Проволока для вязки арматуры для фундамента: способы, схемы, нормы и правила вязки для начинающих

Опубликовано в Разное
/
28 Авг 2021

Содержание

Вязка арматуры для фундамента: как вязать?

Содержание   

Причиной армирования фундамента является отсутствие пластичности у бетона, и оно необходимо для того, чтобы в зоне растяжения не возникли трещины. Для этих целей используется стальная строительная арматура, которая является элементом бетонной конструкции, необходимым для компенсации растягивающего, изгибающего и сдвигающего усилия.

Арматура в фундаменте

В отличие от бетона, сталь является более устойчивой к растяжениям и может принимать на себя значительные нагрузки. В последнее время на рынке начали активнее использовать стеклопластиковую арматуру. Однако пока область ее применения не так широка, поэтому при выборе того, что использовать стеклопластиковую или стальную арматуру — предпочтение пока что отдается более привычному, второму варианту.

Требования к арматуре

При строительстве монолитного железобетонного, или ленточного фундамента необходимо, чтобы в процессе заливки не было смещения прутьев, которые используются для армирования, при этом должны соблюдаться проектные расстояния и, следовательно, шаг между прутьями должен оставаться постоянным.

В связи с тем, что наибольшая вероятность появления зон растяжения возникает на поверхности фундамента, в таких местах и следует выполнять армирование.

Но так как арматурный каркас подвержен коррозии, его необходимо защитить от внешних воздействий и это делается с помощью слоя бетона, так что глубина размещения каркаса должна составлять от 3 до 5 сантиметров.

Но это не значит, что армировать нужно только верхнюю часть монолитной конструкции, ведь направления возможной деформации заранее предсказать сложно. Другое дело, что в верхней и нижней части используется арматура диаметром 10-12 миллиметров, и поверхность ее должна быть ребристой, с тем, чтобы обеспечить более надежное соединение с бетоном.

Читайте также: как выполняется муфтовое соединение арматуры, и в чем его преимущества?

Что касается остальной части каркаса, то в соответствии со СНиП, для ее изготовления может использоваться менее толстая проволока с гладкой поверхностью. Если говорить об армировании ленточного фундамента, то в данном случае для внешней части каркаса используется арматура диаметром 10-16 миллиметров, а для внутренней 6-8 миллиметров.

Для ленточного фундамента больше характерно наличие продольных растяжений, поэтому основная нагрузка выпадает на горизонтальные продольные прутья.

к меню ↑

Способы вязки арматуры

Существует несколько способов крепления арматуры. Для этого используется:

При ведении строительства частных домов крепление арматуры с помощью сварки используется достаточно редко, так как для этого необходимо привлекать сварщиков.

Вязка арматуры для фундамента

В процессе уплотнения бетонной смеси, возможно нарушение соединений, да и процесс сварки приводит к тому, что структура материала арматуры существенно меняется, поэтому в таком случае можно использовать только арматуру с маркировкой имеющей букву «С».

к меню ↑

Вязка при помощи проволоки и хомутов

В частном и малоэтажном строительстве, в основном используется арматура А240, А400 и А500С единственная, которую можно варить. Для того, чтобы армировать такие конструкции как фундаменты, перекрытия, перемычки и балки применяется стальная горячекатаная стержневая арматура, диаметр которой варьируется от 6 до 20 миллиметров.

Обвязка арматуры с помощью металлических скрепок и пластиковых хомутов не представляет большой сложности и особых навыков в этом случае не требуется, но такие способы являются более дорогостоящими.

А если площадь армирования достаточно велика, то вязка проволокой оказывается значительно более выгодной. Для изготовления скрепок используется стальная проволока диаметром от 2 до 4 миллиметров, и сама скрепка с одного конца имеет крюк, а с другого петлю.

