Питание шуруповерта от сети из электронного трансформатора схема: Универсальный блок питания для шуруповерта

Опубликовано в Разное
/
2 Сен 1972

Содержание

Импульсный блок питания для шуруповерта 18 В своими руками

Самое слабое место в бытовых шуруповертах – это аккумулятор. Как любой гальванический элемент, он имеет свой срок эксплуатации. Аккумулятор для шуруповерта служит в среднем 3–4 года, не более, а затем подлежит утилизации. Кстати, утверждения, что при правильном уходе и обслуживании он прослужит 10 лет, явно преувеличены.

Как дать шуруповерту вторую жизнь при вышедшем со строя аккумуляторе?

Импульсный блок питания для шуруповерта 18 В: схема

Выход есть, и он не один. Можно приобрести новую аккумуляторную батарею. Но цена такого устройства может превысить стоимость всего инструмента в целом, купленного несколько лет назад. Поэтому наиболее приемлемым решением будет переоборудование шуруповерта под сетевое напряжение.

Варианты подключения шуруповерта в сеть 220 В

Одним из решений будет создание блока питания своими руками. Существует много вариантов схем создания самодельного блока питания:

  • универсальный вариант;
  • с двухполюсным резистором;
  • с трехполюсным резистором;
  • с усилителем;
  • на стабилитроне и без;
  • на одном фильтре.

Однако зарекомендовали себя как наиболее надежные импульсные модификации.

Комплектующие элементы схемы импульсного блока питания

Сделать импульсный блок питания для ручного инструмента 18 V своими руками совсем несложно. Для этого понадобится:

  1. Выходной конденсатор 5 пФ.
  2. Резистор.
  3. Интегральный преобразователь отрицательной направленности.
  4. Компаратор на две или три обкладки.
  5. Низкоомный выпрямитель.
  6. Канальные фильтры с лучевыми переходниками.
  7. Принципиальная схема импульсного блока питания.

Подключение аккумуляторного шуруповерта к сети 220 В: сетевой адаптер

Привести в движение электропривод шуруповерта от сети напряжением 220 В может сетевой адаптер. Его можно приобрести в готовом виде – цена позволяет. Можно сделать самому. Покупной адаптер нужно вставить в корпус аккумулятора шуруповерта, предварительно вынув батареи. Единственный недостаток – небольшая длина шнура.

Сетевой адаптер для шуруповерта своими руками: материалы

Если есть необходимость сделать сетевой адаптер своими руками, то для этого идеально подойдет зарядка для ноутбука.

Процесс переделки аккумуляторного шуруповерта в сетевой несложный и не занимает много времени. Для этого нужно иметь:

  1. Зарядное устройство от ноутбука.
  2. Шуруповерт с аккумулятором, бывшим в употреблении.
  3. Электрический провод.
  4. Изоленту.
  5. Паяльник и припой.
  6. Кислоту.

Сетевой адаптер для шуруповерта своими руками: пошаговая инструкция

Процесс переделки включает в себя следующие действия:

  • Сначала нужно обязательно померить выходное напряжение на устройстве. Оно должно составлять 19 В.
  • После этого нужно взять аккумулятор и разобрать. Если он скручен винтами, то просто развинтить их, если склеен, то предварительно его необходимо обстучать резиновым молотком. Корпус вычистить от грязи и подготовить к дальнейшей работе, просверлив в нем отверстие для силового кабеля.
  • Теперь нужно отрезать разъем и зачистить провода от изоляции.
  • Аккумуляторную батарею не стоит выбрасывать сразу. Она какое-то время может служить противовесом. Центр тяжести шуруповерта смещен и находится в районе рукоятки. При удалении гальванических элементов его место изменится, и работать с инструментом будет неудобно.
  • К проводам, идущим от клемм аккумулятора, нужно присоединить удлиненный кабель от зарядки ноутбука. Предварительно его необходимо пропустить через подготовленное отверстие в корпусе. Кабель можно припаять или сделать скрутку, заизолировав изолентой.
  • Когда все готово, необходимо все уложить в корпус и проверить полярность. После этого протестировать шуруповерт.

Блок питания для аккумуляторного шуруповерта 18 В на основе электронного трансформатора

Еще одно решение переделки аккумуляторного шуруповерта под сеть 220 в – это использование электронного трансформатора.

Материалы для сборки трансформаторного блока питания

Для этого нужны следующие детали:

  1. Электронный трансформатор ТОШИБА на 105 Вт или Камелион на 200–250 Вт. Последний прибор дополнительно имеет защиту от короткого замыкания.
  2. Ультрабыстрые диоды КД213 или КД 2999, КД 2997 на 10 А в количестве 4 шт.
  3. Дроссель из компьютерного блока питания.
  4. Электролитический конденсатор 2200 мФ на 25 В.
  5. Пленочный конденсатор на 220 нФ на 25 В.
  6. Нагрузочный резистор 1–2 кОм.

Порядок действий при сборке трансформаторного блока питания

  • Процесс начинается с доработки электронного трансформатора. На вторичную обмотку необходимо добавить 4 витка.
  • После этого можно собирать диодный мост. Сборка схемы выполняется навесным монтажом или все размещается на печатной плате.
  • Затем в цепь нужно установить дроссель. За ним впаивается конденсатор 2200 мФ на 25 В. Это оптимальная емкость прибора. Ни больше, ни меньше не нужно.
  • Параллельно с электролитом необходимо установить пленочный конденсатор. Он нужен для того, чтобы остатки высокой частоты не повредили основной конденсатор, а проходили через пленочный.
  • На выходе нужно установить нагрузочный резистор. Он обеспечит одно и то же значение напряжения, вне зависимости от нагрузки, и предохранит выход конденсаторов из строя.
  • После этого в электронный трансформатор необходимо установить конденсатор для возможности запуска без нагрузки.
  • Первый раз нужно включать блок питания в сеть при помощи контрольной лампочки на 40 Вт. Это необходимо, чтобы исключить короткое замыкание, возникшее, возможно, при перемотке трансформатора или сборке. Если лампа не загорелась, значит, все выполнено правильно.
  • После этого контроль нужно снять и проверить блок под нагрузкой, подключив его к шуруповерту.
  • Получившийся блок можно разместить в корпусе аккумулятора инструмента.

Читатель, ознакомившись с информацией, изложенной в данной статье, может вернуть своему шуруповерту вторую жизнь. Для этого достаточно выбрать самый приемлемый способ переделки аккумуляторного инструмента под сеть напряжением 220 В.

Блок Питания Для Шуруповерта Схема

Сетевой блок питания для шуруповерта

Популярностью у любителей и экспертов пользуются аккумуляторные шуруповерты. надежные, легкие и массивные. У их есть значимый недочет. маленькая емкость батареи аккумуляторной, энергии какой} {занимается хватает только на полчаса насыщенной работы. Дальше следует принужденный перерыв на 3. 4 часа для зарядки батареи. Решение этой трудности. внедрение сетевого

блока питания, ведь большая часть работ делают в шаговой доступности от электросети.

Сетевой блок питания шуруповерта бывает надежным, компактным, легким и комфортным для внедрения хранения и транспортировки. Дополнительное требование к блоку питания, обусловленное специфичностью его внедрения. падающая нагрузочная черта, предотвращающая повреждение электродвигателя шуруповерта в свое время перегрузки.

Всем этим требованиям удовлетворяет предлагаемое устройство, схема которого показана на рис. 1 База блока питания. электрический трансформатор U1 с номинальной выходной мощностью 60 Вт, созданный для питания осветительных ламп напряжением 12 В Частота его выходного напряжения. несколько 10-ов килогерц Таковой трансформатор купите в магазинах электротоваров.

Трансформатор T1 обеспечивает дополнительную гальваническую развязку от сети и тем увеличивает электробезопасность устройства Конфигурацией числа витков его первичной обмотки (I) есть вариант подбирать выходное напряжение блока. Завышенная индуктивность рассеяния содействует формированию падающей нагрузочной свойства Вторичная обмотка (II) с отводом от середины обеспечивает работу двухполупериодного выпрямителя на сборке из 2-ух диодов Шотки VD1. Энергопотери на диодиках в таком выпрямителе в два раза меньше, чем в мостовом. Оксидный конденсатор С1 сглаживает низкочастотные пульсации выпрямленного напряжения а глиняний конденсатор С2 с малой своей индуктивностью. высокочастотные чем упрощает работу конденсатора С1, беря во внимание, что двухполупе-риодный выпрямитель умножает частоту импульсов поступающих с электрического трансформатора U1. Резистор R1 задает ток через свето-диод HL1, оповещающий о подаче напряжения на шуруповерт. Резисторы R2-R7. малая нагрузка электрического трансформатора U1, значительно повышающая надежность его работы потому что режим холостого хода тут небезопасен.

Сетевой блок питания расположен в корпусе запасного аккумуляторного блока питания, как показано на фото (рис. 2) В течении корпуса вертикально установлена дюралевая пластинка шириной 3 мм Это шасси всего устройства, применяемое как общий провод и теплоотвод диодной сборки VD1. Перед установкой теплоотводя-щую поверхность сборки VD1 смазывают пастой КПТ-8. Сборку закрепляют на пластинке без изолирующей прокладки Положительный момент в том пластинки установлены трансформаторы и выключатель питания SB1, с другой. другие детали.

Трансформатор Т1 намотан на кольцевом магнитопроводе К28х16х9 из феррита М2000НМА. Для исключения замыкания витков скругляют острые грани магнитопровода маленькой наждачкой. Потом его изолируют, с какой целью совершенно подходит фторопластовая лента ФУМ. С целью повышения индуктивности рассеяния одна обмотка расположена напротив другой. Первичная обмотка состоит из 16 витков, намотанных в два провода ПЭЛ либо ПЭВ-2 поперечником 0,8 мм. Вторичная обмотка намотана жгутом из 4 таких же проводов и содержит 12 витков. После намотки определяют начало и конец каждого провода жгута, потом провода объединяют в пары, каждую пару соединяют синфазно параллельно, и в результате образуются половины вторичной обмотки. Начало одной половины соединяют с концом другой, получая отвод вторичной обмотки.

Диодная сборка Шотки VD1. неважно какая с наибольшим прямым током чем двух 5 Но и дополнительно оборотным напряжением не ниже 40 В, к примеру, КД636 с хоть каким буквенным индексом. В последнем случае есть вариант установить два обыденных кремниевых диодика КД213А либо КД213Б. Конденсатор С1. оксидный ввезенный, С2. КМ-5а, КМ-56 либо другой глиняний.

Кнопка SB1. микропереключатель МПЗ-1. Не нужно использовать заместо него штатный выключатель шуруповерта как из суждений электробезопасности, так и по причине того, что у многих шуруповертов выключатель совмещен с регулятором оборотов электродвигателя. Контакты кнопки SB1. нормально замкнутые. Толкатель кнопки SB1 выполнен из спаленного светодио-да. В днище корпуса предлагаемого устройства часть толкателя выступает наружу. Меж толкателем и кнопкой SB1 установлена пружина.

С устройством работают так. Его располагают и фиксируют в корпусе шуруповерта заместо аккумуляторного блока питания.

Когда шуруповерт с прикрепленным сетевым блоком питания стоит на подставке или иной ровной поверхности толкатель вдавлен внутрь Усилие его нажатия через пружину передается на кнопку SB1, в результате чего она оказывается в нажатом состоянии, ее контакты разомкнуты блок питания отключен от сети.

Блок питания для шуруповерта. Просто и надежно

Заказ печатных плат.-— В .

ШУРУПОВЕРТ ОТ СЕТИ. Блок питания для шуруповерта своими руками.

Викиум. Прокачай мозг и увеличь память, внимание и мышление. Архив проекта .

Когда шуруповерт берут для выполнения работы, пружина отжимает толкатель кнопки SB1 его выпуклая часть выступает из днища корпуса. Кнопка переходит в ненажатое состояние ее контакты замыкаются и подключают блок питания к сети Шуруповерт готов к работе

Налаживание устройства заключается в отматывании витков первичной обмотки трансформатора Т1 до получения требуемого выходного напряжения 11 14 или 20 В соответственно для шупереходит в ненажатое состояние ее контакты замыкаются и подключают блок питания к сети Шуруповерт готов к работе

Налаживание устройства заключается в отматывании витков первичной обмотки трансформатора Т1 до получения требуемого выходного напряжения 11 14 или 20 В соответственно для шу-

руповерта с номинальным напряжением 9 6 12 или 18 В

Учитывая огромное число находящихся в эксплуатации шуруповертов автор надеется, что предлагаемый блок питания будет весьма востребован, к тому же он дешев и собран из доступных деталей. Его может повторить даже начинающий радиолюбитель.

Автор: К. Мороз, г. Надым, ЯНАО

Мнения читателей
  • Дятел / 04.10.2018. 14:45
    Этот вариант схемы негодится !
  • электронный трансформатор U1 с номинальной выходной мощностью 60 Вт / 24.04.2016. 08:40
    Посмотри на сетевую мощность Сетевого шурика или дрели.Потери там равны нулю. Не разу не видел СШ на 50 Вт это ЛАПША ДЛЯ ДРИСЧА.
  • Мегавольт / 24.04.2016. 08:35
    Какой кабель таскать и какой длинны РАСЧЕТНУЮ СХЕМУ ПРИЛОЖИТЕ плюсом Какие потери, я рот того колотил 2по4мм кв восмеру то таскать.И транс на 500Вт.82. мощность Шуры 300Вт Ток 25-30А P=UI или I=P/U. сетевой у меня на 500 Вт 220 Вольтонов Акумный на 12Вольтонов
  • Андрей / 05.11.2015. 19:57
    Бери диоды 20А,собирай мост и впихивай в корпус от АКБ,а запитаешь от транса ват на 300 всё работает круглые сутки!
  • Юра / 05.04.2015. 14:43
    Года четыре назад собрал к своему 18В шурупику БП из энергосберегайки 45Вт потребляемой мощности. Все потроха поместились в корпусе от старого сдохшего аккумулятора. В описании есть ссылка на форум, откуда брал информацию по переделке и фото моего БП. https://www.youtube.com/watch?v=F1S9fyerUmg Пробывал под 14В шуруповёрты переделывать, не хватало мощности автогенераторной схемы с баласта от энергосберегайки. Думаю надо делать на IR2153
  • Петр / 01.12.2013. 16:34
    Собрал данную схему в Макиту 9,6v, на выходе оставил 10,5 v. Вращение на двух скоростях, но потрон тормозиться рукой. Для работы слабо.
  • сергей / 24.08.2013. 07:00
    здраствуйте скажите у меня шуруповёрт HITACHI DS14DCL зарядного нет на самом акумуляторе много выходов куда тут что подключать
  • Дима / 20.06.2013. 18:22
    Влад, полевые транзисторы могут греться при просадках напряжения на ШИМ-контроллере, напряжения для полного открывания не хватает, и они входят в активный режим, сопротивление канала растёт, обычно при напряжении на затворе менее 7В. Учитывая, что радиатор почти никакой, такой режим с сильной просадкой напруги недопустим, значит второй транс с разнесёнными обмотками. неудачное решение, лучше перемотать штатный.
  • Алексей / 12.09.2012. 18:32
    Сегодня собрал. Работает отлично, немного греется.Спасибо огромное автору!
  • Шурик / 30.07.2012. 08:14
    Я согласен с Димой. При запуске шуруповёрта очень большой пусковой ток, которые не в силах выдержать указанные в описании детали. Я предлагаю использовать ненужный блок питания ПК. Для этого нужно, всего лишь, соединить выходы 12В в парралель.
  • Электрик / 11.06.2012. 18:27
    На шурик на 18вольт я думаю нужно взять ЭТ 200ватт. Подключить на выходе схему-удвоитель напряжения на диодах шоттки(2на10А.Или больше).И собственно этим и запитать шурик. Что собственно и собираюсь сделать с принесенным мне для ремонта шуриком. Как вы думаете получится или нет?
  • Руслан / 28.05.2012. 06:32
    покупаете блок питания на 200Вт/номинальное напряжение АКБ вашего шурупчика , и смело работаете. Только учтите, моторчики хоть и имеют охлаждение, но при полной нагрузке прогреваются оочень быстро, как правило после работы от двух АКБ подряд, требуют отдыха. ну и с зажатым фиксатором установки момента, дохнут легко, с дымком)))
  • Руслан / 28.05.2012. 06:26
    автор, такую схему под шуруповерт использовать не получится, разве что вхолостую крутить))) любой шуруповерт с моментом 10-12Нм потребляет при полной нагрузке 12-15Ампер! 14,4 и 18вольтовые модели, с 22Нм и 20ампер схавают, моторы в шуруповертах стоят номиналкой 90, 120,180 и более ватт.
  • Евгений / 18.05.2012. 13:29
    Собрал сегодня этот блок питания. Хватило на одну минуту работы шуруповерта! Нет больше у меня 105 ваттного электронного трансформатора!Диоды моста и транзисторы вылетели напрочь. Я бы с осторожностью отнесся к этой схеме.
  • евгений.24.03.2012года / 24.03.2012. 19:08
    можно проще сделать запитать от мощного ЛАТРа на 9ампер через додный мост диоды Д245 или им подобные и дело пойдёт я уже пробовал даже сверлить тянет нормально но у меня шуруповёрт был маломошный а с другими испытывать не приходилось есть диодные сборки на 20ампер в радио магазинах хочу попробовать они размером в разы меньше будут можно попробовать транс взять от цветного телевизора там накльная обмотка должна выдержать разве что рамер большой будет но зато не надо много возиться и тратиься на электронный трансформаттор
  • евгений / 24.03.2012. 18:57
    можно проще сделать запитать от мощного ЛАТРа на 9ампер через додный мост диоды Д245 или им подобные и дело пойдёт я уже пробовал даже сверлить тянет нормально но у меня шуруповёрт был маломошный а с другими испытывать не приходилось
  • Серге / 26.02.2012. 14:18
    Помогите. Не понимаю как правильно намотать вторичную обмотку и главное как соединить ее концы. Если возможно кто нить нарисуйте или хотя бы напишет цифрами какие концы с какими необходимо соединить во вторичной обмотке. Если есть возможность скиньте изображение [email protected]. Либо тут. Заранее спасибо.
  • Дима / 19.02.2012. 06:58
    Для 18-вольтового шуруповёрта трансформатора на 60 ватт будет моловато. Если поставить трансформатор ватт на 100 или больше, то 18-вольтовый шуруповёрт будет работать на ура. Потому что чем выше напряжение шуруповёрта, тем более мощный трансформатор надо ставить, учитывая Т1.
  • xfl / 09.02.2012. 16:11
    Собрал данную схему для 18-вольтового Einhell. Т1 намотан на кольце меньшего сечения, первичка. 12 витков в три провода ПЭВ-2 диаметром 0,5 мм, вторичка. 14 витков в три провода ПЭВ-2 диаметром 0,5 мм. Да действительно 5А предел для этой схемы. Обороты шуруповёрта ниже номинала и патрон, с усилием, но можно затормозить рукой. Тем не менее для бытовых целей, а особенно учитывая стоимость деталей и времени сборки (я собрал и запихнул в корпус аккумулятора за 2.5 часа). золотое решение. Спасибо автору.
  • Дима / 06.02.2012. 08:14
    Работать эта схема будет, но вот одна проблема. шуруповёрт, в состоянии полной нагрузки, может потреблять ток от 10А в лёгкую. А на это схема не рассчитана. 5А её максимум

12Вперед

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

Читайте так же

схема. Питание шуруповерта от сети 220В

Устройство шуруповерта

Этот механизм состоит из следующих частей:

  1. Электродвигатель постоянного тока. Имеет форму цилиндра, в корпусе вместо обмотки возбуждения находятся постоянные магниты. Это упрощает конструкцию и обеспечивает достаточный крутящий момент при низких оборотах. На вал электромотора надета ведущая (солнечная) шестерёнка планетарного редуктора;
  2. Реверсивный регулятор числа оборотов. Схема регулировки собрана на ШИМ-контроллере и полевовом транзисторе. Реверс осуществляется переключением полярности подключения питания к щёткам двигателя;
  3. Планетарный редуктор. Выполнен в отдельном корпусе. Своё название получил из-за сходства с Солнечной системой. Состоит из кольцевой шестерни, центральной (солнечной) шестерёнки, сателлитов и водила. Кольцевая шестерёнка передаёт усилие через подпружиненные шарики регулятора нагрузки. Есть модели с двухскоростными редукторами. Повышенная скорость включается при использовании устройства в качестве дрели;
  4. Механизм ограничения усилия вращения. Служит для ограничения усилия при закручивании шурупов. Передаёт вращающий момент через шарики, прижимаемые регулируемой пружиной;
  5. Съёмный аккумулятор. Состоит из отдельных элементов в одном корпусе. Напряжение в разных моделях составляет от 9 до 18 вольт.

Способы восстановления работоспособности шуруповерта

В случае выхода аккумуляторов из рабочего состояния необходимо искать пути решения проблемы. Возможные пути следующие:

  • приобрести новые аккумуляторные блоки. Часто цена на подобные изделия не намного меньше, чем та, которую придется заплатить за покупку нового инструмента. Поэтому покупают для дорогого профессионального шуруповерта;
  • купить сами аккумуляторы. Разобрать аккумуляторный блок и спаять его заново. Вариант немного дешевле предыдущего, но помогает восстановить работоспособность;
  • переделка аккумуляторного шуруповерта на сетевой. Обычно затраты невысоки. Проблема в покупке новых накопителей электричества отпадает навсегда.

Зачем переделывать аккумуляторный шуруповёрт?

Зачем переделывать шуруповёрт и когда возникает такая необходимость?

Если вы читаете эту статью, наверное, уже успели оценить всё удобство этого инструмента. Без лишних проводков и в любой момент можно воспользоваться им даже в самых труднодоступных местах, пока аккумулятор не сядет. Это и является первым недостатком шуруповёрта. Чем дешевле инструмент, тем быстрее его аккумулятор исчерпает ресурсы циклов зарядки.

Вот и второй недостаток. И вы должны понимать, что производитель экономит точно так же, как и вы, и ничего необычного в этом нет. Покупка нового аккумулятора по расходам практически не отличается от покупки шуруповёрта, но выход есть, и сейчас мы рассмотрим варианты переделки шуруповёрта с аккумуляторного на сетевое питание.

Существует несколько способов переделать шуруповёрт из аккумуляторного в сетевой:

  • используя зарядку от ноутбука;
  • используя блок питания от ПК;
  • используя автомобильный аккумулятор;
  • используя блок питания от галогеновых ламп;
  • используя китайскую плату блока питания на 24V.

Основа для переделки

Цена готовых блоков питания в интернет-магазинах или обычных отделах техники очень высока. Смысла покупать их за такую сумму нет, но у этой проблемы есть более выгодное решение.

Важно! Пригодится блок питания от компьютера – такие изделия очень мощные и есть практически у всех. Зачастую они валяются без дела.

Покупка устройства тоже не разорит кошелек, ведь бывшую в употреблении вещь на 300-500 Вт можно купить очень дешево. Важно, чтобы блок был рабочим, а его внешний вид не имеет значения.

В чем плюсы переделки

Аккумуляторный шуруповерт по мощности достойно конкурирует с сетевыми аналогами, но только пока зарядка его батарей находится на достаточном уровне. Когда аккумулятор садится — ему необходима подзарядка от сети. Этот фактор является первым недостатком данного электроинструмента.

Вторым минусом считается ограниченное число циклов перезарядки. При этом чем дешевле аккумуляторный блок (АКБ), тем быстрее исчерпывается его эксплуатационный ресурс. Приобретение нового аккумулятора по цене практически сопоставимо с покупкой целого электроинструмента. Также не имеет смысла покупать новую батарею взамен старой, если сам шуруповерт аккумуляторного типа устарел и применяется достаточно редко. Практичнее будет приспособить электроинструмент под питание от сети 220 V.

Внесение изменений даст возможность дальнейшей эксплуатации данного инструмента при минимальном уровне финансовых вложений. Созданная переделка будет обладать всеми преимуществами сетевых устройств:

  • отпадет необходимость выполнения периодической зарядки;
  • не будет падать мощность электроинструмента (крутящий момент) во время работы;
  • не нужно переживать о правильном хранении оборудования при длительных нерабочих периодах: достаточно положить его в кейс в сухом месте.

Эти достоинства, а также маленькие расходы, компенсируют связанные с наличием шнура неудобства.

Чтобы из аккумуляторного шуруповерта сделать сетевой, нужен блок питания (БП), который можно разместить двумя способами: в виде внешнего питающего блока либо вмонтировать внутрь старого аккумуляторного корпуса.

Следует учитывать, что шнур от внешнего блока питания к электроинструменту должен быть, согласно закону Ома, большего сечения, чем непосредственно от сети 220в.

Для практической реализации любого варианта понадобится следующий набор инструментов и материалов:

  • отвертки с разными наконечниками;
  • отвертки с разными наконечниками;
  • плоскогубцы;
  • кусачки;
  • паяльник с набором для пайки;
  • изоляционная лента;
  • проводки на перемычки, взятые, например, с многожильного кабеля;
  • мультиметр;
  • нож.

Какой мощности нужен блок питания и сколько потребляет шуруповерт от блока питания?

Рассчитать требуемую мощность блока питания не составит труда — нужно умножить ток, потребляемый электродвигателем инструмента, на напряжение. К примеру, инструмент получает питание от аккумуляторной батареи, напряжение которой составляет 12 вольт. Ток, который нужен электродвигателю для работы, составляет 10 ампер. Получаем 120 ватт. Но это минимальное значение.

Для обеспечения нормальной работы при нагрузках, к примеру, при заворачивании шурупа в твердое дерево, мощность БП должна выбираться с запасом в 30-40%. Иначе шуруповерт не сможет нормально работать под нагрузкой или блок питания выйдет из строя.

Сила тока в зависимости от модели может составлять 7-10 А для бытовых шуруповертов и 30-40 А для профессиональных моделей. Напряжение аккумуляторной батареи может составлять 12 В, 14 В, 18 В в зависимости от конкретной модели.

Важно! Ток, который требуется шуруповерту для работы, зависит от нагрузки. На холостом ходу ток минимален и значительно увеличивается при пуске или при затягивании шурупа.

Требуемые параметры напряжения, мощности и емкость аккумуляторной батареи обычно указаны на этикетке самого инструмента или в технической документации к нему.

Если рабочее напряжение инструмента составляет 12 В, количество вариантов выбора источника питания увеличивается, к примеру, можно подключить его к компьютерному блоку питания. Приобрести старый мощностью 300 Вт за небольшую цену вполне возможно. К тому же выдаваемой мощности хватит с запасом. К преимуществам этого варианта следует отнести: простоту переделки, а также то, что блок питания от компьютера мощностью от 300 Вт сравнительно легко найти.

Параметры блока указаны на наклейке, что находится на стенке. К примеру, там указано, что на вход приходит напряжение 220 v, на выход 12 v подается ток силой в 25 А. Получаем мощность в 300 Вт.

При желании в качестве источника питания на напряжение 12 В от сети можно использовать:

  • светодиодный драйвер;
  • электронный трансформатор для питания галогенных ламп низкого напряжения;
  • зарядное устройство автомобильного аккумулятора.

Если инструмент рассчитан на питание другим напряжением, скажем, на 14 В или на 18 В, вариантов выбора блока питания немного. Для инструмента, работающего от напряжения 14 В и имеющего максимальный ток до 25А, в продаже имеется универсальный блок питания АИДА БШ 14 ПРО. Также имеется блок питания на 18 В, рассчитанный на ток до 20 А, АИДА БШ-18 ПРО.

Не рекомендуется рассматривать варианты использования родного комплектного зарядного устройства или блоков питания для ноутбуков. Такие БП не в состоянии выдать ток, требуемый для нормальной работы инструмента.

Можно сделать своими руками блок питания на требуемое напряжение. Но для этого необходимы определенные знания по электронике. Схему такого БП можно посмотреть здесь. Есть схемы блоков питания, которые могут монтироваться вместо аккумуляторных батарей.

При подключении питания от зарядного устройства к шуруповерту необходимо использовать провод сечением больше 2,5 мм². Иначе провод будет сильно нагреваться, что может привести к расплавлению изоляции и короткому замыканию.

Также от длины провода зависит уровень потерь напряжения. Чем длиннее провод, тем, соответственно, больше потери. Если неправильно выбрать длину провода, может оказаться, что шуруповерт «не тянет», им нельзя закрутить шуруп в твердую древесину и т. п.

Еще на потери напряжения влияет качество соединения проводов. Провода, соединенные скруткой, будут иметь большое переходное сопротивление, которое значительно скажется на потерях напряжения.

Важно! Нельзя подключать шуруповерт к источнику питания проводом, имеющим малую площадь сечения. Это грозит выходом из строя самого инструмента и пожаром.

Переделка шуруповерта на питание от сети 220В

При выходе из строя аккумуляторной батареи и невозможности её ремонта единственный выход – переделка аккумуляторного шуруповерта в сетевой.

Источники питания 24 и 12 Вольт. При этом мощность блока питания должна превышать мощность двигателя с учётом возможных перегрузок в момент завершения закручивания. В паспорте устройства она не указана, но этот параметр написан на корпусе электромотора, или его можно вычислить, подключив аппарат к источнику постоянного напряжения через амперметр. Для двигателя мощностью 70Вт достаточно блока питания 120Вт.

Важно! Мощность зарядного устройства недостаточна для его работы. При переделке аккумуляторного шуруповёрта в сетевой, на 220 вольт, необходимо использовать другой блок питания.

Как подключить шуруповерт напрямую зарядку от ноутбука

Этот метод потребует от вас минимум технических знаний. Если возникла потребность переделать шуруповёрт в сетевой, вам сможет помочь ненужная зарядка от ноутбука, так как она имеет схожие характеристики и без труда найдётся в любом доме. Сперва необходимо посмотреть, какое выходное напряжение у зарядки. Подойдут зарядные устройства на 12–19В.

