Пенобетон и газобетон сравнение: Газобетон или пенобетон: что выбрать для строительства дома – сравнение технологии производства и характеристик материалов

Опубликовано в Разное
/
18 Ноя 1986

Содержание

Сравнение пенобетона и газобетона (газосиликата)

Сравнение пенобетона и газобетона (газосиликата)

При этом надо учитывать, что газосиликат имеет максимальную прочность на момент изготовления, и далее происходит постепенное снижение этого показателя. В бетонах набор прочности продолжается десятилетиями. То есть на момент производства бетонные или пенобетонные изделия имеют свою минимальную прочность, которая в дальнейшем будет только увеличиваться.

Пенобетону, в отличие от газобетона (газосиликата), присуща закрытая структура пористости, то есть пузырьки воздуха внутри материала изолированы друг от друга. В газобетоне (газосиликате) пузырьки воздуха сообщаются между собой, поэтому при одинаковой плотности пенобетон плавает в воде, а газобетон (газосиликат) тонет. Таким образом, за счет отсутствия водопоглощения пенобетон обладает более высокими теплозащитными и морозостойкими характеристиками.

Благодаря этим свойствам пенобетон может использоваться в местах повышенной влажности и на стыках «холод-тепло», где образуется «точка росы» — выпадение конденсата. Применение газобетона (газосиликата) в таких местах недопустимо или требует применения специальных строительных технологий и качественного выполнения подобных работ, что приводит к удорожанию строительства.

Пенобетон – экологически чистый материал, и в этом его еще одно, весьма весомое преимущество перед газобетоном (газосиликатом). Основной материал, используемый для изготовления газобетона (газосиликата) – негашеная известь (химически активное агрессивное вещество), которое, вступая в химическую реакцию с алюминиевой пудрой, выделяет газ, образующий, в свою очередь, газовые (воздушные) пузырьки структуры газобетона (газосиликата). В идеале, при строгом соблюдении технологии, вся негашеная известь должна вступить в химическую реакцию и прореагировать (погаситься). В производстве этого достичь практически не невозможно, и в газобетоне (газосиликате) всегда присутствует не прореагировавшая известь.

Последствия этого наиболее наглядно можно увидеть в некачественном кирпиче, при производстве которого так же используется известь. На поверхности такого кирпича невооруженным глазом, видны мелкие сколы и выщерблины с мелкими белыми точками в середине, причиной которых является именно известь. Под действием влаги она гасится и, выделяя тепло и увеличиваясь в размерах, разрушает кирпич (строительный материал). Подобные процессы происходят и внутри материала. В пенобетоне, из за отсутствия негашеной извести, это невозможно в принципе. 


Возврат к списку


Внимание! При копировании информационных материалов прямая ссылка на наш сайт обязательна!
Все тексты сайта охраняются законом — Об авторском праве от 09.07.1993 г. N 5351-1.

Пенобетон и газобетон: сравнение характеристика. Различия между пенобетоном и газобетоном

Перед постройкой жилища необходимо задать себе вопрос, из какого материала будет строится дом.

Учитываются многие факторы: климатические условия, материальные возможности, предназначение постройки. От материала зависит крепость и комфортность сооружения. Необходимо учитывать, чтобы стены дома были пожаробезопасными, экологически чистыми, защищали от шума. Очень часто становится вопрос, что приобрести: пенобетон или газобетон. Казалось бы, особой разницы нет, но давайте рассмотрим внимательно, так ли это. Может, какой – то из этих материалов приоритетнее и почему.

Оглавление:

  1. Преимущества газобетона
  2. Преимущества пенобетона
  3. Состав пенобетона
  4. Состав газобетона
  5. Различие между пенобетоном и газобетоном
  6. Недостатки пенобетона
  7. Недостатки газобетона
  8. Сравнение пенобетона и газобетона

Преимущества газобетона

При выборе между газобетоном, пенобетоном, кирпичом или деревом необходимо учитывать преимущества каждого из материалов. Говоря о газобетоне, стоит отметить, что для возведения дома из данного продукта не обязательно обладать навыками строительства. Постройки из газобетона легко возводить, отделывать, осуществлять ремонты и перепланировки. Из – за этого, газобетон широко применяется в современном строительстве.  Изготавливается газобетон из извести, песка и цемента. Это искусственно созданный стройматериал, с пористой структурой, более чем на восемьдесят процентов наполнен воздухом и газом. Благодаря таким особенностям газобетон имеет низкую теплопроводность, небольшой вес, легкость в использовании и обработке.

Среди основных преимуществ газобетона можно выделить следующее:

  • невысокая стоимость – газобетон считается одним из самых недорогих материалов для строительства домов;
  • отличные теплоизоляционные способности – материал превосходно сохраняет тепло, что дает возможность уменьшить затраты на отопление  зимой, и не чувствовать высоких температур летом;
  • легкость в использовании – с газобетоном легко работать, даже новичок сможет осуществить кладку из газобетона, он достаточно большой, легкий, что дает возможность перевозить, укладывать, разрезать и шлифовать поверхность;
  • паропроницаемость – структура блоков обеспечивает оборот пара из помещения наружу;
  • использование газобетона позволяет возвести постройку в один слой без дополнительного утепления;
  • очень быстро высыхает, не рекомендуется покрытие штукатуркой, которая перекроет доступ воздуха;
  • безопасный для здоровья, нетоксичен, благодаря тому, что в основе изготовления только натуральные материалы;
  • помогает возвести добротный качественный дом.

Газобетон позволяет построить:

  • перегородки;
  • внешние стены;
  • внутренние несущие стены;
  • стены для армирования.

Основные характеристики газобетона:

  • высокая теплопроводность;
  • плотность;
  • прочность, зависящая от плотности;
  • огнеупорность;
  • паропроницаемость;
  • звукоизоляция;
  • большие размеры.

Дома из газобетона отличаются прочностью, не подвергаются атакам грызунов, обладают высокими показателями теплоизоляции.

Преимущества пенобетона

Пенобетон – материал, который служит для изготовления домов. Основные требования, выставляемые к современным продуктам для постройки домов, являются:

  • невысокая стоимость материала;
  • долгий срок службы;
  • высокий уровень теплоизоляции.

Пенобетон идеально подходит под эти требования. Материал сравнительно недорогой, срок службы блоков составляет более восьмидесяти лет, материал способен выдержать даже самые суровые зимы, при этом способен удерживать тепло.

Пенобетон относится к группе ячеистых бетонов с высокими показателями теплоизоляции. Изготавливается блок путем смешивания цементного раствора, песка, воды и алюминиевой пудры. Именно пудра вступает в реакцию с другими компонентами и придает составу вспененный вид. В середине материала оказывается большое количество воздуха, который придает такие высокие теплоизоляционные способности блокам.

Говоря о достоинствах пенобетона, стоит отметить следующие преимущества сырья:

  • способность пропускать воздух, что позволяет поддерживать ы уровень влажности в помещении;
  • материал сравнительно небольшого веса, что уменьшает нагрузку на фундамент;
  • благодаря большим размерам блока постройка жилища осуществляется в более короткие сроки;
  • при возведении стен можно использовать заменитель раствора-клей, который обойдется дешевле;
  • наносить отделочный материал на стены из пенобетона гораздо легче, чем на поверхности из других материалов;
  • пеноблок экологически чистый материал, полностью безопасен для здоровья проживающих членов семьи;
  • обладает огнеупорной способностью, при возникновении пожара не возгорается.

Как видно из описанных достоинств продукта, пенобетон идеально подходит для строительства жилья и является конкурентом другим материалам для строительства.

Состав пенобетона

Пенобетон можно приобрести в строительном магазине или изготовит самостоятельно. Для этого необходимо изучить состав продукта. Как уже было сказано, в окончанию работы, получается блок, по своему составу и внешнему виду напоминающий губку для мытья посуды. Количество воздушных отсеков зависит от плотности материала и варьируется в зависимости от этого. Состав пенобетона регламентирован документом, именно он регламентирует количественное и качественное наполнение блока. Требования к материалу такие:

  • использование цемента особой марки, в составе которого отсутствуют примеси;
  • использование воды определенного количества и качества;
  • песок подходящего качества, содержание кварцевой части которого не должно превышать семьдесят процентов;
  • количество вспенивателей согласно рецептуре изготовления продукта.

В пенобетоне могут присутствовать вспениватели двух вариантов:

  • натуральный;
  • синтетический.

Использование натурального продукта позволяет получить блоки высокого качества и экологически безопасные. Искусственный вспениватель дает возможность уменьшить стоимость материала. Иногда используются дополнительные компоненты, такие как зола, фиброволокно.

Также существуют обычные стандартные пеноблоки и усиленные. Последние необходимы при высоких нагрузках на стены.

Состав газобетона

Газобетон – искусственный материал, предназначенный для возведения жилищ. Из него могут быть изготовлены внешние и внутренние стены. Благодаря своей пористой структуре материал не оказывает большую нагрузку на фундамент. Высокие теплоизоляционные способности делают данный материал широко востребованным.

Тип классификации газобетона зависит от его предназначения, формы, технологии изготовления и состава:

  • способ обработки материала может быть – автоклавный и неавтоклавный;
  • по своему предназначению блок могут быть материалом для теплоизоляции, для конструкции, и смешанные – конструкционно – теплоизоляционные;
  • по форме блока- У-образные прямые и с пазами.

Для изготовления блоков необходимо использовать:

  • песок;
  • цемент;
  • воду;
  • гипс, алюминий;
  • вода.

Как дополнительный компонент это может быть шлак или зола. В зависимости от дополнительных примесей, блоки разделяются на такие виды:

  • цементный;
  • шлаковый;
  • известковый;
  • зольный;
  • смешанный.

Газобетон – пористый и губкообразный материал. Для приготовления автоклавного блока, его специально обрабатывают в автоклавах для затвердения. Те блоки, которые застывали в естественных условиях, называются неавтоклавными. В отличии от автоклавных блоков, эти подвержены механическому влиянию в большей мере, поэтому рационально использовать неавтоклавные блоки при небольших нагрузках.

Различие между пенобетоном и газобетоном

На первый взгляд может показаться, что разницы между пенобетоном и газобетоном нет. С одной стороны, и первый и второй материал являются продуктом, называющимся ячеистый бетон.  Благодаря ячейкам и содержащемуся там воздуху, материал становится ценнее с физической и технической стороны. Каждый из этих видов бетона бывает изготовленным автоклавным, искусственным, или неавтоклавным, естественным, способами. Автоклавный требует использования специального оборудования для затвердения сырья, а неавтоклавный доходит до кондиции в естественных условиях. Между пенобетоном и газобетоном большая разница, проявляющаяся в таких особенностях:

  • состав продуктов;
  • характеристики;
  • эксплуатационные способности.

