под огнезащитное покрытие целесообразнее использовать цинкнаполненные материалы.

Скачать статью в формате pdf

Ученые ТГУ тестируют огнестойкость материалов бесконтактным методом

 

Сотрудники ММФ ТГУ предложили оригинальный бесконтактный метод для испытания деревянных конструкций и строительных материалов на огнестойкость. Для экспериментов были взяты разные строительные материалы из дерева (ОСП, фанера, ДСП), покрытые огнезащитными составами, результаты будут использоваться при разработке методов испытаний на пожароопасность. Новая методика и сопутствующее ПО были представлены на международном семинаре в Санкт-Петербурге.

Во время экспериментов на образец направлялся постоянный поток тепла от излучателя и при этом фиксировался момент зажигания – появление пламени на поверхности. Для отработки метода инфракрасной (ИК) диагностики при изучении характеристик зажигания ученые взяли доступные на рынке огнезащитные составы. 

– Мы использовали для пропитки образцов разные составы, например, «Зотекс Биопирол», «Фенилакс», «Фукам» и другие, – объясняет сотрудник лаборатории моделирования и прогноза катастроф ММФ Павел Мартынов. – Естественно, на обработанном образце время зажигания увеличивалось, но стоит учесть тот факт, что разные составы по-разному влияли на огнестойкость. Например, «Фукам» показывал наилучшие результаты по защите ОСП, в то время как для фанеры лучшим был «Зотекс Биопирол». 

Главной целью серии экспериментов было создание методики работы с инфракрасной камерой и применение ее для оценки пожароопасных характеристик различных материалов. Наблюдения, полученные в ТГУ, могут служить дополнительными рекомендациями при разработке методов испытаний на пожарную опасность как для строительных материалов, так и для огнезащитных составов. 

 

Результаты экспериментов сотрудники ММФ ТГУ представили на 9-м Международном семинаре по опасностям пожаров и взрывов в Санкт-Петербурге, где присутствовали специалисты из 34 стран. Тематика семинара включала исследования динамики пожара, детонации, водородной безопасности, горючести материалов, пожаротушения, расследования пожаров и аварий, оценки рисков, поведения человека в условиях пожара и других аспектов, связанных с неуправляемым горением при пожарах и взрывах.  

Кроме того, на семинаре Павел Мартынов представил стендовый доклад о разработанном на мехмате программном обеспечении, которое позволит оценивать пути распространения пожара с использованием ИК-диагностики. 

– До сих пор не ясно, как горящие и пылающие огненные частицы способствуют распространению пожара, а с помощью нашего программного обеспечения можно проводить аннотирование каждой такой частицы в ролике, записанном с помощью инфракрасной камеры, – рассказал Мартынов. – После отладки программы станет возможным в автоматическом режиме обрабатывать тепловизионное видео, полученное в реальных пожарах, и получать информацию о количестве, размерах, скоростях и температурах частиц. Это создаст предпосылки для построения базы данных характеристик горящих частиц для пожаров различной интенсивности. 

Доклад Studying the Heat Flux Effect on the Fire Resistance of Wood Building Materials Using Infrared Thermography был подготовлен в рамках проекта РНФ № 18-79-00232.  

Доклад Improvement of Firebrand Tracking and Detection Algorithms разрабатывался в рамках проекта РФФИ № 18-07-00548.

Огнестойкость зданий и сооружений | Брандсервис

В соответствии с требованиями СНиП [43, п. 1.1, табл. 1, прил. 2] здания делятся на 8 степеней огнестойкости: I, II, III, IIIa, IIIб, IV, IVa и V.

Таблица №1

Степень огнестойкостиМинимальные пределы огнестойкости строительных конструкций, число над чертой, и максимальные пределы распространения огня по ним, см под чертой
Стеныколоннылестничные площадки, косоуры, ступени, балки и марши лестничных клетокплиты, настилы (в т.ч. с утеплителем) и др. несущие конструкции перекрытийэлементы покрытий
несущие и лестничных клетоксамонесущиенаружные ненесущие (в т. ч. из навесных панелей)внутренние ненесущие (перегородки)плиты, настилы (в т.ч. с утеплителем) и прогоныбалки, фермы, арки, рамы
I2,5
0
1,25
0
0,5
0
0,5
0
2,5
0
1
0
1
0
0,5
0
0,5
0
II2
0
1
0
0,25
0
0,25
0
2
0
1
0
0,75
0
0,25
0
0,25
0
III2
0
1
0
0,25; 0,5
0 40
0,25
0
2
0
1
0
0,75
0
н.н.
н.н.
н.н.
н.н.
IIIa1
0
0,5
0
0,25
40
0,25
40
0,25
0
1
0
0,25
0
0,25
25
0,25
0
IIIб1
40
0,5
40
0,25; 0,5
0 40
0,25
40
1
40
0,75
0
0,75
25
0,25; 0,5
0 25(40)
1
40
IV0,5
40
0,25
40
0,25
40
0,25
40
0,5
40
0,25
40
0,25
40
н. н.
н.н.
н.н.
н.н.
IVа0,5
40
0,25
40
0,25
н.н.
0,25
40
0,25
0
0,25
0
0,25
0
0,25
н.н.
0,25
0
VНе нормируется

Примечания:
1. В скобках приведены пределы распространения огня для вертикальных и наклонных участков конструкций.
2. Сокращения «н.н.» ознчает, что показатель не нормируется.

Огнестойкие воздуховоды

Таблица №2

Помещения, обслуживаемые системой вентиляцииПредел огнестойкости транзитных воздуховодов и коллекторов,ч, при прокладке их через помещения
складов и кладовых категорий А, Б, В и горючих материалов**категорийкоридор производственного зданияобщественные и административныебытовые (санузлы, душевые, умывальные, бани и т. п.)коридор (кроме производственного здания)жилье
А, Б или ВГД
Складовых и кладовых категорий А, Б, В и горючих материалов**0,5
0,5
0,5
0,5
0,5
0,5
0,5
0,5
0,5
0,5
НДНД0,5
0,5
НД
0
Категория А, Б, или В0,5
0,5
0,25
0,5
0,25
0,5
0,25
0,5
0,25
0,5
0,25***
0,5
0,25
0,5
0,25
0,5
НД
Категоря Г0,5
0,5
0,25
0,5
НННН0,25
0,5*
0,5
0,5
0,25
0,5
0,25
0,5
НД
Категория Д0,5
0,5
0,25
0,5
НННННН
0,5*
0,25
0,5*
НН
0,5*
НН
0,5*
НД
Коридор производственного здания0,5
0,5
0,25
0,5
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НД
Общественные и административные зданияНД0,25***
0,5
0,5
0,5
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5
НД
Бытовые (санузлы, душевые, умывальные, бани и т. п.)0,5
0,5
0,25
0,5
0,25
0,5
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5
НД
Коридоры (кроме производственных зданий)НДНДНДНН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5
НН
0,5
Жилье0,5
40
0,25
40
0,25
н.н.
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5*
НН
0,5
НН
0,5

НД — не допускается прокладка транзитных воздуховодов.
НН — не нормируется прокладка транзитных воздуховодов.
_________________

* 0,25 ч — в зданиях IIIa, IV, IVa и V степеней огнестойкости.
** Предел огнестойкости воздуховодов для кладовых горючих материалов: бумага, белье, деревянныый инвентарь и т. п. и кладовых категорий В площадью (и тех и других) 502 и менее нормируются как для общественных помещений.
*** Не допускается прокладка воздуховодов из помещения категорий А и Б.

Примечания:
1. Значения предела огнестойкости приведены в таблице в виде дроби: в числителе — в пределах обслуживаемого этажа; в знаменателе — за пределами обслуживаемого этажа.
2. Для воздуховодов, прокладываемых через несколько различных помещений одного этажа, следует предусматривать одинаковое большее значение предела огнестойкости.

Пределы огнестойкости строительных конструкций

Таблица №3

Степень огнестойкости зданияПредел огнестойкости строительных конструкций, не менее
Несущие элименты зданияНаружние несущие стеныПерекрытия междуэтажные (в том числе чердачные и над подвалами)Элементы безчердачнЛестничные
Настилы (в том числе с утиплителем)Фермы, балки, прогоныВнутренние стеныМарши и площадки лестниц
IR 120E 30REI 60RE 30R 30REI 120R 60
IIR 90E 15REI 45RE 15R 15REI 90R 60
IIIR 45E 15REI 45RE 15R 15REI 60R 45
IVR 15E 15REI 15RE 15R 15REI 45R 15
VНе нормируется

— Здания высотой 75-100 м должны иметь не ниже I-ой степени огнестойкости, а площадь пожарного отсека не более 2400 кв. м.
— Для зданий высотой 100-125 м и 125-150 м должна предусматриваться особая степень огнестойкости основных элементов REI240, R240.

Классы конструктивной опасности и др.

Класс конструктивной пожарной опасности здания определяется степенью участия строительных конструкций в развитии пожара и образовании его опасных факторов. Здания и пожарные отсеки по конструктивной пожарной опасности подразделяются на классы согласно таблице 4

Таблица №4

Класс конструктивной пожарной опасности зданияКласс пожарной опасности строительных конструкций, не ниже
Несущие стержневые элементы (колонны, ригели, фермы и др.)Стены наружные с внешней стороныСтены, перегородки, перекрытия и бесчердачные покрытияСтены лестничных клеток и противопожарные перградыМарши и площадки лестниц в лестничных клетках
CO
C1
C2
C3
KO
K2
K3
KO
K1
K2
KO
K1
K2
KO
KO
K1
K1
KO
KO
K1
K3
Не нормируется

Пожарная опасность заполнения проемов в ограждающих конструкциях зданий (дверей, ворот, окно и люков) не нормируются, за исключением специально оговоренных случаев (5. 19).

В ТГУ бесконтактно тестируют огнестойкость строительных материалов

Сотрудники ММФ ТГУ предложили оригинальный бесконтактный метод для испытания деревянных конструкций и строительных материалов на огнестойкость. Для экспериментов были взяты разные строительные материалы из дерева (ОСП, фанера, ДСП), покрытые огнезащитными составами, результаты будут использоваться при разработке методов испытаний на пожароопасность. Новая методика и сопутствующее ПО были представлены на международном семинаре в Санкт-Петербурге.

Во время экспериментов на образец направлялся постоянный поток тепла от излучателя и при этом фиксировался момент зажигания – появление пламени на поверхности. Для отработки метода инфракрасной (ИК) диагностики при изучении характеристик зажигания ученые взяли доступные на рынке огнезащитные составы. 

– Мы использовали для пропитки образцов разные составы, например, «Зотекс Биопирол», «Фенилакс», «Фукам» и другие, – объясняет сотрудник лаборатории моделирования и прогноза катастроф ММФ Павел Мартынов. – Естественно, на обработанном образце время зажигания увеличивалось, но стоит учесть тот факт, что разные составы по-разному влияли на огнестойкость. Например, «Фукам» показывал наилучшие результаты по защите ОСП, в то время как для фанеры лучшим был «Зотекс Биопирол». 

