Прочность бетона это: определение и испытание бетона, марки по прочности

Опубликовано в Разное
/
19 Янв 2018

Содержание

определение и испытание бетона, марки по прочности

Прочность бетона – одна из важнейших характеристик этого строительного материала. Бетон лучше всего сопротивляется усилиям на сжатие. Поэтому проектирование осуществляется таким образом, чтобы на конструкцию действовали в основном силы сжатия. Если конструкция будет испытывать усилия на растяжение и изгиб, то при расчете проекта учитывают прочность на растягивающие усилия и растяжение при изгибе.

Характеристики прочности бетона

Порочность бетона на сжатие характеризуют марка или класс прочности, которые определяются в стандартном варианте в возрасте 28 суток. В зависимости от эксплуатационных особенностей строительной конструкции, момент определения прочности материала на сжатие может устанавливаться индивидуально. Это могут быть 3,7, 60, 90, 180 суток.

 

Определение! Класс прочности характеризует гарантированную прочность строительного материала, выраженную в МПа, с обеспеченностью 95%. Маркой называют нормируемое значение средней прочности бетона. Единица измерения – кгс/см2.

В проекте на строительную конструкцию пользуются понятием класса прочности и только в особых случаях – марки.

Таблица зависимости между классами и марками бетонов

Класс

Марка

Класс

Марка

В3,5

М50

В25-В27,5

М350

В5

М75

В30

М400

В7,5

М100

В35

М450

В10-В12,5

М150

В40

М500

В15

М200

В45

М600

В20

М250

В50-В55

М700

В22,5

М300

В60

М800

Технологические факторы, влияющие на прочность бетона

Прочность бетона зависит от ряда факторов, среди которых:

  • Активность цемента. Между прочностными характеристиками бетонного продукта и активностью вяжущего существует линейная зависимость. Чем выше активность, тем лучше прочностные показатели.
  • Количество вяжущего. Повышение содержания вяжущего положительно влияет на прочностные характеристики только до определенного процентного содержания. Выше – прочностные показатели растут незначительно, а другие технические параметры ухудшаются – растут усадка и ползучесть.
  • Водоцементное соотношение. Оптимальная величина определяется необходимой маркой удобоукладываемости. Обычно в смеси содержится 40-70% воды. Превышение оптимального количества жидкости инициирует образование пор, снижающих прочность конечного продукта.
  • Гранулометрический и минералогический состав заполнителей. На прочность бетонного продукта отрицательно влияют: неоптимальный состав мелкого и крупного заполнителей, наличие в них пылевидных и глинистых частиц.
  • Качество воды. Вода, используемая для затворения смеси, берется из водопровода питьевого назначения или проверяется в лаборатории на присутствие в ней примесей, отрицательно влияющих на качество конечного продукта.
  • Вибрирование бетонной смеси при укладке. При вибрировании из смеси выходит лишний воздух, снижающий прочностные характеристики. Однако излишнее вибрирование приводит к расслаиванию смеси.
  • Соблюдение оптимальных условий твердения.

Способы определения прочности

ГОСТ 10180-2012 регламентирует правила подготовки образцов и проведения испытаний прочности на сжатие в лабораторных условиях В соответствии со стандартом образцами могут быть:

  • куб с длиной ребра 100, 150, 200, 250, 300 мм;
  • цилиндр с диаметром основания 100, 150, 200, 250, 300 мм, высотой не менее диаметра основания.

Образцы изготавливают с соблюдением условий, соответствующих реальным условиям твердения смеси. Твердение продукта может происходить в нормальных условиях или с использованием тепловой обработки. Испытания проводят на испытательной машине-прессе. Образец нагружают со стабильной скоростью нарастания усилия до его разрушения.

Существуют неразрушающие способы контроля прочности бетона, позволяющие контролировать этот параметр в уже готовой конструкции:

  • Механические. Эти испытательные технологии основаны на показаниях приборов. Основные методы – упругий отскок, ударный импульс, отрыв, скалывание, отрыв со скалыванием.
  • Ультразвуковой. Основой этого способа является зависимость скорости прохождения ультразвуковых волн через материал от его прочностных характеристик. Технология востребована для определения прочностных характеристик длинномерных строительных конструкций – ригелей, колонн, балок.

Области применения бетона различных классов прочности

  • В7,5. Такие бетоны содержат малое количество вяжущего и относятся к категории «тощих». Применяются в основном при проведении подготовительных строительных работ. С их помощью изготавливают подбетонки, на которых устраивается железобетонный фундамент. Такой подготовительный бетонный слой не допускает протекания цементного молочка из фундаментной бетонной смеси в грунт.
  • В10-В12,5. Такие материалы также обладают невысокой прочностью. Применяются для устройства подбетонного слоя, тонкослойных стяжек, фундаментов легких строительных конструкций.
  • В15-В20. Бетонные смеси этих классов прочности востребованы в малоэтажном индивидуальном строительстве при возведении небольших строений, для устройства внутренних перегородок, лестничных маршей.
  • В22,5. Широко востребованы в малоэтажном жилом и промышленном строительстве, при производстве ЖБИ.
  • В25-В22,7. Применяются при сооружении высоконагружаемых строительных конструкций – несущих балок, плит, колонн в многоэтажных зданиях.
  • В30 и выше. Такие бетоны, обладающие высокой прочностью, применяют в промышленном строительстве и для сооружения объектов высокой опасности и ответственности. Из-за высокой схватываемости применяются с добавками, регулирующими скорость твердения смеси.

Прочность бетона (понятие и определение по действующим нормам)

Основные термины

Согласно СП 63.13330.2018 Бетонные и железобетонные конструкции. Основные положения. СНиП 52-01-2003 существуют следующие виды показателей прочности бетона:

  • Класс бетона по прочности на сжатие
  • Класс бетона по прочности на осевое растяжение

Класс бетона по прочности на сжатие (В) — это  значению кубиковой прочности бетона на сжатие, МПа, с обеспеченностью 0,95 (нормативная кубиковая прочность) [п.6.1.3 СП 63.13330.2018].

Класс бетона по прочности на сжатие (В) — определяется гарантированным сопротивлением сжатию, МПа, эталонного образца-куба, испытанного согласно требованиям государственных стандартов, со статической обеспеченностью 0,95 или ее гарантированной доверительной вероятностью 95% (не менее 95% испытанных образцов имеют прочность не ниже В) [Голышев А.Б. Проектирование железобетонных конструкций: Справочное пособие. 1990 г.].

Класс бетона по прочности на сжатие является основной характеристикой бетона и должен указываться в проектах во всех случаях [Голышев А.Б. Проектирование железобетонных конструкций: Справочное пособие. 1990 г.].

Разница между классом и маркой бетона состоит в обеспеченности принятого сопротивления: для марки эта обеспеченность составляет 0,5 [Голышев А.Б. Проектирование железобетонных конструкций: Справочное пособие. 1990 г.].

Класс бетона по прочности на осевое растяжение (Bt) — это значению прочности бетона на осевое растяжение, МПа, с обеспеченностью 0,95 (нормативная прочность бетона) [п.6.1.3 СП 63.13330.2018].

Допускается принимать иное значение обеспеченности прочности бетона на сжатие и осевое растяжение в соответствии с нормативными документами для отдельных специальных видов сооружений.

Проектный возраст бетона — это  возраст, в котором бетон должен приобрести все нормируемые для него показатели качества, назначают при проектировании, исходя из возможных реальных сроков загружения конструкций проектными нагрузками, с учетом способа возведения конструкций и условий твердения бетона. При отсутствии этих данных класс бетона устанавливают в проектном возрасте 28 сут [п.6.1.5 СП 63.13330.2018].