Недостатки пенобетона

Даже обладая таким количеством полезных свойств, пенобетон имеет и свои недостатки, о которых многие не знают. Если вы решились возводить дом из пенобетона, изучите сильные и слабые стороны материала. Знание о минусах и недостатках, поможет вовремя устранить их и сориентироваться, чтобы после возведения готового проекта не возникли неприятные и неожиданные последствия.

Среди недостатков материала можно выделить такие:

  • состав – в основе пенобетона лежит алюминиевая пудра, которая вступает в реакцию с другими компонентами, и хотя производители утверждают, что данный состав полностью безопасен, лучше провести тщательные работы по отделке поверхности, хотя это увеличит стоимость строительства, но сможет обезопасить проживающих в жилище;
  • продукция для соединения блоков – чтобы блоки хорошо соединялись между собой и не разрушались швы, рекомендуется использовать не цементный раствор, а специальную клейкую основу, использование клея помогает усилить теплоизоляционные свойства постройки;
  • стоимость материалов для склеивания блоков – цена клея гораздо выше стоимости цементного раствора, это ощутимо увеличивает расходы на строительство, но также, с другой стороны, делает укладку блоков максимально качественной;
  • состав блока – так как в состав блоков входит известь, постепенно с течением времени она вызывает процессы окисления в арматурных соединениях дома, с годами прочность стены нарушается, чтобы этого избежать, рекомендуется покрывать арматуру антикоррозийным покрытием, что также существенно влияет на стоимость постройки.

Недостатки газобетона

Газобетон, прочно вошедший в строительную индустрию, часто используется для постройки частных жилищ. Для возведения дома не требуется особые знания или специальная техника. Структура блоков позволяет производить с ними различные манипуляции. Материал является пожаробезопасным и «дышащим».

Но даже при таком большом количестве положительных свойств материала, газобетон имеет много недостатков, которые следует учесть при возведении дома:

  • Повышенная влагопроницаемость и водопоглощение – это обусловлено структурой блоков, пористая внутренняя поверхность поглощает воду и накапливает ее, если не побеспокоится об этом на этапе строительства, то постепенное накопление большого количества влаги ухудшить качество материала и его свойства.
  • Недостаточная теплоизоляция – такая особенность материала появляется после того, как блоки накапливают влагу, но если была проведена достаточная гидроизоляция, то пустоты заполнены воздухом и это обеспечивает высокую гидроизоляцию. Также несли материал укладывался не на специальный клей, а на цементный раствор, его теплоизоляционные свойства будут снижены.
  • Высокая газопроницаемость позволяет стенам дышать, но так происходит только в теплое время года, при отрицательных температурах и сильных ветрах, тепловая защита газобетона снижается.
  • Недостаточная прочность блоков – из-за недостаточной прочности материала необходимо использовать специальный армирующий слой, опорная подушка. Это снижает тепловую защиту, а специальные дополнительные средства делают строительство дороже.
  • Низкая холодоустойчивость – влага, попавшая в поры материала приводит к снижению холодоустойчивых качеств, это можно предотвратить при качественно выполненной гидроизоляции.
  • Появление трещин – блоки недостаточно эластичны, они склонны к разломам, плохо переносит усадку фундамента, может ломаться в результате этого, через несколько лет появляются трещины. Это не становится причиной разрушения дома, но приводит к снижению качеств.
  • Плохое качество штукатурки – штукатурка, уложенная на блоки со временем разрушаются.

Недостатки газобетона можно сгладить при правильном использовании и наслаждаться уютным и качественным помещением. Можно найти большое количество предложений и объяснений, как устранить вероятные проблемы с продукцией в будущем.

Сравнение пенобетона и газобетона

Между пенобетоном и газобетоном существует разница, не только в технологии производства, но и в технических характеристиках материалов. Рассмотрим эти различия:

  • Блоки отличаются по составу: для изготовления газобетона используется известь, песок, цемент и вода, для пенобетона необходимы цемент, песок и пенообразователь.
  • Материалы отличаются по стоимости – пеноблоки стоят дешевле, не требуют специального клея для соединения поверхностей, как газоблоки.
  • Качество внешнего вида у материалов различное – у газобетонных блоков лучше соблюдена пропорция, чем у пеноблоков. Как результат, укладка облегчается, нет необходимости выравнивать ряды при помощи раствора.
  • Материалы отличаются по прочности, газобетон в несколько раз прочнее.
  • Из –за того, что структура пор в пенобетоне имеет закрытую форму, поверхность из пенобетона хуже «дышит». С другой стороны, он лучше удерживает тепло.
  • Пенобетон более устойчив к воздействию воды и защитить его при помощи гидроизоляции гораздо легче, чем газобетон.

Сделать выбор в пользу какого – то одного материала непросто. Оба варианта бетона обладает небольшим весом и не перегружают фундамент. У них отличная тепло и звукоизоляция по сравнению с другими строительными материалами. Большая поверхность блоков позволяет возвести жилье в короткий срок. Материалы не горят, не повреждаются грызунами, не гниют.

Ответить на вопрос, что из них лучше – не просто, да и однозначного ответа не получить – в некоторых случаях предпочтительнее использовать пеноблоки, в других – газоблоки.  Следует учитывать климатическую зону, погодные условия и многие другие объективные факторы.

Если у вас остались вопросы, как построить дом из газобетона или из подобного материала, посмотрите видео, там вы найдете ответы на все возникающие вопросы и сможете принять решение, какой материал лучше использовать в конкретно вашем случае.

Газоблок или пеноблок: что лучше для строительства

В последнее время в строительной среде распространилась сильная путаница по поводу названий блоков из ячеистого бетона. Часто разными словами называют один материал, а иногда объединяют под одним названием материалы совсем с разными свойствами. В этой статье разберемся, чем газобетон отличается от пеноблока, пенобетона, газосиликата и др.

Основные отличия пеноблока от газоблока


Для понимания вопроса нужно обратиться к нормативным документам, которые регулируют производство вышеупомянутых материалов.

Оба вида блоков имеют схожие свойства, похожи внешне и относятся к одному типу материалов – ячеистому бетону. Изделия из такого бетона имеют пористую структуру, что делает их более «теплыми» (низкая теплопроводность), но при этом они сохраняют достаточную прочность для строительства несущих стен.

Слова «пенобетон» и «газобетон» давно вошли в употребление, но фактически эти названия никак не отражают состав материала, потому что эти изделия не являются бетоном. Бетон – это составной материал, в состав которого входит заполнитель и вяжущее. Первая часть названия обычно обозначает заполнитель (железобетон). Части «пено-» и «газо-» тут обозначают способ порообразования. В одном случае — пена, в другом — газ.

Пенобетон


Производство этого материала регулируется двумя ГОСТами: «25820-2014 Бетоны легкие. Технические условия» (вступает в силу с 1 января 2020) и «25485-2012 Бетоны ячеистые. Общие технические условия». Из пенобетона изготавливаются пеноблоки, которые используют в качестве строительного стенового материала. Основные компоненты: цемент, вода, песок и пенообразователь.

Пенобетон от газобетона отличается по двум основным признакам.

По способу твердения – все ячеистые бетоны подразделяются на автоклавные и неавтоклавные. Пенобетон относится к последней категории, т.е. он твердеет естественным путем на воздухе (гидратационное твердение) в съемной опалубке. В некоторых случаях опалубка сразу разделяет материал на блоки, иногда пенобетон заливают одним большим блоком, а потом нарезают на части.

Автоклав – герметичная емкость для нагрева под давлением, на изделия внутри воздействует пар и высокая температура, поэтому газобетон сразу после производства получается влажным (влажность по массе у изделий низкой плотности может достигать 50%).

По способу пенообразования – пористой структуры в пенобетоне добиваются путем добавления специальных пенообразователей. В жидком виде материал вспенивают, а после затвердения у него остается пористая структура. В качестве пенообразователей могут использоваться костный клей, скрубберная паста и др.

В ГОСТе, который действовал до 2019 года пенообразователи нормировались, в новом нормативе пенообразователи не указываются.

Газобетон


Правильнее называть газобетон автоклавным ячеистым бетоном. Изготовление регулируется ГОСТом 31359-2007 «Бетон ячеистый автоклавного твердения. Технические условия». Газобетон делают из цемента, песка, воды, извести и газообразователя. Компоненты схожие, но остановимся на отличиях от пенобетона.

Песок измельчается до мелкой фракции (2000 – 3000 см.кв/кг), это необходимо для формирования единой с цементом массы. Песок для пенобетона не измельчают.

Материал нарезается еще до застывания, для этого не используется опалубка. Газоблоки продавливаются через стальные струны.

Застывание происходит за 12 часов в автоклаве. Благодаря этому порообразование происходит более предсказуемо, и блоки получаются более однородными.

Образование ячеек происходит при взаимодействии газообразователя (алюминиевая пудра ПАП-1 и ПАП-2) с известью и водой. В результате этого выделяется водород, который и формирует поры внутри материала.

Газобетон в некоторых регионах называют газосиликатом, но на самом деле это разные материалы. Когда производство ячеистых бетонов только началось, практиковались разные составы: на основе цемента, на основе извести и смешанные. Изделия на основе извести назывались газосиликатными блоками, сейчас такая рецептура практически не применяется.

Рассмотрим достоинства и недостатки каждого из материалов

Как понятно из описания процедуры производства, газобетонный блок изготовить кустарными методами практически невозможно, чего нельзя сказать о пенобетоне. Конечно, такие изделия имеют непредсказуемые физико-технические параметры, поэтому сравнивать их не имеет смысла. Для сравнения мы возьмем усредненные параметры пенобетона, который производится с соблюдением требований нормативов.

Что прочнее?


Марка прочности ячеистых бетонов обозначается буквой B (прочность на сжатие) и выражается в МПа (Н/м. кв). От этого параметра зависит усилие, после которого блок разрушится и потеряет свою несущую способность. Характеристика прочности обычно влияет на плотность. Повышение прочности приводит к повышению плотности, что снижает тепловые характеристики материала, поэтому прочность должна быть рассчитана в соответствии с требованиями конкретной конструкции.

Прочность пенобетона обычно не превышает B1,5, газобетон может иметь марку B1,5 – B7,5. Что позволяет использовать газобетон для более нагруженных конструкций, пенобетон можно использовать для ненагруженных конструкций (перегородки, хозяйственные конструкции) или в качестве теплоизоляционной прослойки.

По ГОСТам ячеистые бетоны подразделяются на теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.

B0,5 – B1,5 – теплоизоляционные

B1 – B10 – конструкционно-теплоизоляционные

B7,5 – B12,5 – конструкционные

Это разделение достаточно условно, потому что выбор прочности должен быть продиктован расчетами для конкретного проекта. Раньше эта классификация была привязана к плотности материала, поэтому до сих пор ошибочно её продолжают приводить. В ГОСТе 2009 года для автоклавных газобетонов приводились только предельные значения по прочности, с 2020 года классификацию по прочности распространили на все ячеистые бетоны.

Что легче?