В процессе вязки петля надевается на нижний прут ниже места скрещивания арматуры, а крючок цепляется за этот же пруток только выше места скрещивания. Надежность соединения обеспечивается за счет упругости скрепки и в процессе обвязки не нужно применять дополнительный инструмент, все делается вручную.



data-ad-client=»ca-pub-8514915293567855″
data-ad-slot=»1955705077″>

Вязка арматуры проволокой

Аналогичная ситуация наблюдается и в том случае, если обвязка выполняется с помощью пластиковых хомутов, при этом производительность работы оказывается значительно более высокой, чем при использовании других способов. Правда при этом нужно учитывать, что выполнять обвязку с помощью пластиковых хомутов при низкой температуре не рекомендуется, ведь пластик на холоде становится хрупким и лопается.

Сейчас на рынке предлагаются пластиковые хомуты со стальным сердечником, которые предназначаются для закрепления различных кабелей и труб на заборах, но и при обвязке арматуры они также очень удобны и функциональны.

Хотя нужно признать, что и стоимость таких хомутов существенно выше и их использование повлечет за собой дополнительные расходы. Наиболее распространенным способом изготовления каркаса для обеспечения прочности ленточного фундамента является ручная вязка с помощью проволоки.

Особое внимание в данном случае необходимо обратить на качество используемой проволоки, диаметр которой обычно один миллиметр, сечение круглое, а размер зависит от каждой конкретной ситуации.

Желательно чтобы проволока была обожженной, ведь в этом случае она обладает необходимой тягучестью, мягкостью, и при этом сохраняет свою прочность.

Необожженная проволока будет ломаться при сильном затягивании узлов, да и работа с ней доставит немало неприятных минут. Кроме этого, термически обработанная проволока плотно прилегает к прутьям арматуры, и соединение получается надежным и прочным.

к меню ↑

Способы вязки арматуры, их преимущества и недостатки (видео)


к меню ↑

Ручная вязка

Для ручной обвязки необходимо соответствующее приспособление и желательны также пластиковые фиксаторы, или бобышки. С помощью фиксаторов, кроме всего прочего создается своеобразный защитный слой, которые предотвращает контакт опалубки и арматуры, что является нежелательным.

Что касается приспособления для обвязки, то это может быть:

Использовать пистолет удобнее всего, но серьезным его недостатком является неудобство при работе в труднодоступных местах, которые встречаются практически везде.

С другой стороны, производительность работ при использовании пистолета гораздо выше, поэтому иногда используется комбинированный вариант, когда на горизонтальной поверхности используется пистолет, а в труднодоступных местах обвязка производится с помощью крючка.

Схема вязки арматуры определяется заранее и соответствии со СНиП расстояние между двумя рядом стоящими в вертикальном положении стержнями должно быть как минимум в два раза больше, чем сечение усиления.

Расчет арматуры для фундамента

Максимального ограничения в данном случае нет, ведь каждый проект имеет свои особенности, зависящие от типа используемых материалов, а также от способов кладки. Кроме того, в СНиП указывается, что расстояние между соседними продольными стержнями варьируется от 10 сантиметров до 40. Что касается поперечных стержней, то по СНиП расстояние между соседними стержнями не должно быть больше тридцати сантиметров.

к меню ↑

Правила ручной вязки

Опытным специалистам хорошо известно как правильно вязать арматуру, однако с этим процессом может справиться и начинающий строитель, если будет четко следовать рекомендациям.

В данном случае вязка арматуры клещами гораздо неудобнее, чем крючком, главное приобрести определенную сноровку.

Сам процесс вязки состоит из нескольких этапов:

  1. Следует отрезать кусок проволоки, размер которой составляет порядка тридцати сантиметров и сложить его вдвое.
  2. Место соединения прутков оборачивается по диагонали, а крючком цепляется петля.
  3. Свободные концы заводятся в крючок.
  4. Крючок поворачивается по часовой стрелке до тех пор, пока позволяет упругость проволоки.

Не следует закручивать соединение слишком сильно, с тем, чтобы не порвать проволоку, хотя даже если одно из соединений лопнет это не критично, главное чтобы конструкция сохраняла свою форму.