Н

ормируемая прочность бетона — это прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготавливают БСГ или конструкцию [п.3.1.1 ГОСТ 18105].

БСГ — это бетонная смесь, готоая к применению

Требуемая прочность бетона — минимально допустимое среднее значение прочности бетона в контролируемых партиях БСГ или конструкций, соответствующее нормируемой прочности бетона при ее фактической однородности [п.3.1.2 ГОСТ 18105].

Фактический класс бетона по прочности -значение класса бетона по прочности монолитных конструкций, рассчитанное по результатам определения фактической прочности бетона и ее однородности в контролируемой партии [п.3.1.3 ГОСТ 18105].

Фактическая прочность бетона — среднее значение прочности бетона в партиях БСГ или конструкций, рассчитанное по результатам ее определения в контролируемой партии [п.3.1.4 ГОСТ 18105].

Разрушающие методы определения прочности бетона — это методы определения прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570 [п.3.1.18 ГОСТ 18105].

Прямые неразрушающие методы определения прочности бетона — это методы  определения прочности бетона по «отрыву со скалыванием» и «скалыванию ребра» по ГОСТ 22690 [п.3.1.19 ГОСТ 18105].

Косвенные неразрушающие методы определения прочности бетона — это методы  определение прочности бетона по предварительно установленным градуировочным зависимостям между прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов, и косвенными характеристиками прочности, определяемыми по ГОСТ 22690 и ГОСТ 17624 [п.3.1.20 ГОСТ 18105].

Определение прочности бетона

Согласно п.5.5.5 СП 70.13330.2012 контроль прочности бетона монолитных конструкций в промежуточном и проектном возрасте следует проводить статистическими методами по ГОСТ 18105, ГОСТ 31914, применяя неразрушающие методы определения прочности бетона по ГОСТ 17624 и ГОСТ 22690 или разрушающий метод по ГОСТ 28570 при сплошном контроле прочности (каждой конструкции).

Примечание — Применение нестатистических методов контроля, а также методов определения прочности бетона по контрольным образцам, изготовленным у места бетонирования конструкций, допускается только в исключительных случаях, предусмотренных в ГОСТ 18105 и ГОСТ 31914.

Прочность бетона — основные методы определения прочности бетона

Прочность бетона на сжатие, является важнейшей технической характеристикой, регламентируемой действующими нормативными документами: ГОСТ и СНиП. В соответствии с практическими исследованиями 80-85% марочной прочности бетон приобретает на 28 сутки после затворения водой.

СодержаниеСвернуть

Прочность бетона

Конечно, при этом температура окружающего воздуха должна находиться в пределах 20-25 градусов Цельсия. Максимально же возможная прочность бетонной конструкции достигается через 3-4 года после заливки.

Оценка прочности бетона различными методами

Так как прочность бетона является самой важной характеристикой, от которой зависит прочность сооружения, конструкторами и технологами разработаны и активно применяются следующие варианты испытаний бетона на прочность:

  • Неразрушающие механические методы контроля. Основаны на опосредственной оценке технической характеристики, полученной методами: упругого отскока, удара, и отрыва со скалыванием.
  • Определение прочности бетона ультразвуковым методом. В этом случае используется специальная ультразвуковая установка, которая «просвечивает» проверяемую конструкцию и определяет прочность бетона в зависимости от скорости распространения ультразвуковых волн.
  • Метод разрушающего контроля прочности. Согласно существующим СНиПам разрушающий контроль является обязательным при приемке здания или сооружения в эксплуатацию.
  • Самостоятельный метод определения прочности бетона с помощью подручных материалов и инструментов: молотка, зубила и штангенциркуля.

Перечисленные способы имеют различную степень точности, находящуюся в пределах допускаемой погрешности.

Определение прочности бетона неразрушающими методами

  • Определение прочности с помощью молотка Физделя. При ударе рабочей частью молотка Физделя на поверхности бетона очищенной от посторонних материалов образуется отпечаток в виде лунки определенного диаметра. Величина диаметра, измеренная штангенциркулем, характеризует прочность бетона. Для достоверности результатов производится 12-15 ударов. Для расчета прочности принимается средний диаметр лунки.
  • Определение прочности с помощью молотка Кашкарова. Удар молотком Кашкарова оставляет на поверхности бетона два отпечатка. Один отпечаток остается на исследуемом объекте, второй отпечаток остается на эталоне (бетонном стержне известной прочности). В зависимости от соотношений диаметров отпечатков определяется прочность проверяемого объекта.
  • Прочность бетона неразрушающими методами определяемая с помощью: пистолета ЦНИИСКа, молотка Шмидта и склерометра. Указанные методы основаны на принципе упругого отскока рабочего органа от испытываемого объекта. Величина прочности бетона оценивается по шкале прибора, на которой фиксируются полученные данные.
  • Отрыв со скалыванием. Для проведения испытаний выбирается участок поверхности в теле, которого нет арматурного пояса. Для проверки прочности используются специальные анкерные устройства, внедряемые в толщу бетона. Оценка прочности производится по шкале анкерного устройства.

Прочность бетона - способы определения

Определение прочности бетона с помощью ультразвука

Технология использует связь, которая существует между скоростью распространения ультразвуковых импульсов и прочностью бетонной конструкции. Для реализации метода необходимо специальное оборудование, состоящее из генератора ультразвуковых волн, блока управления и датчиков.

Кроме прочности бетона, приборы ультразвукового исследования позволяют определять дефекты, однородность, модуль упругости и плотности толщи исследуемого объекта.

Прочность бетона - способы определения

Разрушающие методы определения прочности бетона

В соответствии с требованиями действующего СП 63.13330.2012 г., проверка конструкций разрушающими методами являются обязательными, застройщикам остается выбрать приемлемый способ определения прочности бетона по контрольным образцам из следующего списка:

  • Контроль прочности, осуществляемый специальными прессами, разрушающими контрольные образцы, залитые в специальные формы. Аналогичным способом осуществляется проверка отпускной прочности бетона ГОСТ 18105-2010. «Бетоны. Правила контроля и оценки прочности».
  • Контроль прочности бетона разрушением образцов выпиленных или высверленных из толщи проверяемой конструкции.
  • Контроль прочности методом разрушения образцов изготовленных непосредственно на строительной площадке. В связи с тем, что время и условия набора прочности образцами и время и условия набора прочности залитой конструкцией существенно различаются, данный метод считается относительно достоверным.

Определения прочности бетона своими руками

Более-менее достоверные сведения о прочности залитого бетона можно получить без использования специального оборудования. Для самостоятельных испытаний потребуется следующий инструмент:

  • Слесарный молоток массой ударной части 400-600 граммов.
  • Штангенциркуль с глубиномером.
  • Слесарное зубило средней величины.

При этом показатель прочности бетона – размер следа и глубина проникновения зубила после нанесения удара молотком средней силы.

  • Если след от зубила едва виден, прочность бетона соответствует классу В25.
  • Более глубокая и хорошо видная отметина идентифицирует бетон класса В15-В25.
  • Проникновение зубила в тело материала более чем на 0,5 мм говорит о том, что перед нами бетон класса В10,
  • Проникновение зубила в толщу бетона более чем на 10 мм идентифицирует бетон класса прочности В5.

Несмотря на то, что самостоятельный метод определения прочности бетона весьма простой и очень экономичный, прочность материала особо ответственных конструкций лучше всего определять «научными» способами привлекая соответствующих специалистов оснащенных соответствующим оборудованием.

Класс прочности всех марок бетонов

Прочность бетона - способы определения

Заключение

Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.