Главной целью серии экспериментов было создание методики работы с инфракрасной камерой и применение ее для оценки пожароопасных характеристик различных материалов. Наблюдения, полученные в ТГУ, могут служить дополнительными рекомендациями при разработке методов испытаний на пожарную опасность как для строительных материалов, так и для огнезащитных составов. 

Результаты экспериментов сотрудники ММФ ТГУ представили на 9-м Международном семинаре по опасностям пожаров и взрывов в Санкт-Петербурге, где присутствовали специалисты из 34 стран. Тематика семинара включала исследования динамики пожара, детонации, водородной безопасности, горючести материалов, пожаротушения, расследования пожаров и аварий, оценки рисков, поведения человека в условиях пожара и других аспектов, связанных с неуправляемым горением при пожарах и взрывах.  

Кроме того, на семинаре Павел Мартынов представил стендовый доклад о разработанном на мехмате программном обеспечении, которое позволит оценивать пути распространения пожара с использованием ИК-диагностики.

– До сих пор не ясно, как горящие и пылающие огненные частицы способствуют распространению пожара, а с помощью нашего программного обеспечения можно проводить аннотирование каждой такой частицы в ролике, записанном с помощью инфракрасной камеры, – рассказал Мартынов. – После отладки программы станет возможным в автоматическом режиме обрабатывать тепловизионное видео, полученное в реальных пожарах, и получать информацию о количестве, размерах, скоростях и температурах частиц. Это создаст предпосылки для построения базы данных характеристик горящих частиц для пожаров различной интенсивности. 

Доклад Studying the Heat Flux Effect on the Fire Resistance of Wood Building Materials Using Infrared Thermography был подготовлен в рамках проекта РНФ № 18-79-00232.
Доклад Improvement of Firebrand Tracking and Detection Algorithms разрабатывался в рамках проекта РФФИ № 18-07-00548.

Испытания материалов на огнестойкость | Пожарная лаборатория СЗРЦ

По ГОСТу испытание огнестойкости служит для установления характеристик металлических противопожарных дверей, люков, ворот, трубопроводной арматуры, кабелей и воздуховодов. Проверка предполагает уточнение временного периода от начала пожара до поломки конструкций (возникновение отверстий, трещин, критическое увеличение температуры поверхности).

Зачем проводятся испытания на огнестойкость

Испытания необходимы для установления соответствия изделия требованиям пожарной безопасности. Все производители сертифицируют противопожарные двери и другую продукцию с аналогичными свойствами.

Что проверяется инженерами-испытателями

Применяемые методы экспертизы устанавливаются согласно актуальными регламентам и стандартам. Они служат для установления условий сохранения свойств огнеупорной конструкции, признанной задержать распространение огня в примыкающие помещения. Протокол испытаний фиксирует все сделанные экспертами замеры и обоснования.

Степень огнестойкости

Выделяется несколько пределов огнестойкости объектов, в частности:

  • «R» — когда изделие теряет несущую способность, деформируется или обрушивается
  • «Е» — при потере целостности, возникновении отверстий, трещин, пропускающих пламя и дым
  • «I» — при утрате теплоизолирующих качеств
  • «W» — при достижении максимальной плотности теплового потока
  • «S» — когда возникает дымогазопроницаемость и материал не сопротивляется отравляющим веществам

Оборудование для испытаний

Для проверки материалов применяют:

  • Специализированные испытательные печи с проемом для установки образцов
  • Газовые горелки

Где заказать испытания

Пройти испытания на огнестойкость можно в нашей современной лаборатории. Опытные специалисты обеспечивают точное выяснение параметров образцов, что позволяет клиентам успешно пройти дальнейшую сертификацию.

Современная пожарная лаборатория. Проведение всех возможных пожарных испытаний для сертификации

Установка (печь) для испытаний на огнестойкость

  • Установка (печь) для испытаний на огнестойкость вертикальных ограждающих и несущих конструкций и их конструктивных элементов
  • Нормативный документ для проведения испытаний: ГОСТ 30247.0, ГОСТ 30247.1
    Кодекс ПИО 2010, Приложение 1, часть 3
  • Определяемые характеристики — предел огнестойкости

Установка (печь) для испытаний на огнестойкость

Установка (печь) для испытаний на огнестойкость горизонтальных несущих и самонесущих покрытий и перекрытий без проемов, с проемами, с подвесными потолками, покрытий и перекрытий, опирающих по двум и по четырем сторонам, балок и других горизонтальных стержневых конструкций. А также установка (печь) для испытаний горизонтальных строительных конструкций по определению пожарной опасности

Нормативный документ для проведения испытаний: ГОСТ 30247.0 / ГОСТ 30403  / Кодекс ПИО 2010, Приложение 1, часть 3

Определяемые характеристики – предел огнестойкости, класс пожарной опасности

Фасадная печь для испытаний по определению пожарной опасности

Фасадная печь для испытаний по определению пожарной опасности вертикальных строительных конструкций (стены наружные с внешней стороны) Основные технические характеристики:
  •        габаритные размеры огневой камеры 3050х2000мм
  •        внутренние размеры огневой камеры 2540х1800мм
  •        размеры фрагмента стены 5100х3050мм
Нормативный документ для проведения испытаний:
  •        ГОСТ 31251 «Стены наружные с внешней
  •        стороны»
Метод испытаний на пожарную опасность

Установка для проведения испытаний материалов по определению характеристик поверхностной воспламеняемости

Оценка характеристик воспламеняемости (противопожарных характеристик) отделочных материалов, применяемых в морском судостроении согласно правилам приложения 1, части 5 Международного Кодекса по применению процедур испытаний на огнестойкость 2010 года (Кодекс ПИО 2010) резолюция MSC. 307(88) ИМО(INTERNATIONAL CODE FOR APPLICATION OF FIRE TEST PROCEDURES, 2010 (2010 FTP Code) IMO resoluon MSC.307(88)).

Установка экспериментального определения не распространения горения кабелей

Установка экспериментального определения не распространения горения кабелей, проложенных в пучках (Пучок)

Нормативный документ для проведения испытаний: ГОСТ Р МЭК 60332-3-10

Метод определения нераспространения горения кабелей, проложенных в пучках

Метод определения стойкости распространения горения при групповой прокладке

Установка для испытания строительных материалов на негорючесть

Установка для испытания строительных материалов на негорючесть Нормативный документ для проведения испытаний:
  • ГОСТ 12. 1.044-89 (п.4.1)
  • ГОСТ 30244 (метод 1)
  • Кодекс ПИО 2010, Приложение 1, часть 1
Определяемые характеристики – группа горючести (НГ или Г)

Установка для определения воспламеняемости элементов

Установка для определения воспламеняемости элементов мягкой мебели и постельных принадлежностей

Нормативный документ для проведения испытаний: ГОСТ Р 53294 / Кодекс ПИО, Приложение 1, часть 8

Определяемые характеристики – легко или трудновоспламеняемые

Установка для определения воспламеняемости тканей

Установка для определения воспламеняемости тканей

Нормативный документ для проведения испытаний: ГОСТ Р 50810 / Кодекс ПИО, Приложение 1, часть 7

Определяемые характеристики – легко или трудновоспламеняемые

Универсальная установка для определения группы трудногорючих материалов

Универсальная установка для определения группы трудногорючих материалов и огнезащитных свойств покрытий и пропиточных составов для обработки древесины

Нормативный документ для проведения испытаний: ГОСТ 12. 1.044 (п.4.3) / ГОСТ 16363

Определяемые характеристики – группа горючести, группа огнезащитной эффективности (I-II)

Установка для испытаний на распространение пламени по поверхности покрытий полов

Установка для испытаний на распространение пламени по поверхности покрытий полов, кровель
Нормативный документ для проведения испытаний: ГОСТ Р 51032
Определяемые характеристики – группа распространения пламени (РП1-РП4)

Установка для определения воспламеняемости строительных материалов

Установка для определения воспламеняемости строительных материалов Нормативный документ для проведения испытаний: ГОСТ 30402 Определяемые характеристики – группа воспламеняемости (В1-В3)

Установка для определения индекса распространения пламени

Установка для определения индекса распространения пламени

Нормативный документ для проведения испытаний: ГОСТ 12. 1.044 (п.4.19)

Определяемые характеристики – индекс распространения пламени (0-более 20)

Установка для определения коэффициента дымообразования твердых веществ

Установка для определения коэффициента дымообразования твердых веществ и материалов

Нормативный документ для проведения испытаний: ГОСТ 12.1.044 (п.4.18)

Определяемые характеристики- группа дымообразующей способности (Д1-Д3)

Установка для определения показателя токсичности

Установка для определения показателя токсичности продуктов горения полимерных материалов

Нормативный документ для проведения испытаний: ГОСТ 12. 1.044 (п.4.20)

Определяемые характеристики – группа токсичности (Т1-Т4)

Установка по определению сравнительного и контрольного индексов трекингостойкости

Установка по определению сравнительного и контрольного индексов трекингостойкости во влажной среде

Нормативный документ для проведения испытаний:ГОСТ 27473

Определяемые характеристики – индекс трекингостойкости

Установка для испытаний нагретой проволокой

  • Установка для испытаний нагретой проволокой
  • Нормативный документ для проведения испытаний:
  1.        ГОСТ Р МЭК №335-1
  2.        ГОСТ 27483
  3.        ГОСТ Р 52161. 1
  • Определяемые характеристики – соответствует/не соответствует критериям испытаний

Установка для испытаний на плохой контакт при помощи накальных элементов

  • Установка для испытаний на плохой контакт при помощи накальных элементов
  • Нормативный документ: ГОСТ Р 27924
  • Определяемые характеристики — пожаростойкость

Установка для испытаний игольчатым пламенем

  • Установка для испытаний игольчатым пламенем
  • Нормативный документ для проведения испытаний:ГОСТ 27484 ГОСТ 28779
  • Определяемые характеристики-соответствует/не соответствует критериям испытаний

Установка для измерений тока утечки

  • Установка для измерений тока утечки
  • Нормативный документ для проведения испытаний: ГОСТ Р МЭК 335-1
  • Определяемые характеристики – значение тока утечки

Установка для испытания одиночных кабелей на нераспространение горения

Установка для испытания одиночных кабелей на нераспространение горения

Нормативный документ для проведения испытаний: ГОСТ Р МЭК 60332-1-1

Определяемые характеристики – степень повреждения

Оснащение нашей испытательной


лаборатории

Огнестойкие строительные материалы и методы укрепления дома

Более 30 миллионов домов в Калифорнии находятся в низкой или крайней степени уязвимости к лесным пожарам. Если вы живете в районе, пострадавшем от лесных пожаров, использование огнестойких строительных материалов и применение эффективных методов укрепления дома — два отличных способа защитить свой дом и имущество. Вот все, что вам нужно знать.