Газобетон имеет меньший вес за счет большего количества пустот и более однородной структуры (вес блока 300 мм – 18,5 кг). В пенобетоне (вес блока 300 мм от 35 кг) песок является заполнителем, который не участвует в синтезе, к тому же часто для кладки пенобетона нельзя использовать кладку с тонким швом. Увеличение шва способствует повышению веса всей конструкции.

Что теплее?


Низкая теплопроводность обусловлена количеством пор и их структурой. Плотный материал обладает более высокой теплопроводностью, соответственно постройки из него получаются менее «теплыми». Фактическая плотность пенобетона превышает марку D600, плотность газобетона D300 – D600. Это позволяет использовать последний для возведения однослойных стен с достаточно для средней полосы России тепловым сопротивлением.

Марка плотности блоков обозначается буквой D и цифровым значением (D200 – D700).


Порообразование в газобетоне происходит более равномерно, большинство пор получается закрытыми и маленькими. В пенобетоне больше открытых пор и они более крупные, а соответственно материал имеет более высокую теплопроводность.

Теплопроводность газобетона – 0,05 – 0,2 Вт/(м*С)

Теплопроводность пенобетона начинается от 0,18


Водопоглощение


Главная проблема газобетона заключается в изначально высокой влажности, после обработки в автоклаве она может достигать 50%. В процессе работы на строительной площадке и из раствора материал может дополнительно увлажняться. После возведения здания за 3 – 6 месяцев стены выходят на равновесную с окружающей средой влажностью (5%). До этого момент дом из газобетонных блоков не рекомендуется утеплять и отделывать.

Особенно важно выждать срок высушивания блоков при утеплении с помощью пенополистирола. В противном случае в стене может происходить влагонакопление с последующим разрушением стенового материала при пониженных температурах.

Когда влажность газоблоков выходит на 5 – 8%, то здание может эксплуатироваться в обычном режиме. Для влажных помещений (баня, отапливаемые помещения для домашних животных) на газобетонной стене надо сделать гидро- и пароизоляцию.

Пенобетон в этом отношении более практичен, так как он высыхает в процессе своего изготовления и увлажняется только осадками или раствором.


Что экологичнее?

Оба материала изготавливаются на основе минеральных компонентов (цемент, песок, известь). В изделиях не используются полимерные компоненты. Газобетон и пенобетон не вызывают аллергических реакций и не являются благоприятной средой для распространения плесени. Показатели радиоактивности у ячеистых бетонов тоже ниже, чем у других строительных материалов.

Какие размеры?


Газоблоки могут иметь различную форму и размеры. Максимальный размер крупного блока – 1500 мм, мелкого – 625 мм. Ширина соответственно – 600 и 400 мм, высота 1000 – 300 мм. Пеноблоки могут иметь схожие размеры, но встречаются и изделия большего размера.

Также пеноблоки и газоблоки могут иметь разнообразную форму. Например, из газобетона делают цельные перемычки для оконных и дверных проемов. По форме тычковой плоскости изделия подразделяют на блоки паз-паз, паз-гребень, плоскость-паз.
По этим параметрам пеноблоки и газоблоки находятся примерно на одном уровне, но пенобетонные изделия существенно проигрывают газобетону по точности размеров. Если у газоблоков первой категории отклонения от вертикалей и горизонталей обычно не превышают +-1 мм, то у пенобетонных блоков отклонения могут быть практически любыми.

Удобство в строительстве


Из прошлого пункта следует, что геометрия пеноблока хуже, чем у газоблока. Кладка с тонким швом (2-3 мм) при больших перепадах становится невозможной. Толстый растворный шов требует использования цементно-песчаных растворов, работа с ними требует определенного опыта каменщика.
Во вставке: Увеличение толщины шва ведет к снижению прочности кладки. С 10 мм до 20 на 20%, с 20 до 30 на 30%. Кладка с тонким швом прочнее на 20 – 30%.

Пенобетонные блоки нельзя класть на клей-пену из-за недостаточно ровной геометрии. Этот простой способ укладки, который используют при строительстве из газоблоков с тонким швом.
Еще одним негативным фактором является больший вес блоков. Из-за этого материал сложнее переносить, поднимать на объект. Это влияет на увеличение транспортных издержек.

Пенобетон более неоднородный, поэтому дает большую усадку 1-3 м/мм, усадка газобетона меньше и составляет 0,4 м/мм.
Вывод
По соотношению прочности и низкой плотности газобетон лучше пенобетона. Пенобетон больше подойдет для хозяйственных построек и зданий, в которых тепловое сопротивление стен не играет принципиальной роли.

Пенобетон или газобетон?.

«Завод Ячеистого Бетона»

На сегодняшний день в России широко востребовано строительство жилых домов с ограждающими однослойными несущими конструкциями из блоков автоклавного ячеистого бетона, кладка которых организовывается на растворе или на клее.
Качество блоков из автоклавного ячеистого газобетона намного выше обычного пеноблока, и обладает большей стоимостью, которая связана с повышенными энергозатратами при изготовлении и с затрачиваемыми производственными мощностями.

На сегодняшний день многие железобетонные заводы для привлечения покупателей пришли к решению выпуска неавтоклавного бетона, что обусловлено небольшими капиталовложениями в начальное производство, а также низкими энергозатратами на производство данных изделий, а именно пеноблока неавтоклавного.

Единственный аргумент для приобретения неавтоклавного пеноблока является его низкая стоимость. Но если сравнивать не только первоначальные затраты, но и другие характеристики материала, становится ясно, что это мнимая выгода, так как строительство дома из неавтоклавного пенобетона приведет к дополнительным расходам. В сравнении пенобетона с автоклавным газобетоном только последний гарантирует способность сохранения тепла в помещении и высокой прочности. Это связано с тем, что неавтоклавный пенобетон может иметь либо высокую плотность, то есть быть прочным, но при этом плохо сохранять тепло, либо иметь низкую прочность, что не позволяет использовать его в качестве стенового строительного материала. При этом автоклавный ячеистый бетон гарантирует 100% прочность и высокий показатель способности сохранения тепла.

По производству качественного автоклавного ячеистого бетона немногие области и республики имеют на своей территории заводы по его производству, что приводит к использованию несоответствующий по качеству материал из неавтоклавного пеноблока.

В Удмуртии есть завод – «Завод ячеистого бетона» Филиала «СУ № 408» ФГУП «ГВСУ № 4», который выпускает высококачественные стеновые блоки из ячеистого автоклавного газобетона различных типоразмеров. Вся продукция «Завода ячеистого бетона» сертифицирована.
Предоставляется нормативная документация на изделия (ГОСТ, сертификат, документы о качестве).

Сравнение свойств газобетона и пенобетона

Пенобетон и газобетон относятся к группе легких бетонов, называющихся ячеистыми бетонами. Ячеистый бетон производится из цементного или известкового раствора, в котором воздухсодержащие поры и капилляры образуются в результате действия газо- или пенообразователя. Свойства ячеистых бетонов напрямую зависят от вида, структуры и размеров воздухсодержащей матрицы в их структуре.
Главным достоинством ячеистых бетонов является легкий вес, хорошие теплоизолирующие свойства, огнестойкость. Использование ячеистых бетонов позволяет экономить средства как на конструктивных материалах, так и на утеплителях.
Ячеистые бетоны производятся различной плотности — от 300 до 1800 кг/м3 в зависимости от назначения — структурный конструкционный газобетон, перегородочный материал или стеновой утеплитель. Интересно, что первоначально, пока их свойства не были изучены как следует, ячеистые бетоны использовались только в качестве утеплителя.

Виды ячеистых бетонов:

  • Газобетон
    Газобетон производится путем добавления газообразующих компонентов в цементно-песчаный, известково-песчаный или в цементно-известково-песчаный раствор. В качестве компонентов газообразователей используется алюминиевая пудра, перекись водорода или отбеливатель и карбид кальция. В результате химических реакций высвобождаются соответственно водород, кислород или ацетилен. Газообразование приводит к увеличению объема материала. Выходя из материала, газ оставляет многочисленные открытые поры и капилляры относительно большого диаметра (по сравнению с другими видами ячеистых бетонов).
  • Пенобетон
    Производство пенобетона гораздо проще и дешевле, по сравнению с более высокотехнологичным газобетонным производством. В процессе производства не происходит никаких химических реакций. Пенобразование в бетонном растворе достигается использованием пенящихся поверхностно активных детергентов (моющих средств), сапонина, или гидролизатов белка (кератина). Ячеистая структура пенобетона получается при смешивании пенообразующего агента с водой или с цементно-песчаным раствором. Поскольку при твердении цементного камня газ не покидает материала, образующиеся ячейки имеют закрытую структуру. Из-за отсутствия избыточного давления газа, поры и капилляры образуются только за счет выхода (испарения) из структуры материала воды. Эти поры имеют очень небольшой размер по сравнению с порами в газобетоне.
  • Комбинированный ячеистый бетон
    Существует достаточно редкая комбинированная технология, сочетающая газообразование путем введения в состав алюминиевой пудры и пенообразователь (белковый клей). [Rudnai G. Light weight concretes. Budapest: Akademi Kiado, 1963.]

Автоклавный и неавтоклавный ячеистый бетон

Исходя из условий ухода за бетоном в процессе твердения (набора прочности) ячеистый бетон может быть автоклавным или неавтоклавным. Технология ухода за бетоном в процессе набора прочности напрямую определяет итоговую прочность бетона на сжатие, степень усадки, трещинообразование, влагопоглощение. Набор прочности бетона в стандартных условиях в присутствии избытка влаги представляет собой достаточно длительный процесс.

Автоклавирование ячеистого бетона (процесс высокотемпературной обработки при повышенном давлении) приводит к потенцированию химических реакций между известью и силикатными / алюминиевыми составляющими материала. В результате происходит образование высокопрочных гидросиликатов кальция типа тоберморита и гидроалюмината или гидрогранатов различного состава. Автоклавирование бетона при температурах 140 — 250 С приводит к повышению устойчивости и прочности его пространственной коагуляционной структуры. Автоклавирование проводят в течение 8-16 часов, а режимы рабочего давления устанавливают в пределах 4-16 МПа. Автоклавировние значительно сокращает усадку бетона и трещинообразование.

Микроструктура ячеистых бетонов

Способ производства ячеистого бетона (газо- или пенообразование) напрямую оказывает влияние на микроструктуру материала, и, следовательно, на его физические свойства. Структура ячеистого бетона определяется его твердой пространственной микропористой матрицей и наличием макропор. Макропоры ячеистого бетона образуются благодаря расширению материала под воздействием давления газа. Микропоры образуются в стенках макропор ячеистых бетонов под воздействием влаги. [Alexanderson J. Relations between structure and mechanical properties of autoclaved aerated concrete. Cem Concr Res 1979;9:507-514.] Микропоры или микрокапилляры в стенках между ячейками бетона имеют диаметр около 50 nm. В структуре ячеситых бетонов также присутствет некоторое количество макрокапилляров диаметром от 50 nm до 50 ?m. Макропоры ячеистых бетонов имеют диаметр более чем 60 ?m. Наличие макропор в стурктуре ячеистого бетона не снижает его механической прочности на сжатие]. Свойства ячеистых бетонов зависят от пропорционального распределения в структуре материала пор различного диаметра. Структуры автоклавного ячеистого бетона и неавтоклавного газобетона имеют существенные различия, вызванные разницей в режимах гидратации связующего вещества, которые в итоге приводят к различиям в свойствах материалов. Неавтоклавный ячеистый бетон имеет в своем составе преимущественно мелкие поры и микрокапилляры, формирующиеся под воздействием испаряющейся воды, не задействованной при гидратации цемента или извести.