Определение прочности бетона — методы проверки и приборы

Прочность бетона — важнейшая характеристика, которая применяется при проектировании и расчете конструкций для строительства различных сооружений. Она задается маркой М (в кг/см²) или классом В (в МПа) и выражает максимальное давление сжатия, которое выдерживает материал без разрушения.

При определении марочной прочности бетона строительные организации и изготовители конструкций должны руководствоваться требованиями нормативных документов — ГОСТ 22690-88, 28570, 18105-2010, 10180-2012. Они регламентируют методику проведения испытаний, обработку результатов.

Определение прочностных характеристик бетона

Что влияет на прочность?

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Выбуривание кернов из монолита

Требования к проверке

С точки зрения заказчика наиболее предпочтительно проводить испытания неразрушающими методами контроля фактической прочности бетона. Сегодня созданы приборы, которые позволяют быстро получить результаты без бурения, высверливания или вырубки образца, портящих целостность конструкции.

Для осуществления контроля и оценки прочности бетона рассматривают три показателя:

  • точность измерений;
  • стоимость оборудования;
  • трудоемкость.

Наиболее дорогими являются испытания кернов на лабораторном прессе и отрыв со скалыванием. Исследования по величине ударного импульса, упругого отскока, пластических деформаций или с помощью ультразвука имеют меньшую затратную часть. Но применять их рекомендуется после установления градуировочной зависимости между косвенной характеристикой и фактической прочностью.

Параметры смеси могут существенно отличаться от тех, при которых была построена градуировочная зависимость. Чтобы определить достоверную прочность бетона на сжатие, проводят обязательные испытания кубиков на прессе или определяют усилие на отрыв со скалыванием.

Если пренебречь этой операцией, неизбежны большие погрешности при контроле и оценке прочности бетона. Ошибки могут достигать 15-75 %.

Целесообразно пользоваться косвенными методами при оценке технического состояния конструкции, когда необходимо выявить зоны неоднородности материала. Тогда правила контроля допускают применение неточного относительного показателя.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.


Метод скалывания ребра применим к конструкциям, имеющим внешние углы — балки, перекрытия, колонны. Прибор (ГПНС-4) закрепляют к выступающему сегменту при помощи анкера с дюбелем, плавно нагружают. В момент разрушения фиксируют усилие и глубину скола. Прочность находят по формуле, где учитывается крупность заполнителя.

Внимание! Способ не применяют при толщине защитного слоя менее 20 мм.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Ультразвуковой метод

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении марки бетона методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Заключение

Для контроля и оценки прочности бетона целесообразно пользоваться неразрушающими методами испытаний. Они более доступны и недороги по сравнению с лабораторными исследованиями образцов. Главное условие получения точных значений — построение градуировочной зависимости приборов. Необходимо также устранить факторы, искажающие результаты измерений.

От чего зависит прочность бетона

Ни одна стройка не обходится без использования бетона. Это самый востребованный строительный материал на любом этапе возведения здания. Материал классифицируется, и основной характеристикой его качества является марка. Обозначается буквой М с количественным показателем от 50 до 1000 (чем он меньше, тем меньшие требования предъявляются к материалу).

Прочность бетона, от чего она зависит

Самой главной характеристикой бетона является прочность. На нее оказывают влияние множество факторов:

  • количество связующего в смеси;
  • качество и активность цемента;
  • количество воды относительно связующего вещества;
  • вид заполнителя, его свойства;
  • погодные условия, время года.

Каждый из них играет немаловажную роль в том, насколько долговечным будет бетонный камень после застывания.

Количество цемента

Количественное содержание цемента является определяющей для показателя. Чем больше процент цемента, тем большей прочностью будет обладать монолит. Но стоит помнить о том, что повышается она до определенного момента. Затем начинают увеличиваться негативные свойства: ползучесть и степень усадки. Потому рекомендуется приобретать бетон у профессионалов, знакомых с такими особенностями производства материала.

Заказать бетон в (город) по доступной цене можно в компании ООО Велес.

Качество и степень активности цемента

Не менее важным фактором является активность связующего вещества. Прочность напрямую зависит от этого свойства цемента. Использование более активного материала влечет за собой повышение прочности и наоборот.

Соотношение воды и цемента

Количество воды относительно связующего вещества в растворе влияет на показатель следующим образом: чем больше воды, тем прочность материала меньше. Это обусловлено физическими особенностями застывающего бетона, который способен связать до 25% содержащейся в нем воды. Излишек жидкости влечет образование пор, существенно снижающих эксплуатационные свойства и срок службы конструкции.

Вид заполнителя, его свойства

В качестве наполнителя используют различные материалы. Существует такая зависимость: использование заполнителя мелкой фракции снижает прочностные характеристики, применение крупнофракционных – повышает. Это обусловлено лучшим сцеплением с цементом крупных элементов.

Внешние условия

Температура окружающей среды – один из главных природных факторов, существенно влияющих на долговечность монолита. Лучшей температурой для использования материала является + 15 +20 С при относительной влажности 90 – 100%. В таких условиях прочностные характеристики увеличиваются вместе со временем отвердевания. Самой высокой степени показатель достигает на 28 день после закладки.

Качество смешивания ингредиентов и степень уплотнения также оказывают влияние на прочность монолита. Чем плотнее связаны между собой частицы раствора, тем более долговечным будет сооружение. Для этого используют специальные машины – глубинные вибраторы.

Купить бетон любой марки в Москве можно в компании ООО Велес. Собственное производство позволяет компании устанавливать привлекательные цены для заказчика. Есть услуга доставки на строительную площадку.

Методы определения прочности бетона по ГОСТ 18105

Под прочностью бетона понимают сопротивление материала разрушительным действиям внутреннего напряжения, вызванным различными факторами внешней среды. На стройматериал, находящийся в составе сооружения, оказывает влияние растяжение, сжатие, изгиб, кручения и срезы. Самые высокие показатели у прочности бетона на сжатие, а самые низкие у прочности на растяжение. Именно по этой причине сооружения в основном проектируют так, чтобы на бетонные элементы приходились по большей части сжимающие нагрузки. Если все же необходимо чтобы бетон выдерживал напряжения растяжения и среза, то конструкции усиливаются арматурой.

Классы бетона по прочности

Основная классификация бетона базируется именно на этой характеристике. Марка М15 отличается самой низкой прочностью, М800 наоборот самой высокой. Такая система дает возможность заранее спрогнозировать поведение той или иной марки, и выбрать материал, который будет полностью соответствовать расчетным нагрузкам.

Например, легкие ограждения и теплоизоляционные перегородки могут выполняться из марок М15-М50, М100-150 оптимальны для укладки монолитных оснований, а для ответственных ЖБ сооружений используют бетон не ниже М300.

Сегодня широко применяется также классификация бетона по прочности на сжатие В1 – В22. Различаются эти системы тем, что марки бетона рассчитываются по среднему, а классы по гарантированному фактическому значению прочности. Разрабатывая инженерно-проектную документацию, специалисты, как правило, оперируют понятием классов В. Среди строителей и в быту более понятной и привычной считается система марок.