Как таковой, нормы расхода проволоки на одно соединение по СНиП не предусматривается, но есть определенные нормы на весь объект, которые производятся из расчета 200 миллиметров проволоки на узел при работе пистолетом. При ручной вязке расход материала будет больше на 20-30%.

Статьи по теме:

   

Портал об арматуре » Вязка » Способы вязки арматуры для фундамента

Как правильно вязать арматуру для ленточного фундамента

Соединение арматурных стержней в единую каркасную конструкцию под заливку фундамента осуществляется различными способами. Например, в частном домостроении строители применяют технологию вязки  арматуры, тогда как при возведении многоквартирного дома предпочтительнее технология сварки. В статье описаны способы соединения арматуры, схемы вязки смотрите тут.

Содержание статьи

Способы соединения арматуры для фундамента

Армирование  бетона в фундаментных каркасах частных застроек проводят стальной арматурой номинальным диаметром  12-16 мм. Арматура профильного сечения  предпочтительней гладких прутьев благодаря более высокой степени сцепки с бетоном. Рассмотрим основные виды  соединений арматуры в ленточном фундаменте.

Соединение сваркой

Сварочное соединение выполняется электродуговой или контактной сваркой. Преимуществами сварки при сборке каркаса фундамента считаются:

  • Высокая производительность;
  • Низкая трудоемкость;
  • Возможность правильно соединять  арматурные стержни больших диаметров, которые соединять другими способами довольно сложно.

К недостаткам сварки стержневой системы фундамента относят следующие факторы:

  • Не всякий тип металлической арматуры допущен ГОСТами для соединения сваркой;
  • Потеря прочностных свойств стали в рабочей зоне сварки;
  • Подверженность сварных швов коррозии;
  • Отсутствие люфта в жестких сварочных соединениях не допускает возможности смещений прутьев в каркасе при меняющихся нагрузках, свойственным сложным грунтам. При повышенных нагрузках, вызванными смещениями фундамента в грунте, сварные точки лопаются, нарушая целостность системы.

В силу сказанного, сварной метод соединения арматуры для индивидуального строительства практически непригоден, уступая лидерство вязке проволокой.

Резьбовое соединение

Резьбовое соединение с  использованием соединительных резьбовых муфт.

Наиболее распространена технология с применением конических резьбовых соединений. Основными преимуществами резьбовых соединений в муфтах являются:

  • Упрощение монтажа арматурного каркаса и ускорение работ по установке стержневой системы. Стыковка двух сопрягаемых стержней занимает максимум 5-10 минут;
  • Упрощен контроль качества стыков арматуры;
  • Равнопрочность соединения с основным материалом.

К недостаткам резьбовой технологии, делающих ее нецелесообразной в частном домостроении,  относятся:

  • Задействование специального оборудования для подготовки резьбы;
  • Повышенные требования к квалификации персонала.

Соединение специальными скрепками

Внимание! Не соединяйте стальную арматуру с помощью пластиковых (нейлоновых) хомутов, как советуют некоторые “мастера”. Пластиковый хомут не выдержит нагрузки при заливке, особенно при низкой температуре.

Проволочные скрепки изготавливают из пружинной проволоки марок П1 и П2 диаметром 1,6-1,8 мм.

Данные способы соединения по стоимости материалов и степени надежности соединения до заливки проигрывают способу вязки проволокой.

Вязка проволокой

Вязка проволокой арматуры ленточного монолита наиболее популярна в частном строительстве по сравнению с другими способами соединения. Суть технологии вязки заключается в проволочной фиксации взаимно-перпендикулярных (крестообразных) и параллельных соединений стержней каркаса фундамента. Преимущество проволочной технологии заключается в следующем:

  • Отсутствие высокотемпературного воздействия на арматуру позволяет сохранить  структуру материала;
  • Обеспечена жесткость конструкции при одновременной эластичности и гибкости каркаса;
  • Возможность применения стальной арматуры, не предназначенной к сварочному соединению;
  • Простота и доступность специального инструмента;
  • Отсутствие специальных требований к квалификации арматурщика;
  • Возможность вязать прутки непосредственно на стройплощадке, а не только в специализированных цехах.