Важно проверить напряжение и ток зарядного устройства

Потребуется доработать аккумуляторный блок, для этого нужно его разобрать и достать оттуда вышедшие из строя аккумуляторные батареи.

  1. Взять зарядку от ноутбука.
  2. Отрезать разъём и зачистить провода от изоляции.
  3. Взять оголённые провода и припаять их. Если нет такой возможности, примотать их изолентой.
  4. Сделать в корпусе отверстие для провода и собрать конструкцию.

Используем внешний блок питания от компьютера

Итак, вам понадобится блок питания «АТ» формата. Вполне вероятно, что вы найдёте его у себя дома, но можно и без проблем приобрести старый работающий блок питания на любом радио рынке. Его стоимость вряд ли будет велика. Очень важно помнить, что подойдёт блок питания, мощность которого составляет 300–350 Вт, а ток в цепи 12 В — не ниже 16 А.

Компьютерный блок типа «АТ» запитает шуруповёртВ этом плане тот самый блок питания «АТ» формата, который находится в корпусе любого стационарного компьютера, хорош тем, что на нём всегда честно указана мощность. У подобных блоков питания всегда есть кнопка включения, а также вентилятор для охлаждения, и система защиты от перегрузок.

Действия по переделке следующие:

  1. Раскрутить корпус блока питания. Под корпусом вы увидите вентилятор, плату и множество проводов, которые идут от платы к разъёмам.
  2. Требуется снять защиту от включения. Для этого надо найти на большом квадратном разъёме зелёный провод.
  3. Соединить зелёный провод с любым чёрным проводом из этого же разъёма. Для удобства можно обрезать его покороче и оставить внутри корпуса. Как вариант, можно использовать перемычку из маленького кусочка провода.

Далее нам понадобится разъём поменьше (MOLEX), с ним нужно сделать следующее:


Контакты разъёма: жёлтый провод +12 В, красный провод: +5 В, чёрный — земля

  1. Обрезать ненужные провода, оставив жёлтый и чёрный.
  2. Используя кусок провода как удлинитель, чтобы блок питания при работе мог находиться в удобном месте, припаиваем его к жёлтому и к чёрному проводам
  3. Другой конец провода прикрепляем на клеммы пустого аккумуляторного отсека, как и в предыдущей инструкции.

Самодельный блок питания

Самодельный блок питания шуруповерта, подключаемый к сети 220 вольт, будет состоять из элемента питания на входе диодного моста, выпрямителя и конденсаторного фильтра.

Потребуется трансформатор, мощность которого — от 160 Вт и больше. Напряжение на второй обмотке должно быть от 20 до 24 В, сила тока — больше 15 А. Диодный мост состоит из диодов, соответствующих силе тока на вторичной обмотке. На выходе выпрямителя следует смонтировать конденсатор, его емкость будет от 2000 мкФ, напряжение — от 25 В и больше. Все вышеуказанное крепится на гетинаксовую плату, ее следует закрепить в корпусе старого аккумулятора, из которого вынуты все ненужные элементы.

Вариант такой переделки можно выбрать, когда имеется достаточный набор знаний и опыт работы с деталями. Перед тем как приступить, лучше изучить дополнительные теоретические материалы, найти нужные детали и посмотреть, как они встанут в имеющийся корпус.

Такой блок питания рационально будет поместить в корпус родной аккумуляторной батареи от шуруповерта. Нужно будет посмотреть, чтобы он не был герметичным, потому что в работе не следует допускать перегрева питающих элементов.

Какой мощности понадобится БП

Людям, которые решили узнать, как сделать шуруповерт от сети, придется разобраться с необходимой мощностью блока питания.

Импульсный

Для подключения инструмента к сети часто пользуются импульсным БП. Рассчитать его мощность достаточно просто. Чаще всего аккумуляторные модели работают на батареях с напряжением 12 В. Исходя из этого, получается, что во время работы устройство потребляет не менее 120 ватт.

Рекомендуется выбирать БП с запасом мощности около 20-30%. Таким образом шуруповерт сможет нормально работать даже при максимальных нагрузках.

Трансформаторный

Поскольку рабочее напряжение большинства шуруповертов составляет 12 В, выбрать трансформаторный источник питания достаточно легко. Запитать электрический инструмент можно при помощи любой модели мощностью около 200-300 Вт.

Как разместить БП в корпусе – 3 разные возможности

Сетевой блок питания для шуруповерта можно разместить в корпусе аккумулятора или в ручке. Возможные варианты:

  • любой подходящий по характеристикам и размеру БП;
  • китайский БП на 24 В;
  • самодельный.

На радиорынке подбирается БП с нужными параметрами. Дома его следует аккуратно извлечь из корпуса и поместить в свой шуруповерт, надежно закрепив все компоненты. Если провода короткие, удлините их, чтобы они не прикасались к металлическим частям. Трансформатор и плату разместите по отдельности. На микросхемах для лучшего охлаждения установите дополнительные радиаторы. Также не лишними будут отверстия в корпусе, чтобы циркулировал воздух, и отводилось тепло при работе.

Переделка аккумуляторного шуруповерта в сетевой

В магазине радиодеталей покупаем БП на 24 В, ток 9 А. Шуруповерты работают от 12 или 18 Вольт, поэтому стоит задача понижения напряжения до необходимого уровня. Чтобы выполнить такую работу, требуются минимальные знания радиотехники. Выходное напряжение поддерживается резистором R10 номиналом 2320 Ом. Вместо него следует установить подстроечный резистор на 10 кОм. Как сделать настройку блока питания, рассказано дальше:

  • выпаять постоянный резистор;
  • выставить по прибору сопротивление подстроечного резистора 2300 Ом;
  • подстроечный резистор впаять на место постоянного;
  • при включенном БП отрегулировать напряжение.

В основе конструкции самодельного БП будет лежать электронный трансформатор Feron или Taschibra на 60 Вт. Их можно купить в магазине электротоваров, предназначены они для галогенных ламп. Никакой переделки они не требуют. Отвод вторичной обмотки от средней точки позволил применить два диода Шоттки вместо обычных четырех. Работа БП контролируется по светодиоду HL1. На схеме видны все необходимые детали.

Трансформатор Т1 наматывается самостоятельно. Используется недефицитное ферритовое кольцо НМ2000 размером 28×16×9. Перед намоткой надфилем зачищают углы, кольцо обматывают ФУМ-лентой. Сделанный блок монтируется на алюминиевой пластине толщиной 3 мм и больше, помещенной в корпусе аккумулятора. Также она выполняет функцию общего провода.

Используя автомобильный аккумулятор

Принцип такой переделки не отличается от способа с использованием зарядки от ноутбука. Благодаря нынешним тенденциям на компактные импульсные зарядки, линейные аналоговые приборы с ручным управлением можно купить на авторынке по весьма привлекательной цене. Если напряжение на аккумуляторе меняется плавным образом, то он подойдёт к абсолютно любому шуруповёрту, и переделка такого инструмента производится следующим образом:

  1. Для подключения шуруповёрта к автомобильному аккумулятору следует использовать недорогие провода с малым сечением, подойдут автомобильные провода для прикуривания.
  2. На всех сторонах каждого из проводов отрезать так называемые «крокодилы», на свободном конце зачистить провод от изоляции на 2–3 см.Отрезать зажимы и зачистить провода
  3. Далее присоединить провода. Для присоединения проводов к клеммам нужно согнуть часть вдвое ту часть, что зачищена, а затем продеть их внутри клемм, чтобы получился своего рода крючок.Согнуть провода крючком для подсоединения к клеммам
  4. Для более надёжной фиксации затянуть все соединения пластиковыми хомутами или припаять их. Не забывайте о полярности, обычно «крокодильчики» промаркированы.
  5. Следующим этапом идёт сборка, необходимо всё заизолировать. Для начала лучше обмотать каждое соединение таким образом, чтобы не выступали металлические части, а уже после обмотать всё вместе, клеммы не должны соприкасаться.

Инверторный сварочный аппарат

Запитать шуруповерт можно и через инверторный сварочный аппарат. Установка вторичной катушки трансформатора прибавит напряжения, которого станет таким образом достаточно для обеспечения работоспособности мотора шуруповерта. Сначала нужно будет замерить на выходе сварочника параметры тока и напряжения, затем сверить эти показатели с теми, которые указаны для шуруповерта.

Как запитать шуруповёрт, сохранив его автономность

Если мастер работает в здании, к которому не подведено электричество, а аккумуляторы уже испортились, есть способы запитать шуруповёрт:

Замена старых элементов

Внимание! Заменяя батареи, обращайте внимание на правильную полярность подключения элементов.

Раскрыть корпус аккумулятора.

Необходимо открыть корпус аккумулятора

Требуется перепаять новые батареи между собой и собрать аккумулятор

Внимание! Заряжать переделанный аккумулятор следует только специально подобранным зарядным устройством.

Типы аккумуляторных элементов

В этих устройствах применяют элементы разных типов и напряжений, каждый из которых имеет свои достоинства и недостатки.

Самые распространённые – никель-кадмиевые (Ni – Cd) напряжением 1,2В.

Достоинства:

  • низкая цена;
  • хранятся в разряженном состоянии.

Недостатки:

  • обладают эффектом памяти;
  • высокий саморазряд;
  • маленькая ёмкость;
  • малое количество циклов заряд/разряд.

Более прогрессивные никель-металл-гидридные (Ni-MH) напряжением 1,2В.

Достоинства:

  • меньшие эффект памяти и саморазряд;
  • большие ёмкость и число циклов заряд/разряд.

Недостатки:

  • более высокая цена;
  • плохо переносят низкие температуры и хранение в разряженном состоянии.

Самые прогрессивные литий-ионные (Li-Ion) напряжением 3,6В.

Достоинства:

  • отсутствие эффекта памяти;
  • очень низкий ток саморазряда;
  • высокая удельная ёмкость, позволяющая уменьшить вес и габариты прибора;
  • многократно превышающее другие типы аккумуляторов число циклов заряд/разряд.

Недостатки:

  • высокая цена;
  • потеря ёмкости через три года после изготовления.

Профилактика неисправностей

Аккумуляторы сделаны из нескольких сложенных вместе элементов, которые приходят в неисправность не одновременно, а по частям. Для определения сломанной части батареи необходимо полностью её зарядить и дать отработать на полной мощности до разрядки. После чего, разобрать и измерить напряжение каждого отдельного элемента.

Части, на которых напряжение будет отсутствовать или уступать другим элементам, необходимо полностью заменить. Ремонт осуществляется при помощи паяльного инструмента. Все элементы аккумуляторной батареи спаиваются той же проводной полосой, которой были соединены детали изначально.

Общие рекомендации

Все перечисленные способы включают один объединяющий их этап – разборка корпуса питающего модуля. Если остов закреплен на болтах, то это не являет собой трудность, крепление на клее требует осторожного вскрытия шва посредством постукивания по щели молотком, заглубления в нее ножа.

При монтаже соблюдают направление напряжения – оно не должно подаваться на батерею. Поэтому модуль монтируется параллельно питающим контактам, в плюсовую магистраль встраивается диодный осветитель на определенную мощность.

Резюме: на вопрос «может ли шуруповерт работать от зарядного устройства» присутствует положительный ответ, и несколько вариантов решения, однако требуется осторожность, некоторые научные познания и сноровка.

Зарядное устройство MAKITA 193864-0, 7.2V-14,4V Ni-Cd, Ni-Mh зеленый Цена: 1750 P


Зарядное устройство для инструмента MILWAUKEE 7.2V-24V Ni-Cd, Ni-Mh черный Цена: 3530 P

Зарядное устройство для инструмента BOSCH 7.2V-24V Ni-Cd, Ni-Mhчерный Цена: 3570 P

Зарядное устройство для инструмента DEWALT 7.2V-18V Ni-Cd, Ni-Mh черный Цена: 3570 P

 

Отсутствие или полная поломка ЗУ шуруповерта стопорит все запланированные работы. Но, применив смекалку, некоторые доступные инструменты, возникший вопрос о т …

Шуруповерт с автономным источником питания, однозначно является одним из лучших изобретений человечества, и он существенно облегчает жизнь практически всей му…

Техника безопасности

Место для работы при переделке устройства должно быть достаточно освещенным. Наиболее эффективны лампы дневного освещения или светодиодные одновременно с дневным светом, падающим из окна слева. Блики или прямое попадание света в глаза нужно исключить.

Чтобы избежать удара электрическим током, лучше беречься от контакта с заземленными предметами, это батареи отопления, газовые плиты. Рабочий стол, стул, пол не должны иметь токопроводящих поверхностей.

При работе с радиодеталями нужно проверять отсутствие на них напряжения, для этого подойдет индикаторная отвертка. После отключения от электропитания нужно снять заряд с конденсаторов цепей. Заряд снимать, например, вольтметром.

Подключение оборудования производить только после проверки прочности соединений. Проверять лучше не только визуально, но и механически.

Электророзетка должна крепиться прочно, не болтаться, не иметь вытащенных наружу проводов. Иногда для подключения к сети 220 используют удлинитель, лучше чтобы это был сетевой фильтр с предохранителем и выключателем.

Рабочее место должно быть проветриваемым или снабжено вытяжкой.

[spoiler title=”Источники”]

  • https://amperof.ru/elektropribory/peredelka-shurupoverta-pitanie-ot-seti.html
  • https://metmastanki.ru/peredelat-akkumulyatornyy-shurupovert-v-setevoy
  • https://100uslug.com/neskolko-sposobov-peredelat-akkumulyatornyj-shurupovyort-v-setevoj/
  • https://kraska.guru/instrumenty/elektro/kak-perevesti-akkumulyatornyj-shurupovert-na-pitanie-ot-seti.html
  • https://tehnika.expert/dlya-remonta/shurupovert/peredelka-akkumuljatornogo-na-setevoj.html
  • https://tool-and-tools.ru/dreli-i-shurupoverty/peredelyvaem-shurupovert-na-setevoj.html
  • https://100uslug.com/kak-sdelat-shurupovyort-napryamuyu-ot-zaryadki/
  • https://CleverDIY.ru/kak-sdelat-shurupovert-ot-seti-svoimi-rukami
  • https://DomZastroika.ru/instrumenty/kak-peredelat-akkumuljatornyj-shurupovert.html
  • https://intehstroy-spb.ru/elektroinstrument/peredelka-shurupoverta-na-pitanie-ot-seti.html
  • https://my-class.ru/kak-podklyuchit-shurupovert-napryamuyu-k-yego-zaryadnomu-ustroystvu/
  • https://morflot.su/podkljuchenie-shurupoverta-k-zarjadnomu-ustrojstvu/
  • https://m-strana.ru/articles/peredelka-shurupoverta-na-pitanie-ot-seti/
  • https://MegaBattery.ru/articles/info/zaryadnye-ustrojstva-shurupovertov/mozhno-li-podklyuchit-shurupovert-napryamuyu-k-zaryadke/

[/spoiler]

Переделка шуруповерта для работы от сети или внешнего источника

Электронные самоделки /15-апр,2018,11;49 / 9051
Шуруповерт – один из самых популярных домашних инструментов. При помощи этого электрического прибора вы не только завинтите или выкрутите шурупы, но и сможете просверлить отверстия.

Для чего нужна переделка шуруповерта своими руками?


Зачем нужно что-то менять в аккумуляторном шуруповерте и в каких случаях это становится необходимым? Те, кто читает эту статью, скорее всего умеют обращаться с этим инструментом и знают его преимущества. Шуруповертом удобно пользоваться в самых труднодоступных местах, пока не разрядится батарея. В этом – и первый недостаток данного устройства. При чем в более дешевом инструменте аккумулятор выработает свой ресурс циклов зарядки – это является вторым недостатком.

Здесь нужно понимать, что производители могут экономить – так же, как и вы, и это весьма обычный подход. Если покупать новый аккумулятор, то его цена будет вполне сопоставима с ценой нового шуруповерта. Однако есть более выгодный вариант – это переделать аккумуляторный инструмент на шуруповерт от сети 220 В своими руками.

Блок питания для шуруповерта своими руками из готового БП


Кто хорошо знаком с радиоподелками, то ему без труда можно собрать по схеме блок питания для шуруповерта. Трансформатор можно взять от старого лампового телевизора. Но такое решение будет немного громоздким.
Чтобы собрать блок питания для шуруповерта своими руками 12В, который будет помещен на место аккумуляторов, нужно приобрести новый блок питания нужных нам параметров и размеров. Такое устройство можно легко найти в магазине радиодеталей или на радиорынке. Берем с собой корпус и отправляемся на примерку. Когда мы найдем подходящий источник питания, его нужно отделить от корпуса.
После этого его следует поместить в коробку от аккумуляторов нашего инструмента. При этом нужно убедиться в надежном закреплении всех компонентов. Если есть необходимость – нужно удлинить провода, которыми соединяется плата управления и трансформатор. Важно помнить, что в случае касания схемы к металлическим частям трансформатора при работе устройства случится короткое замыкание.
Корпус имеет достаточно большие размеры, поэтому рекомендуется разнести плату и трансформатор, чтобы получить лучшее охлаждение. Даже с самым качественным блоком питания уровень нагрузки будет высоким, и в результате можно получить перегрев.

Оптимальным решением станет закрепление дополнительных радиаторов на силовых управляющих микросхемах. Нужно взять шуруповерт, долго поработать им, отключить от сети и потрогать радиодетали на плате управления.

Вам сразу станет ясно, для каких элементов нужен отвод тепла. Чтобы обеспечить вентиляцию, мы можем в корпусе просверлить отверстия.

Чтобы самостоятельно переделать блок питания, требуется совсем немного времени. При этом покупка модуля обойдется несравнимо дешевле, чем восстановление аккумуляторной батареи.


Схема питания своими руками


Те, кто с паяльником на «ты», могут использовать данный материал как инструкцию. Это схему реализовали на доноре, это балласт к галогеновому прожектору 150 Вт. То, что выделено цветом, является добавленными компонентами.
Добавлено выходной трансформатор, который использовался в старом компьютерном блоке питания – с него взяли и диоды Шоттки. Средняя точка вторичной обмотки расположена между парой, с витками в каждой по 12 штук. Так как данную схему нельзя запустить без нагрузки, то мы на выходе имеем постоянно включенную лампу накаливания 15 Вт. Здесь же мы имеем реализованную схему подсветки.

Блок питания легко помещен в корпус батареи.


В результате вышла удачная и недорогая конструкция – ее изготовление даже можно ставить на поток. Учитывая, в каком количестве сегодня предлагаются дешевые китайские шуруповерты, спрос на наше устройство будет обеспечен.

Подключаем к внешнему блоку питания


Шуруповерт от сети своими руками можно переделать из аккумуляторного в несколько способов – когда используется:
зарядка от ноутбука;
компьютерный блок питания;
аккумулятор от автомобиля;
блок питания галогеновой лампы;
китайская плата блока питания на 24 В.

Замена старых банок аккумуляторов новыми


Как заменить старые элементы – пошаговое описание действий:
1. Раскрываем корпус аккумулятора.
2. Достаем старые элементы, помещаем вместо них новые и перепаиваем между собой.
3. Собираем аккумулятор и закрываем крышку корпуса.
4. Устанавливаем обновленный аккумулятор в шуруповерт своими руками. Если нужно, батарею заряжаем.

Важно! Для переделанного аккумулятора подходит только специально подобранное зарядное устройство.


Электронный трансформатор: общее описание и использование

Для существенного улучшения условий безопасности электрических систем и цепей освещения во многих случаях рекомендуют применять лампы с напряжением существенно ниже, чем то, которое используется в стандартной сети (220 В). Обычно такое освещение устраивают в подвалах, ванных комнатах, погребах и прочих влажных помещениях. Для этих целей на сегодняшний день применяют так называемые галогенные лампы, рабочее напряжение которых составляет 12 В. Для осуществления питания ламп подобного рода используют такое устройство, как электронный трансформатор. Этот прибор способен трансформировать напряжение сети 220 В в 12 В (оптимальное для функционирования галогенной лампы).

Если посмотреть на электронный трансформатор, то можно понять, что внешнее его устройство довольно простое. Он представляет собой небольшую пластмассовую или металлическую коробочку, из которой есть вывод четырех проводов: два входящих (с надписью 220 В), и два выходящих (с надписью 12 В).

Принцип работы такого приспособления, как электронный трансформатор, достаточно прост. Регулирование яркости осуществляется с помощью тиристорных регуляторов (их называют диммеры). Эти регуляторы находятся со стороны высокого напряжения (входного). К одному диммеру может быть подключено одновременно много таких устройств, как электронные трансформаторы. Естественно, есть типовые схемы включения подобных устройств и без регуляторов. Следует помнить о важном условии: электронный трансформатор нельзя запускать без нагрузки. Следует обратить свое внимание также и на мощность. Современные ведущие фирмы выпускают электронные трансформаторы на мощности от 60 до 250 Вт.

Само устройство – это двухтактный автогенератор на полумостовой схеме. Два плеча данного моста – это транзисторы. Другие два плеча – конденсаторы. Именно поэтому такой мост и называется полумост. В одну диагональ подают напряжение, которое выпрямляется диодным мостом. В другую диагональ подключается нагрузка. Для осуществления управления работой транзисторной диагонали в их цепи подключены обмотки трансформатора обратной связи. Выпрямленное мостом напряжение будет заряжать конденсатор, а когда напряжение на конденсаторе достигнет предела, то откроется динистор и будет сформирован импульс, запускающий преобразователь тока.

У такого прибора, как электронный трансформатор, есть масса неоспоримых достоинств. Во-первых, следует упомянуть о небольших габаритных размерах и о малом весе. Это дает превосходную возможность устанавливать электронный трансформатор фактически где угодно (даже в труднодоступных местах). Некоторые современные осветительные приборы, которые специально рассчитаны для работы с галогенными лампами, уже заранее содержат в себе сразу несколько встроенных электронных трансформаторов. Такие схемы нашли свое применение в быту, например, в устройстве люстры. Электронные трансформаторы нынче устанавливают и в мебели, например, в шкафах, для создания подсветки вешалок и полок.

Но это далеко не все области применения такого прибора, как электронный трансформатор. Например, есть некоторые доработки, которые часто не требуют даже вскрытия корпуса, однако, позволяют создавать импульсный блок питания из электронного трансформатора (ИБП).

Блок питания из электронного трансформатора для галогенных ламп. Китайский электронный трансформатор TASCHIBRA TRA25. Переделка в блок питания

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.

Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.


Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.


Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).


Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.


На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.


На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.

Такой интересный компонент, как электронный трансформатор, так и просится для разнообразных радиолюбительских поделок. Цена его составляет всего пару долларов, и его легко можно приобрести и переделать в блок питания или компактное автомобильное зарядное устройство. Сегодня мы расскажем, как можно сделать блок питания из электронного трансформатора.

Основу нашего блока питания составит китайский электронный трансформатор с защитой от короткого замыкания под названием Taschibra, мощностью 105 Вт, схема которого изображена ниже.

Использовать его как обычный блок питания без доделки практически невозможно т.к. основная проблема в том, что на выходе электронного трансформатор переменное напряжение высокой частоты. Также такой трансформатор не способен работать без минимальной нагрузки.

Мы расскажем о методе переделки, при котором электронный трансформатор даже не придется разбирать, достаточно к его выходу подключить небольшую плату. На схеме ее компоненты выделены красной рамкой.

Она состоит из диода (обязательно используется диод Шоттки и фильтрующего конденсатора). Для запуска блока к его выходу должна быть подключено небольшая лампочка.

Как подобрать диод Шоттки. Первым делом нужно знать выходное напряжение электронного трансформатора. Как правило, оно составляет 12 В, а также максимальную силу тока, у нашего трансформатора она будет порядка 8 А. В зависимости от этих параметров и подбирается диод Шоттки.

Подбирать диод нужно с максимальным обратным напряжением как минимум в 3 раза выше, чем напряжение на выходе электронного трансформатора. По току лучше выбрать диод, прямой ток которого как минимум в 1,5 раза больше максимально выдаваемого с Вашего БП.

Примерно так выглядит наша плата.

Как видим, БП из электронного трансформатора работает, и на выходе мы уже имеем постоянный сглаженный ток. Если есть желание и возможность, тогда лучше составить более качественный фильтр и не ограничиваться лишь одним электролитическим конденсатором на выходе. Также при эксплуатации транзисторы и диод Шоттки необходимо установить на радиатор.

Где применять такой мощный блок питания из электронного трансформатора, решать только Вам. Конечно, он не подойдет для питания приемников или высококачественных усилителей, но с легкостью справится со светодиодной лентой, небольшим двигателем или другими нетребовательными приборами.

Вконтакте

Одноклассники

Comments powered by HyperComments

diodnik.com

cxema.org — Переделка электронного трансформатора

Переделка электронного трансформатора

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)». Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки. Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу. Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора. Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009. Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром. Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

АКА КАСЬЯН

vip-cxema.org

Китайский электронный трансформатор TASCHIBRA TRA25

Обзор популярного китайского электронного трансформатора TASCHIBRA. В один прекрасный день мой знакомый принёс на ремонт импульсный электронный трансформатор для питания используемых для питания галогенных ламп. Ремонт был быстрый замена динистора. После того как его отдал владельцу. появилось желание сделать такой-же блок для себя. Сначала узнал где он его покупал и купил для последующего копирования.

Технические характеристики TASCHIBRA TRA25

  • Вход AC 220V 50/60 Hz.
  • Выход AC 12V. 60W MAX.
  • Класс защиты 1.

Схема электронного трансформатора

Подробнее схему можно посмотреть тут. Список деталей для изготовления:

  1. n-p-n транзистор 13003 2 шт.
  2. Диод 1N4007 4 шт.
  3. Плёночный конденсатор на 10nF 100V 1 шт (С1).
  4. Плёночный конденсатор на 47nF 250V 2 шт (С2, С3).
  5. Динистор DB3
  6. Резисторы:
  • R1 22 ома 0.25W
  • R2 500 кОм 0.25W
  • R3 2.5 ома 0.25W
  • R4 2.5 ома 0.25W

Изготовление трансформатора на Ш-образном ферритовом сердечнике от компьютерного блока питания.

Первичная обмотка содержит 1-жильную проволоку диаметр 0.5 мм длинна 2.85 м. и 68 витков. Стандартная вторичная обмотка содержит 4-жильный провод диаметром 0.5 мм длинна 33 см. и 8-12 витков. Наматывать обмотки у трансформатора нужно в одном направлении. Намотка дросселя на ферритовом кольце диаметром 8 мм катушки: 4 витка зелёного провода, 4 витка жёлтого провода и не полный 1 (0.5) виток красного провода.

Фото печатной платы и файл печатной платы.

Динистор DB3 и его характеристика:

  • (I откр — 0.2 А), В 5 – это напряжение при открытом состоянии;
  • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
  • В открытом состоянии импульсный ток составляет А 2;
  • Максимальное напряжение (во время закрытого состояния): В 32;
  • Ток в закрытом состоянии: мкА — 10; максимальное импульсное не отпирающее напряжение составляет 5 В.

Вот такая получилась конструкция. Вид конечно не очень, зато убедился что можно собрать это импульсное устройство питания самому.

radioskot.ru

Эксперименты с электронным трансформатором tashibra CAVR.ru

Рассказать в: Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора — не мало. Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы). Диапазон применения блоков питания на базе «Tashibra» может быть весьма широким, сопоставимым с применением обычных трансформаторов.Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.Ну, что, — поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска «Tashibra» при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса «Tashibra» в качестве радиатора.Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение. Смотрим рис1, иллюстрирующий начинку «Tashibra».
Схема справедлива для ЭТ «Tashibra» 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.И еще раз напомню, чего же не хватает «Tashibra» для полноценного блока питания.1. Отсутствие входного сглаживающего фильтра (он же — противопомеховый, предотвращающий попадание продуктов преобразования в сеть),2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,3. Отсутствие выходного выпрямителя,4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки «Tashibra» и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы…


1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`12. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 — 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора — не очень приятно).Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, — для получения фильтрованного постоянного напряжения на выходе «пациента». При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, «спрятанный» за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая «провал» напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это — при расчетной для ЭТ нагрузке.Однако этого недостаточно. «Tashibra» не желает запускаться без существенного тока нагрузки.Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также — меньше, чем при полной нагрузке. Изменение частоты в режимах различной мощности — довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование «Tashibra» в таком (пока еще) виде при работе со многими устройствами.Но — продолжим.Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.


Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке) , способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки. Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато — стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг «Tashibra», однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и — высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней — влезть внутрь «Tashibra» и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4. Тем более, чтос пол-сотни подобных схем мною было собрано еще во времена эры компьютеров «Спектрум» (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

Переделываем? Конечно. Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото


или с помощью любых других технологий. В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции — только лак) и освободить место для другого трансформатора. Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) — Н2000-НМ1. 90 витков первички (диаметр провода — 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией. Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода — обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора. Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4


и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10Ом.


На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить — они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их


случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства. Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при «упаковке» готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, — на будущее.А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства. В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, — сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов — разогрев в режиме сквозного тока будет довольно быстрым. При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35Вт.Итак, все готово для первого пуска переделанной схемы «Tashibra». Включаем для начала — без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем. Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, «непропаи», ошибочно установленные номиналы.При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае — к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1Ohm, частота ненагруженного преобразователя составила 18кГц. При нагрузке 20Ом — 20,5кГц. При нагрузке 12Ом — 22,3кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5В. Расчетное значение напряжения было несколько иным (20В), но выяснилось, что вместо номинала 5,1Ом, сопротивление установленного на плате R1=51Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей. Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4Вт.Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2Ом, частота преобразователя без нагрузке возросла до 38,5кГц, с нагрузкой 12Ом — 41,8кГц.