Пористость и свойства ячеистых бетонов

Поскольку пористость ячеистых бетонов может достигать 80%, то такие свойства ячеистых бетонов как прочность на сжатие, паропроницаемость, водопоглощение и степень усадки напрямую зависят от особенностей пористой структуры материала. Соотношение количества пор разного диаметра и структуры зависит от состава сырья и методов ухода за бетоном во время набора прочности. Чем больше в структуре ячеистого бетона макропор, тем тоньше стенки ячеек, и тем меньше в составе материала микропор. Принудительная сушка ячеистого бетона в печах (не автоклавах) может приводить к разрушению ячеистой структуры Плотность ячеистых бетонов зависит от компактности и пористости. Чем больше в структуре ячеистых бетонов макропор, тем меньше плотность материала.

Проницаемость ячеистых бетонов

Проницаемостью ячеистые бетоны обязаны своей пористой структуре. Проницаемость отличается у ячеистых бетонов с открытой и закрытой пористой структурой. Только непрерывно соединяющиеся поры с открытой структурой позволяют газам проникать через всю толщу ячеистого бетона. Для автоклавных ячеистых бетонов такой разницы не наблюдается: хотя структура пор у автоклавного пенобетона и автоклавного газобетона значительно отличается, характеристики проницаемости материалов остаются примерно одинаковыми. Наличие крупных пор не сказывается значительно на увеличении проницаемости материалов.

Химические характеристики

При автоклавирвании ячеистого бетона кальций, соединяясь с силикогидратом, образует тоберморит. В состав продуктов реакции входит смесь кристаллического, полукристаллического и аморфного тоберморита. Макрокапилляры выстилаются плоскими кристаллами тобеморита с двойной силикатной структурой. Эта структура остается неизменной во времени и при воздействии высоких температур
Кристаллическая структура неавтоклавного ячеистого бетона меняется в течении пооцесса гидратации: от игольчатых кристаллов к гексагональным и сблокированным кальцитным кристаллам

Прочность ячеистого бетона на сжатие

Состав бетонной смести, способ порообразования, структура пор, их размер, возраст бетона и водонасыщение оказывают существенное влияние на прочность ячеистого бетона. Сокращение плотности ячеистого бетона из-за увеличения количества макропор приводит к снижению прочности материала Прочность на сжатие ячеиcтого бетона увеличивается линейно с увеличением плотности материала. Автоклавирование значительно увеличивает прочность ячеистого бетона на сжатие за счет образования стабильных форм тоберморита

Прочность неавтоклавного газобетона увеличивается на 30-80% в период между 28 днями и 6 месяцами с момента производства, частично за счет процессов карбонации Прочность ячеистых бетонов на сжатие в значительной мере зависит от содержания влаги в материале и возрастает по мере просушки ячеистого бетона Прочность как автоклавных так и неавтоклавнх ячеистых бетонов возрастает при равной плотности с использованием золы или молотого сланца в качестве инертного наполнителя.

Прочность ячеистого бетона на растяжение и изгиб

По разным данным прочность на разрыв для ячеистого бетона составляет от 10 до 35% от прочности на сжатие.

Прочность на изгиб для ячеистых бетонов низкой плотности стремится к нулю. Для ячеистых бетонов конструкционной плотности прочность на изгиб составляет 22-27% от прочности на сжатие.

Усадка ячеистых бетонов при высыхании

Усадка ячеистых бетонов происходит из-за потери несвязанной в процессе гидратации воды. К образованию трещин больше склонны ячеистые бетоны с большим удельным количеством микропор (неавтоклавный пенобетон). Ячеистый бетон, имеющий в составе один только цемент (без добавления извести), гораздо более склонен к образованию трещин. Добавление пластификаторов в цементные растворы не приводит к снижению трещинообразования. Набор прочности ячеистым бетоном без автоклавирования в недостатке влаги (менее 20% от объема) ведет к образованию трещин. Автоклавирование предупреждает образование трещин из-за образования прочных тоберморитовых кристаллических структур. При этом уменьшение пористости ведет к уменьшению прочности и увеличению образования трещин, т.к. пористость напрямую связана с количеством образованного кристаллического тоберморита.

Капилляры ячеистого бетона и водопоглощение

Пористая и капиллярная структура ячеистого бетона обуславливает сильное взаимодействие материала с водой и водяными парами. В сухом состоянии поры ячеистого бетона открыты, и через них преобладает транспорт водяных паров. При увеличении влажности мелкие поры заполняются влагой, и транспорт водяных паров существенно снижается. При контакте с водой включаются механизмы капиллярного подсоса влаги за счет механизмов сорбции и гигроскопичности.

Долговечность ячеистых бетонов

Автоклавный газобетон преимущественно состоит из прочного стабильного тоберморита, который гораздо прочнее и долговечнее, чем материал неавтоклавных ячеистых бетонов (пенобетона).

С другой стороны высокая проницаемость автоклавного газобетона для газов и влаги может привести к ускоренному разрушению основы материала. Повреждение ячеистого бетона под воздействием замораживания возможно только при водонасыщении материала не ниже 20-40%. При большем водонасыщении и замораживании ячеистый бетон разрушается. Под воздействием атмосферного углекислого газа и процессов карбонизации плотность и прочность ячеистых бетонов может незначительно увеличиваться со временем.

Долговечность газобетонных конструкций снижается при переувлажнении и промерзании, при облицовке отапливаемых зданий кирпичом без вентилируемого воздушного зазора, либо при наружном утеплении газобетона паронепроницаемым ЭППС.

Теплопроводность ячеистых бетонов

Теплопроводность ячеистого бетона напрямую зависит от плотности, влажности и состава материала. Более мелкие поры обеспечивают меньшую теплопроводность.Увеличение влажности ячеистого бетона на 1% приводит к увеличению теплопроводности на 42%. Поэтому так важно не допускать увлажнения ячеистых бетонов при наружной отделке пенополистиролом и другими непаропронцаемыми материалами.
Огнестойкость ячеистых бетонов

Огнестойкость ячеистых бетонов гораздо выше, чем обычного тяжелого бетона. Это в значительной мере обусловлено гомогенной структурой без разнородных включений, как в тяжелом бетоне, что приводит к образованию трещин из-за разного расширения элементов тяжелого бетона при нагревании. Лучшей устойчивостью к огню из-за меньшей газопроводимости и теплопроводности обладают ячеистые бетоны с закрытой ячеистой структурой.

Предварительные выводы:

Способ производства ячеистого бетона и режима набора прочности влияет на ячеистую структуру материала и определяет его физические свойства.
Физические свойства ячеистого бетона зависят от его плотности и влагонасыщения.
Химический состав ячеистого бетона засвистит от режима ухода за бетоном при наборе прочности. Автоклавный ячеистый бетон гораздо более прочный и долговечный, по сравнению с неавтоклавным из-за образования прочной кристаллической решетки тоберморита.
Автоклавный чеистый бетон в 4-5 раз менее склонен к образованию трещин.

Окончательный вывод:

Критерием выбора стенового материала должен быть не способ образования ячеистой структуры бетона – пенообразование (пенобетон) или газообразование (газобетон). Критерием выбора стенового материала должно быть наличие стадии автоклавирования при производстве ячеистого бетона, так как неавтоклавные ячеистые бетоны обладают худшими физическими свойствами по сравнению с автоклавными.

Газобетон и пенобетон — в чем разница? Какие преимущества и недостатки у каждого из материалов?

И газобетон и пенобетон относятся к ячеистым бетонам.

Даже визуально блоки из этих материалов похожи, вот фото для наглядности.

Различия следующие:

Технология производства, например пенобетон относится к не автоклавным ячеистым бетонам, если проще, то твердеет этот материал в естественных условиях в специальных формах из которого изготавливаются блоки.

Газобетон твердеет в условиях автоклава, это давление и высокая (сравнительно) температура.

Могут отличаться и плотностью, хотя у обоих материалов плотность может быть разной.

Ценой они тоже отличаются, газобетон дороже и причем существенно.

Пенобетон можно изготовить и «на коленке» (кустарные условия) газобетон нет.

У пеноблоков закрытые ячейки (ну или поры), у газоблоков открытые.

Плюсы пенобетона:

Цена (если сравнивать с газобетоном).

Он легко режется, сверлится, фрезеруется и.т.д.

Экологически чистый материал.

Простая технология производства, при желании и при наличие минимального оборудования его можно изготовить самостоятельно.

Можно из него изготавливать не только блоки (строительные), но и заливать в опалубку.

Не плохие шумоизоляционные показатели, вес блоков сравнительно не большой, это важно при возведении фундамента под дом.

Минусы:

Открытая структура (поры), сложность найти блоки (партию) со строго выдержанной геометрией каждого блока.

Пористая структура блока, способствует скоплению влаги.

Блоки нужно защищать от негативных атмосферных воздействий (пыль, грязь, осадки).

Не высокая прочность.

Плюсы газобетона:

Теплопроводность у них лучше чем у пенобетона.

Выдержанна геометрия каждого блока.

У них лучше морозостойкость (в сравнении с пенобетоном), это более долговечные блоки.

Легко обрабатываются (распиловка, сверление и. т.д).

Блоки изготавливаются разных размеров, стены возводятся быстро.

При правильном выборе толщины стен, такое строение можно и не утеплять (правда нужно учитывать и регион проживания).

Минусы:

Материал хрупкий (речь о блоках) при транспортировке блоки легко повредить.

Цена, если сравнивать с пенобетоном, высокая.

Остальные минусы в принципе такие же как и у пенобетона, чтобы повесить что либо на стены возводимые из этих блоков нужен специальный крепеж.

При нарушении технологии строительства с использованием этих материалов на стенах могут появиться трещины, то есть оба материала требовательны к соблюдению технологии их укладки.

А из личного опыта могу добавить, свою дачу строили из пенобетона не потому что он лучше, он дешевле.

Что лучше — пенобетон или газобетон

Ячеистый бетон уверенно завоевал место на рынке строительных материалов. Сегодня предлагается несколько его разновидностей, самые распространенные из которых пенобетон и газобетон. Что лучше – пенобетон или газобетон – можно понять, сравнив их основные характеристики и свойства.