Защитите свой дом от лесных пожаров, установив внешнюю спринклерную систему Frontline Wildfire Defense.Для получения дополнительной информации свяжитесь с нами сегодня для бесплатной консультации .

Огнестойкие строительные материалы

Ремонт вашего дома с использованием огнестойких строительных материалов — это эффективный способ замедлить распространение огня и уменьшить количество дыма, образующегося, если лесной пожар достигнет вашей собственности.

Огнестойкие строительные материалы включают:

  • Огнестойкое стекло
  • Бетон
  • Огнестойкий кирпич
  • Огнестойкое дерево
  • Гипсокартон типа X
  • Противопожарные двери
  • Двустворчатые окна
  • Обработанные волокна
  • Гипсокартон

Эти материалы разработаны, чтобы противостоять возгоранию в присутствии тлеющих углей или даже при прямом воздействии огня. Реконструкция и усиление определенных частей вашего дома огнестойкими материалами, подобными этим, могут значительно замедлить распространение огня. Это дает пожарным больше времени на тушение пожара до того, как будет нанесен серьезный ущерб — а в некоторых случаях эти материалы могут даже замедлить распространение огня настолько, что огонь потухнет или продолжится, не возгорая ваш дом.

Рейтинги материалов

Американское общество испытаний материалов (ASTM) присваивает материалам рейтинги огнестойкости на основе их воспламеняемости.Например, при поиске огнестойких строительных материалов отметка «Класс огнестойкости» указывает на то, что этот материал имеет самый высокий уровень огнестойкости.

Эти рейтинги основаны на индексе распространения пламени (FSI) организации — показателе того, насколько быстро материал может гореть и распространять пламя. Чем ниже рейтинг FSI, тем лучше материал сопротивляется распространению огня:

  • Материалы класса A имеют FSI от 0 до 25
  • Материалы класса B имеют FSI от 26 до 75
  • Материалы класса C имеют FSI от 76 до 200

Для справки: пиломатериалы обычно имеют FSI от 90 до 160, что означает, что они попадают в категорию класса C. При строительстве нового дома или ремонте ищите материалы с классом огнестойкости А для лучшей защиты.

Противопожарная защита по сравнению с огнестойкими материалами

Важно понимать, что даже материалы с классом огнестойкости могут быть только огнестойкими, но не огнестойкими. Хотя эти материалы могут быть более устойчивыми к возгоранию и замедлять распространение огня, они все же могут гореть. Даже материалов класса А будет недостаточно, если прямо у вашего дома или в впадине крыши есть тлеющие угли, которые в конечном итоге прожигут материал.Вот почему проактивное увлажнение с помощью внешней спринклерной системы так важно для защиты вашего дома от лесных пожаров!

Домашние методы закаливания

Лесной пожар не обязательно должен достигать вашего дома, чтобы повредить его. Дрейфующие угли являются причиной 90% разрушенных домов в результате лесных пожаров и могут пройти несколько миль, прежде чем приземлиться и воспламенить новый огонь на вашем участке или рядом с ним. Применяя следующие методы домашнего закаливания, вы можете повысить живучесть и огнестойкость своего дома, особенно против дрейфующих углей.

Защита вашей крыши

Ваша крыша — одна из наиболее уязвимых частей вашего дома, особенно если она сделана из дерева или черепицы. Чтобы защитить крышу от пожара, подумайте о восстановлении крыши с использованием материалов класса A и избегайте химически обработанных материалов или покрытий. Металл и черепица — две отличные огнестойкие кровельные альтернативы дереву и черепице.

Установка противопожарных стен

Стены часто изготавливаются из чрезвычайно легковоспламеняющихся древесных материалов, что делает их менее идеальными для домов в пожароопасных зонах.

Установка противопожарных стен вокруг всего вашего дома или вокруг специально отведенного безопасного помещения — отличный способ замедлить распространение пожара и защитить ваши ценности. Штукатурка, пропитанная древесина и бетон — эффективные альтернативы стандартным сайдинговым материалам. Вы также можете выбрать огнестойкие стеновые сборки, которые представляют собой предварительно изготовленные, готовые к установке комплекты огнестойких стен.

Помимо восстановления стен с использованием материалов класса А, вспучивающиеся уплотнения или полосы могут помочь предотвратить проникновение дыма через дверные проемы.

Укрепление окон

Тепло от огня может разбить окна и другие наружные стеклянные элементы еще до того, как огонь достигнет вашего дома. После разбивания оконные проемы облегчают проникновение углей в ваш дом и их воспламенение.

Для защиты от этого домовладельцы должны устанавливать окна с двойным остеклением, чтобы увеличить время, необходимое для того, чтобы огонь прорвался и распространился по ним. Использование закаленного стекла также поможет окнам противостоять трещинам, вызванным нагревом.

Используйте огнестойкие ткани

Обычно используемые ткани для интерьера, такие как хлопок и лен, очень легко воспламеняются и быстро горят. В качестве альтернативы домовладельцы могут использовать химически обработанные ткани. Такие волокна, как шерсть и хлопок, можно обрабатывать, чтобы снизить их воспламеняемость, что делает их более безопасными для использования в домах в пожароопасных районах.

Также можно отказаться от легких, неплотных тканей в пользу более тяжелых, плотно тканых материалов. Шерсть — отличный натуральный огнестойкий вариант, в то время как огнестойкие полиэфирные материалы также могут быть эффективным синтетическим вариантом.

Палубы и другие наружные поверхности

Любая наружная поверхность, которая находится в пределах 10 футов от вашего дома, представляет собой потенциальную опасность возгорания и должна рассматриваться как таковая.Рассмотрите возможность восстановления наружных поверхностей с использованием материалов класса А. Это может дать вам достаточно времени, чтобы либо убежать, либо потушить небольшие пожары на открытом воздухе, прежде чем они достигнут вашего дома.

Прочие соображения

Помимо упомянутых выше методов укрепления дома, есть дополнительные шаги, которые вы можете предпринять для создания более безопасного и огнестойкого дома:

  • Гараж : Убедитесь, что у вас есть противопожарное оборудование, такое как шланг , ведро, лопаты и т. д., хранящиеся в вашем гараже, для тушения пожаров.Храните легковоспламеняющиеся жидкости и материалы вдали от источников возгорания.
  • Водосточные желоба : Регулярно очищайте водосточные желоба, чтобы предотвратить скопление легковоспламеняющихся остатков растений и растений.
  • Дымоход : Закройте дымоходы и выпускные отверстия негорючих экранов, чтобы предотвратить утечку углей и возгорание.
  • Вентиляционные отверстия : Чтобы тлеющие угли не попали в вентиляционные отверстия, закройте вентиляционные отверстия металлической сеткой от 1/16 дюйма до 1/8 дюйма.
  • Источники воды : Если возможно, установите несколько садовых шлангов в разных частях дома, чтобы они могли добраться до любой зоны в случае пожара.
  • Подъездные пути : Подъездные пути должны быть построены и содержаться в таком состоянии, чтобы аварийные службы могли легко получить доступ к вашей собственности. Убедитесь, что все ворота открыты достаточно широко для автомобилей скорой помощи, и подстригите окружающие кусты, чтобы подъездная дорожка была свободна.
  • Адрес : Убедитесь, что ваш домашний адрес хорошо виден с дороги. Это поможет аварийным службам быстро найти вас в случае пожара.

Важность сочетания домашних методов закаливания

Ни один из вышеперечисленных методов не является надежным, и некоторые из них более эффективны, чем другие.Однако при совместном использовании вы можете лучше снизить риск. Проще говоря, чем больше защиты вы добавите, тем больше шансов защитить свой дом. Согласно данным CoreLogic, некоторые из наиболее эффективных методов укрепления дома включают использование кровельных материалов класса А (среднегодовое сокращение потерь на 59%), установку внешней спринклерной системы (среднегодовое сокращение потерь 50%) и удаление источников топлива из 30- 100 футов вокруг вашего дома (среднегодовое сокращение убытков на 31%).

9014
Смягчение последствий Снижение среднего годового убытка
Кровельные материалы
Класс A Крыша 5914 9014 9014 9014
Крыша класса C 18%
Наружные стены
Противопожарный сайдинг 6%
Окна с классом пожаротушения 2 Системы
Внешняя полностью автоматизированная спринклерная система 50%
Периметры
Негорючие зоны (0-5 футов) 2% 2% Lean 2% Чистый и зеленый (5-30 футов и выше) 7%
Уменьшенный F зона uel (30-100 футов и выше) 31%
Сообщество
Программа сообщества пожарной безопасности (полная) 10%
Все меры по устранению Применено
Лучшие конструкционные материалы + спринклеры + периметры + программа сообщества 96%

* Данные CoreLogic U. S. Wildfire Model

На основании того же исследования CoreLogic предполагает, что сочетание лучших конструкционных материалов с спринклерной системой, защищаемым пространством и осведомленностью общественности может снизить среднегодовые потери на 96%!

Установите внешнюю спринклерную систему

Используя огнестойкие строительные материалы и применяя эти методы укрепления дома, вы можете повысить шансы своего дома на выживание в случае лесного пожара. Но это не отказоустойчивый. Внешняя спринклерная система обеспечивает дополнительную линию защиты, активно увлажняя ваш дом перед непосредственной угрозой, чтобы защитить вашу собственность от возгорания из-за летящих углей.

Внешняя спринклерная система Frontline Wildfire Defense может защитить ваш дом от лесных пожаров с помощью:

  • Дистанционная активация для круглосуточной защиты из любого места
  • Встроенная резервная батарея и спутниковая связь
  • Экологически чистая, биоразлагаемая пена класса A.
  • Варианты водоснабжения для муниципальных зданий, колодцев, бассейнов и аварийных резервуаров
  • Отслеживание лесных пожаров и удаленная активация системы с помощью приложения Frontline

Для получения дополнительной информации о том, как Frontline Wildfire Defense может помочь защитить ваш дом, свяжитесь с нами сегодня для получения бесплатной консультации .

Запросить консультацию

Огнестойкие строительные материалы

Безопасное строительство или ремонт в зонах опасности лесных пожаров включает использование огнестойких или огнестойких внешних материалов, которые могут замедлить или предотвратить проникновение огня в конструкцию. Ниже приведен список территорий, уязвимых для лесных пожаров. Нажмите на каждую, чтобы узнать, как защитить их от лесных пожаров.

  • Кровельный материал
  • Карнизы, потолки, фасады и вентиляционные отверстия на чердаках
  • Дымоход
  • Наружные стены
  • Наружное стекло
  • Подвал и подвал

Поверхность, щели и углы крыши — это места, где часто оседают и воспламеняются головни. Существует несколько вариантов предотвращения повреждений крыш от пожара:

  • Использование кровельных материалов класса А, которые являются наиболее огнестойкими.
  • Избегать использования деревянной черепицы, независимо от ее класса или типа огнестойкой обработки
  • Избегать химически обработанных материалов или покрытий, которые часто теряют свою эффективность со временем и делают крышу уязвимой для возгорания

(На фото дом без черепицы.Вместо этого у него более огнестойкий кровельный материал.)