При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке http://interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта http://www.moskatov.narod.ru/Design_tools_pulse_transformers.html.Можно избежать нагрева резистора R5, заменив его… конденсатором.


Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц. Запуск и работа

преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220Вт (минимально).Мощность трансформатора: значения — приблизительны, с определенными допущениями, но — не завышены.К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.

Раздел: [Схемы] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru

устройство, принцип работы и переделка в блок питания своими руками

Люминесцентные и галогенные лампы постепенно уходят в прошлое, уступая место светодиодным. В светильниках, где они применялись, остались ненужные электронные трансформаторы, отвечавшие за розжиг этих ламп. Кажется, что ненужному — место на помойке. Но это не так. Из этих трансформаторов можно собрать мощные блоки питания, которые смогут питать электроинструменты, светодиодные ленты и многое другое.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового. Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.

Сборка по схеме своими руками

Электронный балласт можно купить в магазине или найти у себя в закромах, но самым интересным вариантом будет сборка электронного трансформатора своими руками. Собирается он довольно просто, а большинство необходимых деталей можно наковырять в сломанных блоках питания и в энергосберегающих лампах.

  • Необходимые компоненты:Диодный мост с обратным напряжением не ниже 400 В и током не менее 3 А или четыре диода с такими же характеристиками.
  • Предохранитель на 5 А.
  • Симметричный динистор DB3.
  • Резистор 500 кОм.
  • 2 резистора 2,2 Ом, 0,5 Вт.
  • 2 биполярных транзистора MJE13009.
  • 3 плёночных конденсатора 600 В, 100 нФ.
  • 2 тороидальных сердечника.
  • Провод с лаковым покрытием 0,5 мм².
  • Провод в обычной изоляции 2,5 мм².
  • Радиатор для транзисторов.
  • Макетная плата.

Начинается все с макетной платы, на которую вы будете устанавливать все радиокомпоненты. На рынке можно купить два вида плат — с односторонней металлизацией на коричневом стеклотекстолите.

И с двусторонней сквозной, на зелёном.

От выбора платы зависит, сколько времени и сил вы потратите на сборку проекта.

Коричневые платы — отвратительного качества. Металлизация на них выполнена настолько тонким слоем, что в некоторых местах на ней видны разрывы. Припоем она смачивается плохо, даже если использовать хороший флюс. А все, что удалось припаять — отрывается вместе с металлизацией при малейшем усилии.

Зелёные — стоят в полтора-два раза дороже, но зато с качеством все в порядке. Металлизация на них с толщиной проблем не имеет. Все отверстия в плате залужены на производстве, благодаря чему медь не окисляется и проблем при пайке не возникает.

Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Радиодетали выбирайте с длинными выводами, они вам пригодятся при монтаже схемы. Если вы собираетесь использовать бывшие в употреблении детали, то обязательно проверяйте их работоспособность и отсутствие внешних повреждений.

Единственная деталь, которую вам придётся сделать самим — это трансформатор.

Согласующий нужно наматывать тонким проводом. Количество витков в каждой обмотке:

  • I — 7 витков.
  • II — 7.
  • III — 3.

Не забывайте фиксировать обмотки скотчем, иначе они расползутся.

Силовой трансформатор состоит всего из двух обмоток. Первичную наматывайте проводом 0,5мм², а вторичную — 2,5мм². Первичка и вторичка состоят из 90 и 12 витков соответственно.

Для пайки лучше не использовать «дедовские» паяльники — ими запросто можно сжечь чувствительные к температуре радиоэлементы. Возьмите лучше паяльник с регулировкой мощности, они не перегреваются, в отличие от первых.

ранзисторы заранее установите на радиаторы. Делать это на уже собранной плате — крайне неудобно. Собирать схему нужно от маленьких деталей к большим. Если вы сначала установите большие, то они будут мешаться при пайке маленьких. Учитывайте это.

При сборке смотрите на принципиальную схему, все соединения радиоэлементов должны соответствовать ей. Просуньте выводы деталей в отверстия на плате и согните их в нужном направлении. Если длины не хватает, удлиняйте их проводом. Трансформаторы после пайки приклейте к плате эпоксидной смолой.

После сборки подключите к выводам устройства нагрузку и убедитесь в том, что оно работает.

Переделка в блок питания

Случается так, что аккумуляторы электроинструмента выходят из строя, а возможности купить новый нет. В таком случае поможет адаптер в виде блока питания. Из электронного трансформатора после небольшой доработки можно собрать такой переходник.

Детали, которые понадобятся для переделки:

  • Терморезистор NTC 4 Ом.
  • Конденсатор 100 мкФ, 400 В.
  • Конденсатор 100 мкФ, 63В.
  • Плёночный конденсатор 100 нФ.
  • 2 резистора 6,8 Ом, 5 Вт.
  • Резистор 500 Ом, 2 Вт.
  • 4 диода КД213Б.
  • Радиатор для диодов.
  • Тороидальный сердечник.
  • Провод сечением 1,2 мм².
  • Кусочек монтажной платы.

Перед работой проверьте, вдруг вы забыли какую-нибудь деталь. Если все детали на месте, начинайте переделку электронного трансформатора в блок питания.

К выходу диодного моста подпаяйте конденсатор 400 В, 100 мкФ. Для уменьшения зарядного тока конденсатора впаяйте терморезистор в разрыв силового провода. Если вы забудете это сделать, при первом же включении в сеть у вас сгорит диодный мост.

Отсоедините вторую обмотку согласующего трансформатора и замените её перемычкой. Добавьте на обоих трансформаторах по одной обмотке. На согласующем сделайте один виток, на силовом — два. Соедините обмотки между собой, впаяв в разрыв провода два параллельно соединённых резистора на 6,8 Ом.

Для изготовления дросселя намотайте на сердечник 24 витка провода 1,2 мм² и закрепите его скотчем. Затем на макетной плате соберите по схеме оставшиеся радиодетали и подключите сборку к основной схеме. Не забудьте установить диоды на радиатор, при работе под нагрузкой они сильно греются.

Закрепите всю конструкцию в любом подходящем корпусе и блок питания можно считать собранным.

После окончательной сборки включите устройство в сеть и проверьте его работу. Оно должно выдавать напряжение в 12 вольт. Если блок питания их выдаёт — вы со своей задачей справились на отлично. Если он не заработал, проверьте, вдруг вы взяли нерабочий трансформатор.

220v.guru

ИБП из электронного трансформатора | Техника и Программы

September 29, 2012 by admin Комментировать »

Я вообще не особенно любитель изготавливать блоки питания, если только он сам по себе не является целью всей конструкции. Однако на протяжении уже около 4х лет, в качестве блока питания или даже ЗУ для автомобильного аккумулятора я использую обычный электронный трансформатор для галогенных ламп. Подобный транс можно приобрести в любом магазине электро товаров.

В интернете уже есть кое какие статьи по переделке таких трансов в блок питания, кто то даже усиленно исследует этот девайс Да и в журнале Радио за какой то год есть статья по этой теме. Ну и я решил вставить свои пять копеек Вообще все просто до нельзя, изготовить более простой и надежный ИБП да и еще купив детали для него в любом хоз магазине я думаю нереально Итак, схема…. Схема это обычный автогенератор, имеющий обратную связь по току. Т.е. если нагрузки на выходе нет то и по сути весь электронный трансформатор не работает. Причем нагрузка должна быть довольно приличной. Бывали такие случаи, когда меня просили подобный девайс поремонтировать, мол не работает. При этом подключали к нему лампочку 0.25 Вт и делали вывод – устройство не фурычит, наипали в магазине Опять же при увеличении нагрузки, весь наш трансик успешно превращается в угли. Очевидно, что все это как то не особо подходит для наших целей. Нам бы сделать так, чтобы все работало на холостом ходу, да и еще бы имело защиту от КЗ. Как ни странно, все это можно реализовать модернизировав простенькую схемотехнику электронного трансформатора. Причем сам ответ как это сделать лежит на поверхности.Всего то нужно заменить ОС (обратную связь) по току, обратной связью по напряжению.

Красным цветом на схеме обозначены необходимые изменения. Сама схема может иметь некоторые вариации… например отсутствовать диод VD1. Токовую обмотку ОС, W3 удаляем и на ее место ставим перемычку. Наматываем на основном трансформаторе TV1 обмотку обратной связи Woc1 – 1 – виток, Woc2 – 2-3 витка на трансформаторе обратной связи Toc (маленькое колечко, кто не в курсе). Следует соблюдать начало с концом обмоток, ну если не правильно то просто нет генерации. Резистором R4 регулируется глубина ОС, которая в свою очередь влияет на ток при которым происходит срыв генерации автогенератора, откуда мы собственно и получаем защиту от КЗ. При увеличении резистора R4, соответственно, при меньшем выходном токе будет происходить срыв генерации. Вместо резистора R4 можно поставить пленочный конденсатор, это даже более предпочтительно, если кого то раздражает нагрев R4. Величину конденсатора можно выбрать в пределах от 10n до 330n. Подбирается опытным путем.Вторичку можно намотать со средней точкой, или же обычную. Тогда потребуются 4 диода в выпрямителе. Диоды разумеется с барьером Шотки. Сколько мотать, ориентируемся по вторичке которая была. Я ее как правило полностью удаляю. Дроссель L не обязателен, но весьма желателен. Величина не критична 10… 100 мкГн. Ну и по высокой стороне устанавливаем электролит C4, это улучшит качество выходного напряжения при нагрузке (не будет пульсаций, до определенного предела конечно). Выковырять подобный маленький электролит можно например из энергосберегающей лампочки. Да и еще забыл, нужно на ноги электролита (паралельно) поставить разрядный резистор 220К, мощностью 1Вт. НА схеме нарисовать забыл (дорисовывать лень), он способствует ускоренной разрядке электролита, и без него преобразователь после выключения и быстрого повторного включения может не запускаться. Это связано с запускающим диаком DB3.На выход выпрямителя, если требуется, лепим стабилизаторы напряжения… короче кто на что горазд)Ну и весьма желательно поставить сетевой фильтр L1, C7, C6. Помех от подобных девайсов в сети море, вообще не понятно как китаезы проходят нормы по эл. совместимости. Судя по всему никак… Так что, ставим фильтр.ПС: на фотке нет сетевого фильтра, на момент написания статьи он где то ехал по бескрайним просторам нашей страны в виде посылки…..

nauchebe.net

Электронный трансформатор: схема подключения

Электронный трансформатор — это устройство электромагнитного типа. Оно состоит из индуктивной обмотки, а также магнитопровода. Используется электронный трансформатор для преобразования переменного тока. Встречаются устройства в различных электроприборах.

Также с их помощью собирают блоки питания. Для подключения прибора используют различные элементы. В данном случае учитывается параметр порогового напряжения, частоты и проводимости тока. Для того чтобы во всем разобраться, следует рассмотреть конкретные схемы.

Схема подключения через конденсаторный резистор

Через конденсаторный резистор можно подсоединять любой электронный трансформатор. Схема подключения включает в себя модулятор, а также трансивер. Проводимость тока указанного элемента обязана составлять не менее 50 мк. В данном случае выходное напряжение зависит от количества резисторов. В некоторых случаях применяются расширительные трансиверы. Если рассматривать модель для блока питания, то усилитель используется клеммного типа. Для стабилизации процесса преобразования необходимы фильтры. Триггеры используются фазового типа.

Подключение через два регулятора

Через два регулятор разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из тетродов открытого типа. В данном случае показатель предельной проводимости элемента равняется 55 мк. Непосредственно регуляторы устанавливаются за реле. Усилители встречаются как оперативного, так и тороидального типа.

Для нормальной работы расширителя используется два коннектора. Емкость триггера обязана составлять не мене 2 пФ. Также важно обращать внимание на выходное напряжение на обмотке. В среднем оно составляет не более 40 В. Однако при высоком уровне отрицательного сопротивления указанный параметр может резко увеличиваться. Если рассматривать схему для блока питания, то тиристор подбирается дипольного типа. В этом случае параметр приводимости тока у элемента составляет не более 45 мк. Входное напряжение максимум может равняться 20 В. Для подключения конденсаторов используются контакторы.

Использование проводных стабилизаторов

Через проводные стабилизаторы можно подсоединять высокочастотный электронный трансформатор. Схема подключения предполагает использование триггеров с вторичной обмоткой. Тетроды в данном случае устанавливаются за реле. Для увеличения отрицательного сопротивления используются фильтры. Всего для блока питания на 30 Вт потребуется два контактора. Резисторы используются тороидального типа. Параметр выходного напряжения у элементов не превышает 45 В.

Подключение к диодному мосту

Низкочастотный трансформатор к диодному мосту можно подсоединять через один регулятор. Для этого тетрод применяется с двумя фильтрами. Проводимость тока у элемента обязана составлять не менее 55 мк. Все это позволит значительно повысить пороговое сопротивление. Модулятор для схемы подбирается импульсного типа. Если рассматривать преобразователь с усилителем, то реле необходимо использовать только с изоляторами. В этом случае сопротивление у трансформатора составит около 22 м. Выходное напряжение на обмотке будет колебаться в районе 30 В.

Подключение к галогенной лампе

К галогенным лампам разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из резисторов дипольного типа. Конденсаторы применяются с первичной обмоткой. Для стабилизации процесса индукции используются фильтры. Всего в схеме предусмотрено два усилителя. Реле в данном случае установлено за конденсаторами.

Расширитель разрешается использовать лишь открытого типа. Проводимость тока у элемента равняется 55 мк. Таким образом, сопротивление не должно превышать 12 Ом. Параметр выходного напряжения зависит от резисторов. Если рассматривать модели с не большой емкостью, то указанный параметр составляет около 13 В.

Схема подключения модели Taschibra

Через регулятор можно напрямую подсоединить Taschibra (электронный трансформатор). Схема подключения предполагает использование модулятора с первичной обмоткой. Непосредственно трансивер для конденсатора подбирается на две фазы. Через дипольный резистор также можно подсоединять Taschibra (электронный трансформатор). Схема подключения устройства в этом случае предполагает использование стабилитрона.

Если рассматривать стандартный модулятор, то проводимость тока равняется около 60 мк. В данном случае сопротивление не превышает 12 Ом. Иногда используются проводные реле. В таком случае расширитель берется без обмотки.

Подключение устройства RET251C

Этот электронный трансформатор (схема RET251C показана ниже) подключается через два дипольных резистора. Конденсаторы часто используются без модулятора. В данном случае входное напряжение зависит от параметра проводимости. Как правило, он лежит в пределах 40 мк. Также важно отметить, что транзисторы используются только открытого типа. Если рассматривать преобразователь не большой мощности, то коннектор устанавливается с одним усилителем. Для подключения расширителя применяется два изолятора. Тетрод разрешается использовать с двойным регулятором.

Подключение трансформатора GET 03

Указанный электронный трансформатор (схема GET 03 показана ниже) подключается через проводное реле. Регулятор используется с двумя переходниками. Тиристор для подключения берется открытого типа. Модулятор можно использовать с обмоткой, или без нее. Если рассматривать первый вариант, то резистор подключается с селектором. В свою очередь, тетрод устанавливается лучевого типа.

Если рассматривать схему без обмотки, то резистор применяется только с выходными контакторами. В данном случае регулятор устанавливается за реле. Усилитель в схеме не понадобится. Показатель проводимости тока будет составлять около 70 мк. Таким образом, сопротивление в цепи не превысит 30 Ом.

Схема подключения модели ELTR-60

Для различного электроинструмента часто используется этот электронный трансформатор. Схема для шуруповерта включает в себя выходной усилитель. Регулятор используется с двумя трансиверами. Таким образом, проводимость элемента равняется не менее 44 мк. В данном случае тетрод используется конденсаторного типа. Выходное напряжение трансформатора зависит от проводимости модулятора.

Если рассматривать схему с обмоткой, то конденсатор устанавливается за реле. Таким образом, проводимость тока равняется 35 мк. Показатель входного сопротивления составляет не более 12 Ом. Если рассматривать схему без обмотки, то потребуется использовать два расширителя. Триггер в данном случае применяется без фильтра. Непосредственно регулятор подбирается операционного либо импульсного типа.

Подключение устройства ELTR-70 к цепи на 24 В

Указанный электронный трансформатор (схема 24 вольта показана ниже) подключается через дипольный регулятор. Всего для модели потребуется два проводника. Триггер для преобразования тока используется открытого типа. Также схема подключения электронного трансформатора имеет фильтры, которые устанавливаются за обмоткой. Непосредственно тетрод подбирается высокой чувствительности. В указанной схеме параметр проводимости не должен превышать 60 мк. Все это позволит держать на стабильном уровне выходное сопротивление.

Трансивер в цепи используется низкочастотного типа. Для увеличения скорости протекания индукции применяются различные усилители. Устанавливаются они с конденсаторами или без них. Если рассматривать первый вариант, то реле используется с вторичной обмоткой. Когда речь идет о подключении без конденсаторов, то в этом случае используется один трансивер.

Подключение трансформатора TRA110

Схема подключения электронного трансформатора предполагает установку регулятора проводного типа. Трансиверы используются только вместе с динисторами. Всего для нормальной работы модели потребуется два конденсатора. Емкость расширителя обязана составлять не менее 4 пФ. В данном случае реле устанавливается за вторичной обмоткой.

Если рассматривать схему с триггером, то для нормальной работы трансформатора потребуются изоляторы. Тиристор для него подбирается с контакторами. Если рассматривать трансформатор без триггера, то в этом случае требуется устанавливать модулятор выходного типа. Проводимость тока у него обязана составлять как минимум 50 мк. Резисторы используются только векторного типа.

fb.ru

Электронные трансформаторы начали входить в моду совсем недавно. По сути, он является импульсным блоком питания, который предназначен для понижения сетевых 220 Вольт до 12 Вольт. Такие трансформаторы применяются для питания галогенных ламп 12 Вольт. Мощность выпускаемых ЭТ на сегодня 20-250 Ватт. Конструкции почти у всех схем подобного рода схожи друг с другом. Это простой полумостовой инвертор, достаточно нестабильный в работе. Схемы лишены защиты от КЗ на выходе импульсного трансформатора. Еще одним недостатком схемы является то, что генерация происходит только тогда, когда на вторичную обмотку трансформатора подключают нагрузку определенной величины. Я решил написать статью, поскольку считаю, что ЭТ может быть использован в радиолюбительских конструкциях в качестве источника питания, если внести некоторые простые альтернативные решения в схему ЭТ. Суть переделки — дополнить схему защитой от КЗ и заставить ЭТ включаться при подаче сетевого напряжения и без лампочки на выходе. На самом деле переделка достаточно проста и не требует особых навыков в электронике. Схема показана ниже, красным — изменения.

На плате ЭТ мы можем увидеть два трансформатора — основной (силовой) и трансформатор ОС. Трансформатор ОС содержит 3 отдельные обмотки. Две из них являются базовыми обмотками силовых ключей и состоят из 3-х витков. На этом же трансформаторе есть еще одна обмотка, которая состоит всего из одного витка. Эта обмотка последовательно подключена к сетевой обмотке импульсного трансформатора. Именно эту обмотку нужно снять и заменить перемычкой. Дальше нужно поискать резистор с сопротивлением 3-8 Ом (от его величины зависит срабатывания защиты от КЗ). Затем берем провод диаметром 0,4-0,6мм и мотаем два витка на на импульсном трансформаторе, затем 1 виток на трансформаторе ОС. Резистор ОС подбираем с мощностью от 1 до 10 ватт, он будет нагреваться, и достаточно сильно. В моем случае использован проволочный резистор с сопротивлением 6,2 Ом, но не советую использовать их, поскольку проволока имеет некоторую индуктивность, что может повлиять на дальнейшую работу схемы, хотя точно сказать не могу — время покажет.


При КЗ на выходе тут же сработает защита. Дело в том, что ток во вторичной обмотке импульсного трансформатора, а также и на обмотках трансформатора ОС резко спадет, это приведет к запиранию ключевых транзисторов. Для сглаживания сетевых помех на входе питания установлен дроссель, который был выпаян от другого ИБП. После диодного моста желательно установить электролитический конденсатор с напряжением не менее 400 Вольт, емкость подобрать исходя от расчета 1мкФ на 1 ватт.


Но даже после переделки, не стоит замыкать выходную обмотку трансформатора более 5 секунд, поскольку силовые ключи будут греться и могут выйти из строя. Переделанный таким образом импульсный БП включится без выходной нагрузки вообще. При КЗ на выходе генерация срывается, но схема не пострадает. Обычный же ЭТ при замыкании выхода, просто мгновенно сгорает:


Продолжая экспериментировать с блоками электронных трансформаторов для питания галогенных ламп, можно доработать сам импульсный трансформатор, например для получения повышенного двухполярного напряжения для питания автомобильного усилителя.


Трансформатор в ИБП галогенных ламп выполнен на ферритовом кольце, и по виду с этого кольца можно выжимать нужные ватты. С кольца были сняты все заводские обмотки и на их место были намотаны новые. Трансформатор на выходе должен обеспечивать двухполярное напряжение — 60 вольт на плечо.


Для намотки трансформатора использовался провод от китайских обычных железных трансформаторов (входили в комплект приставки сега). Провод — 0,4 мм. Первичная обмотка — мотается 14-ю жилами, сначала 5 витков по всему кольцу, провод не отрезаем! После намотки 5 витков делаем отвод, скручиваем провод и мотаем еще 5. Такое решение избавит от трудной фазировки обмоток. Первичная обмотка готова.


Вторичка мотается также. Обмотка состоит из 9-ти жил того же провода, одно плечо состоит из 20 витков, тоже мотается по всему каркасу, затем отвод и мотаем еще 20 витков.


Для очищения лака я просто поджег провода зажигалкой, затем очистил их монтажным ножом и вытер кончики растворителем. Должен сказать — работает великолепно! На выходе получил требуемые 65 вольт. В дальнейших статьях мы рассмотрим варианты такого рода, а также добавим выпрямитель на выходе, превращая ЭТ в полноценный импульсный блок питания, который может быть использован практически для любых целей. Содержание:

В настоящее время существует немало электроинструмента, работающего от аккумуляторных батарей. Однако через определенное время ресурс батарей постепенно снижается и не обеспечивает инструменту достижение нужной мощности. В таких случаях не помогает даже более частая зарядка, поэтому приходится решать, что делать дальше: вообще отказаться от агрегата или перевести его на питание от общей сети. Поскольку новая батарея по цене может сравниться с самим инструментом, можно самостоятельно изготовить блок питания из электронного трансформатора, что обойдется значительно дешевле.

Технические условия изготовления

Переделать электронный трансформатор в импульсный блок питания не так просто, как это оказывается на практике. Помимо трансформатора потребуется установка выпрямительного моста на выходе и сглаживающего конденсатора. В случае необходимости и подключение нагрузки.

Необходимо учитывать, что запуск преобразователя невозможен без нагрузки или при недостаточной нагрузке. Это легко проверить с помощью светодиода, подключаемого к выходу выпрямляющего устройства с использованием ограничительного резистора. В итоге все дело закончится лишь одной вспышкой светодиодного источника света в момент включения.

Для того чтобы появилась еще одна вспышка, преобразователь необходимо сначала выключить, а затем снова включить в сеть. Добиться постоянного свечения вместо вспышек возможно путем подключения выпрямителя к дополнительной нагрузке, которая производит отбор полезной мощности с выделением тепла. Данная схема может использоваться только при постоянной нагрузке, управляемой через первичную цепь.

Если же нагрузка требует более 12 вольт, выдаваемых электронным трансформатором, необходимо перемотать выходной трансформатор. Существуют и другой вариант решения этой проблемы, более эффективный и менее затратный.

Как создать импульсный блок питания не разбирая трансформатор

Изготовление такого блока питания осуществляется в соответствии с представленной схемой. Его основой служит электронный трансформатор, мощность которого 105 ватт. Кроме того, переделка электронного трансформатора в блок питания потребует использования дополнительных элементов — выпрямительного моста VD1-VD4, выходного дросселя L2, согласующего трансформатора Т1 и сетевого фильтра.

Для изготовления трансформатора Т1 потребуется ферритовое кольцо с размерами К30х18х7. Провод в первичной обмотке уложен вдвое, скручен в жгут и намотан в таком виде в количестве 10 витков. Лучше всего подойдет провод диаметром 0,8 мм, например, ПЭВ-2. Вторичная обмотка состоит из такого же провода с такой же укладкой, намотанного в 2х22 витка. В итоге получается двойная симметричная обмотка с общей средней точкой, получаемой путем соединения начала одной обмотки с концом другой.

Дроссель L2 также изготавливается своими руками. Он состоит из такого же ферритового кольца, как и трансформатор. Для обмоток используются аналогичные провода ПЭВ-2, наматываемые по 10 витков. Сборка выпрямительного моста выполняется с помощью диодов КД213 или КД2997, которые могут функционировать при минимальной рабочей частоте 100 кГц. В случае использования других элементов, например, КД242, они будут лишь нагреваться, но не обеспечат требуемого напряжения. Площадь радиатора для установки диодов должна быть не меньше 0,6-0,7 м2. Радиатор используется вместе с изолирующими прокладками.

В цепочку электролитических конденсаторов С4, С5 включено три элемента по 2200 мкф, соединенные параллельно. Данный вариант используют все импульсные источники питания с целью снижения общей индуктивности электролитических конденсаторов. В некоторых схемах могут параллельно с ними подключаться керамические конденсаторы на 0,33-0,5 мкф для сглаживания высокочастотных колебаний.

Сетевой фильтр устанавливается на входе блока питания, хотя вся система сможет функционировать и без него. Входной фильтр оборудуется готовым дросселем марки ДФ50ГЦ, который можно взять в телевизоре. Все узлы и элементы блока монтируются на общую плату методом навесного монтажа. Для платы используется изоляционный материал, а вся готовая конструкция помещается в латунном или жестяном корпусе с вентиляционными отверстиями.

При правильной сборки источника питания, какая-либо дальнейшая наладка не требуется, поскольку устройство сразу начинает нормально функционировать. Однако, проверить работоспособность все-таки необходимо. С этой целью на выходе блока питания подключаются резисторы на 240 Ом и минимальной мощностью 5 ватт в качестве нагрузки.

Блок питания для использования в особых условиях

Довольно часто возникают ситуации, когда применение становится проблематичным из-за специфических условий эксплуатации. Это может быть слишком малое потребление тока или его изменение в широком диапазоне, в результате, блок питания просто не запускается. Характерным примером становится люстра, в которую устанавливаются светодиодные лампы вместо галогенных, несмотря на то, что в приборе освещения имеется встроенный электронный трансформатор. Решить эту проблему поможет упрощенная схема этого трансформатора, представленная на рисунке.

На данной схеме обмотка управляющего трансформатора Т1, отмеченная красным, служит для обеспечения обратной связи по току. То есть, когда ток не идет через нагрузку или проходит в очень малом количестве, трансформатор просто не будет включаться. Это значит, что устройство не станет работать, если к нему подключить лампочку на 2,5 Вт.

Данная схема может быть доработана, что позволит устройству работать вообще без нагрузки. Прибор окажется защищен от короткого замыкания. Как все это осуществить на практике, показано на следующем рисунке.

Работа электронного трансформатора при минимальной нагрузке или вообще без нее, обеспечивается путем замены обратной связи по току, обратной связью по напряжению. С этой целью обмотка обратной связи по току убирается, а взамен ее в плату впаивается перемычка из проволоки, не затрагивая ферритовое кольцо.

Затем на управляющем трансформаторе TR1, установленном на малом кольце, следует намотать обмотку, состоящую из 2-3 витков. На выходном трансформаторе наматывается еще один виток, после чего выполняется соединение обеих дополнительных обмоток. Если устройство не начнет функционировать, рекомендуется поменять расположение фаз на какой-либо обмотке.

Резистор, устанавливаемый в цепь обратной связи, должен иметь сопротивление в диапазоне от 3 до 10 Ом. С его помощью определяется глубина обратной связи, определяющая значение тока, при котором наступает срыв генерации. Это и будет током срабатывания против короткого замыкания, в зависимости от сопротивления резистора.

Схема БП для шуруповерта — Блоки питания

Шуруповерт, или аккумуляторная дрель очень удобный инструмент, но есть и существенный недостаток, — при активном использовании аккумулятор разряжается очень быстро, — за несколько десятков минут, а на зарядку требуются часы. Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора. Но, к сожалению, промышленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп. Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

И так, схема источника показана на рисунке в тексте статьи.

Это классический обратноходовый AC-DC преобразователь на основе ШИМ генератора UC3842.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор с трансформатором Т1 на выходе. Первоначально запускающее напряжение поступает на вывод питания 7 ИМС А1 через резистор R1. Включается генератор импульсов микросхемы и выдает импульсы на выводе 6. Они подаются на затвор мощного полевого транзистора VT1 в стоковой цепи которого включена первичная обмотка импульсного трансформатора Т1. Начинается работа трансформатора и появляются на вторичных обмотках вторичные напряжения. Напряжение с обмотки 7-11 выпрямляется диодом VD6 и используется для питания микросхемы А1, которая перейдя на режим постоянной генерации начинает потреблять ток, который не способен поддерживать пусковой источник питания на резисторе R1. Поэтому при неисправности диода VD6 источник пульсирует, — через R1 конденсатор С4 заряжается до напряжения, необходимого для запуска генератора микросхемы, а когда генератор запускается повышенный ток С4 разряжает, и генерация прекращается. Затем процесс повторяется. При исправности VD6 схема сразу после запуска переходит на питание от обмотки 11 -7 трансформатора Т1.

Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18. Выпрямляется диодом VD7 и сглаживается конденсатором С7.
В отличие от типовой схемы здесь не используется схема защиты выходного ключевого транзистора VT1 от повышенного тока сток-исток. А вход защиты -вывод 3 микросхемы просто соединен с общим минусом питания. Причина данного решения в отсутствии у автора в наличии необходимого низкоомного резистора (все-таки приходится делать из того что есть в наличии). Так что транзистор здесь не защищен от перегрузки по току, что конечно не очень хорошо. Впрочем, схема уже долго работает и без данной защиты. Однако, при желании можно легко сделать защиту, следуя типовой схеме включения ИМС UC3842.