Легко разобраться в соотношениях марок и классов можно, воспользовавшись следующей таблицой «Соотношение прочности бетона, соответствующих марок и классов по прочности на сжатие»:

Соотношение прочности бетона, соответствующих марок и классов бетона по прочности на сжатие
Марка бетона по прочности на сжатие Класс бетона по прочности на сжатие Условия марка бетона*, соответствующая классу бетона по прочности на сжатие
Бетон всех видов, кроме ячеистого Отличия от марки бетона (в %) Ячеситый бетон Отличие от марки бетона (в %)
М 15 В 1 14,47 -3,5
М 25 В 1,5 21,7 -13,2
М 25 В 2 28,94 15,7
М 35 В 2,5 32,74 -6,5 36,17 3,3
М 50 В 3,5 45,84 -8,1 50,64 1,3
М 75 В 5 65,48 -12,7 72,34 -3,5
М 100 В 7,5 98,23 -1,8 108,51 8,5
М 150 В 10 130,97 -12,7 72,34 -3,55
М 150 В 12,5 163,71 9,1 180,85
М 200 В 15 196,45 -1,8 217,02
М 250 В 20 261,93 4,8
М 300 В 22,5 294,68 -1,8
М 300 В 25 327,42 9,1
М 350 В 25 327,42 -6,45
М 350 В 27,5 360,18 2,9
М 400 В 30 392,9 -1,8
М 450 В 35 459,39 1,9
М 500 В 40 523,87 4,8
М 600 В 45 589,35 1,8
М 700 В 50 654,84 -6,45
М 700 В 55 720,32 2,9
М 800 В 60 785,81 -1,8
*Условная марка бетона — среднее значение прочности бетона серии образцов (кгс/см2), приведенной к прочности образца базового размера куба с ребром 15 см, при номинальном значении коэффицента вариации прочности бетона.

От чего зависит прочность бетона

При выполнении любых строительно-монтажных работ очень важно соблюдать все условия, влияющие на прочность бетона в будущем сооружении. Основные факторы, задающие прочностные характеристики бетону:

  • Качество цемента. Из более прочного, быстро твердеющего и качественного цемента получается бетон с аналогичными показателями;
  • Объем цемента. Его количество на один кубометр должно быть таким, чтобы не оставалось пустот в песке, щебне или другом заполнителе. Образованию пустот способствует также и избыточное количество жидкости, которая при засыхании испаряется и понижает прочность бетона;
  • Заполнитель. От того, насколько качественный наполнитель напрямую зависит прочность готового материала. Однородность, чистота и правильная геометрическая форма гранул значительно упрочняют бетон;
  • Замешивание. Чем дольше и интенсивней замешивание, тем прочнее будет конечный результат;
  • Соблюдение правил и норм укладки смеси. Работая с цементным раствором, важно четко придерживаться технологии его нанесения. Использование специальных профессиональных вибраторов способно на 20-30% увеличить прочность бетона.

Методика определения прочности бетона

При промышленном производстве бетона или ЖБИ проводятся лабораторные исследования, выясняющие точную прочность бетона. Методы определения прочности регламентируются ГОСТами и СНиПами. Различают методы разрушающего и неразрушающего контроля. Первые считаются более точными, но их далеко не всегда можно применить на практике.

Связано это с тем, что разрушающие испытания требуют наличия анализируемого образца, извлечь который без нарушения целостности конструкции не представляется возможным. Поэтому чаще используют неразрушающие способы, основывающиеся на анализе показаний измерительных приборов.

Основные методы неразрушающего контроля

  • Анализ пластической деформации. Стальной шарик ударяется с поверхностью, оставляя на ней отпечаток. На измерении его размеров основывается вычисление прочности. Способ считается самым старым, дешевым и одновременно популярным. Зачастую испытания ведутся с помощью специального инструмента – молотка Кашкарова;
  • Определение упругого отскока. Определяется при помощи склерометра. При ударе рабочего тела по поверхности измеряется величина возвратного отскока;
  • Энергия удара. Это самый распространенный импульсный метод, использующийся в приборах, выпускаемых отечественными производителями;
  • Отрыв со сколом. Определяется уровень усилия, которое нужно приложить для отрыва анкера из куска бетона. Полученные показатели вписываются в паспорт на бетон.

Для готовых конструкций, которые эксплуатировались в определенный промежуток времени, используют ультразвуковой контроль прочности. Принцип измерения основан на определении скорости распространения ультразвуковой волны сквозь материал. Для этого с двух противоположных сторон устанавливают специальные преобразователи, передающие акустический контакт.

По существующим отечественным нормативам организации, изготавливающие бетон, должны использовать разрушающий контроль для проверки каждой партии на прочность. Застывший образец устанавливается под пресс и постепенно разрушается. Полученный показатель измеряется в кгс/см2 и определяет основную марку материала.

Как определить прочность бетона | Статьи

Прочность бетона является важнейшей характеристикой, от которой зависят эксплуатационные параметры материала. Под прочностью подразумевают способность бетона противостоять внешним механическим силам и агрессивным средам. Особенно актуальны способы определения этой величины методами неразрушающего контроля: механическими или ультразвуковым.

Правила испытания прочности бетона на сжатие, растяжение и изгиб определяются ГОСТ 18105-86. Одной из характеристик прочности бетона является коэффициент вариации (Vm), который характеризует однородность смеси.

Навигатор предлагает приобрести высококачественный строительный бетон по низким ценам с доставкой по СПб.

По ГОСТ 10180—67 предел прочности бетона при сжатии определяется при сжатии контрольных кубов с размерами ребер 20 см в 28-суточном возрасте — это так называемая кубиковая прочность. Призменная прочность определяется как  0,75 кубиковой прочности для класса бетона В25 и выше и 0,8 для класса бетона ниже В25

Помимо ГОСТов, требования к расчётной прочности бетона задаются в СНиПах. Так, например, минимальная распалубочная прочность бетона незагруженных горизонтальных конструкций при пролете до 6 метров должна составлять не менее 70% проектной прочности, а свыше 6 метров – 80% проектной прочности бетона.

Механические неразрушающие методы определения прочности бетона

Неразрушающие способы бетона на сжатие основываются на косвенных характеристиках показаний приборов. Испытания прочности бетона проводятся с помощью основных методов: упругого отскока, ударного импульса, отрыва, скалывания, пластической деформации, отрыва со скалыванием.

ar8_1Зачем нужны добавки в бетон для прочности и как их выбирать?

О том, какие существуют марки бетона по прочности, в этой статье рассказывают специалисты.

Закажите лучший бетон М200 для строительства и изготовления стяжек полов, дорожек, бетонных лестниц.

Рассмотрим виды испытательных приборов механического принципа действия. Таким способом прочность бетона определяется глубиной внедрения рабочего органа прибора в поверхностный слой материала.

Принцип действия молотка Физделя основан на использовании пластических деформаций строительных материалов. Удар молотка по поверхности бетона образует лунку, диаметр которой и характеризует прочность материала. Место, на которое наносятся опечатки, должно быть очищено от штукатурки, шпатлевки, окрасочного слоя. Испытания проводятся локтевыми ударами средней силы по 10-12 раз на каждом участке конструкции с расстоянием между отпечатками не менее 3 см. Диаметр полученных лунок измеряется с помощью штангенциркуля по двум перпендикулярным направлениям с точностью до десятой миллиметра. Прочность бетона определяется с помощью среднего диаметра отпечатка и тарировочной кривой. Тарировочная кривая строится на сравнении полученных диаметров отпечатков и результатов лабораторных исследований на образцах, взятых из конструкции или изготовленных по технологиям, аналогичных примененным.

На свойствах пластической деформации основан и принцип действия молотка Кашкарова. Различие между этими приборами заключается в наличии между молотком и завальцованным шариком отверстия, в которое введен контрольный стержень. Удар молотка Кашкарова приводит к образованию двух отпечатков. Одного — на поверхности обследуемой конструкции, второго — на эталонном стержне. Соотношение диаметров получаемых отпечатков зависит от прочности исследуемого материала и контрольного стержня и не зависит от скорости и силы удара молотка. По среднему соотношению диаметров двух отпечатков с помощью тарировочного графика устанавливают прочность бетона.