Характеристика
Пенобетон

Газобетон
Плотность, кг/м3300 — 1200300 — 1200
Теплопроводность, Вт/(м*0К)0,08 — 0,380,08 — 0,38
МорозостойкостьF50 – F100F35 – F100
Усадка при высыхании, мм/м3 — 50,3 – 0,5
Коэффициент паропроницаемости0,08 – 0,260,23 — 0,28
ГигроскопичностьУ пенобетона поры закрытого типа, поэтому он менее гигроскопичен и даже долгое время не тонет в водеУ газобетона открытые поры, поэтому он легко впитывает влагу
Класс прочностиВ1-2B2-2,5
ЭкологичностьМожет содержать органические добавки, которые входят в состав пенообразователяСоздается только из натуральных компонентов
ГеометрияОтклонение в размерах блоков может доходить до 5 ммМаксимальная разница в размерах блоков – 1 мм
Вес (блок 200х300х600, плотность D500), кг1818
ПожаробезопасностьВыдерживает открытый огонь в течение 4 часовВыдерживает открытый огонь в течение 4 часов

По большинству характеристик пенобетон и газобетон сходны. О больших различиях заявляют только продавцы того или другого материала. Оба материала безопасны и удобны в эксплуатации. Они могут укладываться на специальный клеевой раствор, хотя для блоков с большой разницей в геометрии может потребоваться цементно-песчаный раствор, который сгладит неровности блоков за счет толщины шва.

Видео: сравнение пенобетона, газобетона и полистиролбетона

Объективное различие есть в точности геометрии, которая обусловлена технологией изготовления. Газобетонные блоки можно получать абсолютно одинакового размера, в то время как пеноблоки могут иметь более заметную разницу в габаритах.

Отличие пенобетона от газобетона ещё и в том, что блоки из газобетона при одинаковой плотности чуть более прочные. Обычно для возведения стен используют газобетон плотностью не ниже D500, а пенобетон – не ниже D700.

Газобетон лучше впитывает влагу, а значит, его нужно лучше гидроизолировать. При этом газобетон напитывается влагой не по всей своей толщине, а лишь в верхних слоях, как и пенобетон.

Совет прораба:
Газобетон и пенобетон одинаково хорошо режутся и гвоздятся. Пенобетон чуть больше крошится при обработке. Для надежного крепления чего-либо к ячеистым бетонам используют специальные дюбели для легкого бетона.

Можно было бы говорить о том, что газобетон лучше пенобетона, но не стоит забывать о том, что газобетон несколько дороже. К тому же, пенобетон доступнее, потому что его проще изготавливать из-за более доступного оборудования, а значит, производителей пенобетона больше, что позволяет устанавливать более низкую цену.

Оба материала одинаково долговечны — дома, гаражи и пристройки из ячеистых бетонов стоят долгое время без деформаций и необходимости капитального ремонта при условии строительства и эксплуатации с соблюдением технологии.

Легкий ячеистый бетон для геотехнических применений — Американское общество инженеров-строителей

Фон

Легкий ячеистый бетон (LCC) представляет собой смесь портландцемента, воды и воздуха, созданную с помощью предварительно приготовленного пенообразователя. LCC может служить легкой, прочной, долговечной и недорогой заменой грунта или наполнителя для геотехнических применений. Комитет 523 Американского института бетона (ACI) определяет продукт в своей публикации 523.1R-06, «Руководство по монолитному ячеистому бетону низкой плотности», как «…бетон , изготовленный из гидравлического цемента, воды и предварительно сформированной пены для формирования затвердевший материал, имеющий плотность в сухом состоянии 50 фунтов на кубический фут (фунт/фут 3 ) [800 кг на кубический метр (кг/м 3 )] или меньше.”   LCC популярен в геотехнических приложениях в первую очередь потому, что он легче по весу, чем грунт, обладает высокой текучестью и может заполнять пространства любого размера и формы, а также дешевле, чем многие альтернативы.

Приложения

LCC в геотехнической среде может использоваться для различных целей, включая легкие основания и насыпи дорог, насыпи для подходов к мостам, заполнение пустот и полостей, заполнение труб и водопропускных труб, заполнение цементным раствором кольцевых пространств тоннелей, засыпки фундаментов, энергосберегающие системы, засыпки подпорных стен , легкие структурные насыпи для плотин и дамб, ремонт оползней и стабилизация откосов, а также в качестве насыпи с контролируемой плотностью.

LCC для стабилизации склона.

В Соединенных Штатах было установлено множество установок LCC для геотехнических приложений с отличными характеристиками. Материал чрезвычайно стабилен в течение длительного времени и не имеет известных недостатков при правильном проектировании и установке.

Свойства

После смешивания ингредиентов в смесительной камере и в свежем состоянии материал LCC становится самоуплотняющимся и обладает высокой текучестью с водоцементным отношением (В/Ц) в диапазоне от 0.35 до 0,80. Содержание воды существенно влияет на многие свойства ЛЦУ, особенно на его прочность и вязкость. Измерение удельного веса в полевых условиях, наряду с известным значением В/Ц свежей смеси LCC, являются первичными механизмами контроля качества. Это измерение влажного LCC называется плотностью отливки и представляет собой плотность, которую следует использовать в спецификации и дизайне проекта LCC.

Низкая вязкость LCC позволяет наносить его на большие расстояния и выполнять почти самовыравнивающиеся установки. Вязкость LCC основана на содержании воды и наличии пузырьков воздуха. Обычно используемая аналогия заключается в том, что пузырьки воздуха увеличивают текучесть, действуя как крошечные шарикоподшипники внутри наполнителя. Предполагается, что во время укладки LCC оказывает гидростатическую силу в зависимости от его фактической плотности отливки. Если стена или опора заполняются LCC, они должны быть спроектированы таким образом, чтобы обеспечить их способность выдерживать влажную жидкость. Поскольку LCC со временем затвердевает, гидростатическая сила полностью исчезает, когда продукт затвердевает и принимает свою окончательную форму.

Упрочненные свойства LCC больше всего беспокоят инженерное сообщество. Это свойства конечного продукта и то, как они ведут себя на рабочем месте. Поскольку LCC очень прочен по сравнению с материалом, который он заменяет в геотехнической среде (обычно почва и уплотненные заполнители), наиболее распространенным свойством закалки является его неограниченная прочность на сжатие. ACI предоставляет таблицу принятых в отрасли значений максимальной плотности литья, минимальной прочности на сжатие и несущей способности для различных смесей LCC.

Прочностные характеристики LCC ACI.

Прочность на сжатие, прочность на сдвиг, модуль упругости и Калифорнийский коэффициент несущей способности LCC варьируются в зависимости от многих факторов, таких как качество цемента, тип цемента, плотность, качество пены, в/ц, содержание воздуха, смесительное оборудование, песок-цемент. соотношение (если добавляется песок), интенсивность смешивания, температура производства и укладки, добавки и многое другое. Этот список можно расширить, потому что, хотя LCC состоит всего из трех основных ингредиентов, количество переменных смесей огромно.Другие свойства, которые также могут быть рассмотрены, включают аутогенную усадку (высыхание), проницаемость, сорбцию, теплоту гидратации и теплопроводность.

Эти переменные могут привести к невозможности принятия проектных решений, полностью основанных на значениях свойств материалов из таблиц, рисунков и уравнений. Инженеру рекомендуется провести необходимые испытания и консультации с поставщиком и/или производителем, чтобы определить подходящий состав смеси для достижения заданных требований к свойствам материала.

Соображения

Хотя наиболее распространенным преимуществом LCC является снижение веса/нагрузки, при использовании в качестве геотехнического материала необходимо учитывать дополнительные аспекты проектирования. Эти соображения включают несущую способность, гидростатическое давление, плавучесть, продавливание и другие виды сдвига, расчетный срок службы, сейсмические воздействия, температуру во время гидратации, дренаж, структурный номер, угол трения и конструкцию опоры дорожного покрытия.

LCC в основном используется, потому что он легкий. Его плотность обычно намного меньше плотности воды, и плавучесть иногда может быть серьезной проблемой.Чтобы учесть плавучесть, необходимо определить уровень грунтовых вод в наихудшем случае, а также то, какая часть LCC будет затоплена. Затем выполняется расчет баланса веса, чтобы убедиться, что вес над заполнением LCC достаточен для преодоления любых эффектов плавучести.

Материалы

В то время как портландцемент, вода и предварительно сформированная пена для создания воздуха являются основными ингредиентами LCC, в смесь могут быть включены дополнительные ингредиенты, если они не влияют отрицательно на качество, размер и распределение пузырьков воздуха.Некоторые распространенные примеры включают летучую золу, шлак, микрокремнезем, волокна, смолы, ускорители, замедлители схватывания или другие модификаторы цемента.

Готовая пена для использования в LCC.

Цемент должен соответствовать требованиям ASTM International (ASTM) C150, Стандартная спецификация для портландцемента, или ASTM C1157, Стандартная спецификация характеристик для гидравлического цемента; качество воды должно соответствовать требованиям ASTM C1602, Стандартная спецификация для воды для смешивания, используемой в производстве гидравлического цементного бетона; и имеющиеся в продаже пенообразователи должны соответствовать требованиям ASTM C869, Стандартная спецификация для пенообразователей, используемых при изготовлении предварительно формованной пены для ячеистого бетона.

Строительство

LCC обычно размещается в конечном месте с помощью насоса и шланга. LCC достаточно жидкий, чтобы самоуплотняться, и вибрации не требуется. Нельзя допускать, чтобы LCC затвердевал, а затем повторно смешивался. Вместо этого его следует держать в пластиковом состоянии до тех пор, пока он не застынет на своем окончательном месте. Поверхность слоя LCC, нанесенного шлангом, будет относительно плоской с небольшим рисунком брызг и обычно не требует каких-либо дополнительных отделочных или отвердевающих составов.Хотя на поверхности LCC могут появиться поверхностные трещины, это не окажет негативного влияния на характеристики LCC. Там, где желательна наклонная отделка, возможен уклон до трех процентов.

Размещение заливки LCC.

Перед началом размещения ЖЦЦ необходимо контролировать погодные условия. Если надвигается сильный дождь, то размещение ЖЦ следует отложить; тем не менее, легкий дождь не повредит этому продукту, поскольку он уже состоит из значительного количества воды. Особые меры предосторожности следует принимать, если температура окружающей среды ниже 32°F (0°C) или выше 100°F (38°C).Высокая температура может испарить воду из LCC и вызвать его чрезмерную усадку. И наоборот, холодная погода может замедлить время отверждения и качество уложенного LCC. При умеренных температурах LCC схватывается и затвердевает примерно через 10-14 часов.

Два типа производственных систем, обычно используемых для смешивания цемента и воды вместе в LCC, называются периодическим смешиванием и шнековым смешиванием. Порционное смешивание уже давно является промышленной практикой приготовления бетонных смесей. Эта система смешивания обеспечивает все ингредиенты, необходимые для приготовления одной «партии» продукта.Это работает для всех типов бетона, включая LCC, и может использоваться любой тип смесителя периодического действия. Шнековое смешивание обычно выполняется в мобильных объемных бетоновозах и включает использование вращающегося вала и фланца (шнека) для смешивания ингредиентов. Шнек получает сырые ингредиенты на одном конце, затем вращается и смешивает ингредиенты вместе, когда они проталкиваются вниз по шнеку.