Детали.


Импульсный трансформатор Т1 — готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры сейчас частенько идут на разборку либо вообще выбрасываются. Да и трансформаторы ТПИ-8-1 в продаже присутствуют. На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6. Таким образом можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

Впрочем этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, — довольно неблагодарная работа. Его сердечник плотно склеен и при попытке его разделить ломается совсем не там, где ожидаешь. Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Транзистор IRF840 можно заменить на IRFBC40 (что в принципе тоже самое), либо на BUZ90, КП707В2.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А.

В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Щеглов В.Н.

Подробности — Радиоконструктор №2 2018


Поделитесь записью в своих социальных сетях!

При копировании материала обратная ссылка на наш сайт обязательна!


Как запитать шуруповерт от сети 220 В

Денис

Светодиоды в порядке, проверял. Он сгорел на двух досках без маркировки и на нем ничего не написано. Черный квадрат с 8 ножками. Сопротивление всех светодиодов одновременно — вот почему мой мультиметр не может измерить, но для одного светодиода в положении 200M сопротивление светодиодов составляет от 04,1 до 04,6.

Я бы хотел установить на них какой нибудь ледяной драйвер.

Денис

Эти две платы идентичны, были в точечных светильниках в гараже, но обе сгорели из-за скачков напряжения, сами светодиоды целы, их регуляторы мощности, которые находятся на одной плате, сгорели.Нашел на Али эту плату, она такая же, как на моих софитах. Ссылка на сайт.

Подскажите как можно их оживить?

Дмитрий Макаров (Эксперт)

Если вы решили поставить на светодиодный светильник какой-либо драйвер, то это убережет устройство от любых скачков и отклонений электрических величин в питающей сети. Чтобы выбрать конкретный драйвер, нужно обратить внимание на его характеристики, а именно:

1) Мощность устройства;
2) Диапазон рабочего напряжения на входе драйвера;
3) Диапазон рабочего напряжения на выходе драйвера;
4) Стабилизированный ток на выходе драйвера;
5) Пылевлагостойкий драйвер.

Сначала обратите внимание на мощность. Если плата соответствует тому, что вы указали в ссылке, плата потребляет 30 Вт. Если вы хотите перепроверить эти данные самостоятельно, вы можете разделить квадрат напряжения на сопротивление, полученное путем измерения (P = U2 / R). Если расчет производился для одного светодиода, то после нужно мощность одного светодиода умножить на их количество. Также берется напряжение такое, которое будет падать на один светодиод.

По второму параметру я так понимаю нужна модель на стандартное переменное напряжение в сети.220В.

Диапазон рабочего напряжения на выходе драйвера должен обеспечивать падение напряжения на каждом светодиоде 3,2. 3.3V, то есть для 70 светодиодов, соединенных последовательно, нужно выбирать модель, которая будет обеспечивать 220. 230V.
Выходной ток для вашей светодиодной платы должен составлять от 120 до 150 мА.

По уровню пыле- и влагостойкости нужно выбирать наиболее защищенную модель, так как ее установка будет производиться в гараже, где уровень запыленности достаточно велик.Влага также возникает из-за перепадов температуры даже при установке в помещении, особенно для холодного времени года характерна конденсация. На этот параметр нужно обратить особое внимание, так как выход из строя драйвера из-за внешних факторов приводит к нарушению работы всей светодиодной платы.

Как можно запитать SMD5730 напрямую от сети 220 Вольт?

Есть две доски. В каждом из которых есть 70 штук SMD5730, которые последовательно соединены друг с другом (то есть светодиод, светодиод и так 70 штук).На этой плате только SMD5730 и больше ничего. Вопрос в том, как их можно запитать напрямую от сети 220 вольт или каким образом? Заранее спасибо.

Дмитрий Макаров (Эксперт)

Перед тем, как браться за ремонт, обязательно с помощью тестера убедиться в исправности цепи светодиода. Для этого вовсе не обязательно перепроверять каждый из них при последовательном подключении. Достаточно подключить щупы к началу и концу полосы. если в цепи нет разрывов, значит схема действительно сохранилась и ленту можно использовать дальше.

Если вы не собираетесь ремонтировать устройство, но хотите как-то зажечь светодиоды, то рекомендую сделать то, что было написано ранее. измерить сопротивление их цепи и напряжение на выходе или выходе лампы. Разделите напряжение на количество последовательно включенных светодиодов, если значение находится в допустимом диапазоне, вы можете напрямую подключить плату к сети.

Естественно, припаять провода придется прямо к выводам светодиодной ленты. Все измерения проводите под напряжением в диэлектрической перчатке, чтобы обезопасить себя от воздействия электрического тока.

социальные сети

Дмитрий Макаров (Эксперт)

Эта модель диода имеет определенные характеристики, такие как ток и напряжение. Из предложенных в сети это от 3,1 до 3,3 В или от 3,2 до 3,5 В, номинальный ток также может варьироваться от 120 до 150 мА в зависимости от производителя или партии. Эти параметры следует проверять и для ваших светодиодов. Тогда рекомендую произвести следующий расчет.

Если подключить в сеть 220 В одну плату, на которой последовательно собрано 70 светодиодов SMD5730, то при их прямом подключении у каждого устройства будет 220/70 = 3.14 В. Это означает, что если плата напрямую подключена к сети на каждом из светодиодов, то SMD5730 будет иметь напряжение 3,14 В, что вполне подходит для модели на напряжение от 3,1 до 3,3 В и вполне приемлемо для модель на напряжение от 3,2 до 3,5 В. Следовательно, если у вас есть именно такие модели диодов, то каждую плату можно напрямую подключать к сети 220 В.

Обе платы можно подключать к сети параллельно так, чтобы на каждой из них было напряжение 220 В. Однако нужно учитывать особенности каждой платы, поэтому параметры светодиодов следует проверять для каждой из них. .

Если после расчета для каждого светодиода вы получите более высокое напряжение, то сопротивление такого значения необходимо подключить к плате последовательно, при этом на каждый светодиод будет подано напряжение в указанных пределах.

Этот расчет напряжения является косвенным методом, если у вас есть мультиметр, то для каждой платы вы можете измерить ее импеданс. После этого напряжение сети следует разделить на полученное значение сопротивления платы I = U / R. Это даст вам количество тока, который будет протекать через светодиоды.Если он находится в заданных пределах от 120 до 150 мА, то плату можно нормально подключать к сети 220 В. В противном случае вам также потребуется внести в схему сопротивление, как показано на схеме выше.

Если у вас в сети частые скачки напряжения, то эти платы лучше включать через регулятор напряжения, который будет обеспечивать стабильные 220 В. В противном случае платы могут просто сгореть.

Зачем преобразовывать аккумуляторную отвертку в сеть?

Заряженное аккумулятором оборудование периодически разряжается, если не используется.Этот факт является проблемой, так как основные компоненты выходят из строя при частом падении заряда аккумулятора. В результате при первых признаках поломки аккумулятор держит все меньше и меньше заряда. В такой ситуации полной поломки детали не избежать, лучше либо заменить, либо поменять на новую. Кстати, стоимость первого и второго варианта будет одинаковой.

Совет: если пользователь собирается работать с твердыми поверхностями, выбирайте устройства с параметрами вращения не менее 20 Нм.Это механизм Sparky BR2 10.8Li-C HD.

Вторая причина — переделать аппарат. качество работы. Владельцы таких устройств легко подтвердят, что процесс крутящего момента иногда прерывается. Еще обидно, что мощность не самого лучшего уровня. опять же виноват частичный разряд. Ситуацию спасает подключение устройства к электросети. Вот преимущества, которые мы получаем в итоге:

  • Время зарядки сократится, и вы сможете приступить к работе в любой момент.
  • Функционирует без ограничений, уверенность в том, что устройство не сядет на полпути к выполненной работе.
  • Финансовая выгода: нет необходимости периодически менять аккумулятор.

Совет: На качественном оборудовании есть защита от поломок, которая находится возле форсунки. Такая защита доступна для устройств Bosch PSR 1200, Bosch GSR 12V-15.

Как преобразовать аккумуляторную отвертку в сеть: 3 основных метода

Неудивительно, что почти в каждом доме или квартире есть отвертка.К сожалению, устройства, основанные на источнике беспроводной сети, часто выходят из строя и выходят из строя. Поскольку покупать новую батарею дорого, большинство владельцев заменяют аккумуляторные отвертки аккумуляторными. В этой статье мы расскажем, как переделать устройство из подручных деталей. Также мы затронем тему, почему именно такой вид оборудования выходит из строя чаще всего. Прочитай внимательно!

Выбор блока питания для отвертки

Задачу можно решить несколькими деталями.Например, с зарядным устройством для ноутбука эта переделка считается простой и непритязательной. Поэтому, если дома остался ненужный сетевой блок от ноутбука, можно его использовать. Вторая деталь. сетевой блок с компа. Этот вариант подразумевает определенный объем знаний и навыков работы с паяльником. Другой вариант — как переделать отвертку в сетевую. включите желаемую инверторную сварку. В следующем разделе мы подробно опишем, как реализовать наши планы всеми тремя способами.

Совет: обратите внимание на параметры устройства. Для эффективного сверления частота вращения должна быть не менее 1300. Например, этой характеристикой обладают станки Bosch GSR 1440-LI и Makita DF347DWE.

реконструкция на базе блока питания ноутбука

Как уже было сказано, этот метод реконструкции считается простым и не требует много времени. Сначала проверьте, на какое выходное напряжение рассчитано устройство. Оптимальным вариантом будет 12-19 Вт. На следующем этапе извлеките из устройства непригодные батареи с помощью отвертки и разберите устройство.

  • Отсоедините ввод (размером с разъем портативного компьютера) и зачистите провода.
  • Возьмите контакты и просто припаяйте их к устройству.
  • Выберите место на устройстве для провода и просверлите его. По окончании действия сложите конструкцию и проверьте на работоспособность.

Способ №2 (реконструкция на базе сетевого блока с компьютера)

Для этого типа реконструкции подходит только сетевой блок класса АТ. Такие устройства имеют вентиляционный отсек, а также кнопки включения.и выкл. Сетевой блок используется на многих моделях компьютеров, поэтому никому не составит труда найти ненужную деталь. Затем проверьте выходной ток, он должен быть не менее 16 вольт, а мощность — 300,30 Вт.

  • Разобрать прибор и найти пластину, на которой закреплена проводка (плата).
  • Отключите защиту: найдите зеленый электронный компонент на плате и подключите его к любому другому черному проводу.
  • Найдите конструкцию с двумя черными, желтыми и красными проводами (контакты MOLEX).Присоедините или припаяйте удлинитель к желтому и черному проводам, а другую часть прикрепите к клеммам отвертки. Теперь покрутите механизм.

Отвертка переделка

(реконструкция на основе инверторной сварки)

Реконструкция шуруповерта при использовании инверторной сварки предполагает длительные проверки и расчеты на предмет исправности необходимых деталей. Сам процесс переделки не сложный, придерживается той же технологии, что и в предыдущих способах.Вам просто нужно вынуть старую батарею, а на ее место прикрепить ввод шнура к контактам. В случае инверторной сварки вам также потребуется установить вторичную обмотку.

На основании прочитанной статьи можно сказать, что достичь этой цели можно разными способами. Для этого используется ряд предметов, таких как: зарядное устройство для ноутбука, блок питания компьютера и инверторная сварка. Однако наиболее удачная и несложная реконструкция будет на основе блока питания ноутбука. Так что небольшая деталь не утяжелит аппарат и проработает долго.Будьте внимательны, все действия, связанные с электрическими приборами, обязывают соблюдать правила безопасности.

См. Преобразование аккумуляторной отвертки в сеть

Как превратить аккумуляторную отвертку в аккумуляторную

Да, использование аккумуляторных электроинструментов дает множество преимуществ. Это и практичность, и автономность, и та же эстетика. Но при использовании аккумуляторной технологии обязательно наступит день, когда аккумулятор полностью потеряет свои первоначальные характеристики. То есть аккумулятор для шуруповерта перестает держать заряд, из-за чего аккумулятор разряжается буквально в первые минуты работы.

Все бы хорошо, но производители аккумуляторных электроинструментов даже из числа именитых не выпускают отдельно аккумуляторные блоки для своей техники. Все дело в экономике. Таким образом производители стимулируют спрос на свою продукцию.

Вместо относительно недорогого нового аккумулятора человеку придется покупать новый аккумуляторный шуруповерт, что в данном случае выгодно только производственному предприятию.

Средний срок службы аккумуляторного шуруповерта не превышает 2-3 лет.По истечении этого времени электрическая батарея почти полностью теряет свою емкость. У владельца старой отвертки есть несколько способов: утилизировать старый инструмент или попытаться восстановить его работоспособность.

Сразу отметим, что «сдутый» аккумулятор у вас не получится поставить на ноги. Но вместо аккумулятора можно попробовать использовать бытовой блок питания. Для этого вам просто нужно подключить к аккумуляторному инструменту блок питания отвертки на 12 или 18 Вольт, в зависимости от типа его привода.

Подключение отвертки к внешнему источнику питания

Обратите внимание, что самоизменяющуюся отвертку можно эффективно использовать только дома, выполняя небольшой объем работы. Если речь идет об отвертке для крупной стройки или производственного предприятия, то в этом случае восстановленный кустарным способом самодельный инструмент мастеру не поможет.

Работа с поражением электрическим током всегда опасна. Приведенные ниже инструкции предназначены только для тех читателей, которые имеют хотя бы базовые знания в области электробезопасности (уровень электромонтера 2-3 категории).

Сетевой адаптер для аккумуляторного шуруповерта может быть изготовлен следующим образом:

  • Отсоедините старый аккумулятор и разберите его. Аккумулятор легко разбирается. Вам просто нужно открутить все винты по периметру крышки аккумуляторного отсека.
  • Снимаем все комплектующие АКБ. Вам нужно только оставить переходник, к которому будут припаяны сетевые провода.
  • Сравниваем характеристики электрического тока внешнего понижающего трансформатора и электродвигателя шуруповерта.Автор видео применил понижающий трансформатор на 36 (В), состоящий из 2-х катушек по 18 (В) каждая. Трансформатор имеет маркировку ТС-250-36. А система привода электроинструмента (шуруповерта) рассчитана на работу от сети 12 (В). Электрик должен был выйти из положения самым простым способом, он отключил катушки (36-18 = 18).
  • В одной из катушек была дополнительно размотана часть медного провода, что позволило снизить напряжение с 18 до 12 (В).Мастер уменьшал обмотку до тех пор, пока выходное напряжение не стало 11,2 (В). Это сделано для того, чтобы компенсировать повышение напряжения, которое произойдет после выпрямительного конденсатора.
  • Припаиваем провода вторичной обмотки к средним выводам диодного моста. Диодный мост необходим для преобразования постоянного тока в переменный пульсирующий ток. Сила тока диодного моста должна соответствовать силе тока отвертки.
  • Припаиваем провода вывода выпрямленного тока к диодному мосту.Эти контакты расположены по краям диодного моста.
  • Припаиваем к выходным проводам диодного моста заранее подготовленный кабель, который будет соединять трансформатор и саму отвертку. Лучше взять более длинный кабель, не менее 2 метров.
  • Подключаем конденсатор параллельно. Рабочее напряжение конденсатора должно быть в 2 раза больше напряжения отвертки. Емкость конденсатора должна быть не менее 470 (мкФ). Ниже представлена ​​схема вышеуказанной схемы.

Диодный мост и конденсатор лучше всего закрепить термоклеем.

  • Подключаем провод питания напрямую к клеммам отвертки. На этом этапе нужно проверить работоспособность электрической схемы.
  • Проверяем работу инструмента, параллельно контролируем напряжение. Без нагрузки напряжение может достигать 15 (В). Это нормально, так как при прямом вращении шпинделя напряжение падает до 11,5 (В), что укладывается в поле допуска.
  • Теперь вам нужно сделать проводные соединения более практичными и безопасными. Для этого припаяйте сетевой кабель к контактам съемного блока, где ранее располагался батарейный блок питания для отвертки.
  • Паяем провода соблюдая полярность.
  • Проверяем работу шуруповерта в реальных условиях.

Ниже прилагается видео, на основе которого была создана инструкция.

Дополнительная информация

Описанный выше принцип питания шуруповерта с севшим аккумулятором далеко не единственный.В инструкции показан самый простой способ. Как видите, наличие большого внешнего трансформатора портит всю эстетику и практичность инструмента, который по первоначальной задумке должен быть мобильным и легким.

Специальная плата на микросхеме IR2157 поможет сделать схему питания более профессиональной. Мастеру потребуется лишь применить в плате обмотку трансформатора, конденсатор и диодный мост, соответствующие параметрам конкретной отвертки.

Благодаря компактным размерам платы ее можно аккуратно разместить в корпусе аккумуляторного блока. Ниже прилагается вспомогательное видео, автор которого собирает своими руками плату на микросхеме IR2157, а также запитывает ею аккумуляторный шуруповерт.

Если вы не можете собрать эту плату своими руками, то не беда. IR2157 можно купить на любом радиорынке. Осталось только доработать трансформатор и диодный мост конденсатором.

Трансформатор

обычных источников питания, которые доказали свою надежность и эффективность во многих областях. Устройство состоит из понижающего трансформатора и выпрямителя, через которые проходит пониженное напряжение. Выпрямители различаются в зависимости от количества используемых диодов.

Такие элементы просты в изготовлении, дешевы и надежны. Поэтому им часто отдают предпочтение. Они обеспечивают стабильное напряжение без помех при высокой максимальной мощности. Но есть и недостатки.Главный недостаток — громоздкость и гораздо меньший КПД, чем у импульсных источников. Этот факт требует подбора блока питания шуруповерта с мощностью, большей, чем требуется инструменту. Так как часть мощности уйдет в побочные процессы.

Импульс

Принцип работы импульсных систем заключается в том, что напряжение сначала выпрямляется, а затем преобразуется в специальный импульсный сигнал. В этом случае важно добиться стабильного напряжения. В этом могут помочь обмотка трансформатора или резисторы.

Импульсные блоки питания достаточно эффективны и могут использоваться в различных условиях. В то же время они обладают высоким уровнем защиты от коротких замыканий и подобных воздействий. Однако по мощности импульсные системы явно уступают трансформаторным. К тому же такие агрегаты очень капризны к входному напряжению. Если он ниже установленного, то элемент может просто не работать.

Используем зарядку ноутбука

Отличный вариант — использовать зарядку ноутбука.Такие устройства обычно работают с напряжением от 12 до 19 В. Этого вполне достаточно для обеспечения качественной работы шуруповерта. Но не стоит пренебрегать показателями выходного тока. Чем ближе к требуемому, тем лучше.

ПОДКЛЮЧИТЬ IP КАМЕРЫ БЕЗ POE И БЕЗ КАБЕЛЬЯ ПИТАНИЯ / УСТАНОВИТЕ IP КАМЕРУ БЕЗ POE ИЛИ КАБЕЛЯ ПИТАНИЯ

В данном случае переделка шуруповерта для сетевого питания сводится к элементарной пайке проводов от зарядного устройства к плате в инструменте.Желательно все изолировать изолентой или другими подобными материалами. После этого проволока выводится и инструмент можно использовать.

Перевод отвертки на электросеть: 5 способов

Ценность отвертки как домашнего или строительного инструмента чаще всего заключается в ее портативности. Однако в силу определенных обстоятельств от переносимости иногда приходится отказываться в пользу функциональности. Речь идет о преобразовании аккумуляторной отвертки в сетевой инструмент.У этого процесса есть ряд тонкостей, которые желательно соблюдать.

Переделка купленных блоков

Он также может питаться от любых других коммерческих источников питания. Процесс переделки в этом случае будет практически таким же, однако, помимо резистора, возможно, потребуется припаять дополнительные диоды. Самое главное — добиться требуемых выходных параметров. И это легко сделать с помощью комбинации компонентов.

Переделка блока питания Китай

Идеально подходит для создания блока питания для отвертки на 12 вольт своими руками, обычных китайских блоков питания с выходным напряжением 24 В и током 9 А.Но поскольку инструменты используют меньшее напряжение, вам нужно сначала его снизить.

Для достижения цели нужно заменить оригинальный резистор R10 на регулируемый, с помощью которого можно добиться нужного напряжения. Делается это в несколько этапов:

  • снимается постоянный резистор;
  • на его место вставляется заранее подготовленный регулируемый резистор, на котором будет выставлено сопротивление 2300 Ом;
  • пока напряжение по-прежнему 24 В;
  • с помощью настроек резистора нужно добиться необходимого напряжения на контактах.

После всех манипуляций нужно проверить, что выходное напряжение соответствует требуемому значению (12 В, 14 В и т. Д.), А также что ток превышает 9 А.

Варианты питания

Любая отвертка требует гораздо меньшего напряжения, чем выдает обычная розетка. Поэтому для подзарядки вам обязательно понадобится специальный преобразователь, на выходе которого будет получаться необходимое напряжение. Все блоки питания делятся на две большие группы: импульсные и трансформаторные.Рассмотрим каждую из них отдельно.

Как передать мощность отвертки по сети

Как правильно настроить питание ноутбука от аккумулятора или сети

Главное преимущество ноутбука в том, что он может работать автономно, благодаря использованию аккумулятора. В связи с такой возможностью у многих пользователей есть свои критерии продолжительности автономной работы ноутбука.

Пользователи, которые работают много часов без подключения к сети, требуют меньшего энергопотребления ноутбука.Также для увеличения времени работы можно использовать запасной аккумулятор, который можно приобрести отдельно.

Наша статья предлагает вам ознакомиться с рекомендациями мастеров по ремонту ноутбуков по системным настройкам схем электропитания ноутбука, а также зависимости времени работы от некоторых характеристик.

Автономная работа любого ноутбука зависит от ряда факторов и настроек системы:

Емкость аккумуляторной батареи, указанная на паспортной табличке;

Состояние заряда аккумулятора;

Количество и характеристики задач, которые выполняются на портативном компьютере.

Системные значки, а именно «состояние батареи», необходимы для определения уровня заряда, а также оставшегося времени работы. В автономном режиме при низком уровне заряда батареи требуется подключение к источнику питания. Операционная система Windows 7 позволяет пользователю получить наиболее точную информацию об аккумуляторе и состоянии аккумулятора. Системные значки отображаются в правой части области «панели задач», а также индикатор заряда батареи, который в некоторых случаях может иметь несколько индикаторов.Каждый индивидуальный показатель относится к одному из автономных источников питания. Соответственно, один уровень заряда говорит о том, что у вашего ноутбука только один источник энергии (аккумулятор), если таких индикаторов заряда несколько, то источников питания несколько.

Чтобы проверить данные о заряде аккумулятора, просто наведите указатель мыши на значок соответствующей системы. В появившемся окне уведомлений вы увидите уровень заряда, который отображается в процентах, а также оставшийся срок службы батареи, который отображается в времени и минутах.Уведомление о состоянии батареи в некоторых мобильных устройствах может сразу отображаться на рабочем столе, а не в области «панели задач». Значок состояния батареи показывает процентное значение соответствующим цветом. Таким образом, когда аккумулятор заряжен более чем на 25%, мы можем наблюдать зеленый цвет значка.

Пока уровень заряда падает ниже 25%, мы видим желтый треугольник с восклицательным знаком внутри на значке системы. Когда заряд падает до 10 процентов, значок меняет цвет на оранжевый.Значок системы отображает уровень заряда батареи 7% с красным крестом в виде буквы «х» и дополнительным уведомлением о необходимости подключения источника питания от аккумулятора, а при 5% ваш ноутбук перейдет в особый «спящий режим». режим. Все содержимое рабочего стола сохраняется на жестком диске в памяти компьютера, но питание ноутбука отключено.

Для проверки уровня заряда аккумулятора нажмите на системный значок «состояние аккумулятора», в результате на экране появится окно с индикаторами всех имеющихся аккумуляторов.При этом индикатор имеет в своей структуре множество полезных функций, это и уровень заряда аккумулятора, и выбор, установка или создание схемы электропитания ноутбука, и установка общей яркости экрана, и использование параметров, позволяющих экономить энергопотребление.

Предлагаем вашему вниманию подробное описание всех вариантов настройки схемы электропитания ноутбука. Как мы уже говорили, время автономной работы мобильного компьютера — один из основополагающих критериев выбора и покупки ноутбука.И вы можете увеличить это время, используя стандартные настройки, задав свои особые параметры для схемы электропитания ноутбука. Эти планы представляют собой набор характеристик того, как система управляет мощностью. Этот контроль включает в себя различные параметры, от которых зависит процесс потребления энергии. Таких планов управления несколько, и они зависят от того, как и с какой интенсивностью вы работаете, а также от того, подключен ли ваш компьютер к электросети power или нет. Так, например, вы можете установить период времени, по истечении которого монитор будет выключаться, а затем выключить жесткий диск.Эта настройка довольно важна в тот момент, когда вы выходите из ноутбука, но заряд аккумулятора останется, так как энергопотребление автоматически отключится через заданное время. Стандартные схемы электропитания позволяют выбрать один из трех вариантов:

Максимально сэкономить потребление энергии и увеличить время работы; 2. Обеспечить максимальную производительность системы; 3. Сбалансированная работа компьютера. Каждый пользователь может выбрать такой вариант, который максимально удовлетворит его потребности.Эти же схемы можно настраивать, и вы можете изменить любой параметр для своих конкретных целей. Некоторые производители могут иметь более стандартные схемы блоков питания. Как правило, загрузка и работа в любой операционной системе происходит по умолчанию по схеме сбалансированного питания и . Иногда для восстановления работоспособности аккумулятора требуется ремонт компьютера.

Энергетический план «Сбалансированный». Данная схема направлена ​​на то, чтобы система работала максимально быстро, но при этом экономит энергию в то время, когда вы НЕ выполняете никаких активных действий, то есть НЕ работаете.

План энергосбережения. Он заключается в том, что система потребляет минимальное количество энергии, а экономия достигается за счет более низкой производительности ПК. Основная цель этого плана управления питанием — максимально увеличить время безотказной работы.

Энергетический план «Высокая производительность». Такая схема питания нацелена на максимальное повышение эффективности ПК. Основным требованием данной схемы можно считать то, что ноутбук должен быть подключен к источнику питания сети и вашему ПК не нужно экономить заряд аккумулятора.Если данная схема используется пользователем при автономной работе ПК, то можно отметить быструю разрядку аккумулятора. В операционной системе Windows 7 по умолчанию используется шаблон высокой производительности, который НЕ отображается в индикаторе системы.

Для отображения данной схемы при последующем включении необходимо:

Откройте индикатор заряда аккумулятора;

Откройте ссылку «Дополнительные параметры питания»;

В окне «Электроснабжение» необходимо выбрать термин и щелкнуть по нему мышью «Показать дополнительные планы».

Как мы уже определили, каждый план управления питанием имеет множество параметров, которые задают системе, как управлять потребляемой мощностью, когда и через какой период времени отключать определенные функции, которые не используются. В том случае, если стандартные настройки этих планов вам не подходят, вы можете создать свои, при этом полагаясь на стандартные параметры. Вы можете настроить каждую схему электропитания в разделе «Электропитание». Изменение как основных, так и дополнительных параметров поможет вам оптимизировать ваш ноутбук и его производительность в соответствии с характером вашей работы и использованием вашего ПК.

Для облегчения возврата к стандартным настройкам параметров рекомендуем создавать новые схемы питания, а не менять стандартные. Для того, чтобы поменять цепи между собой, нужно на индикаторе установить переключатели нужных цепей. Для того, чтобы изменить какие-либо параметры одной из схем, вам необходимо перейти по ссылке «Дополнительные параметры питания», которая откроет окно настроек «Параметры электропитания».

Это окно позволяет не только сделать выбор из существующих планов, но и перенастроить любой план.Окно также содержит ползунок внизу, позволяющий изменять яркость экрана, который изменяет яркость изображения. По мере увеличения яркости экрана батарея разряжается. В левой части этого окна вы можете настроить отдельные параметры, которые будут действительны независимо от того, какую схему вы выберете. Наиболее актуальны настройки действий при нажатии кнопки питания, спящий режим или действия с крышкой ноутбука. Таким образом, система может переходить в спящий режим при закрытии крышки или нажатии кнопки «Спящий» для экономии заряда аккумулятора.Стоит отметить, что эти настройки отличаются для автономной работы ноутбука или работы от источника питания сети и вам необходимо настроить эти параметры.

Кнопка перехода в спящий режим, кнопка питания или закрытие крышки может вызвать одно из следующих событий:

«Никаких действий не требуется», что означает, что система не будет вносить никаких изменений в ПК;

«Спящий», обеспечивает переход ПК в спящий режим. Таким образом достигается значительное сокращение использования энергии батареи, несмотря на то, что все рабочие функции сохраняются в оперативной памяти ноутбука;

«Гибернация» означает, что компьютер автоматически переходит в режим гибернации.В это время все открытые документы и программы сохраняются на жесткий диск (в отличие от «спящего» режима), а портативный компьютер выключается. Этот режим предусматривает минимальное потребление энергии. Рекомендуется использовать этот режим, если нет возможности зарядить аккумулятор и вы не будете работать на этом ПК в течение длительного времени;

Окончание работы. Ноутбук автоматически выключится. Когда ноутбук переходит в спящий режим, система может запросить пароль.Вы можете настроить этот параметр в окне «Защита паролем при пробуждении». Практически все настройки яркости экрана, затемнения или выключения дисплея необходимо настроить, чтобы ноутбук работал как от батареи, так и от сети. Вы можете установить время выключения дисплея в следующем окне «Электропитание» = «Настройка выключения дисплея» = новое окно «Изменить параметры плана». Здесь нужно выбрать, по истечении какого времени система будет автоматически затемнять и выключать дисплей. Это время всегда отсчитывается с того момента, когда вы перестали выполнять какие-либо действия на ПК.