Карнизы, потолки, облицовки и вентиляционные отверстия чердаков подвержены риску как из-за возгорания, так и из-за конвекции. Методы смягчения последствий для защиты этих уязвимых сайтов включают:

  • Заключение или «упаковка» их негорючими материалами для защиты этих участков конструкции
  • Использование негорючего экрана над вентиляционными отверстиями чердака
  • Отказ от использования виниловых материалов Хотя винил не горит, высокая температура огня может привести к его расплавлению или исчезновению, обеспечивая прямой путь огня внутрь конструкции

(На фотографии показан дом, поврежденный пожаром, с указанием карниза, потолка, облицовки и вентиляции чердака. )

Открытая дымовая труба может привести к попаданию головешек в конструкцию и воспламенению легковоспламеняющихся материалов.
Этот риск можно снизить с помощью:

  • Установка искрогасителя из сварной проволоки или тканой проволочной сетки с отверстиями шириной менее дюйма в верхней части дымохода
  • Сохранение дымохода закрытым, когда камин не используется, чтобы еще больше снизить вероятность попадания головешек в здание

(На фото показаны спарт-разрядники)

Наружные стены восприимчивы как к лучистому, так и к конвективному теплу и могут быстро передать наземный пожар на крышу конструкции.
Наружные стены можно защитить огнестойкими материалами, такими как:

  • цемент, гипс и штукатурка
  • Бетонная кладка, такая как камень, кирпич или бетонный блок

ПВХ и виниловый сайдинг расплавится или отпадет при относительно низких температурах, а не обеспечивает эффективной защиты от огня.

(На фотографии показан дом с указанием кирпича и винила.)

Стекло в окнах, дверях и мансардных окнах может треснуть и выпасть под воздействием тепла лесного пожара.Это оставляет отверстие для пламени и головней, которые могут проникнуть в конструкцию.
Использование окон с двойным или закаленным стеклом снижает этот риск.

  • Окна с двойным остеклением обеспечивают второй уровень защиты
  • Закаленное стекло обычно сопротивляется разрушению даже при температурах, значительно превышающих тепловое излучение, необходимое для воспламенения деревянного каркаса конструкции.

(На фото дом с окнами с двойным остеклением.)

Ветер может проталкивать головешки через вентиляционные отверстия в подвале строения или в подполье.

Противопожарная перегородка, используемая на вентиляционных отверстиях на крыше, может также использоваться для защиты вентиляционных отверстий в подвале или в подвале.

(фотография показывает домашний фонд с огнезащитным ползанием скрининга указал. )

Огнестойкость строительных материалов

Частью успешной стратегии пассивной противопожарной защиты является проверка строительных материалов на их способность сдерживать распространение огня. Это обеспечивает необходимый уровень защиты здания в случае пожара и соответствует строгим строительным нормам и правилам.

Когда дело доходит до огнестойких материалов, важно знать, что не все были созданы равными. При выборе подходящего материала учитывается множество факторов, от их несущей способности до их тенденции к разрушению. В этой статье мы рассмотрим особенности огнестойкости обычных строительных материалов.

Кирпич и раствор

Кирпич устойчив к возгоранию при температуре от 800 ° C до 1200 ° C. Строение из кирпича скрепляется раствором, и именно этот раствор менее эффективен как огнестойкий материал.

Раствор — составной материал в кладочном строительстве. Его цель — заполнить промежутки между блоками и кирпичами, которые соединяются, чтобы создать стены. Большинство строительных растворов в некоторой степени огнестойки, так как материалы, из которых они изготовлены (обычно смесь глины, цемента, извести и песка), устойчивы к огню и нагреванию. Однако строительный раствор может треснуть и расшириться под воздействием температур. Поэтому, когда речь идет о кирпичном строительстве, раствор может подводить сторону вниз.

Камень

Камень страдает от воздействия огня и склонен к распаду при резком охлаждении.В зависимости от конкретного типа камня экзотермические реакции могут сильно различаться. Например, гранит взрывается при воздействии тепла — поэтому при использовании его в качестве строительного материала необходимо тщательно контролировать риски. В то время как известняк имеет свойство крошиться при высоких температурах, уникальный состав песчаника (состоящий из мелких минеральных частиц и фрагментов породы) означает, что он обычно может выдерживать умеренные условия пожара и с меньшей вероятностью трескается и раскалывается, как другие каменные материалы.

Древесина

Хотя древесина известна как обычный проводник тепла, древесина, которая используется в тяжелом строительстве, может быть достаточно огнестойкой.Уровни огнестойкости строительных материалов часто будут отличаться после добавления поверхностных химикатов, таких как фосфат аммония, сульфат и хлорид цинка. Древесина также может быть окрашена, чтобы обеспечить дополнительный слой защиты от огня. Это напоминает нам о том, что важно проводить различие между сырьем и материалами, которые использовались в процессе проектирования и строительства.

Огнестойкие материалы не следует путать с огнестойкими материалами.Огнезащитные материалы предназначены для гораздо более медленного горения по сравнению с некоторыми из их более легковоспламеняющихся аналогов (таких как фанера и древесноволокнистые плиты).

Сталь

Сталь

хорошо известна своей прочной структурной целостностью. Стальные здания устойчивы к деградации, выдерживая неблагоприятные воздействия термитов, ржавчины и гнили. Однако сталь не настолько устойчива к температурам огня. При длительном воздействии огня стальные балки прогнутся, а колонны прогнутся, что приведет к разрушению конструкции.Нагрев до 600 ° C может вызвать напряжение в мягкой стали, а при 1400 ° C сталь полностью расплавится.

Именно по этой причине конструкционную сталь часто армируют вспучивающейся краской. Эта краска образует углеродистый слой при воздействии экстремальных температур, обеспечивая дополнительную защиту стальных балок. Чтобы узнать больше, обратитесь к нашему руководству по огнестойкости конструкционной стали.

Бетон

Поведение бетона при высоких температурах зависит от состава его материалов.Это означает, что качество как цемента, так и заполнителей будет влиять на огнестойкость строительных элементов. Обычно железобетон выдерживает температуру до 1000 ° C в течение примерно шестидесяти минут, прежде чем он начнет терять свою прочность. Мы рассмотрим эту тему более подробно в нашем руководстве по огнестойкости бетона.

Стекло

Как и камень, стекло трескается и раскалывается, когда оно подвергается воздействию тепла, а затем снова остывает. Поэтому бригады строительной площадки обычно используют армированные, закаленные и многослойные стекла из соображений безопасности.Эти стекла, особенно те, которые имеют стальную проволоку, намного более огнестойкие, чем обычное стекло.

Чугун

Чугун не часто используется в качестве обычного строительного материала. Это связано с его поведением при высоких температурах. Под воздействием тепла и затем резкого охлаждения чугун расколется на куски. Из-за этого чугун часто покрывают кирпичной кладкой или другим более устойчивым огнестойким материалом, например, бетоном.

Огнестойкие материалы обрабатываются для защиты от экстремальных температур.Однако эти материалы не могут быть на 100% огнестойкими; Противопожарная защита — это метод, который значительно снижает их восприимчивость к огню. В конце концов, нет ни одного материала, который нельзя было бы разрушить под воздействием тепла. Именно по этой причине так важна пассивная противопожарная защита. Правильный выбор материалов — это лишь малая часть защиты здания от огня. Если вы хотите узнать больше, рекомендуем начать с нашей статьи о конструктивных мерах по предотвращению распространения огня.

CLM Fireproofing — ведущие специалисты в области пассивной противопожарной защиты и противопожарной защиты. Мы работаем с клиентами, чтобы определить области улучшения их стратегии противопожарной защиты. Предлагая широкий спектр услуг, включая разделение на отсеки и нанесение огнезащиты распылением, наши клиенты уверены, что их системы противопожарной защиты надежны, поддаются проверке и соответствуют последним отраслевым стандартам. Если вы хотите узнать больше о наших услугах по пассивной противопожарной защите, свяжитесь с нашей командой специалистов сегодня.

Класс огнестойкости строительных материалов — Surviving Wildfire

Статья Автор:
Стивен Л. Куорлз, старший научный сотрудник Страхового института безопасности бизнеса и дома, Ричбург, Южная Каролина

Введение

Если вы живете на границе дикой местности с городом (WUI), вы, вероятно, слышали или читали о терминах, которые описывают материалы, рекомендуемые для использования в вашем доме, чтобы повысить его шансы выжить в условиях лесного пожара. Эти материалы описываются с использованием таких терминов, как негорючие, негорючие, стойкие к возгоранию, класс А и огнестойкость — термины, описывающие относительную горючесть материалов. Иногда эти термины относятся к материалу (например, когда вы заменяете сайдинг, выберите огнестойкий материал ), а иногда они относятся к типу конструкции (например, ваш дом должен включать в себя огнестойкую конструкцию , или вы следует использовать огнестойкую строительную технику ).Вы относите негорючие, негорючие, огнестойкие и огнестойкие к одной и той же категории «хороших» или одно лучше другого? Следует ли отнести все горючие материалы к категории «плохих» или есть способ оценить различия в ожидаемых характеристиках двух горючих материалов? Цель этой статьи — описать, как строительные нормы и стандарты определяют и используют эти термины, а также предоставить способы оценки различий между горючими материалами.

Определения

Строительные нормы и стандарты испытаний предоставили определения некоторых терминов, обычно используемых для описания того, как данный материал или сборка будут работать при пожаре. Были определены следующие термины:

  • Горючие
  • Негорючие
  • Огнестойкость или огнестойкость
  • Взрывобезопасный

Горючие и негорючие относятся к характеристикам материала (например, дерева, штукатурки, стали). Огнестойкий может относиться к материалу или сборке (например,g., все компоненты стены — сайдинг, изоляция и обшивка). Пример сборки крыши приведен на рисунке 1. Устойчивость к воспламенению может относиться к материалу или конструкции (например, при обсуждении конструкции, устойчивой к возгоранию). Определения этих терминов были разработаны рядом групп и представлены в Приложении A.

Рис. 1. Это алюминиевое кровельное покрытие имеет класс огнестойкости «при сборке». В этом случае сборка крыши состоит из алюминиевого кровельного покрытия, перекрывающих друг друга слоев кровельного материала верхнего слоя (для повышения огнестойкости) и структурной обшивки, прикрепленных к деревянному каркасу.

Как используются термины

Горючие

Горючие материалы — это материалы, которые легко воспламеняются и горят. Многие распространенные строительные материалы являются горючими, включая древесину и древесно-пластиковый композит, а также пластмассовые изделия (обычно используемые для настилов и сайдинга). Был разработан ряд тестов, оценивающих огнестойкость горючих материалов. Что касается лесных пожаров, два свойства полезны для характеристики относительной горючести различных материалов — индекс распространения пламени и скорость выделения тепла.