К недостаткам связочной технологии относятся:

  • Чрезвычайно низкая производительность;
  • Непостоянство качества исполнения каждого узла;
  • Возможность смещения узла вязки.

Каждый из названных недостатков по-своему решается. Применение специальных пистолетов способствует повышению интенсивности работы и унификации результатов затяжки поволоки. Правильно примененная  арматура кольцевого и серповидного профилей препятствует смещению узлов.

Чтобы правильно изготовить армированный каркас ленточного основания, его необходимо вязать с использованием  вязальной проволоки  ГОСТ 3282-74 «Проволока стальная низкоуглеродистая общего назначения. Технические условия», прошедшей термообработку обжигом. Отожженная проволока отличается мягкостью на изгиб, но достаточно прочная для растягивающих усилий.

Оптимальными размерами проволоки для вязки арматуры каркаса частного дома (диаметр до 16 мм) специалисты-практики считают диаметр 1,2-1,4 мм. Более толстая проволока уже будет плохо гнуться, при использовании материала диаметром менее 1,2 мм рекомендуется тонкую проволоку сложить в несколько раз.

Инструмент для ручной вязки

Ручная вязка стержневых элементов каркаса ленточного фундамента производится в точках их крестообразного пересечения и выполняется крючком или арматурными кусачками.

В качестве инструмента используется либо самодельный крюк, либо крючок заводского исполнения, позволяющий затрачивать минимум физических усилий одного человека  при  выполнении скрутки вокруг крестообразного узла арматуры. Умельцы умудряются правильно вязать  каркас даже при помощи загнутого буквой Г длинного гвоздя или сварочного электрода – «четвертки».

Вязать арматуру «помогают» такие инструменты:

Самодельные крюки — ручные приспособления, изготавливаемые «умельцами» из подручных материалов непосредственно в цехе или на стройплощадке.

Материалы изготовления – гвозди, электроды, арматура.

Крюки вязальные заводского исполнения, нашедшие широкое применение при подготовке ленточных фундаментов. Крюки отличаются углом изгиба крючка и формой ручки. Встречаются механические крючки со встроенной в ручку спиралью. При вязке вращать их не нужно, достаточно крючок тянуть вверх. Ручка начнет скользить по винтовой канавке и провернет крючок.

Арматурные кусачки.

Профессиональный инструмент – пистолет для вязки арматуры.

Порядок выполнения вязки арматуры проволокой

Арматурный каркас вяжется либо в траншее, либо снаружи и затем опускается в траншею. Второй способ предпочтительнее. Чтобы повысить производительность работ при ручной вязке каркаса и обеспечить точность сборки, используются несложные шаблоны по типу козелков или верстаков. Чаще всего шаблонами служат деревянные подставки, в которых просверлены специальные отверстия и пазы для размещения и фиксации в них продольных и поперечных арматурных стержней. По уложенным стержням раскладывают нарезанные заранее проволочные хомутики, которыми выполняется вязка каркаса. Ширина шаблонов для ручной вязки составляет от 30 до 50 см, длина – не более 3 метров. Соответственно, арматурные прутья для сборки подготавливаются двух типоразмеров с припусками 10-15 см для выхода свободных концов из отверстий на шаблонах.

Более подробно смотрите в видео:

Для ускорения заготовки проволочных хомутов можно порезать бухту болгаркой поперек на хомуты нужной длины. Самодельные верстаки-шаблоны позволяют правильно вязать как горизонтальные плоские арматурные сетки из 3-4 продольных прутьев, так и пространственные двухрядные каркасы. В этом случае для сборки горизонтальных сеток в двухрядную конструкцию используются самодельные подставки квадратного или прямоугольного сечения, в обиходе называемые «лягушками». Соединение подставок с горизонтальными сетками выполняется также вязкой проволокой.