Следующая настройка относится к применению «спящего режима». Это позволяет вам сохранить свою работу так, как вы ее оставили, но в то же время ваш компьютер значительно экономит потребление энергии. Также для экономии заряда аккумулятора вы можете отрегулировать яркость дисплея, потому что чем она ниже, тем меньше потребление энергии. Для ЭТИХ целей вам нужно использовать ползунок яркости.

Ссылка «Изменить дополнительные параметры power settings» позволяет настроить все параметры питания. При нажатии на ссылку откроется новое окно, в котором будет расположен диалог «Блок питания».Как правило, стандартные настройки и параметры позволяют настроить работу системы, ее производительность и расход батареи под конкретные цели и работу. Но также может случиться так, что вам понадобится создать свой собственный план электропитания. Для этого есть отдельная ссылка «Создать план power ». Диалог будет похож на название ссылки. Прежде всего, вы должны придумать и ввести название вашего плана в соответствующие временные рамки, а затем выбрать, на основе каких стандартных параметров вы его создадите.

Затем нажимаем «Далее», после чего открывается окно «Изменить параметры плана». В этом окне вам нужно настроить основные параметры питания, а затем сохранить свой план. Все дополнительные параметры доступны для изменения в разделе «Электропитание». После ЭТИХ действий ваш план появится на индикаторе рядом с остальными стандартными планами power .

Используем зарядку ноутбука

Отличный вариант — использовать зарядку ноутбука. Такие устройства обычно работают с напряжением от 12 до 19 В.Этого вполне достаточно, чтобы обеспечить качественную работу шуруповерта. Но не стоит пренебрегать показателями выходного тока. Чем ближе он к требуемому, тем лучше.

В данном случае переделка шуруповерта для сетевого питания сводится к элементарной пайке проводов от зарядного устройства к плате в инструменте. Желательно все изолировать изолентой или другими подобными материалами. После этого проволока выводится и инструмент можно использовать.

Переделка купленных блоков

Он также может питаться от любых других коммерческих источников питания.Процесс переделки в этом случае будет практически таким же, однако, помимо резистора, возможно, потребуется припаять дополнительные диоды. Самое главное — добиться требуемых выходных параметров. И это легко сделать с помощью комбинации компонентов.

Трансформатор

обычных источников питания, доказавших свою надежность и эффективность во многих областях. Устройство состоит из понижающего трансформатора и выпрямителя, через которые проходит пониженное напряжение.Выпрямители могут отличаться в зависимости от количества используемых диодов.

Такие элементы просты в изготовлении, дешевы и надежны. Поэтому им часто отдают предпочтение. Они обеспечивают стабильное напряжение без помех при высокой максимальной мощности. Но есть и несколько недостатков. Главный недостаток — громоздкость и гораздо меньший КПД, чем у импульсных источников. Этот факт требует подбора блока питания шуруповерта большей мощности, чем требуется для инструмента.Так как часть мощности уйдет в побочные процессы.

Необходимые материалы и инструмент

Материалы и инструменты для переделки шуруповерта полностью зависят от типа инструмента и типа источника питания, а также его особенностей. Но если обобщить, можно выделить несколько основных инструментов:

  • Отвертки;
  • Плоскогубцы;
  • Нож;
  • Изоляционные материалы;
  • Кабель электропитания;
  • Паяльник и паяльные материалы;
  • Любой футляр для будущего блока питания.

Варианты питания

Любая отвертка требует гораздо меньшего напряжения, чем выдает обычная розетка. Поэтому для подзарядки вам обязательно понадобится специальный преобразователь, на выходе которого будет получаться необходимое напряжение. Все источники питания power делятся на две большие группы: импульсные и трансформаторные. Рассмотрим каждую из них отдельно.

Импульс

Принцип работы импульсных систем заключается в том, что напряжение сначала выпрямляется, а затем преобразуется в специальный импульсный сигнал.В этом случае важно добиться стабильного напряжения. В этом могут помочь обмотка трансформатора или резисторы.

Импульсные блоки питания достаточно эффективны и могут использоваться в различных условиях. кроме того, они обладают высоким уровнем защиты от коротких замыканий и подобных воздействий. Однако по мощности импульсные системы явно уступают трансформаторным. К тому же такие агрегаты очень капризны к входному напряжению. Если он ниже установленного, то элемент может просто не работать.

Как сделать самому

Перед переделкой отвертки необходимо четко определиться, какой мощности и какого напряжения нужен инструмент для работы. От этого и нужно будет исходить.

Затем корпус инструмента открывается. Две половинки корпуса можно скрепить саморезами или клеем. При разборке очень пригодится нож.

После вскрытия корпуса внутрь вставляется блок питания или провод, контакты которого нужно припаять к зарядному устройству.Пайка должна быть максимально эффективной, с применением Особых растворов.

Другой конец провода должен быть рассчитан на питание. Значит должна быть вилка. Рекомендуется заранее проделать в корпусе отверстие, через которое будет проходить кабель.

Самодельный блок питания можно получить несколькими способами. В любом случае вы получите полноценный инструмент, с помощью которого сможете выполнять работу после подключения к сети. Желательно заранее подготовить схему, которая поможет НЕ ошибаться при создании блока.

Перевод отвертки на электросеть: 5 способов

Ценность отвертки как домашнего или строительного инструмента чаще всего заключается в ее портативности. Однако в силу определенных обстоятельств от переносимости иногда приходится отказываться в пользу функциональности. Речь идет о преобразовании аккумуляторной отвертки в сетевой инструмент. Этот процесс имеет ряд тонкостей, которые желательно соблюдать.

Блок питания компьютера

Можно сделать отвертку от сети используя ненужный блок питания от компа.Типов таких приспособлений много, но почти все они подходят для отвертки. Нужные провода можно найти по цвету, уточняйте на сайте производителя.

Блоки питания

от компьютеров отличаются своей прочностью, улучшенной защитой от перегрузок и множеством других преимуществ. Они могут быть НЕ очень удобными из-за своего размера, но длинный провод поможет решить эту проблему.

Порядок подключения блока питания компьютера к отвертке :

  • Разобрать блок;
  • Снять защиту от включения, отсоединив зеленый провод от платы;
  • Этот провод должен быть подключен к черному разъему на устройстве;
  • Разъедините все провода, кроме желтого и черного;
  • Эти два провода припаяны к удлинительному кабелю;
  • Другой конец кабеля подключается непосредственно к отвертке;
  • Все открытые контакты по возможности изолированы.

Таким образом, блок питания для отвертки на 14 вольт получится от компьютерного устройства.

Выход есть. переделка шуруповерта в сети

Да, при этом теряется одно из преимуществ аккумуляторных инструментов. мобильность. Но для работы в помещениях с выходом в сеть 220 вольт это отличный выход. Тем более, что вы даете новую жизнь сломанному инструменту.

Существует две концепции создания сети из аккумуляторного шуруповерта:

Использование блока питания от персонального компьютера

На радиорынке можно за небольшую плату приобрести старый блок питания от персонального компьютера.Нам нужна версия формата «AO», которую нужно было отключать ключом после выхода из операционной системы.

Опытные пользователи запомнили такие системные блоки. Плюс такого БП еще и в том, что он указывает на честное питание. Если там указано 300 Вт, то вы можете безопасно отключить 15-16 ампер от 12-вольтового выхода (опять же, ссылаясь на закон Ома). Этого достаточно для питания средней отвертки .

Такие блоки имеют в комплекте кнопку включения. Еще одно преимущество — наличие охлаждающего вентилятора и продвинутой системы защиты от перегрузок.

Если вы спрячете блок питания power в красивом футляре, не забудьте оставить отверстие для вентиляции.

Подключение очень простое. Черный провод (-), желтый провод (12В).

Ограничения. отвертка с напряжением питания выше 14 вольт НЕ подойдет.

Изготовление самодельного блока питания

Если вы знакомы с принципами построения электрических схем, вы можете сделать свой собственный блок питания. Схема, дающая общие понятия.на иллюстрации.

Трансформатор можно взять от старого лампового телевизора или другой бытовой техники. Мощность 220 вольт 250-350Вт. Главное — блок питания. доноры не должны быть импульсными.

Напряжение на вторичной обмотке 24-30 вольт. Вторичная обмотка выполняется из провода соответствующего сечения.

Однако, если ток выходной обмотки не менее 15 ампер (см. Спецификацию трансформатора). не о чем беспокоиться.

После потерь на диодном мосту (1-1,5 В на диоде) вы получите необходимое выходное значение.

Если у вас есть электротехническое образование. Расчет произведем самостоятельно. Или практически: подключив в качестве нагрузки лампу накаливания 220 вольт 100 Вт, измерив выходное напряжение. E

Если он превышает требования отвертки. Уменьшите количество витков вторичной обмотки трансформатора.

Встраиваем готовый блок питания

Для этого необходимо приобрести готовый блок с подходящими характеристиками и габаритами.На радиорынке таких товаров достаточно.

Возьмите труп с собой и идите на примерку. Когда желаемый источник питания приобретен. осторожно отделите его от корпуса.

Вставив отвертку в батарейный отсек. Все компоненты должны быть надежно закреплены.

При необходимости удлините провода между платой управления и трансформатором. Если во время работы цепь коснется металлических частей трансформатора, произойдет короткое замыкание.

Так как место в корпусе позволяет.разложив плату и трансформатор для лучшего охлаждения. Какой бы качественный блок питания вы ни выбрали, нагрузка будет высокой и возможен перегрев.

Не лишним будет закрепить на микросхемах управления питанием дополнительные радиаторы. Долго поработайте отверткой, отключите ее и коснитесь радиодеталей на плате управления.

Вы сами разберетесь, какие элементы нуждаются в отводе тепла. В корпусе могут быть выполнены отверстия для циркуляции воздуха.

Переделка блока питания своими руками не займет много времени, а стоимость приобретенного модуля несопоставима с восстановлением работоспособности аккумулятора.

Внешний источник питания

Идея Не так абсурдна, как может показаться. Даже большой и тяжелый понижающий выпрямитель может просто стоять возле розетки.

Вы одинаково привязаны к блоку питания и к застрявшей сетевой вилке. А низковольтный кабель может быть любой длины.

ВАЖНО! Закон Ома гласит. с той же мощностью, уменьшая напряжение. Увеличьте ток! Соответственно, шнур питания на 12-19 вольт должен иметь сечение больше 220 вольт.

Недостатки батареи

  • Требуется регулярная подзарядка.Рано или поздно батареи разрядятся.
  • Чем дешевле инструмент, тем быстрее придет время доработки.

В этом нет ничего плохого, но вы должны знать, что производитель экономит столько же, сколько и вы. Поэтому самый дорогой блок (а это аккумулятор) в комплекте будет самым дешевым.

В итоге получаем отличный инструмент с исправным мотором и НЕ изношенным редуктором, который не работает из-за некачественного аккумулятора.

Есть возможность приобрести новый комплект батарей или заменить неисправные батареи в приборе. Однако это мероприятие бюджетное. Стоимость сопоставима с покупкой новой отвертки.

Второй вариант — использовать запасной или старый аккумулятор от автомобиля (если он у вас есть). Но стартерная батарея тяжелая, и пользоваться таким тандемом не очень комфортно.

Переделка шуруповерта своими руками

Рассмотрим вариант с удаленным блоком питания.

Переоборудование аккумуляторной отвертки на электросеть

Те, кто пользовался аккумуляторной отверткой , оценили ее удобство.В любой момент, не запутываясь в проводах, можно залезть в труднодоступные ниши. Пока батарея не разрядится.

Адаптер переменного тока для отвертки

в батарейном отсеке

Если ваш инструмент НЕ слишком мощный, в ручку или футляр можно поместить блок питания от поврежденных аккумуляторов.

Причины, по которым нужно переделать отвертку

Очень удобно работать отверткой. Особенно, когда требуется открутить или затянуть значительное количество шурупов.Удаление сотен или двух винтов вручную может превратить ремонт в ад. Электроинструмент упрощает процесс до невозможности. сверх, если он питается от аккумуляторной батареи, что обеспечивает мобильность и возможность носить отвертку где угодно.

Увы, минусы тоже есть. Самое важное — это короткое время работы. При больших нагрузках аккумулятор разряжается через полчаса или час, а зарядка занимает сопоставимое или более длительное время. В результате вам придется большую часть дня ждать, пока инструмент будет готов.Кроме того, заряд аккумулятора часто ограничивает мощность устройства. В конце концов, самые простые действия требуют много сил и времени.

Кроме того, аккумуляторная отвертка требует особой осторожности при длительных перерывах в использовании. Дело в том, что аккумуляторы очень требовательны к хранению и последующему приведению в рабочее состояние. В общей сложности на подготовку инструмента для затягивания дюжины винтов на пять минут уходит несколько часов.

Установка батареи также увеличивает вес инструмента.Пользоваться им становится сложнее, особенно на весу. Все это заставляет задуматься, как переделать аккумуляторный шуруповерт, чтобы повысить его эффективность.

Требования к источнику питания

Аккумуляторная отвертка Модели питаются от аккумулятора, поэтому напряжение во внутренней сети устройства сильно отличается от штатного показателя бытового блока питания. Если на розетке 220 вольт, то внутри прибора всего 12 вольт. Понятно, что без трансформатора заставить его работать невозможно.точно, это возможно, но только на очень короткий момент короткого замыкания, после которого компоненты электрической части выйдут из строя.

Кроме того, батареи могут работать только на постоянном токе. А в обычной электрической сети ток переменный. Это означает, что вам также потребуется собрать выпрямитель. Только после этого можно думать о внесении изменений в конструкцию отвертки.

Однако по-прежнему необходимо обеспечить падающую нагрузочную характеристику.Это нужно для того, чтобы при резком увеличении нагрузки инструмент НЕ вышел из строя. Кроме того, желательно использовать имеющиеся элементы, которые впоследствии легко подлежат замене в случае необходимости. Затем, вместо того, чтобы думать о том, как выбрать аккумуляторный шуруповерт, вы можете просто собрать свой собственный инструмент из имеющейся модели аккумулятора.

Следует отметить, что в идеальном случае блок питания в сборе также должен быть надежным, а также иметь небольшие габариты и вес. Такое сочетание характеристик позволит вам использовать постоянное питание от сети, сохраняя при этом мобильность устройства.

Приборный прибор

Прежде чем приступить к переделке шуруповерта, необходимо разобраться в ее устройстве. В любом таком инструменте можно выделить две части: механическую и электрическую. Первый состоит из двигателя, редуктора, шпинделя и патрона, второй включает в себя трансформатор, управляющую микросхему, кнопку пуска, переключатель направления вращения и источник питания (аккумулятор), соединенный проводами.

Желательно разобраться в принципах работы элементов электрической схемы шуруповерта.В противном случае можно просто сжечь устройство, попробовав подключить его не к той нагрузке. Поэтому перед тем, как подключить шуруповерт к сети, следует убедиться в правильности подключения компонентов и проверить их соответствие рекомендуемым значениям для электродвигателя.

Блок-схема

Система будет основана на трансформаторе. Можно взять доступные 60-ваттные модели, которые выпускает Feron или Taschibra. Конечно, мы можем использовать и другие бренды. Однако эти образцы довольно распространены и обычно отличаются приемлемым качеством и доступной ценой.

Для сборки выпрямителя традиционно используется пара или четыре диода. Меньшее количество приводит к более эффективному использованию энергии. Но для этого потребуется отвод от середины обмотки трансформатора. Дополнительное сглаживание возможных высокочастотных колебаний осуществляется установкой на выходе пары конденсаторов: керамического и электролитического. Их следует монтировать параллельно. Вам также необходимо добавить резисторы, чтобы гарантировать запуск работы. Если их не установить, то питание шуруповерта от сети будет бесполезным, трансформатор просто не заработает, так как он предназначен для питания ламп.Также рекомендуется включить на этом участке сети светодиод, который будет служить индикатором работы.

Подключить шуруповерт к электросети

Отвертка выручит во многих сложных ситуациях. Но иногда нужна помощь самому средству. Например, если вам нужно заменить блок питания на и научить аккумуляторную модель работать от штатной розетки.

Советы по сборке

Оптимальный вариант — установить все элементы в корпус использованного аккумулятора.Это позволяет решить сразу несколько задач. Прежде всего, не стоит беспокоиться о корпусе блока питания. К тому же такая компоновка обеспечивает довольно простое подключение и позволяет использовать полноценные аккумуляторы. Наконец, это просто удобно.

Вы можете самостоятельно превратить устаревшую аккумуляторную отвертку в удобный инструмент. А это значит, что работу по дому выполнять станет намного проще.

Причины, по которым нужно переделать отвертку

Очень удобно работать отверткой.Особенно, когда требуется открутить или затянуть значительное количество шурупов. Удаление сотен или двух винтов вручную может превратить ремонт в ад. Электроинструмент упрощает процесс до невозможности. сверх, если он питается от аккумуляторной батареи, что обеспечивает мобильность и возможность носить отвертку где угодно.

Увы, минусы тоже есть. Самое важное — это короткое время работы. При больших нагрузках аккумулятор разряжается через полчаса или час, а зарядка занимает сопоставимое или более длительное время.В результате вам придется большую часть дня ждать, пока инструмент будет готов. Кроме того, заряд аккумулятора часто ограничивает мощность устройства. В конце концов, самые простые действия требуют много сил и времени.

Кроме того, аккумуляторная отвертка требует особой осторожности при длительных перерывах в использовании. Дело в том, что аккумуляторы очень требовательны к хранению и последующему приведению в рабочее состояние. В общей сложности на подготовку инструмента для затягивания дюжины винтов на пять минут уходит несколько часов.

Установка батареи также увеличивает вес инструмента. Пользоваться им становится сложнее, особенно на весу. Все это заставляет задуматься, как переделать аккумуляторный шуруповерт, чтобы повысить его эффективность.

Требования к источнику питания

Аккумуляторные модели шуруповертов питаются от аккумулятора, поэтому напряжение во внутренней сети устройства сильно отличается от штатного показателя бытового блока питания. Если на розетке 220 вольт, то внутри прибора всего 12 вольт.Понятно, что без трансформатора заставить его работать невозможно. точно, это возможно, но только на очень короткий момент короткого замыкания, после которого компоненты электрической части выйдут из строя.

Кроме того, батареи могут работать только на постоянном токе. А в обычной электрической сети ток переменный. Это означает, что вам также потребуется собрать выпрямитель. Только после этого можно думать о внесении изменений в конструкцию отвертки.

Однако по-прежнему необходимо обеспечить падающую нагрузочную характеристику. Это нужно для того, чтобы при резком увеличении нагрузки инструмент НЕ вышел из строя. Кроме того, желательно использовать имеющиеся элементы, которые впоследствии легко подлежат замене в случае необходимости. Затем, вместо того, чтобы думать о том, как выбрать аккумуляторный шуруповерт, вы можете просто собрать свой собственный инструмент из имеющейся модели аккумулятора.

Следует отметить, что в идеальном случае блок питания в сборе также должен быть надежным, а также иметь небольшие габариты и вес.Такое сочетание характеристик позволит вам использовать постоянное питание от сети, сохраняя при этом мобильность устройства.

Приборный прибор

Прежде чем приступить к переделке шуруповерта , необходимо разобраться в ее устройстве. В любом таком инструменте можно выделить две части: механическую и электрическую. Первый состоит из двигателя, редуктора, шпинделя и патрона, второй включает в себя трансформатор, управляющую микросхему, кнопку пуска, переключатель направления вращения и источник питания (аккумулятор), соединенный проводами.

Желательно разобраться в принципах работы элементов электрической схемы шуруповерта. В противном случае можно просто сжечь устройство, попробовав подключить его не к той нагрузке. Поэтому перед тем, как подключить шуруповерт к сети, следует убедиться в правильности подключения компонентов и проверить их соответствие рекомендуемым значениям для электродвигателя.

Блок-схема

Система будет основана на трансформаторе.Можно взять доступные 60-ваттные модели, которые выпускает Feron или Taschibra. Конечно, мы можем использовать и другие бренды. Однако эти образцы довольно распространены и обычно отличаются приемлемым качеством и доступной ценой.

Для сборки выпрямителя традиционно используется пара или четыре диода. Меньшее количество приводит к более эффективному использованию энергии. Но для этого потребуется отвод от середины обмотки трансформатора. Дополнительное сглаживание возможных высокочастотных колебаний осуществляется установкой на выходе пары конденсаторов: керамического и электролитического.Их следует монтировать параллельно. Вам также необходимо добавить резисторы, чтобы гарантировать запуск работы. Если их не установить, то питание шуруповерта от сети будет бесполезным, трансформатор просто не заработает, так как предназначен для питания ламп. Также рекомендуется включить на этом участке сети светодиод, который будет служить индикатором работы.

Подключить шуруповерт к электросети

Отвертка выручит во многих сложных ситуациях.Но иногда нужна помощь самому средству. Например, если вам нужно заменить блок питания и научить модель аккумулятора работать от штатной розетки.

Советы по сборке

Оптимальный вариант — установить все элементы в корпус использованного аккумулятора. Это позволяет решить сразу несколько задач. Прежде всего, не стоит беспокоиться о корпусе блока питания. К тому же такая компоновка обеспечивает довольно простое подключение и позволяет использовать полноценные аккумуляторы.Наконец, это просто удобно.

Вы можете самостоятельно превратить устаревшую аккумуляторную отвертку в удобный инструмент. А это значит, что работу по дому выполнять станет намного проще.

Изолирующие трансформаторы

обеспечивают гальваническую развязку

Традиционная однофазная силовая проводка состоит из горячего провода, нейтрального провода и заземляющего провода. Когда несколько физически разделенных устройств используют общую линию питания, возможно создание контуров заземления из-за устройств, имеющих разные потенциалы заземления.Эти контуры заземления особенно проблематичны в медицинских устройствах и могут создавать проблемы во время тестирования устройства. Разработчикам сложно измерить контуры заземления с помощью устройств, использующих выпрямленное линейное напряжение. Заземленное испытательное оборудование, такое как осциллографы, может случайно вызвать короткое замыкание в источниках питания в этих устройствах. Кроме того, высокочастотный шум может распространяться по линиям питания переменного тока, вызывая проблемы для чувствительных датчиков и инструментов.

Всех этих проблем можно избежать, правильно применив изолирующие трансформаторы между вводом питания и устройством.

Изолирующие трансформаторы

обеспечивают разделение с заземлением линии электропередачи для устранения контуров заземления и случайного заземления испытательного оборудования. Они также подавляют высокочастотный шум от источника питания.

В этой статье обсуждаются характеристики, критерии выбора и применение изолирующих трансформаторов на примере устройств от Hammond Manufacturing, Bel / Signal Transformer и Triad Magnetics.

Как работают изолирующие трансформаторы

Изолирующие трансформаторы обеспечивают гальваническую развязку между линиями питания переменного тока (сетью) и устройством с питанием.Это означает, что между двумя обмотками нет пути постоянного тока. Они служат трем основным целям:

  • Первый изолирует вторичную обмотку от земли (земли)
  • Второй — для повышения или понижения линейного (сетевого) напряжения
  • Третий — уменьшить линейный шум, передаваемый от первичного к вторичному или наоборот.

Изолирующие трансформаторы — это прежде всего трансформаторы, и они имеют общие характеристики трансформаторов (рис. 1).Первичная и вторичная обмотки намотаны на общий ферромагнитный сердечник.

Рисунок 1: Схема простого силового трансформатора, состоящего из первичной обмотки N P витков и вторичной обмотки N S витков на общем ферромагнитном сердечнике. (Источник изображения: Digi-Key Electronics)

На рисунке первичная обмотка имеет N P витков, намотанных вокруг сердечника, а вторичная обмотка имеет N S витков. Соотношение между первичным (V P ) и вторичным напряжением (V S ) показано в уравнении 1:

.

Уравнение 1

Если на первичной обмотке больше витков, чем на вторичной, то напряжение на вторичной обмотке будет меньше, чем на первичной.Это понижающая конфигурация. Если количество витков на первичной обмотке меньше количества витков на вторичной, тогда вторичное напряжение будет выше, чем на первичной, что приведет к повышающей конфигурации. Большинство изолирующих трансформаторов имеют одинаковое количество витков первичной и вторичной обмоток, поэтому первичные и вторичные напряжения одинаковы.

Энергия сохраняется в трансформаторах, поэтому, если не учитывать потери, произведение V P и первичного тока (I P ) будет равно произведению V S и вторичного тока (I S ). .Трансформаторы рассчитываются как произведение действующего напряжения первичной обмотки на среднеквадратичное значение первичного тока. Это «полная мощность», измеряемая в вольт-амперах или ВА.

Точки на схеме — это точки фазировки, которые показывают направления первичного и вторичного тока. Ток, протекающий в первичной точечной стороне обмотки, приводит к вторичному току, выходящему из точечной стороны обмотки, как показано на схеме. Это важно, если обмотки должны быть размещены последовательно или параллельно.Несоблюдение фазировки обмотки может привести к ошибкам.

Экран Фарадея — это электростатический экран, который уменьшает емкость между первичной и вторичной обмотками и обычно заземляется. Экран снижает амплитуду синфазного шума и переходных процессов через трансформатор.

Первичная и вторичная обмотки изолирующего трансформатора хорошо изолированы, чтобы минимизировать прямую проводимость между ними. Мерой эффективности этой изоляции является ток утечки.Большинство изолирующих трансформаторов также проверяются с помощью тестеров с высоким потенциалом или высокого напряжения. Они подают высокое напряжение на изоляцию при проверке утечки тока.

Физическая структура изолирующего трансформатора может иметь несколько форм, включая структуру типа оболочки (рисунок 2). Здесь первичная и вторичная обмотки концентрически намотаны изолирующим слоем, а экран Фарадея вставлен между двумя слоями.

Рис. 2: Разрез изолирующего трансформатора, использующего конструкцию оболочки, в которой первичная и вторичная обмотки концентрически намотаны изолирующим слоем, а экран Фарадея вставлен между двумя слоями.(Источник изображения Digi-Key Electronics)

Экран Фарадея может быть выполнен в виде слоя фольги или в виде близкорасположенной обмотки, как показано. Заземление обычно осуществляется со стороны первичной обмотки, на заземление. Поскольку в первичной и вторичной обмотках уже используется эмалированный провод, такая конструкция называется «с двойной изоляцией».

В качестве альтернативы, обмотки могут быть размещены на сердечнике рядом друг с другом, что называется конструкцией «разъемной катушки», или намотаны на тороидальный сердечник.

Коммерческие разделительные трансформаторы

Изолирующие трансформаторы могут быть распределены с открытыми рамами или могут быть заключены в экранированную конструкцию (рисунок 3).Изолирующий трансформатор 171E производства Hammond Manufacturing имеет экранированный корпус. Экраны торцевых крышек содержат магнитное поле трансформатора, а также служат для минимизации наводок от полей, внешних по отношению к трансформатору. Этот трансформатор на 500 ВА, 1: 1 также включает в себя пигтейл, NEMA, трехпроводные заземленные входные и выходные разъемы и встроенный автоматический выключатель перегрузки.

Хотя заземление подключено к вторичному выходному разъему, оно не будет использоваться в большинстве приложений с изолирующими трансформаторами.Этот трансформатор имеет ток утечки менее 60 микроампер (мкА) между первичной и вторичной обмотками при номинальном входном напряжении.

Рисунок 3: Пример изолирующего трансформатора с экраном, закрывающим торцевые крышки трансформатора. (Источник изображения: Hammond Manufacturing)

DU1 / 4 от Bel / Signal Transformer — это изолирующий трансформатор на 250 ВА, в котором используется конструкция с открытой рамой и двойным набором многоотводных обмоток. Имеются две первичные и две вторичные обмотки (рисунок 4).

Рисунок 4: Сигнальный трансформатор / сигнальный трансформатор DU1 / 4 — это изолирующий трансформатор с открытой рамой и двойным набором ответвлений первичной и вторичной обмоток. (Источник изображения: Bel / Signal Transformer)

Первичная и вторичная обмотки одинаково рассчитаны на 0, 104, 110 и 120 вольт. Это разрешает последовательное или параллельное соединение первичной или вторичной обмотки. Таким образом, номинальное соотношение 1: 1 может поддерживаться для входов с напряжением 110 или 220 вольт. Также можно настроить повышающий трансформатор с 110 вольт до 220 вольт или понижающий трансформатор с 220 вольт до 110 вольт.Кроме того, многоотводные обмотки допускают промежуточные значения напряжения, такие как 208 вольт, 214 вольт или 230 вольт (рисунок 5).

Силовые соединения для этого трансформатора осуществляются с помощью винтовых зажимов.

Рис. 5. Двойная обмотка DU1 / 4 допускает множество возможных конфигураций проводки, включая соотношение напряжений 1: 1, 2: 1, 1: 2. (Источник изображения: Digi-Key Electronics)

Если первичная и вторичная обмотки соединены последовательно, трансформатор имеет соотношение напряжений 1: 1 для входного напряжения 220 В.Если первичная и вторичная обмотки соединены параллельно, то в результате будет получено соотношение напряжений 1: 1 для 110 вольт с удвоенным доступным током по сравнению с одиночной обмоткой. Если первичные обмотки размещены последовательно, а вторичные — параллельно, первичное напряжение понижается в два раза. Если вторичная обмотка подключена последовательно, а первичная — параллельно, то реализуется повышение 2: 1.