Пистолеты ЦНИИСКа, Борового, молоток Шмидта, склерометр КМ, оснащенный стержневым ударником, работают, основываясь на принципе упругого отскока. Измерения величины отскока бойка проводятся при постоянной величине кинетической энергии металлической пружины и фиксируются указателем на шкале прибора. Взвод и спуск бойка происходят автоматически при соприкосновении ударника и испытуемой поверхности. Склерометр КМ имеет специальный боек определенной массы, который с помощью предварительно напряженной пружины с заданной жесткостью ударяет по металлическому ударнику, прижатому другим концом к обследуемой поверхности.

Метод испытания на отрыв со скалыванием позволяет определить прочность бетона в теле бетонного элемента. Участки для испытания подбираются таким образом, чтобы в этой зоне не было арматуры. Для проведения исследований используют анкерные устройства трех типов. Анкерные устройства первого типа устанавливаются в конструкцию при бетонировании. Для установки второго и третьего типов анкерных устройств предварительно подготавливают шпуры, высверливая их в бетоне.

Ультразвуковой метод измерения прочности бетона

Принцип действия приборов ультразвукового контроля основывается на связи, которая существует между скоростью распространения ультразвуковых волн в материале и его прочностью.

В зависимости от способа прозвучивания разделяют две градуировочные зависимости: «скорость распространения волн — прочность бетона», «время распространения ультразвуковых волн — прочность бетона».

Метод сквозного прозвучивания в поперечном направлении применяется для сборных линейных конструкций — балок, ригелей, колонн. Ультразвуковые преобразователи при таких испытаниях устанавливаются с двух противоположных сторон контролируемой конструкции.

Поверхностным прозвучиванием испытывают плоские, ребристые, многопустотные плиты перекрытия, стеновые панели. Волновой преобразователь устанавливается с одной стороны конструкции.

Для получения надежного акустического контакта между испытуемой конструкцией и рабочей поверхностью ультразвукового преобразователя используют вязкие контактные материалы типа солидола. Возможна установка «сухого контакта» с использованием конусных насадок и протекторов. Ультразвуковые преобразователи устанавливают на расстоянии не менее 3 см от края конструкции.

ar15_1Появление трещин после заливки — часто встречающееся явление. Не знаете, чем заделать трещины в бетоне? Мы подскажем!

Способы уплотнения бетонной смеси — здесь описано, какие они бывают и какой выбрать.

Цена бетона М400 по этой ссылке, в нашем каталоге.

Приборы для ультразвукового контроля прочности состоят из электронного блока и датчиков. Датчики могут быть раздельными или объединенными для поверхностного прозвучивания.

Скорость распространения ультразвуковой волны в бетоне зависит от плотности и упругости материала, наличия в нем пустот и трещин, отрицательно влияющих на прочность и другие качественные характеристики. Следовательно, ультразвуковое прозвучивание предоставляет информацию о следующих параметрах:

  • однородности, прочности, модуле упругости и плотности;
  • наличии дефектов и особенностях их локализаций;
  • форме А-сигнала.

Прибор записывает и преобразует в визуальный сигнал принимаемые ультразвуковые волны. Оснащенность контрольного оборудования цифровыми и аналоговыми фильтрами позволяет оптимизировать соотношение сигнала и помех.

Методы разрушающего контроля прочности бетона

Каждый застройщик может выбирать самостоятельно методы неразрушающего контроля, но согласно существующим СНиПам разрушающий контроль является обязательным. Способов организации выполнения требований СНиПов существует несколько.

  • Контроль прочности бетона может проводиться на специально изготовленных образцах. Применяется этот метод при производстве сборных железобетонных конструкций и для выходного контроля БСГ (бетонной смеси готовой) на стройплощадке.
  • Прочность бетонов может контролироваться на образцах, которые были получены способами выпиливания и вырубывания из самой конструкции. Места взятия проб определяются с учетом снижения несущей способности в зависимости от напряженного состояния. Целесообразно, чтобы эти места указывались самими проектировщиками в проектной документации.
  • Испытания образцов, изготовленных на месте проведения работ в условиях, определенных конкретным технологическим регламентом. Однако укладка бетона в кубы для проведения последующих испытаний, его твердение и хранение значительно отличаются от реальных условий укладки, уплотнения и твердения рабочих бетонных смесей. Эти различия существенно снижают достоверность получаемых таким способом результатов.

Самостоятельное измерение прочности бетона

Профессиональные методы определения прочности бетона дороги и не всегда доступны. Существует способ самостоятельного проведения обследования на прочность бетонных конструкций.

Для испытаний потребуется молоток весом 400-800 г и зубило. По приставленному к поверхности бетона зубилу наносится удар средней силы. Далее определяется степень повреждения, нанесенного поверхностному слою. Если зубило оставило лишь небольшую отметину, то бетон можно отнести к классу прочности В25. При наличии более значительной зазубрины бетон можно отнести к классам В15-В25. Если зубило проникнет в тело конструкции на глубину менее 0,5 см, то образец можно отнести к классу В10, если более 1 см — к классу В5. Класс или марка бетона по прочности — это основной показатель качества бетонной смеси, которые определяют среднюю прочность бетона. Например, средняя прочность бетона В30 (М400) составляет 393 кгс / см2.

Ориентировочно определить прочность бетона Rб в на 28 сутки в МПа можно по формуле Боломея-Скрамтаева, которая является основным законом прочности бетона. Для этого необходимо знать марку примененного цемента — Rц и цементно-водное соотношение — Ц/В. Коэффициент А при нормальном качестве заполнителей равен примерно 0,6.

Rб = А*Rц*(Ц/В-0,5)

При этом набор прочности бетона во времени подчиняется формуле

n = Марочная прочность *(lg(n) / lg(28)) , где n не менее 3 дней,

на 3 сутки бетон набирает около 30% марочной прочности, на 7 сутки — 60-80%, а 100% предел прочности достигается на 28-е сутки. Дальнейшее повышение прочности бетона происходит, но очень медленно. Согласно СНиП 3.03.01-87, уход за свежим бетоном продолжается до набора 70% прочности или до другого срока распалубливания.

Методы самостоятельного определения прочности бетонных конструкций просты и экономичны. Однако в случае строительства важных объектов целесообразно обратиться к услугам специализированных лабораторий.

Желаете сэкономить? Изучите цены на бетон от компании «ТД Навигатор».

Прочность на сжатие бетона и бетонных кубиков | Что | Как

Прочность на сжатие

Прочность на сжатие любого материала определяется как сопротивление разрушению под действием сжимающих сил. Прочность на сжатие, особенно для бетона, является важным параметром, определяющим характеристики материала в условиях эксплуатации. Бетонная смесь может быть спроектирована или составлена ​​по пропорциям для получения требуемых технических характеристик и долговечности, как того требует инженер-проектировщик.Некоторые из других инженерных свойств затвердевшего бетона включают модуль упругости, предел прочности при растяжении, коэффициенты ползучести, плотность, коэффициент теплового расширения и т. Д.

Compressive Strength of Concrete - Cubes Compressive Strength of Concrete - Cubes Прочность бетона на сжатие — кубики

Прочность бетона на сжатие

Определяется прочность бетона на сжатие в лабораториях бетонных заводов для каждой партии, чтобы поддерживать желаемое качество бетона во время заливки. Прочность бетона требуется для расчета прочности стержней.Образцы бетона отлиты и испытаны под действием сжимающих нагрузок для определения прочности бетона.