Степень распространения пламени материала определяется путем воздействия на материал, помещенный в горизонтальный туннель, газовое пламя (рис. 2). Горючий материал будет классифицирован как класс A, класс B или класс C на основании его характеристик в этом испытании. Материал, оцененный как класс A, будет иметь меньшее распространение пламени и, следовательно, лучшие характеристики, чем материал класса C. Результаты испытания на распространение пламени выражаются числовыми значениями. Если числовое значение меньше 25, то присваивается индекс распространения пламени класса А. Числовые значения для класса B находятся в диапазоне от 25 до 75. Значения выше 75 относятся к категории класса C. Большинство коммерческих пород древесины имеют индекс распространения пламени от 90 до 160 (Лаборатория лесных товаров, 1999).

Другой метод, используемый для сравнения горючести материалов, — это оценка скорости тепловыделения. Это может быть сделано путем измерения потери массы (веса) горящего материала или путем измерения общей и / или скорости высвобождения энергии во время горения материала. Показатели тепловыделения были опубликованы для обычных строительных материалов и являются одним из критериев, которым должны соответствовать некоторые материалы, чтобы соответствовать главе 7A Строительного кодекса Калифорнии (CBC).В главе 7А изложены требования к новому строительству в определенных районах Калифорнии, подверженных лесным пожарам. Скорость тепловыделения материала определяется путем сбора газов сгорания (кислорода, двуокиси углерода и окиси углерода) в калориметре истощения кислорода. Теплота сгорания на единицу массы потребляемого кислорода почти постоянна для широкого диапазона материалов (Quintiere 1998), и поэтому скорость тепловыделения материала (HHR) прямо пропорциональна скорости, с которой кислород потребляется во время сгорания.Чтобы измерить HRR узлов и секций более крупных компонентов, их сжигают под большим кожухом, подключенным к системе сбора воздуха (рис. 3). Скорость тепловыделения небольших образцов можно измерить в меньшем калориметре, который называется коническим калориметром. Меньшие значения скорости тепловыделения отражают более низкую горючесть, чем большие значения. В главе 7A CBC указано максимальное чистое пиковое тепловыделение (не более) 25 кВт / фут2 [269 кВт / м2] для досок настила. Для сравнения, HHR для большого куста можжевельника может достигать 1000 кВт.Продукты для настила, которые соответствуют требованиям CBC, можно найти в онлайн-документе, опубликованном Калифорнийским управлением государственного пожарного маршала (OSFM 2010).

Рис. 2. Горизонтальный туннель, или туннель «Штайнера», используемый для оценки степени распространения пламени материала. Материал прикрепляется к верхней поверхности туннеля и рассчитывается по расстоянию, на которое пламя распространяется по длине туннеля на открытой поверхности материала. Продолжительность этого теста — 10 минут. Фотография любезно предоставлена ​​г-ном Биллом Хендриксом, Safer Building Solutions and Southwest Research Institute, Сан-Антонио, Техас.

Уровень распространения пламени и скорость тепловыделения материалов использовались для характеристики горючих материалов. Эта информация становится доступной для материалов, обычно используемых для наружной отделки зданий, и используется для сравнения характеристик горючих строительных материалов. Диапазон числовых значений распространения пламени класса C велик.Вы не узнаете, приближается ли числовое значение продукта класса C, который вы, возможно, рассматриваете, к верхнему пределу класса B, равному 75, или намного выше. Информация о максимальной максимальной скорости тепловыделения для настилов, соответствующих требованиям CBC, может быть использована, если продукт продается в Калифорнии и не классифицируется как негорючий. Однако, если у вас нет доступа к результатам отчета об испытаниях, вы будете знать только то, что скорость тепловыделения была менее 25 кВт / фут2 [269 кВт / м2].

Рисунок 3.Капюшон и окружающая юбка над стеной. Воздуховод (не виден) над вытяжкой собирает дым и дымовые газы во время горения. На этой фотографии также изображена излучающая панель перед деревянной панелью. Фотография любезно предоставлена ​​Западным пожарным центром, Келсо, Вашингтон.

Негорючие

Негорючий материал — это материал, который не может гореть при определенных условиях (ASTM E 176). Невоспламеняемость может быть оценена с помощью стандартного метода испытаний, ASTM E-136, Стандартный метод испытаний на поведение материалов в вертикальной трубчатой ​​печи при температуре 750 ° C.В испытании, описанном в ASTM E-136, используется печь, аналогичная показанной на рисунке 4. Испытание начинается с четырех образцов данного материала. Чтобы считаться негорючими, три из четырех повторных образцов для испытаний должны соответствовать одному из следующих двух наборов критериев:

  1. Если потеря веса образца во время испытания составляет 50% или менее, тогда
а. Зарегистрированная температура материала не более чем на 30 ° C (54 ° F) выше температуры, измеренной в испытательном устройстве.
г. После первых 30 секунд испытания образец не пламени.

Рис. 4. Схема печи, используемая для оценки того, можно ли считать материал «негорючим». Рисунок основан на Рисунке 1, Стандарт ASTM E 136.

  1. Если потеря веса образца во время испытания превышает 50%, то
а. Зарегистрированная температура материала не превышает температуру, измеренную в конкретном месте испытательного устройства.
г. Во время испытания образец не пылает.

Критерий № 2 предоставляется для материалов, которые содержат большие количества комбинированной воды или других газообразных компонентов, условие, которое не применимо к существующим строительным материалам для наружного использования.

Критерий № 1 является наиболее полезным для характеристики строительных материалов. Обратите внимание, что материал, соответствующий этим критериям, может считаться негорючим, даже если может произойти некоторое ограниченное возгорание.Условия, указанные в критерии № 1, основаны на исследованиях, проведенных Сечкиным (1952).

Взрывостойкий

В большинстве регионов Северной Америки термин «устойчивость к возгоранию» не определяется, поэтому для разных людей он может означать разные вещи. В Международном кодексе границы между дикой природой и городом, принятом Советом Международного кодекса, и в Строительном кодексе Калифорнии огнестойкие материалы определены как материалы, удовлетворяющие минимальному уровню распространения пламени после того, как они подверглись определенному циклу выветривания-сушки.Горизонтальный туннель распространения пламени, использованный для испытания на огнестойкость, показан на рисунке 2. Продолжительность испытания на устойчивость к возгоранию составляет 30 минут по сравнению с 10-минутной продолжительностью, использованной для оценки распространения пламени. В Калифорнии материал с надписью «устойчивый к возгоранию» прошел 30-минутное испытание. Примером стойкого к возгоранию материала является древесина, пропитанная под давлением огнезащитным составом, предназначенным для использования на внешней стороне здания.

Древесина и изделия из древесины, которые квалифицируются как огнестойкие материалы, были обработаны антипиреном, вероятно, с использованием цикла вакуума-давления.Ускоренный цикл выветривания используется для удаления легко вымываемых огнезащитных химикатов из продукта перед испытанием на огнестойкость.

Огнестойкий

Рейтинги огнестойкости и испытания служат руководством по вопросам пожарной безопасности. Они предназначены для оценки способности материала или сборки сдерживать возгорание в отсеке или здании или продолжать выполнять структурную функцию в случае (внутреннего) пожара (Beitel 1995). Например, рейтинги огнестойкости помогут определить, дает ли данная конструкция здания достаточно времени для выхода людей из горящего здания, прежде чем оно рухнет (Kruppa 1997).

Обычное испытание на огнестойкость для оценки огнестойкости стен использует большую вертикальную печь (рис. 5), чтобы подвергнуть стену воздействию лучистого тепла от газовых горелок. Продолжительность испытания составляет от 20 минут до нескольких часов, в зависимости от желаемого рейтинга и тестируемого продукта или сборки. Температура внутри печи достигает около 1700 ° F (~ 925 ° C) в течение первого часа.

Рис. 5. Эта вертикальная печь используется для оценки огнестойкости стеновых конструкций, дверей и окон.Тестируемый узел крепится к внешнему периметру печи. Большие темные круги на задней стенке печи — это газовые горелки. Аналогичная горизонтальная печь используется для оценки огнестойкости сборных перекрытий. Фотография любезно предоставлена ​​Западным пожарным центром, Келсо, Вашингтон.

Гипсокартон часто используется для повышения огнестойкости стены. Как видно на Рисунке 6, на общей стене, примыкающей к этим двум зданиям, были использованы гипсовые плиты.Включение гипсокартона в стеновую систему — еще один пример сборки. Использование гипсокартона при строительстве сборок наружных стен — это один из способов, которым некоторые горючие материалы для сайдинга могут соответствовать требованиям для использования в зонах, подверженных лесным пожарам.

Рис. 6. Проект таунхауса, в котором общая стена между блоками достигает рейтинга огнестойкости «один час» за счет использования гипсокартона. Фотография любезно предоставлена ​​компанией Richard Avelar and Associates, Окленд, Калифорния.

Испытания, используемые для определения огнестойкости крыш, также предоставляют информацию о огнестойкости. В этом случае класс A (наивысшая степень огнестойкости), B или C дает относительную информацию о способности покрытия и конструкции крыши противостоять проникновению огня в результате стандартного воздействия огня (ASTM E 108 ). Схема испытательного оборудования, используемого для оценки проникновения пламени, показана на рисунке 7. Относительные размеры стандартных марок показаны на рисунке 8.Марки классов A и B больше обычных размеров углей (головней), поднимаемых во время лесных пожаров, но они обеспечивают постоянный и, возможно, консервативный источник огня, с помощью которого можно оценить сопротивление кровельного покрытия проникновению огня в зону под ним. . Стандартное испытание крыши также оценивает распространение пламени по материалу и склонность покрытия (например, черепицы) к образованию тлеющих углей.

Рис. 7. Испытательное оборудование, используемое для определения огнестойкости кровельных покрытий.

Рис. 8. Сверху справа, против часовой стрелки: марки класса A (12 дюймов x 12 дюймов), класса B (6 дюймов x 6 дюймов) и класса C, используемые в стандартных испытаниях крыши.

Сводка

Различия в огнестойкости различных материалов можно оценить, сравнив показатели распространения пламени (класс A — это наибольшее сопротивление, за которым следуют B и C) и скорость выделения тепла.

Негорючие материалы либо определены как таковые в строительных нормах, либо соответствуют требованиям стандартных испытаний.

Устойчивые к воспламенению материалы прошли 30-минутное испытание на распространение пламени после того, как подверглись ускоренному циклу атмосферных воздействий, который состоит из 12 недель попеременного смачивания и высыхания. Горючие материалы, устойчивые к возгоранию.