Пошагово процесс ручной вязки двух прутьев выглядит следующим образом.

Схема вязки арматуры

  1. Проволочный хомутик складывается пополам.
  2. Левой рукой берется проволока, в правую руку берется вязальный крючок.
  3. Проволока диагонально проводится под крестообразным соединением стержней.
  4. Вязальный крючок вставляется в петлю хомутика (поз. 1 на рисунке).
  5. Проволокой полностью на один оборот огибается соединение.
  6. Свободный кончик хомута накладывается на крючок (поз. 2).
  7. Крючок начинают вращать по часовой стрелке, заматывая концы хомута и петлю в единую скрутку (поз. 3). Для надежного скрепления арматуры достаточно трех оборотов крючка.
  8. Крючок вынимается из петли. Соединение завершено.

При выполнении вязки на шаблоне удобно работать двум арматурщикам, стоящим напротив друг друга и одновременно соединяющих выставленные в размер поперечные стержни каркаса.

Практика применения ручной вязки арматуры ленточного фундамента в частном домостроении показала надежность этого способа  при возведении индивидуальных застроек. С учетом сравнительно невысоких затрат на материалы и достаточности элементарных навыков исполнителей вязка арматуры имеет более высокий рейтинг  у частных застройщиков, чем другие технологии подготовки фундамента.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

подбор диаметра, расчет количества, расход, цены

Технология сооружения железобетонных конструкций предусматривает наличие внутреннего каркаса из стальной арматуры. Для его устройства используется вязальная проволока. Гибкое и прочное металлоизделие широко применяется не только в строительстве, но и в быту. С помощью стальной проволоки производят упаковку грузов, связывают различные конструктивные детали. Как выбрать подходящий диаметр и рассчитать правильный расход материала? В этом поможет изучение его особенностей и краткий обзор текущих цен.

Оглавление:

  1. Сфера использования
  2. Классификация продукции
  3. Размеры сечения
  4. Сколько металлопроката понадобится?
  5. Расценки

Что представляет собой?

Длинномерный сортовой металлопрокат производится из стальной заготовки методом волочения. В процессе протягивания раскаленного сплава через сужающееся отверстие прокатного станка получают тонкий длинный шнур. Эластичность формируется в результате отжига – специальной термической обработки. Материал сначала нагревают в печи до заданной температуры, выдерживают в этом режиме определенное время и затем постепенно охлаждают.

Полученные изделия являются неотъемлемой частью устройства фундаментов. Способ создания каркаса посредством сварки является доступным и несложным, но малораспространенным из-за множественных недостатков. Соединение элементов арматуры в единую конструкцию при помощи проволоки имеет немало преимуществ перед другими видами временной фиксации:

  • надежная прочность узлов;
  • экономное расходование материала;
  • высокая скорость обвязки;
  • удобство применения.

От жесткости крепления арматуры зависит прочность и целостность каркаса при заливке строительного раствора в опалубку. Этот фактор также способствует большей надежности железобетонной конструкции в период эксплуатации.

Области применения

Проволока для вязки арматуры имеет распространение практически во всех сферах человеческой деятельности. Самые популярные направления: строительство, машиностроение, промышленность. Готовые каркасы из связанных металлических стержней получаются гибкими и эластичными. Это способствует предотвращению возможных деформаций фундамента при вспучивании грунта и удлиняет срок службы армированного объекта.

Изделие с оцинкованным покрытием обладает хорошей устойчивостью к коррозионным процессам различного происхождения. Длительное время сохраняет технические и эксплуатационные качества при любых погодных условиях.

Нормативные требования

В результате отжига изделие становится более прочным и гибким, приобретая способность легко связывать арматуру. Согласно ГОСТ 3282-74 термически обработанный металлопрокат маркируют литерой «О». Классификация прокатной продукции производится по сорту стали, типу обжига, методу наружной обработки, механическим характеристикам.