В большинстве оборудования, предназначенного для размещения LCC, используются винтовые насосы. Этот тип насоса чрезвычайно устойчив, не пульсирует и сохраняет чистоту внутри во время работы.Перистальтические насосы также можно использовать для легкой транспортировки LCC. Преимущество этого типа насоса заключается в отделении вяжущих материалов от насосного механизма. Кроме того, из-за их чрезвычайной надежности и прочности поршневые насосы используются для перемещения различных типов жидкостей и шламов, включая LCC. Поршневые насосы используют обратный клапан и систему втягивания поршня, втягивая материал, а затем выталкивая его.

LCC, как и любой конкретный продукт, требует тщательного наблюдения, проверки и регулирования с помощью самого высокого доступного контроля качества.Небольшие вариации в дизайне смесей могут привести к большим различиям в конечном продукте, что приведет к неприемлемым материалам, сбоям и непредвиденным расходам. Наконец, не рекомендуется проводить техническое обслуживание самого материала LCC на месте. После укладки и затвердевания материал должен быть защищен каким-либо поверхностным слоем, таким как бетон, грунт, материал подстилающего слоя, дренажный мат и т. д. После заглубления и защиты дополнительное техническое обслуживание невозможно или необходимо.

Пенобетон для несущих конструкций с низкой нагрузкой и его свойства: Материалы конференции AIP: Том 2358, № 1

В этом исследовании изучается прочность на сжатие и удобоукладываемость легкого пенобетона путем включения промышленных отходов (зольная пыль, GGBS, кремнеземный дым) в разные проценты.При использовании этого избыточного материала прочность бетона постоянно увеличивается по сравнению с предыдущими исследовательскими работами. Стремительный рост объемов тяжелого строительства в современном мире приводит к развитию инновационных технологий в строительной сфере, в основном в производстве более прочного, легкого и умного бетона. Плотность легкого пенобетона обычно колеблется в пределах 400-1800 кг/м3; они способствуют низкой прочности здания, заполнению крыш, заполнению стен, панелей, опор мостов, стабилизации грунта, заполнению туннелей, заполнению метро, ​​стабилизации основания дороги и легких блоков.Качество пенобетона играет жизненно важную роль в прочности бетона на сжатие, мы использовали синтетическую пену, она была легко доступна снаружи. Согласно (КОДЕКС IS — 2185 ЧАСТЬ-4) стандартный размер легкого бетонного кирпича Длина: 400 500 (или) 600 мм. Высота: 200 250 (или) 300 мм. Ширина: 100, 150 (или) 200 мм. Теплопроводность: 0,32-0,54 Вт/мК. Звукоизоляция: 37-42 дБ. Но мы провели эксперимент на имеющихся в нашем колледже кубиках 150х150х150мм. У пенобетона малой плотности водостойкость будет меньше и он будет плавать в воде.Мы можем снизить общую стоимость строительного проекта. Пена образуется с помощью пеногенератора, и благодаря этому пенообразователю бетон имеет легкий вес, а вместо крупного и заполнителя мы используем мелкий заполнитель. В исследовании планировалось производить 1600 кг/м3. Подтверждение удобоукладываемости, прочности и пластичности пенобетона измерением кубов с покрытием через 7, 14 и 28 суток твердения. Это испытание было предназначено для толщины 1600 кг/м3. Это испытание было получено для проверки удобоукладываемости, пластической толщины и прочности на сжатие пенобетона.Образцы были изготовлены и испытаны в возрасте 7,14 лет и 28 дней.

Что такое легкий бетон?

Опубликовано 25 апреля 2019 г.

Первое современное использование легкого бетона (LWC) было зарегистрировано в 1917 году, когда Американская корпорация аварийного флота начала строить корабли с использованием этой смеси из-за ее высокой прочности и характеристик. С тех пор LWC стал распространенным строительным материалом для возведения прочных несущих стен, мостов и канализационных систем.

Что такое легкий бетон?

Легкий бетон представляет собой смесь, состоящую из легких крупных заполнителей, таких как сланец, глина или сланец, которые придают ему характерную низкую плотность. Конструкционный легкий бетон имеет плотность на месте от 90 до 115 фунтов/фут³, тогда как плотность обычного бетона колеблется от 140 до 150 фунтов/фут³. Это делает легкий бетон идеальным для строительства современных конструкций, требующих минимальных поперечных сечений в фундаменте.Он все чаще используется для создания гладких фундаментов и стал жизнеспособной альтернативой обычному бетону.

Тем не менее, более высокая прочность на сжатие от 7000 до 10 000 фунтов на квадратный дюйм может быть достигнута с помощью легкого бетона. Однако это может привести к ухудшению плотности смеси, поскольку требует добавления в бетон большего количества пуццоланов и водопонижающих добавок.

Различия между обычным и легким бетоном

В отличие от традиционного бетона, легкий бетон имеет более высокое содержание воды.Использование пористых заполнителей увеличивает время высыхания; следовательно, чтобы компенсировать эту проблему, заполнители предварительно замачивают в воде перед добавлением в цемент.

Как упоминалось ранее, обычный бетон может весить от 140 до 150 фунтов/фут³ из-за присутствия более плотных заполнителей в их естественном состоянии. В результате многие считают, что обычный бетон дешевле LWC. Однако проекты, выполненные из обычного бетона, требуют дополнительных материалов для каркаса, облицовки и стальной арматуры, что в конечном итоге увеличивает общую стоимость.Следовательно, LWC остается экономически эффективным строительным материалом, особенно для крупных проектов.

Практическое применение легкого бетона

Одной из самых популярных конструкций, построенных из легкого бетона, является здание Банка Америки в Шарлотте, Северная Каролина. Это показывает, как LWC можно использовать для создания внушительных конструкций, тем более что вероятность переноса статической нагрузки с одного этажа на другой значительно уменьшенный.

Таким образом,

LWC идеально подходит для устройства дополнительных полов поверх старых или даже новых конструкций, так как снижает риск обрушения. Таким образом, его можно использовать для успешного строительства мостов, настилов, балок, опор, сборных конструкций и высотных зданий с пониженной плотностью. Например, использование LWC в мосту через реку Вабаш позволило строителям снизить плотность проекта на 17% и сэкономить 18% с точки зрения затрат, что составило колоссальные 1,7 миллиона долларов.

Благодаря низкой теплопроводности и более высокой термостойкости LWC в настоящее время широко используется для изоляции водопроводных труб, стен, крыш и т. д. Он защищает сталь от коррозии, образуя защитный слой, который также защищает стальные конструкции от гниения.LWC также обычно используется для строительства межгосударственных и транспортных полос без увеличения статической нагрузки на существующие конструкции.

Типы легкого бетона

Бетон с легким заполнителем

Эта форма легкого бетона производится с использованием пористых и легких заполнителей, включая глину, сланец, шифер, вулканическую пемзу, золу или перлит. В смесь могут быть добавлены и более слабые заполнители, что влияет на ее теплопроводность; однако это может снизить его силу.

Легкий заполнитель идеально подходит для сборных железобетонных блоков или стальной арматуры. Однако более плотные сорта демонстрируют лучшие результаты сцепления между сталью и бетоном, а также повышенную защиту от коррозии стали.

Газобетон или пенобетон

Этот вид легкого бетона также известен как газобетон или пенобетон, так как он получается путем введения в растворную массу или бетон больших пустот. Пустоты обычно нагнетаются посредством химической реакции или с использованием воздухововлекающего агента.

Газобетон или пенобетон не требует выравнивания, обладает соответствующей теплоизоляцией и является самоуплотняющимся. Это делает его идеальным для использования в труднодоступных местах и ​​канализационных системах.

Бетон без мелких частиц

Эта форма бетона получается путем исключения из смеси мелких заполнителей; В результате получается бетон, состоящий только из крупных пустот и крупных заполнителей. Вот почему бетон No-Fines имеет лучшую изоляцию и относительно меньшую усадку при высыхании.

Бетон

No-Fines лучше всего подходит для несущих стен и может использоваться как для внутренних, так и для наружных конструкций. Однако этот тип легкого бетона не следует использовать с железобетоном, особенно из-за его меньшей плотности и содержания цемента.

Плюсы и минусы легкого бетона

Легкий бетон — это гибкий и легко транспортируемый строительный материал, который требует небольшой поддержки из таких материалов, как сталь или дополнительный бетон.Это делает его экономически выгодным, особенно для крупных строительных проектов.

Кроме того, благодаря низкой теплопроводности и огнестойкости LWC является идеальным материалом для защиты от тепловых повреждений.

Несмотря на пониженную плотность конструкции, построенные из LWC, вряд ли рухнут. На самом деле LWC имеет меньшую усадку по сравнению с обычным бетоном, а также демонстрирует повышенную устойчивость к гниению и заражению термитами.

Однако у LWC есть несколько ограничений.Так как в нем больше воды, он дольше сохнет. Более того, добавление слишком большого количества воды может привести к образованию слоев цементного молока, в то время как уменьшение количества воды для компенсации этого ограничения может привести к получению более слабой смеси.

Так как LWC также является высокопористым, правильное нанесение смеси затруднено. Еще одна проблема с LWC заключается в том, что цемент имеет тенденцию отделяться от заполнителей при неправильном смешивании.

В двух словах

Легкий бетон является экономичной альтернативой обычному бетону, тем более что он не снижает прочности конструкции.Более высокая пористость LWC также влияет на его теплопроводность, что делает его подходящим для проектов, требующих изоляции от тепловых повреждений.

Свяжитесь с компанией Specify Concrete, если у вас возникнут вопросы или опасения по поводу использования бетона.

FAQ — Aerix Industries

Что такое ячеистый бетон?

Ячеистый бетон обычно определяется как легкий цементный материал, который содержит стабильные воздушные или газовые ячейки, равномерно распределенные по смеси в объеме более 20%. Вяжущие материалы инкапсулируют пузырьки воздуха, а затем рассеиваются, оставляя пористую структуру в качестве замены традиционному заполнителю.

Каковы преимущества формованной пены?

Процесс производства предварительно сформированной пены обеспечивает превосходный контроль качества и гарантию заданной плотности. Предварительно сформованная пена, в отличие от газообразующих химикатов, обеспечивает равномерное трехмерное распределение спроектированной системы воздушных ячеек. Предварительно сформированная пена образует стабильную матрицу из относительно небольших воздушных ячеек, которые более желательны, чем неорганизованная матрица из пузырьков разного размера, часто создаваемая методом отвода газа из реактивных добавок

Каковы недостатки ячеистого бетона по сравнению с обычным бетоном?