Огнестойкость обычно связана со сборной конструкцией и, следовательно, учитывает характеристики ряда материалов, которые могут быть включены в стену, пол или крышу. Внешний материал (т. Е. Тот, который подвергается воздействию огня) может быть горючим, стойким к возгоранию или негорючим, поскольку весь узел влияет на рейтинг.Хотя огнестойкость выражена в единицах времени (например, 20 минут, один час, два часа), они представляют только относительные характеристики (например, двухчасовая стена лучше, чем часовая стена, но они могут или не могут противостоять данному воздействию огня в те периоды времени). Номинальная «часовая» стена использовалась как один из путей для стены с горючей обшивкой, которая будет использоваться в зоне, подверженной лесным пожарам. В то время как информация о огнестойкости может использоваться для оценки способности противостоять проникновению пламени в здание, она не обязательно дает информацию о распространении пламени.Это особенно верно, поскольку этот тип конструкции используется только тогда, когда в качестве внешнего материала используется горючий сайдинг.

С учетом использования этих терминов вы можете ранжировать ожидаемые характеристики строительных материалов следующим образом:

Негорючие — Лучшие характеристики как для распространения пламени, так и для проникновения.
Огнестойкость — Огнестойкая конструкция — Положитесь на рейтинг сборки по сопротивлению проникновению огня, а также на внешний материал (т.е.е., который будет подвергаться воздействию огня) для получения информации о распространении пламени.
Устойчивость к возгоранию — Предоставляет информацию относительно распространения пламени. Можно ожидать, что материалы с этой классификацией будут работать лучше, чем горючие материалы, но не так хорошо, как негорючие.
Горючие материалы — материалы с этой классификацией не будут работать так же хорошо, как другие, обсуждаемые в этой статье, при сопоставимом воздействии огня.

Цитированная литература

Американское общество испытаний и материалов.2007. Стандартные методы испытаний на огнестойкость кровельных покрытий. Обозначение ASTM E-108, Vol. 4-07. Западный Коншохокен, Пенсильвания. pp 576-588.

Американское общество испытаний и материалов. 2007. Стандартная терминология пожарных норм. Обозначение ASTM E-176, Vol. 4-07. Западный Коншохокен, Пенсильвания. С. 631-650.

Американское общество испытаний и материалов. 2007. Стандартная практика ускоренного атмосферного воздействия на огнестойкую древесину для испытаний на огнестойкость, ASTM Designation D-2898, Vol. 4-10. Западный Коншохокен, Пенсильвания.pp 392-394.

Американское общество испытаний и материалов. 2007. Стандартный метод испытаний поведения материалов в вертикальной трубчатой ​​печи при 750 ° C, ASTM Designation E-136, Vol. 4-07. Западный Коншохокен, Пенсильвания. С. 611-620.

Американское общество испытаний и материалов. 2007. Стандартный метод испытания характеристик горения поверхности строительных материалов, ASTM Обозначение E-84, Vol. 4-07. Западный Коншохокен, Пенсильвания. pp 555-575.

Beitel, J.J. 1995. Текущие споры об испытаниях на огнестойкость.В: Стандарты пожарной безопасности на международном рынке / Под ред. A.F. Grand, ASTM STP 1163, Филадельфия, Пенсильвания. С. 89-99.

Строительный кодекс Калифорнии. 2007. Свод правил Калифорнии, раздел 24, часть 2, том 1 из 2. На основании Международного строительного кодекса 2006 года

.

Калифорния Управление государственного пожарного маршала. 2010. Справочник по продукту WUI. http://osfm.fire.ca.gov/strucfireengineer/pdf/bml/wuiproducts.pdf

Лаборатория лесных товаров, 1999. Справочник по древесине: древесина как технический материал.ГТР-113. Лаборатория лесных товаров лесной службы Министерства сельского хозяйства США, Мэдисон, Висконсин. 463 с.

Круппа, Дж. 1997. Кодекс огнестойкости, основанный на характеристиках: первая попытка Еврокодов. В: Труды Международной конференции 1996 года по кодам, основанным на характеристиках, и методам проектирования пожарной безопасности, Под ред. Д. Питер Лунд. Общество инженеров противопожарной защиты, Бостон, Массачусетс, стр. 217-228.

Qunitiere, J.G. 1998. Принципы поведения при пожаре. Издательство Delmar, Олбани, Нью-Йорк. 258 стр.

Сечкин, Н.П. 1952 г.Испытания на горючесть 47 образцов материалов ASTM, Проект 1002-43-1029 Национального бюро стандартов (NBS), отчет 1454, 6 февраля 1052 г., Вашингтон, округ Колумбия

Приложение A

Международный совет кодов

В Кодексе городской среды диких земель, опубликованном Международным советом кодов (2009), используются следующие определения:

Строительство с рейтингом огнестойкости — Использование материалов и систем при проектировании и строительстве здания или сооружения для защиты от распространения огня внутри здания или сооружения, а также распространения огня на здания или сооружения или от них в дикие земли. -городское сопряжение.

Индекс распространения пламени — сравнительный показатель, выраженный в виде безразмерного числа, полученный на основе визуальных измерений распространения пламени в зависимости от времени для материала, испытанного в соответствии с ASTM E-84.

Строительный материал, устойчивый к возгоранию — Тип строительного материала, который устойчив к возгоранию или устойчивому горению пламенем в достаточной степени, чтобы уменьшить потери от пожаров на границе с дикими землями и городами в наихудших погодных и топливных условиях с воздействием лесных пожаров горящих углей и небольшого пламени, как предписано в Разделе 503 [Примечание автора: Раздел 503 описывает расширенное (30-минутное) испытание на распространение пламени по стандарту E-84 Американского общества испытаний и материалов (ASTM), которое проводится после подвергания испытываемого материала ускоренной процедуре воздействия погодных условий, определенной в Стандарт ASTM D-2898.Процедура выветривания включает смачивание, сушку и воздействие ультрафиолета.]

Устойчивая к возгоранию конструкция — Кодекс предусматривает ряд требований для различных компонентов здания в зависимости от ожидаемой пожарной опасности — Класс 1 (экстремальный), 2 (высокий) или 3 (умеренный).

Негорючие — применительно к строительному строительному материалу означает материал, который в том виде, в котором он используется, является одним из следующих:

  1. Материалы, ни одна из частей которых не воспламеняется и не горит под воздействием огня.Любой материал, соответствующий стандарту ASTM E 136, считается негорючим в смысле этого раздела.
  2. Материалы, имеющие структурную основу из негорючего материала, как определено в пункте 1 выше, с поверхностным материалом толщиной не более дюйма (3,2 мм), который имеет индекс распространения пламени 50 или меньше. Используемый здесь индекс распространения пламени относится к индексу распространения пламени, полученному в соответствии с испытаниями, проведенными в соответствии со стандартом ASTM E 84 или стандартом 723 лаборатории страховщиков (UL).

Негорючее кровельное покрытие. Одно из следующих:

  1. Цементная черепица или листы.
  2. Открытая кровля из бетонной плиты.
  3. Гонт или листы из черной или меди.
  4. Сланцевая черепица.
  5. Глиняная или бетонная черепица.
  6. Одобренное кровельное покрытие из негорючего материала.

Национальная ассоциация противопожарной защиты

Стандарт 1144 Национальной ассоциации противопожарной защиты (NFPA) «Стандарт по снижению опасностей возгорания конструкций в результате лесных пожаров» (2008 г.) дает аналогичные определения для этих терминов, включая:

Fire Resistive — Конструкция, обеспечивающая разумную защиту от огня.

Устойчивый к возгоранию материал — любой продукт, предназначенный для внешнего воздействия, который при испытании в соответствии с применимыми стандартами имеет распространение пламени не более 25, не показывает признаков прогрессирующего горения и фронт пламени которого не распространяется более чем на 10 ½ футов. (3,2 м) за осевой линией горелки в любой момент во время испытания.

Негорючий — Любой материал, который в том виде, в котором он используется, и при ожидаемых условиях, не воспламеняется и не горит, а также не добавляет значительного тепла к окружающему пожару.

Строительный кодекс Калифорнии

В главе 7A Строительного кодекса Калифорнии даны некоторые определения этих терминов.

Из 704A.2 Материал, устойчивый к возгоранию. Устойчивый к воспламенению материал следует определять в соответствии с процедурами испытаний, изложенными в SFM 12-7A-5 «Устойчивый к воспламенению материал», или в соответствии с этим разделом.

Примечание автора: Стандарт 12-7A-5 Управления пожарной охраны штата Калифорния относится к стандартным методам испытаний ASTM E-84 и ASTM D-2898.Этот раздел строительных норм совпадает с определением, используемым Советом по международным кодексам.

Негорючие [Раздел 202 Строительного кодекса Калифорнии] — материал, который в той форме, в которой он используется, является одним из следующих:

  1. Материал, никакая часть которого не воспламеняется и не горит под воздействием огня. Любой материал, соответствующий ASTM E 136, считается негорючим.
  2. Материал, имеющий структурную основу из негорючего материала, как определено в # 1, с поверхностным материалом не более 1/8 дюйма (3.2 мм) толщиной 50 и менее.

704A.3 Альтернативные методы определения огнестойкого материала. Любой из следующих вариантов считается соответствующим определению огнестойкого материала:

  1. Материал негорючий. Материал, соответствующий определению негорючих материалов в разделе 202
  2. .
  3. Древесина, обработанная антипиреном. Древесина, обработанная антипиреном, предназначенная для наружного применения и соответствующая требованиям раздела 2303.2.
  4. Деревянная черепица, обработанная огнестойкими добавками. Огнестойкая деревянная черепица и тряпка, как определено в разделе 1505.6 и перечисленные Государственным маршалом пожарной охраны для использования в качестве кровельного покрытия «Класса B», должны быть приняты в качестве огнестойкого материала для покрытия стен при установке на твердую обшивку.

Примечание автора. В этом разделе говорится, что негорючие материалы, огнестойкие обработанные древесные материалы для наружных работ и деревянные черепицы, обработанные антипиренами, могут использоваться везде, где требуются «огнестойкие материалы».

Огнестойкие строительные материалы: 5 материалов для вашего дома

В домостроении используется ряд термостойких материалов, включая бетон, огнестойкий гипсокартон, обработанную пиломатериал, огнестойкие двери и противопожарные стеклянные окна. Конечно, ни одна конструкция не является полностью огнестойкой, но постоянно разрабатываются новые и улучшенные огнестойкие ткани и строительные материалы.

Идеи ремонта дома с использованием огнестойких строительных материалов

Огнестойкие строительные материалы могут замедлить распространение огня и уменьшить количество выделяемого дыма.Эти огнестойкие материалы дадут вам и вашей семье больше времени, чтобы безопасно покинуть дом в случае пожара.

Узнайте больше о Кодексе безопасности жизнедеятельности NFPA, который направлен на защиту людей путем предоставления рекомендаций по теплостойким материалам для стен во время строительства или ремонта здания. Он также предлагает другие функции, которые могут помочь уменьшить вредное воздействие огня.