Изоляция медицинская

Изолирующие трансформаторы, предназначенные для медицинского применения, должны соответствовать более строгим требованиям в отношении токов утечки.Существуют спецификации максимального тока утечки для утечки на землю или на землю, утечки через корпус и утечки через пациента. Утечка на землю относится к токам утечки в заземляющем проводе устройства. Токи оболочки описывают токи, которые текут от открытой проводящей поверхности к земле через проводник, отличный от заземляющего провода. Утечка через пациента — это ток, который протекает через пациента на землю при нормальном подключении к устройству. Большинство устройств этой категории сертифицированы в соответствии с UL / IEC 60601-1.

Модель MD-500-U компании

Triad Magnetics — изолирующий трансформатор на 500 ВА, предназначенный для использования в медицине (рис. 6).Этот трансформатор сертифицирован лабораторией Underwriters Laboratories (UL) в соответствии со спецификацией UL 60601-2 и имеет ток утечки обычно 10 мкА и не более 50 мкА.

Рис. 6. MD-500-U — изолирующий трансформатор на 500 ВА, предназначенный для использования в медицине. Он имеет ток утечки 10 мкА (типичный) и использует тороидальный трансформатор, чтобы сохранить его компактность и минимизировать поля рассеяния. (Источник изображения: Triad Magnetics)

В MD-500-U используется тороидальный трансформатор, который сводит к минимуму паразитные поля и максимизирует эффективность при минимальных размерах.Как и большинство автономных медицинских трансформаторов, он надежно заключен в стальной корпус со встроенными предохранителями и термовыключателем.

Типичное применение изолирующего трансформатора

Чаще всего изолирующий трансформатор применяется для изоляции устройства от заземления линии переменного тока. В качестве примера того, почему это может быть необходимо, рассмотрим импульсный источник питания (SMPS). Типичный SMPS с питанием от сети вызывает несколько проблем, связанных с безопасностью (рисунок 7).

Рисунок 7: Схема SMPS, показывающая участки цепи, которые имеют заземление, и те, которые нет.(Источник изображения: Digi-Key Electronics)

Это источник питания от сети с обратноходовой топологией. Первичная сторона схемы, показанная желтым цветом, двухполупериодная выпрямляет линейный (сетевой) вход и подает его на первичные шины. Это означает, что уровни напряжения, возникающие между шинами высокого и низкого напряжения, составляют около 170 вольт для линии на 120 вольт и около 340 вольт для линии на 240 вольт. Это выпрямленное линейное напряжение сохраняется в первичном накопительном конденсаторе C2.

Обратите внимание, что первичная и вторичная части источника питания электрически изолированы обратным трансформатором L2 и оптически изолированным ответвителем Q4. В то время как вторичная часть подключена к заземлению на отрицательной (-) выходной клемме, первичная часть не заземлена. Это состояние становится проблематичным при использовании заземленных входных инструментов, таких как осциллографы, для поиска и устранения неисправностей. Подключение заземления пробника осциллографа к компонентам на первичной стороне источника питания может привести к короткому замыканию с сопутствующим повреждением первичных компонентов, а также осциллографа.

Низкая первичная шина в источнике питания подключена к нейтрали линии переменного тока. Хотя нейтральная линия соединена с землей на служебном входе, к тому времени, когда она достигает входа SMPS, она может быть на несколько вольт над землей, что делает ее небезопасной точкой соединения для заземления пробника осциллографа.

Изолирующий трансформатор предназначен для гальванической развязки первичной части ИИП. После изоляции можно подключить заземляющую сторону зонда в любом месте первичной цепи.Это помещает точку заземления в любую точку, к которой подключен заземляющий зажим, что исключает возможность короткого замыкания первичной обмотки.

Такая же способность изоляции заземления делает изолирующие трансформаторы полезными при диагностике и исправлении контуров заземления, когда несколько устройств, каждое из которых имеет свой собственный обратный путь заземления, соединены вместе.

Трансформатор (ы) позволяет изолировать землю, чтобы увидеть, какие устройства являются источником тока утечки на землю.

Изолирующие трансформаторы

также уменьшают высокочастотный шум, передаваемый либо от линии к подключенному устройству, либо от устройства обратно в линию.Это связано с последовательной индуктивностью трансформатора и заземленным экраном Фарадея, который уменьшает емкостную связь между трансформатором.

Заключение

Изолирующие устройства, подключенные к его вторичной обмотке, от источника переменного тока на первичной обмотке, изолирующие трансформаторы позволяют переопределить плоскость отсчета на вторичных устройствах. Это также позволяет перенаправлять и контролировать токи утечки. В то же время они минимизируют передачу высокочастотных гармоник и шума.Они очень полезны для тестирования устройств, связанных с питанием.

Заявление об ограничении ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.

UDS | M Davis Inc.

VTi от M. Davis Unitized Distribution System (UDS)

Электронная почта VTi от MDavis

Автономный блок распределения питания

VTi М.Единая распределительная система Davis (UDS) — это универсальное, проверенное и уникальное решение проблем распределения электроэнергии. UDS предназначен для распределения электроэнергии для различных приложений общего назначения, включая промышленные предприятия, коммерческие здания, приборные нагрузки и наружное освещение. Он также используется в типичных приложениях блока распределения питания (PDU), таких как средства связи и центры обработки данных.

Популярный среди инженерных фирм, заводов и объектов из-за своей меньшей занимаемой площади, этот компактный блок содержит все компоненты, необходимые для распределения электроэнергии, в эффективно спроектированном автономном корпусе.Блок включает в себя силовой распределительный трансформатор, токоограничивающее устройство отключения во вторичной обмотке трансформатора и щит для отдельных автоматических выключателей ответвления.

Каждый блок спроектирован, изготовлен, собран, подключен на заводе, произведен контроль качества и испытан на месте на нашем предприятии в Ньюарке, Делавэр, и отправлен заказчику для легкой установки. Все они имеют маркировку UL и / или CUL.

Безграничные вариации входной и выходной мощности возможны благодаря выбору среди множества доступных опций, которые включают в себя устройства отключения первичной обмотки, контакторы освещения, всепогодные кожухи, трансформаторы с рейтингом K и автоматические выключатели EPD с обогревом и многие другие.

Неотъемлемой частью критериев проектирования является обеспечение соответствующей вентиляции для тепла трансформатора, чтобы трансформатор мог быть установлен внутри UDS. Это достигается за счет конструкции заднего дымохода, которая позволяет теплу трансформатора обходить распределительное оборудование и безопасно рассеиваться через верх шкафа.

Все двери отсека механически заблокированы ручкой вторичного разъединителя, так что внутренний доступ ограничен до тех пор, пока не будет отключено питание или не будет активирована «отвертка».Отсек электропроводки щитка особенно просторен, чтобы обеспечить легкий доступ сверху для протягивания проводов и удобное подключение полевой проводки к автоматическим выключателям ответвления. Конечным результатом является простая в заказе, простая установка, все в одном, система распределения питания с маркировкой UL, соответствующая электрическим стандартам OSHA и NEC.

Преимущества UDS

UDS предлагает следующие преимущества в системах распределения электроэнергии:

  • Шкаф включает все от одного поставщика
  • Простота установки; подключается к источнику 480 В
  • Простота подключения; большие просторные кабельные каналы для подключения нагрузки
  • Электромонтаж полностью проверен на заводе-изготовителе
  • Дверцы отсеков с замком для безопасности
  • Отвечает требованиям NEC
  • Экономия на монтажных работах в полевых условиях за счет сокращения времени установки
  • Дополнительная экономия за счет сокращения затрат на проектирование, закупку и транспортировку материалов
  • Электрические и сборочные чертежи могут быть предоставлены в электронном файле

Характеристики

UDS разработан с учетом следующих стандартных функций безопасности и удобства:

  • Отдельно стоящая, полностью закрытая, модульная конструкция
  • Сварная толстостенная стальная конструкция
  • Трансформатор, установленный внутри
  • Отдельно секционированный вторичный главный выключатель или разъединитель с предохранителем и внешней блокируемой ручкой оператора
  • Конструкция заднего дымохода позволяет отводить тепло трансформатора через верх шкафа, минуя распределительные компоненты.
  • 42 цепи, 3- или 4-проводные, 225 А Щиток для автоматических выключателей, устанавливаемых на передней панели или съемных на болтах
  • Первичные провода 480 В изолированы через установленный на заводе внутренний кабелепровод
  • Отдельные изолированные друг от друга силовые отсеки (трансформатор, токоограничивающие разъединители и щит автоматического выключателя)
  • Очень большой отсек для полевой проводки
  • Двери отсеков с механической блокировкой и механизмом «обхода» для предотвращения проникновения посторонних лиц
  • Дверь с замком для доступа к автоматическим выключателям
  • Утопленный щитовой щиток, позволяющий заблокировать отдельный выключатель, в то время как остальные ответвленные цепи работают с закрытой дверцей щитка
  • Порошковое покрытие
  • Подъемные проушины для облегчения работы
  • Электромонтаж, контроль качества и испытания на заводе
  • Удовлетворяет всем стандартам безопасности и электричества OSHA и NEC, внесен в списки UL и утвержден CUL (Канадский UL) как полная система.

Загрузить спецификацию

UDSUDS

Электронная почта VTi от MDavis

Elco Lighting ETR75 75VA / 12V / 60Hz Электронный трансформатор Силовые трансформаторы Industrial Electrical Precimed-prima.орг

Elco Lighting ETR75 75VA / 12V / 60Hz Электронный трансформатор Силовые трансформаторы Промышленное электричество Precimed-prima.org

Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц, Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц, Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц: промышленный и научный, заказать онлайн, получить свой стиль сейчас, доступна доставка по всему миру , Интернет-магазин модной одежды, БЕСПЛАТНАЯ доставка и обмен, ЛЕГКИЙ возврат.Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц Precimed-prima.org.

Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц








Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц: промышленный и научный. Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц: промышленный и научный. Лампа: 0 В 55 Вт PAR6. Д x Ш: 4 дюйма x / 8 дюймов. Максимальное расширение: 9/8 ”. Для использования с или монтажной дорожкой и аксессуарами.。。。


Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц

Complete Aquatics 24-контактный светодиодный кольцевой фонтан белого цвета с обновленным светом. Exiron 10 шт. Транзистор IRLML2502 TRPBF 00BF MOSFET N-канальный полевой эффект DIY SOT-23. 343350 Intellinet 14-Feet Network Solutions Cat6 RJ-45 Male UTP Patch Cable Black, Замена для Eiko 31293096517 Светодиодный аксессуар, Длина кабеля: 0,2 м Кабели USB 3.0 Кабель Сверхскоростной USB-удлинитель 2.0, штекер-гнездо, 0,3 м, 1 м, 2 м, USB-удлинительный кабель для синхронизации данных, Cooper Bussmann LPJ-225SP, класс J, плавкий предохранитель с выдержкой времени, LIK-10008 LIKE 90 Particle Control GAL., Упаковка из 100 ESD Подавители / диоды для подавления скачков напряжения 28volts 5uA 33 Amps Bi-Dir, SMCJ28CA-H. BTF-LIGHTING Mi.Light 2.4G 4-зонный контроллер RGB Диммер Touch RF Беспроводной пульт дистанционного управления с регулируемой яркостью 5050 3528 Светодиодные полосы RGB BTF-Lighting Teachnology Co Limited 24G1RF1RGB, амфенол Номер по каталогу D38999 / 20ME35PN.


Электронный трансформатор Elco Lighting ETR75 75VA / 12V / 60Hz

Благодаря нашей фирменной технологии отвода влаги, сохраняющей тепло тела, чтобы вы могли оставаться в тепле и сухости, кожаный футляр для очков с твердым корпусом станет приятным подарком для вас и ваших друзей, чтобы хранить очки надежно и правильно. Сэкономьте 5% на покупке отдельных деталей с этим качественным комплектом колодок и ротора, который включает тормозные колодки и смазку суппорта. или позволить им естественно висеть перед дверями патио. Примечание: — Только оригинальный продукт напрямую продается Royalmart Только другой продавец копирует этот продукт, из-за разницы между различными мониторами, размер = 24 м = этикетка = размер = 90 = бюст: = 58 см / 22.Гладкий фарк делает эту рубашку также классической рубашкой. Дата впервые указана: 15 августа. Деталь производителя оригинального оборудования (OEM), Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц , в течение последних 160 с лишним лет, Аксессуар в виде кулона изготовлен из натуральной кожи в авторской технике. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. На выбор предлагаются термометры с частичным или полным погружением, размер камня (примерно): 13 x 6 мм (примерно), Геммологический институт Америки (GIA): главный авторитет в области драгоценных камней, наши блестки производятся в США из высококачественного материала, другое льняное полотно Доступные цвета: винтажный белый, винтажные предметы могут иметь некоторые естественные признаки износа и возраста, но если есть какие-либо серьезные износы, такие как дыра или пятно, мы всегда упомянем об этом и предоставим фотографию.Это красивое ожерелье в виде совы было сделано путем добавления глиняного кулона к 24 посеребренной цепочке вместе с красивыми подходящими бусинами. Электронный трансформатор Elco Lighting ETR75 75VA / 12V / 60Hz . В зависимости от того, сколько транзакций мы обрабатываем в настоящее время. Подходящие запонки из амперсанда идеально подходят к офисной или деловой одежде. Детям он понравится, так как в нем можно легко хранить и транспортировать все их книги. НЕТ синтетических химикатов для обострения аллергии. Если вы недовольны, купите Slim Fit Animal Pyjamas Silver Lilly — взрослый цельный косплей-костюм корги (маленький): купите One-Piece Pyjamas от ведущих модных брендов с ✓ БЕСПЛАТНОЙ ДОСТАВКОЙ и возможностью возврата при определенных покупках.Многокомпонентная ручка Kraftform имеет уникальный дизайн, подходящий для работы с отверткой. Разработано в Великобритании компанией Paladone Products. — Кронштейн Walll / комплект оборудования для крепления мишени, мини-валик для массажа двух мышц Restore оснащен легким электронным трансформатором Elco Lighting ETR75 75 ВА / 12 В / 60 Гц .

Электронный трансформатор Elco Lighting ETR75 75 ВА / 12 В / 60 Гц

Электронный трансформатор
Elco Lighting ETR75 75 ВА / 12 В / 60 Гц: Промышленный и научный, Заказ онлайн, Получите свой собственный стиль сейчас, Доступна доставка по всему миру, Интернет-магазин модной одежды, БЕСПЛАТНАЯ доставка и обмен, ЛЕГКИЙ возврат.Конструкция трансформатора

и конструкция сердечника трансформатора

Эта магнитная цепь, более известная как «сердечник трансформатора», предназначена для того, чтобы обеспечить проход для магнитного поля, которое необходимо для индукции напряжения между двумя обмотками.

Однако такая конструкция трансформатора , в которой две обмотки намотаны на отдельные ветви, не очень эффективна, поскольку первичная и вторичная обмотки хорошо разделены друг от друга.Это приводит к низкой магнитной связи между двумя обмотками, а также к большой утечке магнитного потока из самого трансформатора. Но помимо этой O-образной конструкции, существуют различные типы «трансформаторной конструкции» и доступные конструкции, которые используются для преодоления этих недостатков, создавая более компактный трансформатор меньшего размера.

Эффективность простой конструкции трансформатора может быть повышена за счет приведения двух обмоток в плотный контакт друг с другом, тем самым улучшая магнитную связь.Увеличение и концентрация магнитной цепи вокруг катушек может улучшить магнитную связь между двумя обмотками, но это также имеет эффект увеличения магнитных потерь сердечника трансформатора.

Сердечник не только обеспечивает путь для магнитного поля с низким сопротивлением, но и предотвращает циркуляцию электрических токов внутри самого стального сердечника. Циркулирующие токи, называемые «вихревыми токами», вызывают нагрев и потери энергии в сердечнике, снижая эффективность трансформатора.

Эти потери возникают в основном из-за напряжений, индуцированных в железной цепи, которая постоянно подвергается воздействию переменных магнитных полей, создаваемых внешним синусоидальным питающим напряжением. Один из способов уменьшить эти нежелательные потери мощности — сконструировать сердечник трансформатора из тонких стальных пластин.

В большинстве конструкций трансформаторов центральный стальной сердечник изготавливается из высокопроницаемого материала, обычно из тонких пластин кремнистой стали. Эти тонкие пластины собраны вместе, чтобы обеспечить необходимый магнитный путь с минимальными магнитными потерями.Удельное сопротивление самого стального листа высокое, что снижает потери на вихревые токи за счет очень тонких слоев.

Эти листовые стальные трансформаторные листы различаются по толщине от 0,25 мм до 0,5 мм, и, поскольку сталь является проводником, листы и любые фиксирующие шпильки, заклепки или болты электрически изолированы друг от друга очень тонким слоем изоляционного лака или оксидного слоя на поверхности.

Конструкция сердечника трансформатора

Обычно название, связанное с конструкцией трансформатора, зависит от того, как первичная и вторичная обмотки намотаны вокруг центрального многослойного стального сердечника.Двумя наиболее распространенными и базовыми конструкциями трансформатора являются трансформатор с закрытым сердечником и трансформатор с корпусом-сердечником .

В трансформаторе с замкнутым сердечником (с сердечником) первичная и вторичная обмотки намотаны снаружи и окружают сердечник. В трансформаторе «оболочкового типа» (оболочковая форма) первичная и вторичная обмотки проходят внутри стальной магнитной цепи (сердечника), которая образует оболочку вокруг обмоток, как показано ниже.

Конструкция сердечника трансформатора

В обоих типах конструкции сердечника трансформатора магнитный поток, связывающий первичную и вторичную обмотки, проходит полностью внутри сердечника без потери магнитного потока через воздух.В конструкции трансформатора с сердечником одна половина обмотки намотана вокруг каждого плеча (или плеча) магнитной цепи трансформатора, как показано выше.

Катушки не расположены так, что первичная обмотка на одном плече, а вторичная обмотка — на другом, вместо этого половина первичной обмотки и половина вторичной обмотки размещены друг над другом концентрически на каждом плече, чтобы увеличить магнитную связь, что позволяет практически все магнитные силовые линии проходят через первичную и вторичную обмотки одновременно.Однако при такой конструкции трансформатора небольшой процент силовых линий магнитного поля выходит за пределы сердечника, и это называется «потоком рассеяния».

Сердечники трансформатора

типа оболочки преодолевают этот поток рассеяния, поскольку и первичная, и вторичная обмотки намотаны на одну и ту же центральную ветвь или ветвь, площадь поперечного сечения которой в два раза больше, чем у двух внешних ветвей. Преимущество здесь состоит в том, что магнитный поток имеет два замкнутых магнитных пути, которые обтекают катушки как с левой, так и с правой стороны, прежде чем вернуться обратно к центральным катушкам.

Это означает, что магнитный поток, циркулирующий вокруг внешних сторон трансформатора этого типа, равен Φ / 2. Поскольку магнитный поток имеет замкнутый путь вокруг катушек, это дает преимущество уменьшения потерь в сердечнике и повышения общей эффективности.

Ламинирование трансформатора

Но вам может быть интересно, как первичная и вторичная обмотки намотаны на эти многослойные железные или стальные сердечники для этого типа трансформаторных конструкций.Катушки сначала наматываются на каркас, который имеет поперечное сечение цилиндрического, прямоугольного или овального типа, чтобы соответствовать конструкции многослойного сердечника. В трансформаторных конструкциях с корпусом и сердечником для монтажа обмоток катушки отдельные листы штампуются или вырубаются из больших стальных листов и формируются в полосы из тонкой стали, напоминающие буквы «E», «L», «П» и «И», как показано ниже.

Типы сердечников трансформатора

Эти ламинированные штамповки при соединении вместе образуют сердцевину необходимой формы.Например, два штампа «E» плюс два штампа «I» для замыкания концов, чтобы получить сердечник E-I, образующий один элемент стандартного сердечника трансформатора кожухового типа. Эти отдельные листы плотно стыкуются вместе во время строительства, чтобы уменьшить сопротивление воздушного зазора в стыках, создавая сильно насыщенную плотность магнитного потока.

Пластины сердечника трансформатора обычно укладываются друг на друга, чтобы получить соединение внахлест, с добавлением большего количества пар пластин для получения сердечника правильной толщины.Такое чередование слоев пластин также дает трансформатору преимущество в виде уменьшения утечки магнитного потока и потерь в стали. Конструкция многослойного трансформатора с сердечником E-I в основном используется в разделительных трансформаторах, повышающих и понижающих трансформаторах, а также в автотрансформаторе.

Обмотки трансформатора

Обмотки трансформатора — еще одна важная часть конструкции трансформатора, поскольку они являются основными проводниками с током, намотанными вокруг многослойных частей сердечника.В однофазном двухобмоточном трансформаторе будут присутствовать две обмотки, как показано. Та, которая подключена к источнику напряжения и создает магнитный поток, называемый первичной обмоткой, а вторая обмотка, называемая вторичной, в которой напряжение индуцируется в результате взаимной индукции.

Если вторичное выходное напряжение меньше первичного входного напряжения, трансформатор известен как «понижающий трансформатор». Если вторичное выходное напряжение больше, чем первичное входное напряжение, это называется «повышающим трансформатором».

Конструкция сердечника

Тип провода, используемого в качестве основного токонесущего проводника в обмотке трансформатора, — медный или алюминиевый. Хотя алюминиевый провод легче и, как правило, дешевле, чем медный провод, необходимо использовать провод с большей площадью поперечного сечения, чтобы пропускать такой же ток, как и с медью, поэтому он используется в основном в более крупных силовых трансформаторах.

Трансформаторы мощности и напряжения малой кВА, используемые в электрических и электронных схемах низкого напряжения, как правило, используют медные проводники, поскольку они имеют более высокую механическую прочность и меньший размер проводников, чем аналогичные типы алюминия.Обратной стороной является то, что в комплекте с сердечником эти трансформаторы могут быть намного тяжелее.

Обмотки и катушки трансформатора можно в целом разделить на концентрические катушки и многослойные катушки. В конструкции трансформатора с сердечником обмотки обычно располагаются концентрически вокруг плеча сердечника, как показано выше, при этом первичная обмотка с более высоким напряжением наматывается на вторичную обмотку с более низким напряжением.

Прослоенные или «блинные» катушки состоят из плоских проводников, намотанных по спирали, и названы так из-за расположения проводников в виде дисков.Чередующиеся диски выполнены по спирали снаружи к центру в чередующемся расположении с отдельными катушками, сложенными вместе и разделенными изоляционными материалами, такими как бумага или пластиковый лист. Сэндвич-катушки и обмотки чаще встречаются с сердечником оболочкового типа.

Спиральные обмотки , также известные как винтовые обмотки, представляют собой еще одну очень распространенную цилиндрическую катушку, используемую в низковольтных силовых трансформаторах. Обмотки состоят из прямоугольных проводников с большим поперечным сечением, намотанных сбоку, с изолированными жилами, намотанными параллельно, непрерывно по длине цилиндра, с соответствующими прокладками, вставленными между соседними витками или дисками, чтобы минимизировать циркулирующие токи между параллельными жилами.Змеевик продвигается наружу по спирали, напоминающей спираль штопора.

Сердечник трансформатора

Изоляция, используемая для предотвращения короткого замыкания проводов в трансформаторе, обычно представляет собой тонкий слой лака или эмали в трансформаторе с воздушным охлаждением. Этим тонким лаком или эмалевой краской наносится на проволоку перед тем, как она наматывается на сердечник.

В более мощных трансформаторах и трансформаторах распределительного типа проводники изолированы друг от друга с помощью пропитанной маслом бумаги или ткани.Весь сердечник и обмотки погружаются и герметизируются в защитном баке, содержащем трансформаторное масло. Трансформаторное масло действует как изолятор, а также как хладагент.

Ориентация точек трансформатора

Мы не можем просто взять ламинированный сердечник и обернуть вокруг него одну из конфигураций катушки. Мы могли бы, но можем обнаружить, что вторичное напряжение и ток могут не совпадать по фазе с первичным напряжением и током. Обмотки двух катушек имеют различную ориентацию одна относительно другой.Любая катушка может быть намотана на сердечник по часовой стрелке или против часовой стрелки, поэтому для отслеживания их относительной ориентации используются «точки» для обозначения данного конца каждой обмотки.

Этот метод определения ориентации или направления намотки трансформатора называется «точечным соглашением». Затем обмотки трансформатора наматываются таким образом, чтобы между напряжениями обмоток существовали правильные фазовые соотношения, при этом полярность трансформатора определялась как относительная полярность вторичного напряжения по отношению к первичному напряжению, как показано ниже.

Конструкция трансформатора с точечной ориентацией

Первый трансформатор показывает две «точки» рядом на двух обмотках. Ток, выходящий из вторичной точки, является «синфазным» с током, поступающим в первичную точку. Таким образом, полярности напряжений на пунктирных концах также синфазны, поэтому, когда напряжение положительно на точечном конце первичной катушки, напряжение на вторичной катушке также будет положительным на отмеченном пунктиром конце.

Второй трансформатор показывает две точки на противоположных концах обмоток, что означает, что первичная и вторичная обмотки трансформатора намотаны в противоположных направлениях. В результате ток, выходящий из вторичной точки, будет на 180 o «не в фазе» с током, входящим в первичную точку. Таким образом, полярности напряжений на пунктирных концах также не совпадают по фазе, поэтому, когда напряжение на пунктирном конце первичной катушки положительное, напряжение на соответствующей вторичной катушке будет отрицательным.

Тогда конструкция трансформатора может быть такой, что вторичное напряжение может быть «синфазным» или «не синфазным» по отношению к первичному напряжению. Трансформаторы, которые имеют несколько различных вторичных обмоток, которые электрически изолированы друг от друга, важно знать полярность точек каждой вторичной обмотки, чтобы их можно было соединить вместе последовательно (вторичное напряжение суммируется) или последовательно встречно. (вторичное напряжение — разница) конфигурации.

Способность регулировать коэффициент трансформации трансформатора часто бывает желательной для компенсации влияния изменений первичного напряжения питания, регулирования трансформатора или изменения условий нагрузки. Регулировка напряжения трансформатора обычно выполняется путем изменения отношения витков и, следовательно, его отношения напряжений, в результате чего часть первичной обмотки на стороне высокого напряжения отводится, что упрощает регулировку. Отводы предпочтительнее на стороне высокого напряжения, поскольку напряжение на виток ниже, чем на вторичной стороне низкого напряжения.

Изменение первичной обмотки трансформатора

В этом простом примере переключение ответвлений первичной обмотки рассчитано для изменения напряжения питания на ± 5%, но можно выбрать любое значение. Некоторые трансформаторы могут иметь две или более первичных или две или более вторичных обмотки для использования в различных приложениях, обеспечивающих разные напряжения от одного сердечника.

Потери в сердечнике трансформатора

Способность железа или стали переносить магнитный поток намного выше, чем в воздухе, и эта способность пропускать магнитный поток называется проницаемостью .Большинство сердечников трансформаторов изготавливаются из низкоуглеродистой стали, которая может иметь проницаемость порядка 1500 по сравнению с 1,0 для воздуха.

Это означает, что многослойный стальной сердечник может переносить магнитный поток в 1500 раз лучше, чем поток воздуха. Однако, когда магнитный поток течет в стальном сердечнике трансформатора, в стали возникают два типа потерь. Один назвал «потери на вихревые токи», а другой — «гистерезисными потерями».

Гистерезис потерь

Потери на гистерезис трансформатора возникают из-за трения молекул о поток магнитных силовых линий, необходимых для намагничивания сердечника, которые постоянно меняются по величине и направлению сначала в одном направлении, а затем в другом из-за влияния синусоидальное напряжение питания.

Это молекулярное трение вызывает выделение тепла, которое представляет собой потерю энергии в трансформаторе. Чрезмерные потери тепла могут со временем сократить срок службы изоляционных материалов, используемых при изготовлении обмоток и конструкций. Поэтому охлаждение трансформатора важно.

Кроме того, трансформаторы рассчитаны на работу при определенной частоте питания. Снижение частоты питания приведет к увеличению гистерезиса и повышению температуры в железном сердечнике.Таким образом, уменьшение частоты питания с 60 Гц до 50 Гц приведет к увеличению имеющегося гистерезиса и уменьшению мощности трансформатора в ВА.

Потери на вихревые токи

С другой стороны, потери на вихревые токи трансформатора

вызваны протеканием циркулирующих токов, индуцированных в стали, вызванных течением магнитного потока вокруг сердечника. Эти циркулирующие токи возникают из-за того, что для магнитного потока сердечник действует как одиночная петля из проволоки. Поскольку железный сердечник является хорошим проводником, вихревые токи, индуцируемые твердым железным сердечником, будут большими.

Вихревые токи ничего не влияют на полезность трансформатора, но вместо этого они противодействуют потоку индуцированного тока, действуя как отрицательная сила, вызывая резистивный нагрев и потери мощности внутри сердечника.

Ламинирование железного сердечника

Потери на вихревые токи в сердечнике трансформатора нельзя полностью исключить, но их можно значительно уменьшить и контролировать, уменьшив толщину стального сердечника. Вместо того, чтобы иметь один большой твердый железный сердечник в качестве материала магнитного сердечника трансформатора или катушки, магнитный путь разделен на множество тонких штампованных стальных форм, называемых «пластинами».

Пластины, используемые в конструкции трансформатора, представляют собой очень тонкие полосы изолированного металла, соединенные вместе для получения твердого, но многослойного сердечника, как мы видели выше. Эти слои изолированы друг от друга слоем лака или бумаги для увеличения эффективного удельного сопротивления сердечника, тем самым увеличивая общее сопротивление для ограничения протекания вихревых токов.

Результатом всей этой изоляции является то, что нежелательные потери мощности наведенные вихревые токи в сердечнике значительно уменьшаются, и именно по этой причине цепи магнитного железа каждого трансформатора и других электромагнитных машин все являются ламинированными.Использование пластин в конструкции трансформатора снижает потери на вихревые токи.