В более низких диапазонах плотности ячеистый бетон не развивает прочность на сжатие традиционного бетона.Хотя это может быть недостатком при применении традиционного бетона, это является преимуществом при применении ячеистого бетона. Следует учитывать, что ячеистый бетон и традиционный бетон обычно используются для разных целей. Каждая форма бетона демонстрирует уникальное семейство эксплуатационных характеристик. Каждый из них должен использоваться в соответствующем типе проекта.

Ячеистый бетон такой же, как CLSM

Нет! «Текучая» засыпка обычно представляет собой очень влажную смесь цемента и золы-уноса.Хотя ячеистый бетон и текучий заполнитель CLSM являются жидкими продуктами и часто оба приемлемы для одного и того же применения или проекта, ячеистый бетон имеет меньший удельный вес, а также улучшенные звуко- и теплоизоляционные свойства. Часто текучий наполнитель достигает предела прочности при сжатии, что делает удаление материала проблематичным. Ячеистый бетон низкой плотности очень легко удаляется только ручным инструментом. Технически ячеистый бетон представляет собой контролируемый материал с низкой прочностью, но «CLSM» по определению обычно относится к цементно-зольным растворам, в то время как «ячеистый бетон» относится к добавлению инженерной системы воздушных ячеек к цементу или цементно-зольному раствору. .AERFLOW™ от Aerix Industries — это ответ на спрос на текучий наполнитель CLSM с улучшенным воздушным наполнением, который можно производить на заводе по производству товарных смесей. AERFLOW™ представляет собой добавку, которую можно добавлять непосредственно в текучую наполнительную смесь с осадкой 1,5–2,0 дюйма без использования пеногенератора. AERFLOW™ CLSM обладает высокими характеристиками текучести и содержанием воздуха 20-25%. Текучий наполнитель CLSM больше не требует высокого содержания воды и высоких пределов прочности на сжатие. Дополнительную информацию см. в разделе о продуктах AERFLOW™.

Является ли ячеистый бетон тем же, что и легкий бетон?

Ячеистый бетон весит значительно меньше, чем обычный «легкий» бетон.По определению «легкий» бетон — это бетон, изготовленный из заполнителей, которые значительно легче обычных каменных заполнителей. Как правило, легкий бетон имеет плотность + 120 фунтов/куб.м. Типичный ячеистый бетон, использующий структуру внутренней воздушной камеры вместо заполнителя, имеет плотность 60 фунтов/куб. ft.

Является ли сегрегация проблемой?

В отличие от традиционного бетона, в ячеистом бетоне практически нет расслоения, что делает расслоение спорным вопросом. Ячеистый бетон, эквивалентный сегрегации, был бы коллапсом системы воздушных ячеек и уменьшением объема материала.Для предотвращения этого следует использовать наиболее стойкие жидкие пенообразователи и с осторожностью относиться к ячеистому бетону при укладке. Свежий ячеистый бетон не является хрупким и может перекачиваться на большие расстояния, но и не является неразрушимым.

Совместим ли ячеистый бетон с обычными добавками?

Ячеистый бетон совместим с обычными добавками для строительства бетона; однако наиболее распространенные добавки добавляются к традиционному бетону для изменения характеристик бетона, которые не применимы к эксплуатационным характеристикам ячеистого бетона.Например, ячеистый бетон не требует воздухововлекающих или отделочных добавок; тем не менее, цветные добавки и добавки, повышающие прочность, работают хорошо, если они применимы к проекту.

Какие добавки являются общими для ячеистых бетонов?

Армирование волокном Понизители теплоты гидратации (ледяная вода или химикаты) Повысители прочности на сжатие Красящие пигменты или добавки, улучшающие цвет

Каково правильное соотношение воды и цемента для цементно-водного раствора?

Как правило, файл .В качестве базовой смеси для ячеистого бетона обычно используется раствор с соотношением воды и цемента, состоящий из двух частей цемента и одной части воды. Водоцементное соотношение варьируется в зависимости от конкретных требований проекта. Следует отметить, что природную текучесть ячеистый бетон получает за счет воздушно-пузырьковой структуры, а не за счет избыточного содержания воды.

Ячеистые бетонные смеси содержат мелкий или крупный заполнитель?

Ячеистый бетон может также содержать обычные или легкие, мелкие и/или крупные заполнители.Система с воздушными ячейками из жесткого пенопласта отличается от обычного заполнителя методами производства и более широким спектром конечных применений. Ячеистый бетон может быть монолитным или сборным. Конструкции ячеистых бетонных смесей в целом предназначены для создания продукта с низкой плотностью и, как следствие, относительно более низкой прочностью на сжатие (по сравнению с традиционным бетоном). Типичный диапазон плотности чистых цементно-ячеистых бетонных смесей составляет от 20 до 60 фунтов/куб. футов, который развивает соответствующий диапазон прочности на сжатие от 50 фунтов на квадратный дюйм до 930 фунтов на квадратный дюйм.Когда требуется более высокая прочность на сжатие, добавление мелкого и/или крупнозернистого заполнителя приведет к получению более прочного ячеистого бетона с более высокой плотностью. Следует отметить, что для большинства применений ячеистого бетона требуется легкий материал. При рассмотрении вопроса о добавлении конечного заполнителя необходимо учитывать, насколько этот тяжелый заполнитель будет соответствовать проекту, который обычно требует использования легкого материала. Включение заполнителя, особенно грубого заполнителя, может отрицательно сказаться на ожидаемых характеристиках материалов.

Какой тип цемента подходит для ячеистого бетона?

Ячеистый бетон может быть изготовлен из любого типа портландцемента или смеси портландцемента и летучей золы. Эксплуатационные характеристики цементов типа II, типа III и специальных цементов переносятся на характеристики ячеистого бетона.

Уместно ли добавлять летучую золу в цементно-водную суспензию для ячеистого бетона?

Летучая зола, добавляемая в цемент, не оказывает неблагоприятного воздействия на основное затвердевшее состояние ячеистого бетона.Вливание и поддержка ячеистого бетона с помощью системы воздушных ячеек представляет собой механическое действие и не вызывает проблем с золой-уносом или химическими добавками к бетону. Обратите внимание, что некоторым смесям с летучей золой может потребоваться больше времени для схватывания, чем смесям с чистым портландцементом. Смеси с большим процентным содержанием летучей золы могут потребовать очень длительного времени для приготовления. Летучей золы с высоким содержанием углерода, такой как типичный «зольный остаток», следует избегать в большинстве ячеистых или простых бетонных смесей.

Как производится и укладывается ячеистый бетон?

В системе непрерывной генерации.жидкий концентрат пены проходит через генератор автопены, который добавляет воздух и воду в концентрат для создания предварительно сформированной пены. Эта пена затем смешивается с цементным раствором через встроенный инжектор, а затем перекачивается через шланг к месту укладки. Смеси MEARLCRETE, AERLITE и AERLITE-iX были успешно закачаны на глубину до 700 футов по вертикали и до 15 000 футов по горизонтали без каких-либо проблем.

Производит ли Aerix и укладывает ячеистый бетон?

Нет, Aerix поставляет специализированным подрядчикам усовершенствованный жидкий пенообразователь.Эти подрядчики, имеющие специальную подготовку и опыт работы с ячеистым бетоном, будут производить и укладывать ячеистый бетон. У Aerix хорошие рабочие отношения с этими специализированными подрядчиками, и мы стремимся предоставить им комплексную проектную и техническую поддержку на протяжении всего процесса производства и размещения.

Можно ли замешивать ячеистый бетон?

Цементно-водный раствор следует смешивать до тех пор, пока не перестанут образовываться сухие комки или шарики цемента. Затем в смесь добавляют предварительно сформированную пенопластовую смесь.Пена довольно быстро смешивается с суспензией и требует лишь небольшого времени перемешивания в зависимости от смесительного оборудования.

Можно ли перемешивать ячеистый бетон?

Смешивание до уменьшения объема продукта не рекомендуется. Стабильность воздушной камеры — отличительная черта жидких пенообразователей Aerix и наших пеногенераторов. При обычных процедурах смешивания ячеистый бетон, приготовленный из предварительно сформированной пены Aerix, очень стабилен даже при незначительном увеличении времени смешивания.

На какое расстояние можно закачивать ячеистый бетон?

Ячеистый бетон представляет собой очень легко перекачиваемую, высокотекучую смесь. Основная масса ячеистого бетона укладывается насосным способом. Ячеистый бетон обычно перемещается по насосным линиям с меньшим давлением, чем обычные более тяжелые растворные смеси. Общедоступна документация о перекачивании ячеистого бетона на высоту до 500 футов и более по вертикали и 10 000 футов по горизонтали.

Как вы отделываете ячеистый бетон?

Большая часть ячеистого бетона оставлена ​​на самостоятельный поиск уровня, а не на «чистую» поверхность в традиционном понимании.Большая часть ячеистого бетона покрыта другим материалом. Инструмент для сглаживания напольного покрытия можно использовать просто для того, чтобы разрушить воздушные ячейки поверхности и придать поверхности более однородный и полированный вид в тех редких случаях, когда требуется более однородный внешний вид поверхности.

Можно ли армировать ячеистый бетон синтетическими волокнами?

Армирование синтетическим волокном представляет собой механический процесс и не оказывает никакого влияния на химический состав бетона. Поэтому вполне приемлемо проектировать ячеистый бетон, армированный волокном. Ячеистый бетон, армированный волокном, становится стандартным материалом для кровельных настилов и конструкций из изолированной бетонной формы (ICF).

Можно ли армировать ячеистый бетон стальной фиброй?

Нет никаких химических или механических причин, по которым ячеистый бетон нельзя армировать стальной фиброй. Однако для большинства применений ячеистого бетона требуется легкий материал. Для большинства применений сталефибробетона требуется тяжелый железобетон с высокой прочностью на сжатие, армированный стальным волокном.Казалось бы несколько маловероятным, что приложение потребует ячеистого бетона, армированного стальной фиброй, но нет никаких технических причин не проектировать ячеистый бетон, армированный стальной фиброй

Схлопываются ли пузырьки в ячеистом бетоне, уменьшая его объем?

Не подходит для хорошо разработанных жидких пенообразователей. Готовые пенобетонные изделия из высококачественных жидких пенообразователей Aerix не разрушаются. Стабильность воздушной камеры является признаком превосходной комбинации пенообразователя и пенообразователя. Что не означает, что все изделия из ячеистого бетона стабильны. Особое внимание следует уделить испытанию пены из пеногенераторов водяного напорного типа и химических продуктов газоотвода. Предложенная предварительно сформированная пена для применения должна быть проверена на стабильность или сертифицирована на стабильность до фактического размещения проекта.

Как испытывают ячеистый бетон?

Ячеистый бетон соответствует методам испытаний ASTM, применимым к легкому изоляционному бетону. ASTM C 495 — это стандартный метод испытания прочности на сжатие, а ASTM C 796 — стандартный метод испытания пенообразователей, используемых при производстве ячеистого бетона с использованием предварительно сформированной пены.

Существуют ли важные отличия в тестировании по сравнению с традиционным бетоном?