Вот расширенный перечень огнезащитных материалов:

  • Гипсокартон
  • Вспучивающаяся краска
  • Стекло
  • Перлитовые плиты
  • Proplex Sheets
  • Силикаты кальция или натрия
  • Пиломатериал, фанера
  • Обработанные волокна — хлопок, джут, конопля, лен
  • Древесина, обработанная антипиреном
  • Кирпич
  • Бетон
  • Штукатурка на цемент

Рассмотрите возможность установки противопожарной стены

Когда домовладельцы хотят повысить пожарную безопасность определенной комнаты или территории, они часто сооружают противопожарную стену для защиты ценностей или семьи.Подумайте об установке противопожарных стен вокруг специально отведенного безопасного помещения, детской, кухни, выходных путей или места, где вы храните ценные украшения, предметы коллекционирования или финансовые инструменты.

Вы также можете уменьшить распространение дыма, тепла и огня, используя противопожарные материалы в стенах и герметики на стыках стен и проходах, где зазоры обеспечивают вход дыма и пламени.

  • Используйте строительные материалы NFPA № 101, класс A, которые обладают самой высокой способностью противостоять распространению пламени.Благодаря различным обработкам пиломатериалы могут быть отнесены к классу А. Рассмотрите возможность использования композитных пиломатериалов, пиломатериалов, обработанных под давлением, и огнестойкой древесины, получившей оценку класса А по пожарной безопасности.
  • Вспучивающиеся уплотнения или полосы могут использоваться для предотвращения прохождения дыма и огня под дверями и через другие отверстия, которые могут блокировать пути эвакуации. Активируемый при нагревании материал расширяется, заполняя зазоры вокруг отверстий труб, а также под дверьми и вокруг них
  • Противопожарные подушки
  • можно добавлять в большие проемы в стенах, через которые проходят трубы, воздуховоды и кабели, или в любое другое место в стене, где огонь может распространяться легче.
  • Огнестойкие стеновые конструкции предварительно изготовлены и уже содержат соответствующие деревянные стойки и гипсокартон в одном удобном стеновом изделии, готовом к установке. Подумайте о одно- или двухчасовом рейтинге, который даст вашей семье время для выхода, поскольку эти стены будут сопротивляться огню до двух часов.

По возможности используйте огнестойкие ткани

Некоторые ткани лучше сопротивляются возгоранию при временном контакте с пламенем. Хотя необработанные натуральные волокна, такие как лен и хлопок, обычно не плавятся, они воспламеняются и горят быстрее, в то время как другие, такие как шелк и шерсть, горят медленнее.

При выборе тканей для домашнего декора старайтесь избегать легких тканей с неплотным переплетением, потому что они горят быстрее, чем плотные, тяжелые ткани. Выбирая ткань для домашних ковриков, обратите внимание на шерсть — самый огнестойкий натуральный материал. Другие коврики из огнестойкой ткани включают джут, водоросли и обработанный хлопок.

Используйте как можно больше огнестойких тканей по всему дому, от драпировок и покрывала до обивки и ковров.Сегодняшние огнестойкие полиэфирные волокна предлагают домовладельцам экономичное решение по сравнению с прежними искусственными волокнами, которые быстро сгорают и выделяют в воздух ядовитые запахи.

На вынос

  • При ремоделировании выберите обработанный пиломатериал, по которому деревянные стойки и гипсокартон могут соответствовать категории огнестойкости класса А.
  • Выберите противопожарную защиту для выхода из спальни, используя различные огнезащитные уплотнения и материалы.
  • Узнайте о Кодексах безопасности жизни, которые касаются противопожарных строительных норм для жилых и коммерческих зданий.

RWC предоставляет решения по ремонту дома, включая реконструкцию ванной комнаты и кухни, а также консультации по дизайну, установку дверей и замену окон для домовладельцев на севере Нью-Джерси.

* Примечание: это обновленное сообщение из нашего предыдущего сообщения в блоге, опубликованного 13 октября 2017 г. Прочтите исходное сообщение ниже! *

Недавняя история — душераздирающее напоминание о важности использования огнестойких строительных материалов для домов и многоквартирных домов.24-этажная башня Гренфелл в Лондоне, Англия, принесла трагедию и траур многим семьям. Предполагаемая причина — неисправный прибор. Тем не менее, полный осмотр материалов указывает на плохую облицовку. В ходе правительственных испытаний было доказано, что этот строительный материал горючесть. Рассмотрим 5 огнезащитных материалов для строительства дома:

Бетон

Бетон является плохим топливом для пожара, так как он считается негорючим. В результате бетон возрождается в жилищном строительстве как один из самых огнестойких строительных материалов.Кроме того, бетон отличается высокой устойчивостью к сильным ветрам, ураганам и торнадо. Бетон имеет 100-летний срок службы и хорошие тепловые свойства — , так как тепловая масса бетонной конструкции может снизить потребность в энергии для нагрева и охлаждения на 29% и более .

Огнестойкие стеклянные окна

Сильный жар пламени разбивает обычные стеклянные окна, но огнестойкие окна, такие как окна с двойным остеклением, удваивают время, необходимое для проникновения огня.Закаленное стекло подвергается термообработке, поэтому оно в четыре раза прочнее обычного стекла. Конструкция окон со стальным каркасом добавляет дополнительный уровень защиты окнам по сравнению с деревянными.

Противопожарные двери

Противопожарные двери уменьшают передачу дыма и распространение огня между помещениями. Фактические характеристики двери заключаются в ограничении теплопередачи и замедлении распространения огня в защищенную зону. Доступны противопожарные двери из дерева, стали и стекловолокна, выдерживающие огонь от 20 до 90 минут.Вместо противопожарной двери домовладельцы могут рассмотреть дверь из массива дерева или стали с сотовым заполнением толщиной 1-3 / 8 ″.

Пиломатериалы — Фанера

По данным NFPA, в 2015 году пожары в жилых домах вызвали 7,2 миллиарда долларов. Огнестойкая древесина обрабатывается под давлением химическим веществом, которое остается стабильным при высоких температурах. В результате получается огнестойкий барьер, который эффективно равномерно распределяет тепло по поверхности древесины, замедляя горение. Древесина FRT классифицируется по степени распространения пламени — или по тому, как далеко и как быстро пламя распространяется по поверхности испытуемого образца.Считайте, что кирпич относится к классу А, как и древесина, обработанная антипиреном.

Противопожарный гипсокартон

Согласно «Этот старый дом», примерно на 5% больше на лист, “5/8-дюймовый гипсокартон с огнестойкостью типа X увеличивает огнестойкость стены до минимума 1 часа с 30-минутного рейтинга для стандартный ½-дюймовый гипсокартон ». Гипсокартон типа X не на 100% огнестойкий, но он содержит стекловолокно в дополнение к гипсу, и он более плотный, что затрудняет разрушение стены огнем.Противопожарный гипсокартон обладает повышенной звукоизоляцией и устойчивостью к ударам. Имея это в виду, строительные нормы и правила в некоторых штатах требуют, чтобы гипсокартон типа X возле печей, подсобных помещений, а также на общих стенах и потолках пристроенных гаражей.

Спасите свою жизнь и дом

При ремонте вашего дома подумайте обо всех огнестойких и огнестойких материалах, которые помогают уменьшить распространение огня и дать время покинуть дом. Когда вы заменяете вход в свой дом, подумайте о более толстых моделях с деревянным или стальным сердечником.Если вы обновляете свою кухню, установите гипсокартон Type X — и всегда выбирайте качественные замены окон. Хотя 100% огнестойких материалов не существует, использование таких материалов замедляет распространение огня в вашем доме. Еще одна небольшая профилактическая мера — регулярно проверять датчики дыма; они могут спасти вашу жизнь и дом. Наконец, обсудите план побега вашей семьи, прежде чем случится бедствие.

RWC выделяется как один из крупнейших подрядчиков по ремонту домов в Нью-Джерси. Наш профессиональный и вежливый персонал стремится работать с вашей семьей, чтобы использовать материалы высочайшего качества и сделать ваш дом более безопасным.Если вы все еще не знаете, как защитить дом от огня, свяжитесь с нами сегодня, чтобы узнать больше.

Огнестойкие строительные материалы | Home Guides

Хотя никакие строительные материалы не являются полностью пожаробезопасными, строительство с использованием огнестойких материалов может помочь повысить устойчивость к теплу и пламени во время пожара. Эта огнестойкость может замедлить распространение огня, уменьшить материальный ущерб и дать дополнительное время для эвакуации. От кровли до окон и конструкции самого здания — выбор пожаробезопасных материалов может помочь защитить вашу собственность и вашу семью.

Рейтинг пожаробезопасных материалов

Огнестойкие строительные материалы часто имеют рейтинг, основанный на классификациях, разработанных Американским обществом испытаний и материалов. ASTM присваивает материалам рейтинги или классы пожарной безопасности на основе их индекса распространения пламени (FSI). Материалы класса A обладают наивысшим уровнем огнестойкости и имеют индекс FSI от 0 до 25. Чем ниже рейтинг материала FSI, тем лучше он оборудован, чтобы противостоять или замедлять распространение огня.Материалы класса B имеют FSI от 26 до 75, а материалы класса C предлагают FSI от 76 до 200. Хотя каждый муниципалитет определяет, какой уровень пожарной безопасности требуется для различных применений, для большинства лестниц, коридоров и других выходных путей требуется класс A или рейтинг B, в то время как материалы класса C обычно зарезервированы для внутренней отделки и не выходных путей, или для зон, оборудованных спринклерными системами.

Обычно большинство домашних пиломатериалов имеют индекс FSI от 90 до 160, что помещает их в категорию класса C.Благодаря различным обработкам пиломатериалы могут быть отнесены к классу А. Согласно данным This Old House, композитные пиломатериалы, пиломатериалы, обработанные под давлением, и огнестойкая древесина могут получить класс A по пожарной безопасности.

Огнестойкие сборки

Несмотря на то, что отдельные строительные материалы могут получать рейтинг пожарной безопасности, некоторые производители могут проводить испытания своих продуктов независимыми сторонами, чтобы узнать, насколько продукты противостоят огню в составе сборки. Например, деревянные стойки, не обладающие огнестойкостью, оснащенные гипсокартоном без класса прочности, рассчитаны на сборку 15 минут, что означает, что сборка может противостоять огню всего за 15 минут.По данным лаборатории лесных товаров Министерства сельского хозяйства США, стеновые конструкции, построенные с использованием огнестойких шпилек и огнестойкого гипсокартона, могут иметь одно- или двухчасовую стойкость, что позволяет им противостоять огню до двух часов. Эти характеристики сборки действительны только в том случае, если вся сборка построена точно так же, как во время испытаний, с использованием тех же материалов и методов.