1. По виду поверхности:

  • без покрытия (Æ 0,16-10,0 мм) – необработанный металлопрокат светлый (С) или черный (Ч) ограниченного срока службы;
  • с покрытием (Æ 0,2-6,0 мм) – изделия, защищенные от коррозии цинковым или полимерным слоем.

2. По степени обработки различают проволоку 1-го и 2-го класса – 1Ц и 2Ц соответственно.

3. По внешнему виду металлопрокат бывает с круглым (В) и периодическим (ВР) профилем. Встречаются различные формы сечения: круглая, овальная, квадратная, шестиугольная. Нормативами ГОСТа предусматривается также разделение на метизы нормальной и повышенной точности.

Выбор подходящего диаметра

1. Самый популярный размер сечения для частного домостроения – 1,2 мм. По отзывам специалистов это самый удобный и прочный вариант материала. Термоотжиг значительно увеличивает его сопротивляемость на разрыв.

2. Тонкие метизы (0,3-0,8) слишком слабы для вязания арматуры. Их рекомендуется использовать только для крепления горизонтально ориентированных прутков малого диаметра.

3. Проволоку 1,8-2 выбирают при сооружении вертикальных армирующих конструкций. Большая толщина прокатного изделия требует повышенных физических затрат при монтаже. Для удобства и облегчения работ используют ручной крюк специального назначения или автоматический скручивающий пистолет.

4. Разновидность с диаметром 3-4 мм эксплуатируют в условиях повышенной влажности и усиленного воздействия агрессивной среды. Такие метизы обязательно подвергают многослойному покрытию оцинковкой.

Расход вязальной проволоки

Перед началом монтажных работ по созданию металлического каркаса необходимо купить в достаточном количестве стальные стержни и соединительные метизы. Средний расход на тонну арматуры составляет 11-15 кг вязального материала. Расчет объема имеет примерные показатели и зависит от нескольких факторов:

  • тип фундамента;
  • способ крепления арматуры;
  • количество соединительных узлов;
  • диаметр проволоки.

Для более точных данных расхода за основу принимают размеры ячеек армируемой решетки и число стыковочных точек. Так, на создание ста узлов арматуры потребуется 0,12 кг проволоки вязальной диаметром 0,8 мм. Расход прутков сечением 1,2 мм составляет 0,27 кг, 1,5 – 0,5 кг, 4 – 1,3 кг. В целях экономии допускается вязать каркасную сетку в шахматном порядке. Но для большей надежности конструкции два крайних ряда с каждой стороны фиксируют без пропусков.

Важно! Чем меньше сечение проволоки для вязания, тем больше ее итоговый расход.

При расчете в метрах следует учитывать, что каждое соединение производится с нахлестом, длина которого должна быть не менее 30 диаметров арматуры. Например, для сечения 12 мм протяженность нахлестов составляет 360 мм. Если умножить это число на количество узлов арматуры, то получится искомый метраж. Нужно помнить, что в процессе вязки проволока может лопнуть, переломиться. Недобросовестные продавцы также могут дать неточную информацию по длине и весу товара. Чтобы избежать неприятностей, желательно купить металлоизделий в 1,5-2 раза больше расчетного числа.

Принимая во внимание небольшую стоимость вязальной проволоки, нет необходимости производить точные математические расчеты нужного объема закупки. Примерный расход материала помогут определить электронные строительные калькуляторы. Большинство изготовителей предоставляют эту услугу клиентам на страницах своих интернет ресурсов или непосредственно в местах продажи.

Стоимость

В торговую сеть металлоизделия поставляют в рулонах длиной до 120 м или на катушках массой 50-300 кг. Соответственно этому указывают цену за метр проволоки или стоимость за бухту по килограммам. В рулонах содержится одна длина, на катушках наматывают не более трех отрезков.