Проще говоря, прочность на сжатие рассчитывается путем деления разрушающей нагрузки на площадь приложения нагрузки, обычно после 28 дней отверждения. Прочность бетона контролируется дозированием цемента, крупных и мелких заполнителей, воды и различных добавок. Отношение воды к цементу — главный фактор для определения прочности бетона.Чем ниже водоцементное соотношение, тем выше прочность на сжатие.

Пропускная способность бетона указывается в psi — фунтах на квадратный дюйм в единицах США и в МПа — мегапаскалях в единицах СИ. Обычно это называется характеристической прочностью бетона на сжатие fc / fck. Для обычных полевых применений прочность бетона может варьироваться от 10 МПа до 60 МПа. Для определенных применений и конструкций бетонные смеси могут быть разработаны для получения очень высокой прочности на сжатие в диапазоне 500 МПа, обычно называемого сверхвысокопрочным бетоном или порошковым реактивным бетоном.

Buckling of Concrete Columns Buckling of Concrete Columns Изгиб бетонных колонн

Стандартными испытаниями для определения прочности являются испытание на куб и испытание на цилиндр. Как следует из названия, разница в обоих тестах заключается в форме образцов для испытаний. В индийских, британских и европейских стандартах прочность бетона на сжатие определяется путем испытания бетонных кубов, называемых характеристической прочностью на сжатие, тогда как в американских стандартах прочность цилиндров используется при проектировании RC и PSC. Он получен при испытании образца бетонного цилиндра.Однако эмпирические формулы можно использовать для преобразования прочности куба в прочность цилиндра и наоборот. В соответствии с определением индийского кода

«Прочность на сжатие бетона дана в терминах характеристической прочности на сжатие кубов размером 150 мм, испытанных в течение 28 дней (fck). Характеристическая прочность определяется как прочность для бетона , ниже которой ожидается не более 5% результатов испытаний.”

Средняя прочность на сжатие в течение 28 дней не менее трех бетонных кубиков диаметром 150 мм, приготовленных с использованием воды, предлагаемых к использованию, должна составлять не менее 90% средней прочности трех аналогичных бетонных кубов, приготовленных с использованием дистиллированной воды. Для контроля качества при массовом бетонировании частота испытаний на прочность на сжатие кубическим тестом следующая.

Количество бетона (в м3) Количество образцов для испытания на прочность на сжатие
1-5 1
6-15 2
16 -30 3
31-50 4
51 + 4 + 1 куб на каждые дополнительные 50 м3

Минимальная или указанная Прочность на сжатие бетонных кубов различной марки бетона при 28 дней лечения следующие.

Марка бетона Минимальная прочность на сжатие куба 150 мм после 28 дней отверждения
M10 10 Н / мм2
M15 15 Н / мм2
M20 20 Н / мм2
M25 25 Н / мм2
M30 30 Н / мм2
M35 35 Н / мм2
M40 40 Н / мм2
M45 45 Н / мм2
M50 50 Н / мм2
M55 55 Н / мм2
M60 60 Н / мм2
M65 65 Н / мм2
M70 70 Н / мм2
M75 75 Н / мм2
M80 80 Н / мм2

Co Прочность на сжатие согласно американским нормам

В случае американских норм прочность на сжатие определяется в единицах прочности цилиндра fc ’.Здесь прочность на сжатие бетона при 28-дневном отверждении получена для стандартного цилиндрического образца диаметром 150 мм и высотой 300 мм, нагруженного в продольном направлении до разрушения при одноосной сжимающей нагрузке. В обоих случаях грузоподъемность рассчитывается по формуле Компрессионная способность = Нагрузка при отказе / Область нагрузки. Как правило, прочность цилиндра будет равна 0,8 умноженной на кубической прочности для конкретной марки бетона.

Как определить прочность бетонных кубов на сжатие

Для определения прочности бетона в соответствии с индийскими стандартами принята следующая процедура.

Цель:

Определение прочности бетона на сжатие.

Аппарат:

Испытательная машина: Испытательная машина может быть любого надежного типа с достаточной мощностью для испытаний и способной прикладывать нагрузку с заданной скоростью. Допустимая погрешность не должна превышать 2% максимальной нагрузки. Испытательная машина должна быть оборудована двумя стальными опорными плитами с закаленными поверхностями.

Одна из плит должна быть снабжена шаровой опорой в форме части сферы.центр которого совпадает с временной центральной точкой лицевой стороны валика. Другая прижимная плита должна быть жестким подшипниковым блоком скольжения. Опорные поверхности обеих плит должны быть не меньше, чем. и предпочтительно больше номинального размера образца, к которому прилагается нагрузка.

Hydraulic Compression Testing Machine Hydraulic Compression Testing Machine Гидравлическая испытательная машина на сжатие

Опорная поверхность валиков. новые, не должны отклоняться от плоскости более чем на 0,01 мм в любой точке, и они должны поддерживаться с допустимым пределом отклонения 0.02мм. подвижная часть сферического сидячем валика сжатия должно быть проведено на сферическом сиденье. но конструкция должна быть такой, чтобы опорная поверхность могла свободно вращаться и наклоняться на небольшие углы в любом направлении.

Возраст при испытании:

Испытания должны проводиться в установленном возрасте испытуемых образцов, обычно 7 и 28 дней. Возраст рассчитывается с момента добавления воды сухих ингредиентов.

Количество образцов:

Не менее трех экземпляров.желательно из разных партий. должны производиться для тестирования в каждом выбранном возрасте.

Compression Testing Mould Compression Testing Mould Форма для испытания на сжатие

Процедура:

Образцы, хранящиеся в воде, должны быть испытаны сразу после извлечения из воды, пока они еще находятся во влажном состоянии. Поверхностная вода и песок должны быть удалены с образцов, а любые выступающие обнаруженные удаленные образцы, когда они получены сухими, должны быть выдержаны в воде в течение 24 часов, прежде чем они будут взяты для испытания. Размеры экземпляров с точностью до 0.2 мм и их вес следует записать перед испытанием.

Casting Concrete Cubes Casting Concrete Cubes Литье бетонных кубиков

Помещая образец в испытательную машину, необходимо протереть опорную поверхность испытательной машины и удалить любой рыхлый песок или другой материал с поверхности образца. которые должны контактировать с прижимными пластинами. В случае кубиков образец должен быть помещен в машину таким образом, чтобы нагрузка прикладывалась к противоположным сторонам кубиков как отлитых, то есть не к верху и низу.Оси образца должны быть тщательно совмещены с центром усилия сферически установленной плиты.

См. Таблицу ниже, чтобы проверить вес куба для обеспечения плотности уплотненного бетона

Плотность бетона в кг / куб.м Объем куба размером 150 мм Соответствующий вес куба в кг
2400 0,003375 8,1
2425 0.003375 8,184
2450 0,003375 8,269
2475 0,003375 8,353
2500 0,003375 8,438

Между поверхностями не должно использоваться уплотнение испытательного образца и стальной плиты испытательной машины. Когда сферически установленный блок соприкасается с образцом, подвижная часть должна осторожно вращаться рукой, чтобы можно было получить равномерную посадку.Нагрузку следует прикладывать без толчков и непрерывно увеличивать со скоростью примерно 140 кгс · см / мин до тех пор, пока сопротивление образца возрастающей нагрузке не сломается, и терка не сможет выдержать нагрузку. Затем должна быть записана максимальная нагрузка, приложенная к образцу, и отмечен внешний вид бетона и любые необычные особенности типа разрушения.