Да, обработка и хранение образцов ячеистого бетона очень важны. Цилиндрические образцы имеют размеры 3″ x 6″ и должны храниться при относительной влажности 50% для отверждения. Образцы должны быть удалены из цилиндров и высушены на воздухе в течение 3 дней перед испытанием на прочность при сжатии через 28 дней.

Сколько стоит ячеистый бетон?

Экономичный ячеистый бетон различается по цене в зависимости от географического региона и требований к применению.Представитель YourAerix Industries будет рад помочь вам с расчетами бюджета и ценовыми предложениями для нашей продукции. Если вы хотите, ваш представитель Aerix может также согласовать цены на месте через одного из многих специализированных подрядчиков, прошедших обучение на заводе.

Чем ячеистый бетон отличается по цене от традиционного бетона?

Типичный проект из ячеистого бетона будет намного дешевле в пересчете на кубический ярд по сравнению с традиционным бетоном из-за экономии рабочей силы, меньшей стоимости формования и экономии цены при сравнении предварительно сформированной пены с ценой на заполнитель.Следует отметить, что ячеистый бетон редко когда-либо используется там, где применим традиционный бетон. Сравнение цен на ячеистый бетон и традиционный бетон не имеет смысла. Ячеистый бетон выгодно отличается от цен на цементный раствор, раствор и текучую заливку.

Как выбрать ячеистый бетон?

Сотрудник группы Aerix может предоставить вам письменные или электронные спецификации, соответствующие вашему приложению. Основные технические характеристики также можно получить по электронной почте.

Основы ячеистого бетона — Richway Industries

Ячеистый бетон имеет множество применений и не имеет одного единственного преимущества. В зависимости от применения, он может быть выбран за его тепло- и звукоизоляционные свойства, прокачиваемость и текучесть, простоту обращения из-за его легкого веса или в качестве экономичной альтернативы наполнителям. Во всем мире ячеистый бетон используется в строительстве, например, для настила крыш и перекрытий, а также в геотехнических приложениях, таких как заполнение кольцевого пространства в скользящей облицовке и ликвидация пустот. Ячеистый бетон также можно найти в архитектурных и сборных конструкциях. Ниже приведены многие из наиболее распространенных применений ячеистого бетона; однако это не исчерпывающий список.

Заполнение пустот: Воронки, колодцы, туннели, цистерны, заброшенные инженерные трубы, кольцевая цементация. Легко течет и обеспечивает меньший вес на почве.

Рекультивация почвы: При наличии плохих грунтовых условий можно использовать ячеистый бетон для создания прочного основания при одновременном снижении нагрузки на недра.

Засыпка инженерных траншей: Защищает и поддерживает инженерные коммуникации, а также уменьшает или устраняет необходимость в уплотнении.

Текучий заполнитель/геопена Альтернатива: Для любых применений, где используется текучий заполнитель или блоки из геопены, ячеистый бетон является отличной альтернативой, а во многих случаях предпочтительным выбором материала.

Засыпка траншеи водопропускной трубы: Предотвращает последующую осадку грунта и последующие провалы дороги.

Заполнение абатмента моста/эстакады: Устраняет усадку после строительства.Поскольку ячеистый бетон не нуждается в уплотнении, он не будет сжиматься со временем, создавая «провал» на подходе к мосту или эстакаде. Кроме того, практически исключаются боковые нагрузки на существующий абатмент.

Подпорная стенка/стена MSE Обратная засыпка: Основным преимуществом является снижение боковой нагрузки. Ячеистый бетон также может значительно снизить потенциальное повреждение георешетки в процессе обратной засыпки.

Панели ограждения вдоль автомагистралей: Для контроля звука и визуальной блокировки.Потенциал экономии затрат за счет снижения веса.

Аварийные барьеры/поглощение энергии: Сборные кубы переменной плотности или заливка на месте.

Полы: Уменьшает вес конструкции, сохраняя при этом качество бетонного пола. Используется для выравнивания и замены смесей на гипсовой основе.

Настилы крыши: Уменьшает вес и обеспечивает тепло- и звукоизоляцию. Возможны умеренные склоны.

Сборный железобетон Особенности: Уменьшает вес и стоимость.Снижает транспортные расходы/позволяет увеличить количество единиц груза на один грузовик. Упрощенная установка.

Термическая засыпка и засыпка под плиту: Обеспечивает теплоизоляцию и водонепроницаемость, а также снижает гидростатическую боковую нагрузку на фундамент.

I Внутренние стены: Монтируются на месте, откидываются или собираются из панелей. Снижает вес и стоимость ниже бетонной стены полной плотности. Более звуконепроницаемы и огнестойки, чем каркасная стена.

Подпорная стенка Основание: Правильный состав смеси будет самовыравнивающимся и может значительно ускорить строительство основания и повысить несущую способность.

Тротуары, террасы и террасы: Уменьшает вес и стоимость.

Резные скульптуры из бетона: Ячеистый бетон плотностью 40-60 PCF можно вырезать и формовать с помощью цепных пил, ручных инструментов и других методов для создания произведений искусства из уникального материала.

%PDF-1.3 % 1 0 объект > эндообъект 7 0 объект > эндообъект 2 0 объект > эндообъект 3 0 объект > ручей конечный поток эндообъект 4 0 объект > эндообъект 5 0 объект > эндообъект 6 0 объект > эндообъект 8 0 объект > эндообъект 9 0 объект /Далее 22 0 Р /Заголовок /Родитель 4 0 Р >> эндообъект 10 0 объект /Заголовок /Родитель 4 0 Р /Предыдущая 23 0 R >> эндообъект 11 0 объект > эндообъект 12 0 объект > /XОбъект > >> /Анноты [29 0 R 30 0 R 31 0 R] /Родитель 6 0 Р /MediaBox [0 0 595 842] >> эндообъект 13 0 объект > /Шрифт > /XОбъект > /Свойства > >> /Родитель 6 0 Р /Annots [59 0 R 60 0 R 61 0 R 62 0 R 63 0 R 64 0 R 65 0 R 66 0 R 67 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 14 0 объект > /Шрифт > /XОбъект > /Свойства > >> /Родитель 6 0 Р /Annots [78 0 R 79 0 R 80 0 R 81 0 R 82 0 R 83 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 15 0 объект > /ProcSet [/PDF /Text /ImageB /ImageC /ImageI] /ExtGState > /Шрифт > /XОбъект > /Свойства > >> /Родитель 6 0 Р /Анноты [96 0 R 97 0 R 98 0 R 99 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 16 0 объект > /ProcSet [/PDF /Text /ImageB /ImageC /ImageI] /ExtGState > /Шрифт > /XОбъект > /Свойства > >> /Родитель 6 0 Р /Annots [109 0 R 110 0 R 111 0 R 112 0 R 113 0 R 114 0 R 115 0 R 116 0 R 117 0 R 118 0 R 119 0 Р 120 0 Р 121 0 Р] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 17 0 объект > /ProcSet [/PDF /Text /ImageB /ImageC /ImageI] /ExtGState > /Шрифт > /XОбъект > /Свойства > >> /Родитель 6 0 Р /Annots [135 0 R 136 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 18 0 объект > /Шрифт > /XОбъект > >> /Родитель 6 0 Р /Annots [149 0 R 150 0 R 151 0 R 152 0 R 153 0 R 154 0 R 155 0 R 156 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 19 0 объект > /Шрифт > /Шаблон > /XОбъект > /Свойства > >> /Родитель 6 0 Р /Анноты [164 0 R 165 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 20 0 объект > /Шрифт > /XОбъект > >> /Родитель 6 0 Р /Анноты [172 0 R 173 0 R 174 0 R 175 0 R 176 0 R] /CropBox [0 0 595 842] /Повернуть 0 /MediaBox [0 0 595 842] >> эндообъект 21 0 объект 177 0 Р 178 0 Р 179 0 Р 180 0 Р 181 0 Р 182 0 Р 183 0 Р 184 0 Р 185 0 Р 186 0 Р 187 0 Р 188 0 Р 189 0 Р 190 0 Р 191 0 Р 192 0 Р 193 0 Р 194 0 Р 195 0 Р 196 0 Р 197 0 Р 198 0 Р 199 0 Р] /Ограничения [] >> эндообъект 22 0 объект /Следующий 200 0 р /Заголовок /Родитель 4 0 Р /Предыдущая 9 0 R >> эндообъект 23 0 объект /Следующие 10 0 Р /Заголовок /Родитель 4 0 Р /Предыдущая 201 0 Р >> эндообъект 24 0 объект > ручей xV]o6}Ok8([>uRM4um-R2gtHʁ? w) ۢ FE=s(t^@}a?IƐ##0Qu a|OxnGc5Y’ltspokezbŵDqb?OKgp0T2GLђ3HL5 ~tEIn-GŸ| +*KW652½w} qjV3{?@(

Оценка жизненного цикла производства пенобетона в Латвии

Аннотация

Глобальное потепление все чаще обсуждается, решения по сокращению выбросов парниковых газов становятся все более важными во всех секторах промышленности. На общую энергию, потребляемую в строительном секторе, приходится до 1/3 всех выбросов парниковых газов. Большая его часть приходится на производство цемента – 5 % от общих глобальных выбросов. Пенобетон представляет собой легкий бетон с хорошими тепловыми свойствами и способностью снижать выбросы CO2 за счет сокращения использования цемента из-за его низкой плотности. Целью данного исследования является определение воздействия на окружающую среду с использованием оценки жизненного цикла (ОЖЦ) с акцентом на потенциал глобального потепления (ПГП) двух пенобетонных смесей с различной прочностью на сжатие, произведенных в Латвии по уникальной технологии интенсивного смешивания — турбулентность с эффект кавитации.После этого выбранные пенобетонные смеси сравниваются с альтернативными материалами с аналогичной прочностью на сжатие — газобетоном и пустотелыми керамическими блоками. Пенобетонная смесь, имеющая прочность на сжатие 12,5 МПа, показала более высокие выбросы CO 2 , чем полые керамические блоки. Большая часть выбросов CO 2 происходит из портландцемента, который является ключевым элементом в его составе. С другой стороны, пенобетонная смесь, имеющая прочность на сжатие 2,4 МПа, показала более высокие выбросы CO 2 , чем газобетонный блок.Большая часть выбросов CO 2 приходится на гранулы пеностекла, которые являются основным элементом, способствующим повышенным изоляционным свойствам материала. Сравнение каждого пенобетона с аналогом строительного материала по прочности на сжатие показывает, что выбранные пенобетонные смеси дают больший ПГП, чем альтернативные материалы. Это исследование позволяет определить воздействие различных компонентов пенобетонных смесей на окружающую среду и улучшить эти смеси для достижения аналогичных свойств с меньшим воздействием, например, путем замены гранул пеностекла гранулами из переработанного стекла или замены цемента золой-уносом, микрокремнеземом. или переработанный стеклянный порошок.

.

Оставить комментарий