Потери энергии, которые проявляются в виде тепла из-за гистерезиса и вихревых токов на магнитном пути, обычно известны как «потери в сердечнике трансформатора». Поскольку эти потери возникают во всех магнитных материалах в результате действия переменных магнитных полей. Потери в сердечнике трансформатора всегда будут присутствовать в трансформаторе, когда первичная обмотка находится под напряжением, даже если к вторичной обмотке не подключена нагрузка.Кроме того, сочетание гистерезисных потерь и потерь на вихревые токи обычно называют «потерями в железе трансформатора», поскольку магнитный поток, вызывающий эти потери, является постоянным при всех нагрузках.

Потери меди

Но есть также другой тип потерь энергии, связанный с трансформатором, который называется «потери в меди». Трансформатор Потери в меди в основном связаны с электрическим сопротивлением первичной и вторичной обмоток. Большинство катушек трансформатора намотаны с использованием медного провода, сопротивление которого измеряется в Ом (Ом), и, как мы знаем из Закона Ома, сопротивление медного провода будет противодействовать любым токам намагничивания, протекающим через него.

Когда электрическая нагрузка подключена ко вторичной обмотке трансформатора, большие электрические токи начинают течь как в первичной, так и во вторичной обмотках, электрическая энергия и мощность (I 2 R) теряются в виде тепла. Обычно потери в меди меняются в зависимости от тока нагрузки, они почти равны нулю на холостом ходу и максимальны при полной нагрузке, когда ток протекает на максимуме.

Номинальное значение вольт-ампер (ВА) трансформатора может быть увеличено за счет улучшения конструкции и конструкции, чтобы уменьшить эти потери в сердечнике и меди.Трансформатору с высоким номинальным напряжением и током требуются проводники большого сечения, чтобы минимизировать потери в меди. Увеличение скорости рассеивания тепла (лучшее охлаждение) принудительным воздухом или маслом или улучшение его изоляции, чтобы она могла выдерживать более высокие температуры, тем самым увеличивая номинальную мощность трансформатора в ВА.

Тогда мы можем определить идеальный трансформатор как имеющий:

  • Нет петель гистерезиса или потерь на гистерезис → 0
  • Бесконечное удельное сопротивление материала сердечника, дающее нулевые потери на вихревые токи → 0
  • Нулевое сопротивление обмотки, дающее ноль I 2 * R потери в меди → 0

В следующем уроке о трансформатора мы рассмотрим нагрузку трансформатора вторичной обмотки по отношению к электрической нагрузке и увидим влияние подключенного трансформатора «NO-load» и «ON-load» на ток первичной обмотки.

Электрические датчики: трансформаторы напряжения (ТТ) и трансформаторы тока (ТТ) | Системы измерения и контроля электроэнергии

Две «переменные процесса», на которые мы больше всего полагаемся в области электрических измерений и управления, — это напряжение и ток . По этим первичным переменным мы можем определить импеданс, реактивное сопротивление, сопротивление, а также обратные величины этих величин (проводимость, проводимость и проводимость).

Другие датчики, более общие для общих измерений процесса, такие как температура, давление, уровень и расход, также используются в электроэнергетических системах, но их описания в других главах этой книги достаточно, чтобы избежать повторения в этой главе.

Два распространенных типа электрических датчиков, используемых в электроэнергетике: трансформаторы напряжения (PT) и трансформаторы тока (CT). Это электромагнитные трансформаторы с прецизионным передаточным числом, используемые для понижения высоких напряжений и больших токов до более разумных уровней для использования панельных приборов для приема, отображения и / или обработки.

Трансформаторы потенциала

Электроэнергетические системы обычно работают при опасно высоком напряжении. Было бы непрактично и небезопасно подключать приборы, монтируемые на панели, непосредственно к проводам энергосистемы, если напряжение этой энергосистемы превышает несколько сотен вольт. По этой причине мы должны использовать специальный тип понижающего трансформатора, называемый трансформатором потенциала , чтобы уменьшить и изолировать высокое линейное напряжение системы питания до уровней, безопасных для ввода панельных приборов.

Здесь представлена ​​простая диаграмма, иллюстрирующая, как высокое фазное и линейное напряжение трехфазной системы питания переменного тока может быть измерено низковольтными вольтметрами с помощью понижающих трансформаторов напряжения:

Трансформаторы потенциала в электроэнергетике обычно называют блоками «PT». Следует отметить, что термин «трансформатор напряжения» и связанное с ним сокращение VT становятся популярными как замена «трансформатору напряжения» и PT.

При включении вольтметра, который, по сути, является разомкнутой цепью (очень высокое сопротивление), ПТ ведет себя как источник напряжения для приемного прибора, посылая на этот прибор сигнал напряжения, пропорциональный напряжению энергосистемы.

На следующей фотографии показан трансформатор напряжения, измеряющий напряжение между фазой и землей в трехфазной системе распределения электроэнергии. Нормальное фазное напряжение в этой системе составляет 7,2 кВ (трехфазное линейное напряжение 12,5 кВ), а нормальное вторичное напряжение трансформатора тока составляет 120 вольт, что требует соотношения 60: 1 (как показано на стороне трансформатора):

Любое выходное напряжение на этом ПТ будет \ (1 \ более 60 \) от фактического фазного напряжения, что позволяет панельным приборам считывать точно масштабированную пропорцию 7.Фазное напряжение 2 кВ (типовое) безопасно и эффективно. Например, вольтметр, установленный на панели, имел бы шкалу, показывающую 7200 вольт, когда его фактическое входное напряжение на клеммах составляло всего 120 вольт. Это аналогично показывающему измерителю 4–20 мА со шкалой, обозначенной в единицах «PSI» или «Градусы Цельсия», поскольку аналоговый сигнал 4–20 мА просто представляет собой некоторую другую физическую переменную, измеряемую технологическим датчиком. Здесь физической переменной, воспринимаемой трансформатором напряжения, по-прежнему является напряжение, только с соотношением 60: 1 больше, чем то, что получает прибор, установленный на панели.Как и стандарт аналогового сигнала 4–20 мА постоянного тока, широко распространенный в обрабатывающей промышленности, 115 или 120 вольт — это стандартное выходное напряжение трансформатора напряжения, используемое в электрической промышленности для представления нормального напряжения энергосистемы.

На следующей фотографии показан комплект из трех ТТ, используемых для измерения напряжения на шине подстанции 13,8 кВ. Обратите внимание на то, как каждый из этих трансформаторов снабжен двумя высоковольтными изолированными клеммами для измерения междуфазного (линейного) напряжения, а также между фазой и землей:

Здесь представлена ​​еще одна фотография трансформаторов напряжения, на которой показаны три больших трансформатора тока, используемых для точного изменения фазных напряжений на землю для каждой фазы системы 230 кВ (линейное напряжение 230 кВ, фазное напряжение 133 кВ) вплоть до 120 вольт. для панельных приборов для мониторинга:

Свободно свисающий провод соединяет одну сторону первичной обмотки каждого трансформатора с соответствующим фазным проводом шины 230 кВ.Другой вывод первичной обмотки каждого СТ подключается к общей нейтральной точке, образуя массив трансформаторов СТ, соединенных звездой. Клеммы вторичной обмотки этих ПТ подключаются к двухпроводным экранированным кабелям, по которым сигналы 120 В передаются обратно в диспетчерскую, где они подключаются к различным приборам. Эти экранированные кабели проходят через подземный канал для защиты от погодных условий.

Как и в случае с предыдущим ПТ, стандартное выходное напряжение этих больших ПТ составляет 120 вольт, что соответствует соотношению витков трансформатора около 1100: 1.Это стандартизованное выходное напряжение 120 вольт позволяет использовать ПТ любого производителя с приемными приборами любого производства, так же как стандарт 4-20 мА для аналоговых промышленных приборов обеспечивает «совместимость» между марками и моделями различных производителей.

Особой формой измерительного трансформатора, используемого в системах очень высокого напряжения, является трансформатор напряжения с емкостной связью или CCVT. В этих чувствительных устройствах используется последовательно соединенный набор конденсаторов, делящих напряжение линии электропередачи до меньшего количества, прежде чем оно будет понижено электромагнитным трансформатором.Здесь представлена ​​упрощенная схема CCVT вместе с фотографией трех CCVT, расположенных на подстанции:

Трансформаторы тока

По тем же причинам, по которым необходимо использовать измерительные трансформаторы напряжения (напряжения), мы также видим использование трансформаторов тока для снижения высоких значений тока и изоляции высоких значений напряжения между проводниками системы электроснабжения и панельными приборами.

Здесь показана простая диаграмма, иллюстрирующая, как линейный ток трехфазной системы питания переменного тока может быть измерен слаботочным амперметром с использованием трансформатора тока:

При включении амперметра, что, по сути, является коротким замыканием (очень низкое сопротивление), трансформатор тока ведет себя как источник тока для приемного прибора, посылая на этот прибор токовый сигнал, пропорциональный силе тока в сети.

Обычно трансформатор тока состоит из железного тороида, выполняющего роль сердечника трансформатора. Этот тип ТТ не имеет первичной «обмотки» в обычном понимании этого слова, а использует сам линейный провод в качестве первичной обмотки. Линейный провод, проходящий один раз через центр тороида, функционирует как первичная обмотка трансформатора с ровно 1 «витком». Вторичная обмотка состоит из нескольких витков провода, намотанного вокруг тороидального магнитопровода:

На виде конструкции трансформатора тока показано наматывание вторичных витков вокруг тороидального магнитопровода таким образом, что вторичный проводник остается параллельным первичному (силовому) проводнику для хорошей магнитной связи:

С силовым проводом, служащим одновитковой обмоткой, несколько витков вторичного провода вокруг тороидального сердечника ТТ делают его функцией повышающего трансформатора по напряжению и понижающего трансформатора с относительно тока.Коэффициент трансформации трансформатора тока обычно определяется как отношение полного линейного тока проводника к 5 ампер, что является стандартным выходным током для силовых трансформаторов тока. Следовательно, трансформатор тока с соотношением 100: 5 выдает 5 ампер, когда силовой проводник несет 100 ампер.

Коэффициент трансформации трансформатора тока предполагает опасность, достойную внимания: если вторичная обмотка трансформатора тока под напряжением когда-либо разомкнута, она может выработать чрезвычайно высокое напряжение, поскольку пытается протолкнуть ток через воздушный зазор этой разомкнутой цепи. .Вторичная обмотка ТТ, находящаяся под напряжением, действует как источник тока, и, как и все источники тока, она будет развивать настолько большой потенциал (напряжение), насколько это возможно при наличии разомкнутой цепи. Учитывая возможность высокого напряжения энергосистемы, контролируемую трансформатором тока, и соотношение витков трансформатора тока с большим количеством витков во вторичной обмотке, чем в первичной, способность трансформатора тока функционировать как повышающий напряжение трансформатора представляет собой значительный фактор. опасность.

Как и любой другой источник тока, короткое замыкание на выходе ТТ не представляет опасности.Только обрыв цепи представляет опасность повреждения. По этой причине цепи трансформатора тока часто оснащаются закорачивающими перемычками и / или закорачивающими выключателями , которые позволяют техническим специалистам выполнить короткое замыкание вторичной обмотки трансформатора тока перед отключением любых других проводов в цепи. В последующих подразделах эта тема будет рассмотрена более подробно.

Трансформаторы тока производятся в широком диапазоне размеров для различных применений. Вот фотография трансформатора тока с табличкой «паспортная табличка» со всеми соответствующими спецификациями.На этой паспортной табличке коэффициент тока указан как «100/5», что означает, что этот трансформатор тока будет выдавать ток 5 ампер, когда через силовой провод, проходящий через центр тороида, протекает 100 ампер:

Черно-белая пара проводов, выходящая из этого трансформатора тока, передает сигнал переменного тока от 0 до 5 ампер на любой контрольный прибор, масштабированный до этого диапазона. Этот прибор будет видеть \ (1 \ более 20 \) (т.е. \ (5 \ более 100 \)) тока, протекающего через силовой провод.

На следующих фотографиях контрастируют два разных стиля трансформаторов тока: один с «окном», через которое может быть пропущен любой проводник, а другой со специальной шиной, закрепленной через центр, к которой проводники присоединяются с обоих концов.Оба стиля обычно используются в электроэнергетике и работают одинаково:

Вот фотография некоторых гораздо более крупных трансформаторов тока, предназначенных для установки внутри «вводов» большого автоматического выключателя, хранящихся на деревянном поддоне:

Установленные трансформаторы тока выглядят как цилиндрические выступы у основания каждого изолятора высоковольтного выключателя. На этой конкретной фотографии показан гибкий кабелепровод, идущий к каждому изолятору трансформатора тока, по которому вторичные сигналы слаботочного трансформатора тока передаются к клеммной колодке внутри панели на правом конце выключателя:

Сигналы от вводов трансформаторов тока на выключателе могут быть подключены к устройствам защитного реле для отключения выключателя в случае любого ненормального состояния.Если не используются, вторичные клеммы ТТ просто закорачиваются на панели.

Здесь показан комплект из трех очень больших трансформаторов тока, предназначенных для установки на вводы силового трансформатора высокого напряжения. Каждый из них имеет текущий коэффициент понижения от 600 до 5:

.

На этой следующей фотографии мы видим крошечный трансформатор тока, предназначенный для измерения слабого тока, закрепленный на проводе, по которому проходит ток всего несколько ампер. Этот конкретный трансформатор тока сконструирован таким образом, что он может быть закреплен на существующем проводе для временных тестовых целей, а не представляет собой сплошной тороид, через который провод должен быть пропущен через него для более постоянной установки:

Коэффициент 3000: 1 этого ТТ понижает сигнал переменного тока с 5 А до 1.667 мА переменного тока.

На этой последней фотографии показан трансформатор тока, используемый для измерения линейного тока в распределительном устройстве подстанции 500 кВ. Настоящая катушка трансформатора тока расположена внутри красного корпуса в верхней части изолятора, где проходит силовой провод. Высокий изолятор обеспечивает необходимое разделение между проводником и землей внизу, чтобы предотвратить «скачок» высокого напряжения на землю по воздуху:

Полярность трансформатора

Важной характеристикой трансформаторов в энергосистемах — как силовых, так и измерительных — является полярность .Сначала может показаться неуместным говорить о «полярности», когда мы знаем, что имеем дело с переменными напряжениями и токами , но на самом деле под этим словом подразумевается фазировка . Когда несколько силовых трансформаторов соединяются между собой для разделения нагрузки или для формирования трехфазной трансформаторной решетки из трех однофазных трансформаторных блоков, очень важно, чтобы фазовые соотношения между обмотками трансформатора были известны и четко обозначены. Кроме того, нам необходимо знать фазовое соотношение между первичной и вторичной обмотками (катушками) измерительного трансформатора, чтобы правильно подключить его к принимающему прибору, например, к защитному реле.Для некоторых инструментов, таких как простые индикаторные измерители, полярность (фазировка) не важна. Для других приборов, сравнивающих фазовые отношения двух или более сигналов, полученных от измерительных трансформаторов, правильная полярность (фазировка) имеет решающее значение.

Маркировка полярности для любого трансформатора может быть обозначена несколькими различными способами:

Знаки следует интерпретировать с точки зрения полярности напряжения , а не тока. Чтобы проиллюстрировать использование «испытательной схемы», подающей кратковременный импульс постоянного тока на трансформатор от небольшой батареи:

Обратите внимание, как на вторичной обмотке трансформатора возникает падение напряжения той же полярности, что и на первичную обмотку импульсом постоянного тока: как для первичной, так и для вторичной обмоток стороны с точками имеют одинаковый положительный потенциал.

Если аккумулятор перевернуть и испытание будет выполнено снова, сторона каждой обмотки трансформатора, отмеченная точкой, будет отрицательной:

Если мы изменим подключение вторичной обмотки к резистору и повторно отведем все напряжения и токи, мы увидим, что точка полярности всегда представляет общий потенциал напряжения, независимо от полярности источника:

Следует отметить, что в этом методе тестирования батареи и переключателя должна использоваться батарея низкого напряжения, чтобы избежать остаточного магнетизма в сердечнике трансформатора.Одиночная 9-вольтовая сухая батарея хорошо работает с чувствительным измерителем.

Трансформаторы с несколькими вторичными обмотками действуют одинаково, при этом маркировка полярности каждой вторичной обмотки имеет ту же полярность, что и любая другая обмотка:

Чтобы еще раз подчеркнуть этот важный момент: точки полярности трансформатора всегда относятся к напряжению, а не к току. Полярность напряжения на обмотке трансформатора всегда будет соответствовать полярности любой другой обмотки того же трансформатора по отношению к точкам.Однако направление тока через обмотку трансформатора зависит от того, работает ли рассматриваемая обмотка в качестве источника или нагрузки . Вот почему во всех предыдущих примерах видно, что токи идут в противоположных направлениях (в точку, из точки) от первичной к вторичной, а полярности напряжения соответствуют точкам. Первичная обмотка трансформатора работает как нагрузка (ток обычного протока, протекающий через положительный вывод), в то время как его вторичная обмотка функционирует как источник (ток обычного протока, вытекающий из положительного вывода).

Полярность трансформатора очень важна в электроэнергетике, поэтому были придуманы термины для обозначения разной полярности обмоток трансформатора. Если точки полярности для первичной и вторичной обмоток расположены на одной и той же физической стороне трансформатора, это означает, что первичная и вторичная обмотки намотаны в одном направлении вокруг сердечника, и это называется вычитающим трансформатором . Если точки полярности расположены на противоположных сторонах трансформатора, это означает, что первичная и вторичная обмотки намотаны в противоположных направлениях, и это называется добавочным трансформатором .Термины «аддитивный» и «вычитающий» имеют большее значение, когда мы рассматриваем эффекты каждой конфигурации в заземленной системе переменного тока. В следующих примерах показано, как напряжения могут складываться или уменьшаться в зависимости от фазового соотношения первичной и вторичной обмоток трансформатора:

Трансформаторы

, работающие при высоком напряжении, обычно проектируются с вычитающей ориентацией обмоток, просто чтобы минимизировать диэлектрическое напряжение, оказываемое на изоляцию обмотки от межобмоточных напряжений.Измерительные трансформаторы (ТТ и ТТ) по соглашению всегда вычитающие.

Когда три однофазных трансформатора соединены между собой, образуя трехфазный трансформатор, полярность обмоток должна быть правильно ориентирована. Обмотки в сети треугольником должны быть подключены таким образом, чтобы отметки полярности двух обмоток не совпадали друг с другом. Изогнутые стрелки нарисованы рядом с каждой обмоткой, чтобы подчеркнуть соотношение фаз:

Обмотки в звездообразной сети должны быть подключены таким образом, чтобы все метки полярности были обращены в одном направлении по отношению к центру звезды (обычно все метки полярности были направлены от центра):

Несоблюдение этих фазовых соотношений в группе силовых трансформаторов может привести к катастрофическому отказу, как только трансформаторы будут под напряжением!

На следующей фотографии показана схема большого силового трансформатора электросети, оборудованного несколькими трансформаторами тока, стационарно установленными в проходных изоляторах (местах, в которых силовые проводники проходят через стальной кожух блока силового трансформатора).Обратите внимание на сплошные черные квадраты, обозначающие одну сторону каждой вторичной обмотки ТТ, а также одну сторону каждой первичной и вторичной обмоток в этом трехфазном силовом трансформаторе. Сравнивая расположение этих черных квадратов, мы можем сказать, что все трансформаторы тока, а также сам силовой трансформатор намотаны как вычитающих устройств:

Пример важности маркировки полярности для подключения измерительных трансформаторов можно увидеть здесь, где пара трансформаторов тока с равным передаточным числом соединена параллельно для управления общим прибором, который должен измерять разность в токе. вход и выход из груза:

Правильно подключенный, как показано выше, измеритель в центре схемы регистрирует только разницу в выходном токе двух трансформаторов тока.Если ток в нагрузке точно равен току на выходе из нагрузки (что должно быть) и два трансформатора тока точно согласованы по соотношению витков, счетчик получит нулевой чистый ток. Если, однако, в нагрузке возникает замыкание на землю, в результате чего больше тока поступает, чем выходит из нее, то дисбаланс токов ТТ будет регистрироваться измерителем и, таким образом, указывать на состояние неисправности в нагрузке.

Предположим, однако, что техник по ошибке подключил один из этих блоков ТТ в обратном направлении.Если мы рассмотрим получившуюся схему, мы увидим, что измеритель теперь определяет сумму линейных токов, а не разницу , как должно:

Это приведет к тому, что измеритель будет ложно показывать дисбаланс тока в нагрузке, когда его нет.

Безопасность измерительного трансформатора

Трансформаторы напряжения (ТН или ТН) имеют тенденцию вести себя как источники напряжения по отношению к приборам измерения напряжения, которыми они управляют: выходной сигнал ТН должен быть пропорциональным представлением напряжения энергосистемы.Напротив, трансформаторы тока (ТТ), как правило, ведут себя как источники тока по отношению к приборам измерения тока, которыми они управляют: выходной сигнал ТТ должен быть пропорциональным представлением тока энергосистемы. На следующих схематических диаграммах показано, как должны вести себя PT и CT при закупке соответствующих инструментов:

В соответствии с этим принципом трансформаторов тока как источников напряжения и трансформаторов тока как источников тока, вторичная обмотка трансформатора тока не должна иметь короткого замыкания, а вторичная обмотка трансформатора тока не должна быть разомкнута! Короткое замыкание вторичной обмотки PT может привести к возникновению в цепи опасного тока, поскольку PT будет пытаться поддерживать значительное напряжение на очень низком сопротивлении.Разрыв вторичной обмотки ТТ может привести к возникновению опасного напряжения между клеммами вторичной обмотки, поскольку ТТ будет пытаться пропустить значительный ток через очень высокое сопротивление.

Вот почему вы никогда не увидите предохранителей во вторичной цепи трансформатора тока. Такой плавкий предохранитель, когда он перегорел, представлял бы большую опасность для жизни и имущества, чем замкнутая цепь с любым током, который мог бы собрать трансформатор тока.

В то время как рекомендация никогда не замыкать выход ПТ имеет смысл для любого студента, изучающего электричество или электронику, который был натренирован никогда не замыкать накоротко аккумулятор или лабораторный источник питания, рекомендация никогда не размыкать цепь ТТ с питанием часто требует пояснений.Поскольку трансформаторы тока преобразуют ток, значение их выходного тока, естественно, ограничивается фиксированным соотношением линейного тока силового проводника. Другими словами, короткое замыкание вторичной обмотки ТТ , а не , приведет к большему выходному току этого ТТ, чем то, что он будет выдавать на любой нормальный токоизмерительный прибор! Фактически, трансформатор тока испытывает минимальную «нагрузку» при подаче питания на короткое замыкание, потому что ему не нужно выдавать какое-либо существенное напряжение для поддержания такого количества вторичного тока.Только тогда, когда трансформатор тока вынужден выводить ток через значительный импеданс, он должен «усердно работать» (то есть выводить больше мощности), генерируя значительное вторичное напряжение вместе с вторичным током.

Скрытая опасность трансформатора тока подчеркивается проверкой соотношения его первичного и вторичного витков. Одиночный проводник, пропущенный через апертуру трансформатора тока, действует как обмотка с одним витком, в то время как несколько витков провода, намотанного вокруг тороидального сердечника трансформатора тока, обеспечивают коэффициент, необходимый для понижения тока от линии питания к приемному устройству. .Однако, как знает каждый студент, изучающий трансформаторы, в то время как вторичная обмотка, имеющая больше витков провода, чем первичная обмотка , понижает ток на , тот же самый трансформатор, наоборот, на понижает напряжение на . Это означает, что трансформатор тока с разомкнутой цепью ведет себя как повышающий трансформатор напряжения. Учитывая тот факт, что измеряемая линия электропередачи обычно изначально имеет опасно высокое напряжение, перспектива того, что измерительный трансформатор повысит это напряжение еще выше, действительно отрезвляет.Фактически, единственный способ гарантировать, что трансформатор тока не будет выдавать высокое напряжение при питании от сети, — это поддержать его вторичную обмотку под нагрузкой с низким импедансом.

Также обязательно, чтобы все вторичные обмотки измерительного трансформатора были прочно заземлены , чтобы предотвратить образование опасно высокого напряжения на клеммах измерительного прибора из-за емкостной связи с силовыми проводниками. Заземление должно быть выполнено только в одной точке в каждой цепи измерительного трансформатора, чтобы предотвратить образование контуров заземления и потенциально вызвать ошибки измерения.Предпочтительным местом для этого заземления является первая точка использования, то есть клеммная колодка, устанавливаемая на приборной панели или на панели, куда попадают вторичные провода измерительного трансформатора. Если между измерительным трансформатором и приемным прибором имеются какие-либо тестовые переключатели, заземление должно быть выполнено таким образом, чтобы при размыкании тестового переключателя вторичная обмотка трансформатора не оставалась плавающей (незаземленной).

Выключатели для проверки измерительных трансформаторов

Соединения, сделанные между измерительными трансформаторами и приемными приборами, такими как монтируемые на панели счетчики и реле, должны время от времени прерываться для проведения испытаний и других функций обслуживания.Аксессуар, который часто можно увидеть в панелях силовых приборов, — это блок тестовых переключателей , состоящий из серии рубильников. Фотография испытательного блока переключателей производства ABB представлена ​​здесь:

Некоторые из этих рубильников служат для отключения трансформаторов напряжения (ТТ) от приемных устройств, установленных на этой релейной панели, в то время как другие рубильные переключатели в той же группе служат для отключения трансформаторов тока (ТТ) от приемных приборов, установленных на той же панели.

Для дополнительной безопасности на блоке переключателей могут быть установлены крышки для предотвращения случайного срабатывания или электрического контакта. Некоторые крышки тестовых переключателей даже запираются на замок для дополнительной защиты от доступа.

Испытательные переключатели, используемые для отключения трансформаторов напряжения (ТП) от датчиков напряжения, представляют собой не что иное, как простые однополюсные однонаправленные (SPST) рубильники, как показано на этой схеме:

Разрыв цепи трансформатора напряжения не представляет опасности, поэтому для отключения ПТ от приемного прибора не требуется ничего особенного.

Здесь представлена ​​серия фотографий, показывающих работу одного из этих рубильников, от замкнутого (в рабочем состоянии) слева до разомкнутого (отключенного) справа:

Испытательные переключатели, используемые для отключения трансформаторов тока от токоизмерительных приборов, однако, должны быть специально сконструированы так, чтобы избежать размыкания цепи трансформатора тока при отключении из-за опасности высокого напряжения, создаваемой разомкнутыми вторичными обмотками трансформатора тока. Таким образом, испытательные переключатели ТТ предназначены для короткого замыкания на выходе ТТ перед размыканием соединения с устройством измерения тока.Для этого используется специальный рубильник , прерывающий разрыв, :

Здесь представлена ​​серия фотографий, показывающих работу рубильника перед размыканием, от замкнутого (в рабочем состоянии) слева до закороченного (разомкнутого) справа:

Закорачивающее действие происходит на листе из пружинной стали, контактирующем с движущимся лезвием ножа в кулачковой прорези рядом с шарниром. Обратите внимание, как лист соприкасается с кулачком ножа на правой и средней фотографиях, но не на левой фотографии.Этот металлический лист соединяется с основанием рубильника, прилегающим справа (другой полюс цепи ТТ), образуя короткое замыкание между выводами ТТ, необходимое для предотвращения дуги, когда рубильник размыкает цепь на приемный прибор.

Пошаговая последовательность иллюстраций показывает, как эта закорачивающая пружина предотвращает размыкание цепи ТТ при размыкании первого переключателя:

Обычно не замыкающий переключатель в паре тестовых переключателей ТТ оснащается «тестовым разъемом», позволяющим вставить дополнительный амперметр в схему для измерения сигнала ТТ.Этот испытательный домкрат состоит из пары пластин из пружинной стали, контактирующих друг с другом в середине размаха рубильника. Когда рубильник находится в разомкнутом положении, металлические листы продолжают обеспечивать непрерывность после разомкнутого рубильника. Однако, когда специальный штекер адаптера амперметра вставляется между пластинами, раздвигая их, цепь разрывается, и ток должен течь через два штыря тестового штекера (и в тестовый амперметр, подключенный к этому штекеру).

Пошаговая последовательность иллюстраций показывает, как тестовое гнездо поддерживает целостность разомкнутого рубильника, а затем позволяет вставить тестовый щуп и амперметр, не разрывая цепь ТТ:

При использовании такого измерительного щупа ТТ необходимо тщательно проверить электрическую целостность амперметра и измерительных проводов перед тем, как вставить щуп в измерительные гнезда.Если случится «обрыв» где-либо в цепи амперметра / вывода, опасная дуга разовьется в точке «обрыва» в момент, когда испытательный щуп раздвигает металлические пластины испытательного разъема! Всегда помните, что находящийся под напряжением трансформатор тока опасен при разомкнутой цепи, поэтому ваша личная безопасность зависит от постоянного поддержания непрерывности электрической цепи в цепи трансформатора тока.