Compressive Strength test for M25 Concrete Compressive Strength test for M25 Concrete Испытание на сжатие для бетона M25 M25 Concrete Failure under Compressive Loading M25 Concrete Failure under Compressive Loading Разрушение бетона M25 при сжимающей нагрузке

Расчет:

Измеренная прочность на сжатие образца должна быть рассчитана путем деления максимальной нагрузки, приложенной к образцу во время испытания, на площадь поперечного сечения, рассчитывается из средних размеров сечения и выражается с точностью до кг на см2.Среднее из трех значений должно быть принято как репрезентативное для партии при условии, что индивидуальное отклонение составляет не более +/- 15 процентов от среднего. В противном случае следует провести повторные испытания.

Поправочный коэффициент в соответствии с отношением высоты к диаметру образца после укупорки должен быть получен из кривой, показанной на рис. 1 IS: 5 16-1959. Произведение этого поправочного коэффициента и измеренной прочности на сжатие должно быть известно как скорректированная прочность на сжатие, это эквивалентная прочность цилиндра, имеющего отношение высоты к диаметру, равное двум.Эквивалентная кубическая прочность бетона определяется умножением скорректированной прочности цилиндра на 5/4.

IS 456 Интерпретация результатов испытаний образца

  1. Результаты испытания образца должны быть средним значением прочности трех образцов.
  2. Индивидуальное отклонение не должно превышать 15% от среднего.
  3. Если больше, результаты испытаний образца недействительны Бетон считается соответствующим требованиям прочности, если выполняются оба следующих условия:
  • Средняя прочность, определенная по любой группе из четырех последовательных результатов испытаний, совпадает с соответствующие пределы в столбце 2 таблицы 11
  • Любой результат отдельного испытания соответствует соответствующим пределам в столбце 3 таблицы 11.

Факты об испытании на сжатие

При изменении скорости нагрузки на бетонный образец прочность изменяется пропорционально. При более высокой скорости нагружения прочность на сжатие увеличивается. Прирост составляет от 30% до почти 50% от исходной прочности. Однако при более низкой скорости нагружения снижение прочности бетонного куба по сравнению с его истинной прочностью незначительно.

Разница между прочностью на сжатие и характеристической прочностью | FAQ

Прочность на сжатие — приложенное давление, при котором данный образец бетона разрушается.

Характеристическая прочность — Предположим, вы взяли определенное количество образцов из определенной партии бетона. Характерной прочностью будет такая прочность на сжатие, ниже которой не ожидается разрушение не более 5% образцов. Таким образом, 95% образцов атласа имеют более высокую прочность на сжатие, чем характеристическая прочность.

.

Нормальный бетон по сравнению с высокопрочным бетоном. Свойства и различия

Бетон как строительный материал сгруппирован как нормальный бетон или высокопрочный бетон в зависимости от его прочности на сжатие . Прочность на сжатие обычного бетона составляет от 20 до 40 МПа. Высокопрочный бетон будет иметь прочность выше 40 МПа.

Примеры высокопрочного бетона с прочностью на сжатие от 40 до 140 МПа обсуждаются в этой статье.

Со временем и изменениями в истории, отличительные факторы между обычным и высокопрочным бетоном также изменились. Скажем, 100 лет назад бетон с прочностью на сжатие 28 МПа считался высокопрочным. Но теперь бетон может достигать прочности более 800 МПа. Их также называют реактивным порошковым бетоном.

С точки зрения применения, бетон нормальной прочности является наиболее распространенным типом по сравнению с бетоном высокой прочности.Основная цель использования высокопрочного бетона — уменьшить вес, ползучесть или проницаемость, повысить долговечность конструкции, учесть особые архитектурные особенности, которые требуют элементов, которые несут меньшие нагрузки.

Рис.1. Высокопрочный бетон, использовавшийся в зданиях с 1980-х по 1990-е годы

Свойства нормального и высокопрочного бетона

Независимо от типа бетона с нормальной или высокой прочностью, смешанный свежий бетон должен быть пластичным или полужидким по своей природе, чтобы его можно было формовать вручную или с помощью любых механических средств.

Все частицы песка и крупные заполнители в свежей бетонной смеси заключены в оболочку и остаются во взвешенном состоянии.

Совершенно необходимо, чтобы смесь не подвергалась кровотечению или расслоению во время обработки или транспортировки. Равномерное распределение заполнителей в бетоне помогает контролировать сегрегацию.

Коэффициенты удобоукладываемости нормального и высокопрочного бетона

Как мы знаем, коэффициент удобоукладываемости отражает легкость укладки, уплотнения и обработки бетона в свежем виде.

Бетон нормальной прочности обладает хорошей удобоукладываемостью, так как все ингредиенты бетона находятся в правильных и точных пропорциях. Эти агрегаты должны иметь соответствующую градацию.

Высокопрочная бетонная смесь часто бывает липкой, и ее очень трудно обрабатывать и укладывать. Это состояние сохраняется даже при использовании пластификаторов. Такое состояние в основном связано с высоким содержанием в нем цемента.

Факторы кровотечения Бетон нормальной и высокой прочности

Оседание твердых частиц цемента и заполнителя в свежей бетонной смеси приводит к образованию слоя воды на поверхности бетона (состояние свежего бетона), это называется просачиванием.Небольшое кровотечение не вызывает проблем. Но крупномасштабное кровотечение сказывается на долговечности и прочности бетона.

По сравнению с бетоном нормальной прочности высокопрочный бетон не растекается. Это связано с тем, что высокопрочный бетон имеет меньшее содержание воды и большое количество вяжущих материалов. Бетон с воздухововлекающими добавками также имеет меньше шансов на утечку.

Проницаемость нормального и высокопрочного бетона

Все аспекты долговечности, такие как коррозионная стойкость, устойчивость к химическим воздействиям, ползучесть, напрямую связаны с проницаемостью бетона.Только при попадании постороннего вещества внутрь бетона возникает повреждение. Проницаемость бетона зависит от свойства проницаемости, связанного с пастой и заполнителями, присутствующими в бетоне.

Снижение проницаемости помогает
  • Повышение стойкости к сульфатам и химическому воздействию
  • Устойчивость к коррозии
  • Устойчивость к проникновению хлоридов

В таблице 1 ниже показаны результаты различных испытаний на проницаемость, проведенных на различных бетонных смесях.В таблице различаются бетон нормальной прочности и бетон высокой прочности с точки зрения водоцементного отношения.

Снижение водоцементного отношения с адекватным периодом отверждения помогает получить бетон с более низкой проницаемостью. Для бетона нормальной прочности проницаемость находится в диапазоне 1 x 10 -10 см / сек.

Таблица 1: Различные испытания бетона на проницаемость согласно Американскому институту бетона, 1988

Добавление в бетонную смесь дополнительных вяжущих материалов, таких как микрокремнезем, летучая зола и GGBFS, помогает снизить проницаемость бетона.

Высокопрочный бетон имеет более низкую проницаемость по сравнению с бетоном нормальной прочности. Это потому, что высокопрочный бетон разработан с более низким водоцементным соотношением. Они обычно используют в своих смесях дым кремнезема. Высокопрочный бетон имеет коэффициент проницаемости от 1 x 10 -11 до 1 x 10 -13 см / сек.

Таким образом, высокопрочный бетон имеет более низкую проницаемость и более высокую стойкость к воздействию хлоридов, что делает его пригодным для строительства мостов, парковок и тех конструкций, которые больше подвержены воздействию морской воды или антиобледенителей.

Карбонизация бетона нормальной прочности и бетона высокой прочности

Карбонизация происходит на поверхности бетона. Явление карбонизации связано с проницаемостью бетона. Углекислый газ в воздухе вступает в реакцию с соединениями, содержащимися в затвердевшем цементном тесте. В результате реакции выделяются карбонаты, которые называются карбонатами кальция.