Конструкция здания и окна

В то время как доступный по цене деревянный каркас представляет собой наиболее распространенный вариант строительства дома в США.S., традиционные дома с деревянным каркасом плохо переносят пожар. Согласно журналу Structure, бетон и кладка обладают более высокой огнестойкостью по сравнению с деревом и даже превосходят конструкции со стальным каркасом. Для повышения пожарной безопасности выбирайте кирпич, каменную кладку, сборные железобетонные панели или структурные изолированные панели, также известные как SIP, а не деревянный каркас. Для максимальной пожарной безопасности замените стандартные окна на стальные блоки с огнестойкими стеклами. Это дорогое стекло со специальным покрытием, которое помогает отталкивать тепло.Если вы не хотите вкладываться в огнестойкое стекло, окна с двойным остеклением могут противостоять теплу лучше, чем окна с одинарным остеклением.

Кровля

Крыша — одна из наиболее уязвимых частей дома, когда речь идет о пожаре, особенно в условиях лесных пожаров. Битумная черепица из стекловолокна остается наиболее часто устанавливаемым вариантом кровли в США. При использовании в сочетании с огнестойкими подкладочными материалами, эта черепица обеспечивает высокий уровень огнестойкости и получает рейтинг класса A, согласно данным This Old House.Для еще большей пожарной безопасности переключитесь на негорючий вариант кровли, например, металлочерепицу, глиняную черепицу или шифер.

Противопожарные герметики

Хотя пожаробезопасные строительные материалы могут иметь большое значение для повышения пожарной безопасности, дым, тепло и пламя все же могут обходить эти материалы через щели и проникновения. Для максимальной пожарной безопасности добавьте противопожарные материалы на все стыки или проходы в стенах. Для больших площадей, таких как стык между стенами и потолком в коридоре, выбирайте противопожарный раствор на основе строительного раствора или используйте герметизирующий герметик вокруг проходов в стенах и для заполнения небольших щелей.Вспучивающиеся уплотнения могут помочь повысить пожарную безопасность под дверями или вокруг окон, а также могут использоваться в уязвимых местах, например вокруг пластиковых трубопроводов. Во время пожара эти уплотнения расширяются, чтобы заполнить зазоры, оставленные расплавленными трубами, или закрыть зазор под дверью, чтобы предотвратить передачу дыма или тепла.

Ссылки

Writer Bio

Эмили Бич работает в сфере коммерческого строительства в Мэриленде. Она получила аккредитацию LEED от Совета по экологическому строительству США в 2008 году и находится в процессе работы над сертификацией консультанта по архитектурному оборудованию от Института дверей и оборудования.Она получила степень бакалавра экономики и менеджмента в Гучер-колледже в Таусоне, штат Мэриленд.

Противопожарная защита | Американский институт стальных конструкций

Огонь может ударить где угодно и когда угодно, поэтому очень важно спланировать худшее.

Строительные нормы и правила определяют количество часов, в течение которых конструкция должна выдерживать заданную температуру, на основе множества характеристик рассматриваемого здания. При создании плана противопожарной защиты необходимо учитывать три ключевых момента: безопасность жизни, пожаротушение и защита конструкции.Здесь мы сосредоточимся на распространенных способах защиты стальной конструкции. Дополнительную информацию о безопасности жизни, пожаротушении и защите конструкции можно найти в Руководстве по проектированию AISC 19: Огнестойкость каркаса из конструкционной стали .

Влияние температуры на сталь …

Даже негорючие материалы, такие как сталь, могут подвергаться воздействию высоких температур. Однако, поскольку конструктивные элементы обычно не нагружаются до полной расчетной прочности, даже голая сталь может иметь достаточную несущую способность, чтобы выдерживать воздействие огня.

В целом конструкционная сталь сохраняет 60% предела текучести при температуре окружающей среды при 1000 ° F — и большинство пожаров в зданиях в какой-то момент превышают эту температуру.

Стандартное испытание на огнестойкость ASTM использует постоянно возрастающие температуры, предполагая, что в огне есть бесконечный запас топлива, а элементы загружены с полной расчетной нагрузкой. Когда строительные нормы и правила определяют огнестойкость конструкции на основе результатов этих испытаний, стальные конструкционные элементы должны быть изолированы защитными материалами.

Многие такие материалы и системы хорошо себя зарекомендовали. Подрядчики должны проявлять большую осторожность, чтобы правильно установить все из них, сохраняя при этом физическую целостность, благодаря которой они так хорошо изолированы.

Здания из конструкционной стали хорошо работают при воздействии огня.

Сталь — прочный, негорючий, огнестойкий материал. Правильно спроектированный и изготовленный стальной каркас может сохранить свою конструктивную целостность в случае пожара и длительного воздействия высоких температур.Международный Строительный кодекс (IBC) и другие действующие строительные нормы и правила содержат предписывающие критерии для определения того, когда и какие требования применяются к различным типам строительства, высоте, площади и занятости.

Противопожарная защита осуществляется с помощью комбинации активных и пассивных методов противопожарной защиты. Многие конструкции со стальным каркасом, в том числе некоторые малоэтажные здания, спортивные стадионы и открытые парковочные конструкции, даже не требуют противопожарной защиты или требуют только активной противопожарной защиты (спринклерные системы).Однако, когда требуется пассивная противопожарная защита, существует несколько экономичных вариантов покрытия, которые могут не только достичь подходящей огнестойкости, но и выглядеть привлекательно, если сталь остается открытой.


Вспучивающиеся покрытия

Вспучивающиеся покрытия представляют собой лакокрасочные смеси на основе эпоксидной смолы, наносимые на загрунтованную стальную поверхность. Под воздействием высоких температур эти покрытия расширяются во много раз по сравнению с их первоначальной толщиной, образуя изолирующее покрытие, защищающее стальной элемент от нагрева.Эти покрытия обеспечивают огнестойкость до четырех часов.

Вспучивающиеся покрытия могут эффективно сбалансировать архитектурно открытые элементы конструкции из конструкционной стали с требованиями огнестойкости. Однако вспучивающиеся покрытия дороже, в несколько раз дороже обычных систем, наносимых распылением. Стоимость вспучивающихся покрытий увеличивается по мере увеличения требуемой огнестойкости. Эти покрытия обычно используются только для защиты незащищенной стали. Один элемент часто может иметь комбинацию систем: волокнистые системы, наносимые распылением на скрытые части, и вспучивающиеся покрытия на открытых частях.

Внешние вспучивающиеся покрытия

Наружные вспучивающиеся покрытия используются в тяжелых промышленных условиях или когда сталь находится снаружи здания и по-прежнему нуждается в огнестойкости. Наружные вспучивающиеся материалы также хорошо работают в местах с ограниченным пространством, таких как шахты лифтов, где требуется более тонкий альтернативный вариант традиционной цементной огнезащиты.

Гипс

Гипс обычно используется для защиты от огня, и он бывает разных форматов.Добавление легких минеральных заполнителей, таких как вермикулит и перлит, может значительно повысить эффективность систем противопожарной защиты на основе гипса.

Гипсовую штукатурку можно наносить на металлическую или гипсовую рейку. Если в вашем проекте используется гипсовая штукатурка, подрядчик должен убедиться, что правильно установил обрешетку, а затем нанести необходимую толщину правильно подобранной смеси.

Между тем, гипсокартон

может быть установлен поверх холодногнутого стального каркаса или каркаса и доступен в нескольких различных вариантах.Стеновые плиты типа X имеют сердцевину специальной конструкции, которая обеспечивает большую огнестойкость, чем обычные стеновые плиты той же толщины. Кроме того, многие производители выпускают собственные стеновые панели, которые еще более устойчивы к возгоранию. Важно убедиться, что стеновая плита, используемая в строительстве, соответствует тому, что указано в окончательном проекте. Кроме того, могут потребоваться специальные типы и расстояния между крепежными элементами и швеллерами.

Обычные покрытия | Огнестойкий материал для распыления (SFRM)

Наиболее широко используемыми огнезащитными материалами для конструкционной стали являются минеральное волокно и другие вяжущие материалы, которые распыляются непосредственно на контуры балок, колонн, балок и настилов перекрытий / крыш.Огнестойкие материалы, наносимые распылением (SFRM), расширяют и изолируют конструкционную сталь, чтобы предотвратить разрушение, которое может возникнуть в результате быстрого повышения температуры. SFRM обычно используются, если сталь скрыта от глаз, например, над потолком комнаты или за гипсокартоном.

Эти материалы являются патентованными, поэтому особенно важно смешивать и наносить каждый продукт в соответствии с инструкциями производителя. UL издает огнестойкие конструкции с разными типами и толщиной материала.

Перед нанесением этих материалов обязательно удалите грязь, масло и отслоившуюся окалину, поскольку подобные дефекты могут повлиять на адгезию. Легкая коррозия — это нормально и не оказывает отрицательного влияния на адгезию.

Сталь

, скорее всего, прибудет на вашу строительную площадку после грунтования производителем. Обязательно используйте огнезащитный материал, одобренный для нанесения поверх грунтовки, чтобы обеспечить хорошее сцепление между напыляемым материалом и загрунтованным стальным элементом.

Для этого приложения одобрен ряд материалов.Кроме того, исследования показали, что нет необходимости красить конструкционную сталь, когда она защищена, например, с помощью огнезащитных материалов, наносимых распылением, или полностью закрытых между внутренней и внешней стенами здания.

Подвесные потолочные системы

Системы подвесных потолков защищают полы, балки и балки. UL публикует рейтинги огнестойкости для каждой из имеющихся запатентованных систем. Планируя использовать систему подвесного потолка, не забудьте тщательно защитить отверстия для осветительных приборов, диффузоров и аналогичных аксессуаров.Производитель предоставит конкретные инструкции для облегчения этой защиты, а также интеграции потолочной плитки, решеток и подвесных систем. Обязательно внимательно следуйте этим инструкциям.

В случае ферм и / или балок для передачи нагрузки, которые выдерживают нагрузки от более чем одного этажа, строительные нормы и правила могут не разрешать использование систем подвесных потолков.

Бетон и кладка

В прошлые десятилетия бетон был наиболее широко используемым материалом для огнезащиты конструкционной стали, хотя его относительно высокая теплопроводность не делает его особенно эффективным выбором.В результате бетон больше не широко используется для защиты от огня.

Заметным исключением является растущее использование композитных конструкций, таких как стальные колонны с бетонным покрытием. Бетон и каменная кладка также иногда используются для защиты стальных колонн в архитектурных целях или когда требуется существенное сопротивление физическим повреждениям.

AISI предлагает проектную информацию по огнестойкости стальных колонн, заключенных в бетон или защищенных крышками колонн из сборного железобетона.Информацию об использовании бетонной кладки или кирпича можно получить в Национальной ассоциации бетонных кладок и Американском институте кирпича соответственно.


В дополнение к покрытиям, указанная степень огнестойкости может быть достигнута с помощью стандартных плит, заполненных бетоном полых конструктивных профилей (HSS) и бетонных широких фланцевых элементов.

Оставить комментарий