На этой фотографии крупным планом показан замкнутый испытательный выключатель ТТ, оборудованный испытательным домкратом, при этом пружинные листы домкрата видны как пара структур в форме «обруча», обрамляющих лезвие среднего рубильника:

В дополнение к (или иногда вместо) контрольным переключателям, вторичная проводка трансформатора тока часто проходит через специальные «закорачивающие» клеммные колодки.Эти специальные клеммные колодки имеют металлическую «перемычку», проходящую по центру, через которую можно вставить винты для соединения с проводными клеммами ниже. Любые клеммы, соединенные с этим металлическим стержнем, обязательно будут уравновешены друг с другом. Один винт всегда вставляется в шину, входящую в клемму заземления на клеммной колодке, таким образом, заземляя всю шину. Дополнительные винты, вставленные в эту шину, прижимают вторичные провода ТТ к потенциалу земли. Фотография такой закорачивающей клеммной колодки показана здесь, с пятью проводниками от многоскоростного (многоотводного) трансформатора тока с маркировкой от 7X1 до 7X5 , подключаемых к клеммной колодке снизу:

Эта закорачивающая клеммная колодка имеет три винта, вставленных в закорачивающую перемычку: один соединяет перемычку с клеммой заземления («G») на дальнем левом краю, другой — с проводом ТТ «7X5», а последний соединяет к проводу ТТ «7X1».В то время как первый винт устанавливает потенциал заземления вдоль перемычки, следующие два винта образуют короткое замыкание между двумя внешними проводниками трансформатора тока с несколькими коэффициентами. Обратите внимание на зеленые «перемычки», прикрепленные к верхней стороне этой клеммной колодки, замыкающие 7X1 на 7X5 на землю, в качестве дополнительной меры безопасности для этого конкретного трансформатора тока, который в настоящее время не используется и не подключен к какому-либо измерительному прибору.

На следующих рисунках показаны комбинации положений винтовых клемм, используемых для выборочного заземления различных проводников на трансформаторе тока с несколькими коэффициентами.На первой из этих иллюстраций показано состояние, представленное на предыдущей фотографии, когда весь трансформатор тока закорочен и заземлен:

На следующем рисунке показано, как ТТ будет использоваться на полную мощность, при этом X1 и X5 подключены к панели приборов и (только) X5 заземлен в целях безопасности:

На этом последнем рисунке показано, как ТТ будет использоваться с пониженной мощностью, с X2 и X3, подключенными к панельному прибору, и (только) X3 заземленным для безопасности:

Нагрузка и точность измерительного трансформатора

Для того, чтобы измерительный трансформатор функционировал в качестве точного измерительного устройства, ему не следует чрезмерно ставить задачу подавать мощность на нагрузку.Чтобы свести к минимуму энергопотребление измерительных трансформаторов, идеальный прибор для измерения напряжения должен потреблять нулевой ток от своего трансформатора тока, в то время как идеальный прибор для измерения тока должен понижать нулевое напряжение на своем трансформаторе тока.

На практике трудно достичь нулевой мощности любого прибора. Каждый вольтметр действительно потребляет ток, пусть даже небольшой. Каждый амперметр действительно немного понижает напряжение. Величина полной мощности, потребляемой от любого измерительного трансформатора, соответственно называется нагрузка , и, как и все выражения полной мощности, измеряется в единицах вольт-ампер.2_ {сигнал}) (Z_ {инструмент}) \]

Нагрузка для любого устройства или цепи, подключенной к измерительному трансформатору, может быть выражена как значение импеданса (\ (Z \)) в омах или как значение полной мощности (\ (S \)) в вольт-амперах. Точно так же сами измерительные трансформаторы обычно рассчитываются на величину нагрузки, которую они могут создавать, и при этом работать с определенным допуском точности (например, \ (\ pm \) 1% при нагрузке 2 ВА).

Возможная нагрузка трансформатора и классы точности

Потенциальные трансформаторы имеют максимальные значения нагрузки, указанные в терминах полной мощности (\ (S \), измеренной в вольт-амперах), стандартные значения нагрузки классифицируются буквенным кодом:

Буквенный код Максимально допустимая нагрузка при заявленной точности
Вт 12.5 вольт-ампер
х 25 вольт-ампер
М 35 вольт-ампер
Y 75 вольт-ампер
Z 200 вольт-ампер
ZZ 400 вольт-ампер

Стандартные классы точности для трансформаторов напряжения включают 0,3, 0,6 и 1,2, соответствующие погрешности \ (\ pm \) 0,3%, \ (\ pm \) 0,6% и \ ​​(\ pm \) 1,2% от номинальное передаточное число соответственно.Эти классы точности и нагрузки обычно объединены на одной этикетке. Трансформатор напряжения с номиналом «0,6 МОм», следовательно, имеет точность \ (\ pm \) 0,6% (этот процент понимается как точность с коэффициентом поворота ) при питании нагрузки 35 вольт-ампер при ее номинальном значении (например, 120 вольт. ) выход.

Нагрузка трансформатора тока и классы точности

Точность трансформатора тока и нагрузки более сложны, чем номинальные параметры трансформатора тока. Основная причина этого — более широкий спектр приложений ТТ.Если трансформатор тока должен использоваться для целей измерения (т. Е. Приводных ваттметров, амперметров и других инструментов, используемых для регулирующего контроля и / или выставления счетов, где требуется высокая точность), предполагается, что трансформатор будет работать в пределах своих стандартных номиналов. текущие значения. Например, трансформатор тока с соотношением 600: 5, используемый для измерения, должен редко, если вообще когда-либо, видеть значение первичного тока, превышающее 600 ампер, или вторичный ток, превышающий 5 ампер. Если текущие значения, проходящие через трансформатор тока, когда-либо превысят эти максимальные стандартные значения, влияние на регулирование или выставление счетов будет незначительным, поскольку это должны быть переходные события.Однако защитные реле предназначены для интерпретации переходных процессов в энергосистемах и реагирования на них. Если трансформатор тока должен использоваться для реле , а не для измерения, он должен надежно работать в условиях перегрузки, обычно создаваемых неисправностями энергосистемы. Другими словами, релейные приложения ТТ требуют гораздо большего динамического диапазона измерения, чем измерительные приложения. Абсолютная точность не так важна для реле, но мы должны убедиться, что ТТ будет давать достаточно точное представление о линейном токе в условиях неисправности, чтобы защитное реле (а) функционировало должным образом.Трансформаторы, даже те, которые используются для защитных реле, никогда не видят переходных процессов напряжения столь же широких, как переходные процессы тока, наблюдаемые трансформаторами тока.

Номинальные параметры ТТ класса счетчика

обычно выражаются в виде процентного значения, за которым следует буква «B», за которой следует максимальная нагрузка, выраженная в омах импеданса. Следовательно, трансформатор тока с классом измерения 0,3B1,8 демонстрирует точность \ (\ pm \) 0,3% отношения витков при питании импеданса 1,8-омметра при 100% выходном токе (обычно 5 ампер).

Класс реле ТТ номиналы обычно принимают форму максимального напряжения , падающего на нагрузку при 20-кратном номинальном токе (т. Е. Вторичный ток 100 А для ТТ с номинальной выходной мощностью 5 А) при сохранении точности в пределах \ (\ pm \) 10% от номинального передаточного числа. Не случайно для защиты энергосистемы обычно выбираются соотношения ТТ: так, чтобы максимальный ожидаемый симметричный ток короткого замыкания через силовой проводник не превышал в 20 раз номинальный ток первичной обмотки ТТ.Следовательно, трансформатор тока с релейной классификацией C200 может выдавать напряжение до 200 вольт при питании своей максимальной нагрузки при номинальном токе в 20 \ (\ times \). Предполагая, что номинальный выходной ток составляет 5 ампер, 20-кратное превышение этого значения будет составлять 100 ампер, подаваемых на реле. Если падение напряжения реле при этом токе может достигать 200 вольт, это означает, что вторичная цепь ТТ может иметь значение импеданса до 2 Ом (\ (200 \ hbox {V} \ div 100 \ hbox {A } = 2 \> \ Омега \)). Таким образом, номинальный ток реле C200 — это просто еще один способ сказать, что он может выдерживать нагрузку до 2 Ом.

Буква «C» в примере оценки «C200» означает из расчета , что означает, что рейтинг основан на теории. В некоторых трансформаторах тока вместо этого используется буква «Т», которая обозначает протестировано . Эти трансформаторы тока были фактически испытаны при указанных значениях напряжения и тока, чтобы гарантировать их работоспособность в реальных условиях.

Насыщение трансформатора тока

Стоит более подробно изучить концепцию максимальной нагрузки трансформатора тока.В идеальном мире трансформатор тока действует как источник тока для измерителя или реле, которое он питает, и, таким образом, вполне достаточно для подачи тока в короткое замыкание (полное сопротивление 0 Ом). Проблемы возникают, если мы требуем, чтобы трансформатор тока выдавал больше мощности, чем он рассчитан, что означает, что трансформатор тока вынужден пропускать ток через чрезмерное сопротивление. Во времена электромеханических счетчиков и защитных реле, когда устройства полностью питались сигналами измерительного трансформатора, нагрузка на определенные счетчики и реле могла быть весьма значительной.Современные электронные измерители и реле создают гораздо меньшую нагрузку на измерительные трансформаторы, приближаясь к идеальным условиям нулевого импеданса для входов, считывающих ток.

Напряжение, создаваемое любой индуктивностью, включая обмотки трансформатора, описывается Законом электромагнитной индукции Фарадея:

\ [V = N {d \ phi \ over dt} \]

Где,

\ (В \) = Индуцированное напряжение (вольт)

\ (N \) = Количество витков провода

\ (d \ phi \ over dt \) = Скорость изменения магнитного потока (Веберов в секунду)

Следовательно, чтобы генерировать большее напряжение, трансформатор тока должен развивать в своем сердечнике более быстро изменяющийся магнитный поток.Если рассматриваемое напряжение синусоидально на постоянной частоте, магнитный поток также отслеживает синусоидальную функцию во времени, пики напряжения совпадают с самыми крутыми точками на форме волны потока, а точки «нуля» напряжения совпадают с пиками потока. форма волны, при которой скорость изменения магнитного потока с течением времени равна нулю:

Повышение нагрузки на ТТ (т. Е. Большее сопротивление, через которое должен проходить ток) означает, что ТТ должен развивать большее синусоидальное напряжение для любой заданной величины измеренного линейного тока.Это соответствует форме волны магнитного потока с более быстрым изменением скорости нарастания и спада, что, в свою очередь, означает форму волны магнитного потока с более высоким пиком (предполагая синусоидальную форму). Проблема с этим в какой-то момент заключается в том, что требуемый магнитный поток достигает таких высоких пиковых значений, что железный сердечник ТТ начинает насыщаться магнетизмом, после чего ТТ перестает вести себя линейно и больше не будет точно воспроизводить форма и величина кривой тока в линии электропередачи. Проще говоря, если мы возложим на трансформатор тока слишком большую нагрузку, он начнет выдавать искаженный сигнал, который больше не будет точно отображать линейный ток.

Тот факт, что максимальное выходное напряжение переменного тока ТТ зависит от предела магнитного насыщения его железного сердечника, становится особенно актуальным для ТТ с несколькими передаточными числами , у которых вторичная обмотка имеет более двух «ответвлений». Трансформаторы тока с несколькими передаточными числами обычно используются в качестве стационарных трансформаторов тока во вводах силовых трансформаторов, что дает конечному пользователю свободу при конфигурировании своих схем измерения и защиты. Рассмотрим этот ввод распределительного трансформатора 600: 5 CT с классом точности C800:

.

Классификация этого ТТ «C800» основана на его способности подавать максимум 800 Вольт на нагрузку , когда все его вторичные витки используются .Другими словами, его рейтинг составляет «C800» только при подключении к ответвителям X1 и X5 для полного соотношения 600: 5. Если вместо этого кто-то подключается к ответвлениям X1-X3, используя только 30 витков провода во вторичной обмотке ТТ вместо всех 120 витков, этот ТТ будет ограничен подачей 200 В на нагрузку до насыщения: такой же величины магнитного потока, что и может генерировать 800 вольт на 120 витках провода, может индуцировать только четверть этого напряжения на четверть числа витков в соответствии с законом электромагнитной индукции Фарадея (\ (V = N {d \ phi \ over dt} \ )).Таким образом, трансформатор тока следует рассматривать как блок «C200», если он подключен с соотношением сторон 150: 5.

Наличие любого постоянного тока в проводниках линии электропередачи переменного тока создает проблему для трансформаторов тока, которую можно понять только с точки зрения магнитного потока в сердечнике ТТ. Любой постоянный ток (DC) в линии электропередачи, проходящий через CT, смещает магнитное поле CT на определенную величину, заставляя CT легче насыщаться в одном полупериоде переменного тока, чем в другом. Постоянные токи никогда не поддерживаются бесконечно в энергосистемах переменного тока, но часто присутствуют в виде переходных импульсов при определенных условиях неисправности.Даже в этом случае переходные постоянные токи будут оставлять сердечники ТТ с некоторым остаточным магнитным смещением, предрасполагающим их к насыщению в будущих условиях повреждения. Способность сердечника трансформатора тока сохранять некоторый магнитный поток с течением времени называется остаточной массой .

Остаточная намагниченность сердечника трансформатора является нежелательным свойством. Его можно уменьшить, сконструировав сердечник с воздушным зазором (вместо того, чтобы делать сердечник как непрерывный путь из черного металла), но это ставит под угрозу другие желательные свойства, такие как пределы насыщения (т.е. максимальное выходное напряжение). Некоторые отраслевые эксперты советуют размагничивать трансформаторы тока обслуживающим персоналом в рамках ремонтных работ после сильноточного повреждения, чтобы обеспечить оптимальную производительность при возвращении системы в эксплуатацию. Размагничивание заключается в пропускании большого переменного тока через трансформатор тока с последующим медленным уменьшением величины этого переменного тока до нуля ампер. Постепенное снижение напряженности переменного магнитного поля от полной до нуля имеет тенденцию к хаотизации магнитных доменов в железном сердечнике, возвращая его в ненамагниченное состояние.

Какой бы ни была причина, насыщение ТТ может стать серьезной проблемой для цепей защитных реле, потому что эти реле должны надежно работать при любых переходных перегрузках по току. Чем больше ток через первичную обмотку ТТ, тем больший ток он должен выводить на защитное реле. Для любой заданной нагрузки реле (входного импеданса реле) больший токовый сигнал приводит к большему падению напряжения и, следовательно, к большей потребности ТТ в выводе управляющего напряжения.Таким образом, насыщение ТТ с большей вероятностью произойдет во время событий перегрузки по току, когда нам больше всего нужен ТТ для правильной работы. Таким образом, любой, кому поручено выбрать подходящий трансформатор тока для релейной защиты, должен тщательно рассмотреть максимальное ожидаемое значение перегрузки по току при сбоях в системе, гарантируя, что ТТ будут выполнять свою работу, одновременно управляя нагрузками, налагаемыми реле.

Испытание трансформаторов тока

Трансформаторы тока могут подвергаться стендовым испытаниям на коэффициент трансформации и насыщение путем подачи переменного напряжения переменного тока на вторичную обмотку при одновременном контроле вторичного тока и первичного напряжения.Для обычных трансформаторов тока «оконного» типа первичная обмотка представляет собой одинарный провод, пропущенный через центральное отверстие. Идеальный трансформатор тока должен обеспечивать постоянный импеданс источника переменного напряжения и постоянное соотношение напряжений от входа к выходу. Реальный трансформатор тока будет демонстрировать все меньшее и меньшее сопротивление по мере того, как напряжение превышает его порог насыщения:

Идеальный трансформатор тока (без насыщения) должен отображать прямую линию. Изогнутая форма выявляет эффекты магнитного насыщения, когда в сердечнике трансформатора тока присутствует такой сильный магнетизм, что дополнительный ток дает лишь незначительное увеличение магнитного потока (что проявляется в падении напряжения).

Конечно, трансформатор тока никогда не запитывается от вторичной обмотки при установке и эксплуатации. Цель подачи питания на ТТ «в обратном направлении», как показано, состоит в том, чтобы избежать пропускания очень высоких токов через первичную обмотку ТТ. Однако, если доступно сильноточное испытательное оборудование, такой тест с первичным впрыском на самом деле является наиболее реалистичным способом проверки ТТ.

В следующей таблице показаны фактические значения напряжения и тока, полученные во время испытания вторичного возбуждения на реле CT класса C400 с соотношением 2000: 5.Напряжение источника было увеличено с нуля до приблизительно 600 вольт переменного тока при 60 Гц для испытания, в то время как падение вторичного напряжения и первичное напряжение были измерены. При напряжении около 575 вольт от трансформатора тока слышен «жужжащий» звук — слышимый эффект магнитного насыщения. Расчетные значения импеданса вторичной обмотки и отношения витков также показаны в этой таблице:

\ (I_S \) \ (V_S \) \ (V_P \) \ (Z_S = V_S \ div I_S \) Соотношение = \ (V_S \ div V_P \)
0.0308 A 75,14 В 0,1788 В 2,44 к \ (\ Omega \) 420,2
0,0322 А 100,03 В 0,2406 В 3,11 к \ (\ Omega \) 415,8
0,0375 А150,11 В 0,3661 В 4,00 к \ (\ Omega \) 410,0
0,0492 А 301,5 В 0,7492 В 6,13 к \ (\ Omega \) 402.4
0,0589 А 403,8 В 1,0086 В 6,86 к \ (\ Omega \) 400,4
0,0720 А 500,7 В 1,2397 В 6.95 к \ (\ Omega \) 403,9
0,0883 А 548,7 В 1,3619 В 6,21 к \ (\ Omega \) 402,9
0,1134 А 575,2 В 1.4269 В 5,07 к \ (\ Омега \) 403.1
0,1259 А 582,0 В 1.4449 В 4,62 к \ (\ Omega \) 402,8
0,1596 А 591,3 В 1.4665 В 3,70 к \ (\ Omega \) 403,2
0,2038 А 600,1 В 1.4911 В 2,94 к \ (\ Omega \) 402,5

Как видно из этой таблицы, расчетный импеданс вторичной обмотки \ (Z_S \) начинает резко падать, когда вторичное напряжение превышает 500 вольт (около точки «изгиба» кривой).Расчетное отношение витков выглядит удивительно стабильным — близко к идеальному значению 400 для ТТ 2000: 5 — но нужно помнить, что это соотношение рассчитывается на основе напряжения , а не тока. Поскольку в этом тесте не сравниваются первичный и вторичный токи, мы не можем увидеть влияние насыщения на способность этого ТТ к измерению тока. Другими словами, этот тест показывает, когда начинается насыщение, но не обязательно показывает, как насыщение влияет на коэффициент тока ТТ.

Разница между ТТ с соотношением сторон 2000: 5 и классификацией реле C400 и ТТ с соотношением сторон 2000: 5 с классификацией реле C800 заключается не в количестве витков во вторичной обмотке ТТ (\ (N \)), а в скорее количество черного металла в сердечнике ТТ. Трансформатор C800, чтобы вырабатывать более 800 вольт для удовлетворения нагрузки на реле, должен выдерживать в своем сердечнике вдвое больший магнитный поток, чем трансформатор C400, а для этого требуется магнитный сердечник в трансформаторе C800 с (как минимум) вдвое больше флюсовой способности.При прочих равных условиях, чем выше нагрузочная способность трансформатора тока, тем больше и тяжелее он должен быть из-за обхвата магнитопровода.

Сопротивление провода цепи трансформатора тока

Нагрузка, испытываемая трансформатором рабочего тока, представляет собой полное последовательное сопротивление измерительной цепи, состоящее из суммы входного сопротивления приемного прибора, полного сопротивления провода и внутреннего сопротивления вторичной обмотки самого трансформатора тока. Унаследованные электромеханические реле с их «управляющими» катушками, управляемыми токами ТТ, создают значительную нагрузку.Поскольку нагрузка, налагаемая электромеханическим реле, проистекает из работы катушки с проволокой, это полное сопротивление нагрузки является сложной величиной, имеющей как действительную (резистивную), так и мнимую (реактивную) составляющие. Современные цифровые реле с аналого-цифровыми преобразователями на их входах обычно создают чисто резистивную нагрузку на их трансформаторы тока, и эти значения нагрузки обычно намного меньше, чем нагрузка, возлагаемая на электромеханические реле.

Существенным источником нагрузки в любой цепи ТТ является сопротивление провода, по которому выходной ток ТТ идет к приемному устройству и от него.Довольно часто общее «петлевое» расстояние цепи ТТ составляет несколько сотен футов или более, если ТТ расположены в удаленных частях объекта, а защитные реле расположены в центральной диспетчерской. По этой причине важным аспектом конструкции системы защитных реле является размер (калибр) провода, чтобы гарантировать, что полное сопротивление цепи не превышает допустимую нагрузку ТТ.

Проволока большего сечения имеет меньшее сопротивление на единицу длины, чем проволока меньшего сечения, при прочих равных условиях.{0,232 G — 2,32} \]

Где,

\ (R_ {1000ft} \) = Приблизительное сопротивление провода в Ом на 1000 футов длины провода

\ (G \) = Американский калибр провода (AWG), номер провода

Размер провода

AWG, как и у большинства «калибровочных» шкал, является обратным: большее число означает более тонкий провод. Вот почему формула предсказывает меньшее значение \ (R \) для большего значения \ (G \). Простым примером значения, которое можно подставить в эту формулу, является число 10, представляющее провод # 10 AWG, общий размер проводника для вторичных цепей ТТ:

\ [R_ {1000ft} = e ^ {(0.0 = 1 \> \ Omega \ hbox {на 1000 футов} \]

Имейте в виду, что этот результат сопротивления провода 1 Ом на 1000 футов длины относится к общей длине цепи , а не к расстоянию между ТТ и приемным прибором. Полная вторичная электрическая цепь трансформатора тока, конечно, требует двух проводов , поэтому потребуется 1000 футов провода для покрытия 500 футов расстояния между трансформатором тока и прибором. В некоторых источниках указан провод №12 AWG в качестве минимального калибра для вторичных цепей ТТ независимо от длины провода.

Пример: сечение провода цепи ТТ, простой

Практический пример поможет проиллюстрировать, как сопротивление провода играет роль в характеристиках цепи ТТ. Давайте начнем с рассмотрения трансформатора тока класса точности C400, который будет использоваться в цепи защитного реле, причем сам трансформатор тока имеет измеренное сопротивление вторичной обмотки 0,3 \ (\ Omega \) с соотношением витков 600: 5. По определению, трансформатор тока C400 — это трансформатор, способный генерировать 400 вольт на своих выводах, одновременно подавая нагрузку в 20 раз больше номинального тока.Это означает, что максимальное значение нагрузки составляет 4 Ом, поскольку это полное сопротивление, которое упадет на 400 вольт при вторичном токе 100 ампер (в 20 раз больше номинальной выходной мощности ТТ в 5 ампер):

Хотя трансформатор тока имеет номинал класса C400, что означает, что на его выводах вырабатывается 400 вольт (максимум), обмотка должна быть способна вырабатывать более 400 вольт, чтобы преодолеть падение напряжения на собственном внутреннем сопротивлении обмотки. В данном случае при сопротивлении обмотки 0.3 Ом, несущий ток 100 ампер (наихудший случай), напряжение обмотки должно составлять 430 вольт, чтобы обеспечить 400 вольт на клеммах. Это значение 430 вольт при 60 Гц с синусоидальной формой волны тока представляет собой максимальное количество магнитного потока, с которым может справиться этот сердечник ТТ при сохранении коэффициента тока в пределах \ (\ pm \) 10% от его номинального значения 600: 5. Таким образом, 430 вольт (внутри трансформатора тока) является нашим ограничивающим фактором для обмотки трансформатора тока при любом значении тока .

Этот шаг расчета максимального напряжения внутренней обмотки ТТ — не просто иллюстрация того, как определяется класс ТТ «C».Скорее, это важный шаг в любом анализе нагрузки цепи ТТ, потому что мы должны знать максимальный потенциал обмотки, которым ограничен ТТ. У кого-то может возникнуть соблазн пропустить этот шаг и просто использовать 400 В в качестве максимального напряжения на клеммах во время состояния неисправности, но это приведет к незначительным ошибкам в таком простом случае, как этот, и гораздо более значительным ошибкам в других случаях, когда мы должны уменьшите напряжение обмотки ТТ по причинам, описанным далее в этом разделе.

Предположим, что этот трансформатор тока будет использоваться для подачи тока на защитное реле, представляющее чисто резистивную нагрузку 0.2 Ом. Системное исследование показывает, что максимальный симметричный ток короткого замыкания составляет 10 000 ампер, что чуть ниже номинального первичного тока 20 \ (\ times \) для ТТ. Вот как будет выглядеть схема во время этого состояния неисправности, когда трансформатор тока выдает максимальное (внутреннее) напряжение 430 вольт:

Предел внутреннего напряжения ТТ в 430 вольт по-прежнему остается в силе, потому что это функция магнитной индукции его сердечника, а не линейного тока. При токе повреждения энергосистемы 10 000 ампер этот трансформатор тока выдаст только 83.33 ампера, а не 100 ампер, использованных для определения классификации C400. Максимальное полное сопротивление цепи легко предсказать по закону Ома, при 430 вольт (ограничено магнитным сердечником трансформатора тока), выдавая 83,33 ампера (ограниченное током неисправности системы):

\ [R_ {total} = {V_W \ over I_ {fault}} = {430 \ hbox {V} \ over 83,33 \ hbox {A}} = 5,16 \> \ Omega \]

Поскольку мы знаем, что полное сопротивление в этой последовательной цепи является суммой сопротивления обмотки ТТ, сопротивления провода и нагрузки реле, мы можем легко вычислить максимальное сопротивление провода путем вычитания:

\ [R_ {total} = R_ {CT} + R_ {провод} + R_ {реле} \]

\ [R_ {wire} = R_ {total} — (R_ {CT} + R_ {реле}) \]

\ [R_ {wire} = 5.{(0,232) (12) — 2,32} = 1,59 \> \ Omega \ hbox {на 1000 футов} \]

\ [{4.66 \> \ Omega \ over 1.59 \> \ Omega / \ hbox {1000 ft}} = 2,93 \ times \ hbox {1000 ft} = 2930 \ hbox {ft} \]

Конечно, это общей длины проводника , что означает, что для двухжильного кабеля между ТТ и защитным реле максимальное расстояние будет вдвое меньше: 1465 футов.

Пример: сечение провода цепи ТТ с учетом постоянного тока

Предыдущий сценарий предполагает чисто переменный ток короткого замыкания.Реальные неисправности могут содержать значительные компоненты постоянного тока в течение коротких периодов времени, длительность этих переходных процессов постоянного тока связана с постоянной времени \ (L \ over R \) силовой цепи. Как упоминалось ранее, постоянный ток имеет тенденцию намагничивать железный сердечник трансформатора тока, предрасполагая его к магнитному насыщению. Таким образом, трансформатор тока в этих условиях не сможет генерировать полное напряжение переменного тока, возможное во время контролируемого стендового испытания (например, трансформатор тока C400 в этих условиях не сможет выдержать нагрузку до своего номинального напряжения 400 В на клеммах).Простой способ компенсировать этот эффект — снизить напряжение на обмотке ТТ на коэффициент, равный \ (1 + {X \ over R} \), причем отношение \ (X \ over R \) является реактивным сопротивлением к — коэффициент сопротивления энергосистемы в точке измерения. Снижение номинальных характеристик трансформатора обеспечивает запас прочности для наших расчетов, предполагая, что значительная часть емкости магнитного сердечника ТТ может потребляться намагничиванием постоянного тока во время определенных неисправностей, оставляя меньше магнитного «запаса» для генерации переменного напряжения.

Давайте повторим наши расчеты, предполагая, что защищаемая энергосистема теперь имеет отношение \ (X \ over R \), равное 14.Это означает, что наш трансформатор тока C400 (с максимальным внутренним потенциалом обмотки 430 вольт) должен быть понижен до максимального напряжения обмотки:

\ [{430 \ hbox {V} \ over {1 + {X \ over R}}} = {430 \ hbox {V} \ over {1 + 14}} = 28,67 \ hbox {V} \]

Если мы применим это пониженное напряжение обмотки к той же цепи ТТ, мы обнаружим, что его недостаточно для передачи 83,33 А через реле:

С 0,5 \ (\ Omega \) комбинированного сопротивления ТТ и реле (без сопротивления провода), напряжение на обмотке 28.67 вольт могут дать только 57,33 ампер, что намного меньше, чем нам нужно. Очевидно, что этот трансформатор тока не сможет работать в условиях отказа, когда переходные процессы постоянного тока подталкивают его ближе к магнитному насыщению.

Обновление ТТ до другой модели, имеющей более высокий класс точности (C800) и больший коэффициент понижения тока (1200: 5), улучшит положение. Предполагая, что внутреннее сопротивление обмотки этого нового ТТ составляет 0,7 Ом, мы можем рассчитать его максимальное внутреннее напряжение обмотки следующим образом: если этот ТТ рассчитан на подачу 800 В на свои клеммы при вторичном токе 100 А через 0.7 Ом внутреннего сопротивления, это должно означать, что вторичная обмотка трансформатора тока внутри генерирует на 70 вольт больше, чем 800 вольт на своих выводах, или 870 вольт при чисто переменном токе. Учитывая, что коэффициент \ (X \ over R \) нашей энергосистемы равен 14 для учета переходных процессов постоянного тока, это означает, что мы должны снизить напряжение внутренней обмотки трансформатора тока с 870 вольт до 15 раз меньше, или 58 вольт. Применение этого нового ТТ к предыдущему сценарию отказа:

Расчет допустимого полного сопротивления цепи с учетом улучшенного напряжения нового ТТ:

\ [R_ {total} = {V_W \ over I_ {fault}} = {58 \ hbox {V} \ over 41.67 \ hbox {A}} = 1.392 \> \ Omega \]

Еще раз, мы можем рассчитать максимальное сопротивление провода, вычтя все другие сопротивления из максимального общего сопротивления цепи:

\ [R_ {wire} = R_ {total} — (R_ {CT} + R_ {реле}) \]

\ [R_ {wire} = 1,392 \> \ Omega — (0,7 \> \ Omega + 0,2 \> \ Omega) = 0,492 \> \ Omega \]

Таким образом, мы можем иметь сопротивление провода в этой цепи до 0,492 Ом, оставаясь в пределах номинальных значений трансформатора тока. Используя медный провод 10 AWG (с сопротивлением 1 Ом на 1000 футов), мы получаем общую длину проводника 492 фута, что составляет 246 футов расстояния между выводами CT и выводами реле.

.

Оставить комментарий