Эффект карбонизации, указанный в коэффициенте проницаемости, меньше в высокопрочном бетоне по сравнению с бетоном нормальной прочности.

В дополнение к критериям смешивания для обоих типов бетона инженеры определяют необходимое количество защитного слоя бетона для арматурной стали. Это сделано для того, чтобы упростить доступ к арматуре.

Другое различие между бетоном нормальной прочности и бетоном высокой прочности

В бетоне нормальной прочности при 40% прочности на сжатие образуются микротрещины. Они соединяются между собой и распространяются при достижении 80–90% прочности.

Поверхность излома в бетоне нормальной прочности очень шероховатая. Эта зона формируется вдоль переходной зоны между матрицей пасты и агрегатами. Поверхность излома в случае высокопрочного бетона гладкая.

Подробнее:

Бетон высокопрочный и высокопроизводительный

Почему мы проверяем бетон на прочность на сжатие через 28 дней?

.

Факторы, влияющие на прочность бетона

Факторы, влияющие на прочность бетона

На прочность бетона влияет множество факторов, таких как качество сырья, соотношение вода / цемент, соотношение крупного и мелкого заполнителя, возраст бетона, уплотнение бетона, температура, относительная влажность и твердение бетона.

Качество сырья

Цемент: При условии, что цемент соответствует соответствующему стандарту и правильно хранился (т.е.е. в сухих условиях), он должен подходить для использования в бетоне.

Заполнители: Качество заполнителя, его размер, форма, текстура, прочность и т.д. определяют прочность бетона. Наличие солей (хлоридов и сульфатов), ила и глины также снижает прочность бетона.

Вода: часто качество воды оговаривается пунктом, в котором говорится: «.. вода должна быть пригодной для питья …». Этот критерий, однако, не является абсолютным, и следует ссылаться на соответствующие нормативы для тестирования цели водного строительства.

Соотношение вода / цемент

Соотношение между водоцементным соотношением и прочностью бетона показано на графике, как показано ниже:

Чем выше соотношение вода / цемент, тем больше начальное расстояние между зернами цемента и тем больше объем остаточных пустот, не заполненных продуктами гидратации.

На графике отсутствует одна деталь. При заданном содержании цемента удобоукладываемость бетона снижается при уменьшении водоцементного отношения.Более низкое водоцементное соотношение означает меньше воды или больше цемента и меньшую удобоукладываемость.

Однако, если удобоукладываемость становится слишком низкой, бетон становится трудно уплотнять, и прочность снижается. Для данного набора материалов и условий окружающей среды прочность в любом возрасте зависит только от водоцементного отношения, при этом может быть достигнуто полное уплотнение.

Соотношение крупного и мелкого заполнителя

F Следует отметить следующие моменты для отношения крупного / мелкого заполнителя:

  • Если доля мелких частиц увеличена по отношению к крупному заполнителю, общая площадь поверхности заполнителя увеличится.
  • Если площадь поверхности заполнителя увеличилась, потребность в воде также увеличится.
  • Предполагая, что потребность в воде увеличилась, водоцементный коэффициент увеличится.
  • Поскольку водоцементное соотношение увеличилось, прочность на сжатие снизится.

Соотношение щебень / цемент

Следующие пункты должны быть отмечены для отношения цементного заполнителя:

  • Если объем остается прежним, а пропорция цемента по отношению к песку увеличивается, площадь поверхности твердого тела увеличится.
  • Если площадь поверхности твердых частиц увеличилась, потребность в воде останется прежней для обеспечения постоянной обрабатываемости.
  • Если предположить увеличение содержания цемента без увеличения потребности в воде, водоцементное соотношение уменьшится.
  • Если соотношение воды и цемента уменьшится, прочность бетона увеличится.

Важно помнить о влиянии содержания цемента на удобоукладываемость и прочность, и его можно резюмировать следующим образом:

  1. Для данной удобоукладываемости увеличение доли цемента в смеси мало влияет на потребность в воде и приводит к снижению водоцементного отношения.
  2. Уменьшение водоцементного отношения приводит к увеличению прочности бетона.
  3. Следовательно, для данной удобоукладываемости увеличение содержания цемента приводит к увеличению прочности бетона.

Возраст бетона

Степень гидратации является синонимом возраста бетона при условии, что бетон не высыхает или температура слишком низкая.

Теоретически, если бетону не дать высохнуть, оно всегда будет увеличиваться, хотя и со все меньшей скоростью.Для удобства и для большинства практических применений принято считать, что большая часть прочности достигается за 28 дней.

Уплотнение бетона

Любой захваченный воздух из-за недостаточного уплотнения пластичного бетона приведет к снижению прочности. Если в бетоне было 10% захваченного воздуха, прочность упадет в пределах от 30 до 40%.

Температура

Скорость реакции гидратации зависит от температуры.Если температура повышается, реакция также увеличивается. Это означает, что бетон, выдержанный при более высокой температуре, набирает прочность быстрее, чем аналогичный бетон, выдерживаемый при более низкой температуре.

Однако конечная прочность бетона при более высокой температуре будет ниже. Это связано с тем, что физическая форма затвердевшего цементного теста менее хорошо структурирована и более пористая, когда гидратация протекает с большей скоростью.

Это важный момент, о котором следует помнить, поскольку температура оказывает аналогичное, но более выраженное отрицательное влияние на проницаемость бетона.

Относительная влажность

Если дать бетону высохнуть, реакция гидратации прекратится. Реакция гидратации не может протекать без влаги. Три кривые показывают развитие прочности одинаковых бетонов в различных условиях.

Отверждение

Из того, что было сказано выше, должно быть ясно, что пагубные последствия хранения бетона в сухой среде могут быть уменьшены, если бетон должным образом отвержден для предотвращения чрезмерной потери влаги.

Подробнее:

Прочность бетонных кубов на сжатие, процедура, результаты

Испытания бетонных стержней на прочность — отбор проб и процедура

Неразрушающий контроль бетона и его методы

Влияние воздухововлекающего бетона на прочность бетона

Факторы, влияющие на реологические свойства свежего бетона

.

Прочность бетона на сжатие | Определение, важность, приложения

Перейти к основному содержанию

Дополнительное меню

  • Насчет нас
  • Контактная информация
  • Главная

О гражданском строительстве

  • Главная
  • Гражданские ноты
    • Банкноты

      • Строительные материалы
      • Строительная конструкция
      • Механика грунта
      • Геодезия и выравнивание
      • Ирригационная техника
      • Инженерия окружающей среды
      • Дорожное строительство
      • Инфраструктура
      • Строительная инженерия
    • Лабораторные заметки

      • Инженерная механика
      • Механика жидкости
      • Почвенные лабораторные эксперименты
      • Экологические эксперименты
      • Материалы Испытания
      • Гидравлические эксперименты
      • Дорожные / шоссе тесты
      • Стальные испытания
      • Практика геодезии
  • Загрузки
  • Исследование
  • Учебники
    • Учебные пособия

      • Primavera P3
      • Primavera P6
      • SAP2000
      • AutoCAD
      • VICO Constructor
      • MS Project
  • Разное
  • Q / Ответы
  • Главная
  • Гражданские ноты
    • Строительная конструкция
    • Строительные материалы
    • Механика грунта
    • Геодезия и выравнивание
    • Ирригационная техника
  • Учебники
    • Primavera P6
    • SAP2000
    • AutoCAD
  • Загрузки
  • Исследование
  • Q / Ответы
  • Глоссарий
26 февраля 2016 г. /.

Отправить ответ

avatar
  Подписаться  
Уведомление о