Размер сечения, ммЧерная проволокаОцинкованная
Масса кг/мЦена руб/кгМасса кг/мСтоимость, руб/кг
1,2-1,80,02045-680,02554-79
20,02545-680,02550-75
30,06044-650,06049-72
40,10042-610,10048-71
60,23043-640,23058-72

черная и белая проволока для арматуры. Отожженная стальная проволока 2-3 мм и 5-6 мм, другие размеры, ГОСТ и нормы расхода

Вязальная проволока только на первый взгляд может показаться незначительным строительным материалом, но все-таки недооценивать ее не стоит. Это изделие является незаменимым компонентом, который широко используется для сооружения прочных конструкций из железобетона, закрепления грузов во время их транспортировки, для выполнения кладочных сеток и изготовления каркаса фундамента. Применение вязальной проволоки позволяет выполнять некоторые виды работ, удешевляя их итоговую стоимость.

Например, если строительный каркас из арматуры связать при помощи проволоки, он обойдется в несколько раз дешевле, чем если бы его пришлось скреплять при помощи электросварки. Из вязальной проволоки плетут толстые и прочные сальные канаты, делают всем известную сетку-рабицу, а также применяют при изготовлении колючей проволоки. Вязальная катанка из стали является незаменимым компонентом, который применяется в различных сферах промышленности и народного хозяйства.

Что это и где используется?

Вязальная проволока относится к обширной группе стройматериалов, изготовленных из низкоуглеродистой стали, где в соединении со сталью углерода содержится не более 0,25%. Стальные заготовки в расплавленном виде подвергают методу волочения, протягивая их через тонкое отверстие, применяя для этого высокое давление – так получается конечный продукт, называемый катанка. Чтобы сделать проволоку прочной и придать ей основные ее свойства, металл раскаляют до определенного температурного уровня и подвергают обработке под высоким давлением, после чего материал подвергается медленному процессу остывания. Такая методика называется отжигом – у металла под давлением меняется кристаллическая решетка, а затем она медленно восстанавливается, тем самым снижая процесс напряжения внутри структуры материала.

Применение вязального стального материала более всего востребовано в строительной сфере. С помощью этого материала можно вязать стальные арматурные пруты, создавая из них каркасы, выполнять стяжку пола, межэтажных перекрытий. Проволока для вязания является прочным, но в то же время эластичным элементом для крепления. Отличаясь от сварочного крепления, проволока не ухудшает свойств металла в месте нагрева, да и сам нагрев ей не нужен. Этот материал противостоит различным многократным деформационным нагрузкам и изгибаниям.

Кроме того, вязальная проволока с покрытием надежно защищена от коррозии металла, что лишь усиливает ее положительные потребительские характеристики.

Общие характеристики

Подчиняясь требованиям ГОСТ, вязальная проволока изготавливается из отожженной стали с низким процентом содержания углерода, благодаря чему у нее имеется пластичность и мягкий изгиб. Проволока может быть белой, со стальным блеском, который придает ей цинковое покрытие, и черной, без дополнительного покрытия. ГОСТ регламентирует и сечение проволоки, которое подбирают для каркасной арматуры определенным способом.

Например, диаметр арматуры составляет 14 мм, значит, для скрепления этих прутков нужна проволока диаметром 1,4 мм, а для арматуры диаметром 16 мм подойдет диаметр проволоки, равный 1,6 мм. Выпускающаяся заводом-изготовителем партия проволоки в обязательном порядке имеет паспорт качества, который содержит физико-химическую характеристику материала, диаметр изделия, номера партии и ее веса в кг, покрытие, а также дату изготовления. Зная эти параметры, можно рассчитать вес 1 метра вязальной проволоки.

Выбирая материал для вязки арматуры, следует знать, что диаметры от 0,3 до 0,8 мм для этих целей не используются – такая проволока идет для плетения сетки-рабицы или применяется для других целей. Размер диаметра от 1 до 1,2 мм часто используют при работах в секторе малоэтажного домостроения. А для сооружения мощных усиленных каркасов берут проволоку диаметром от 1,8 до 2 мм. При связывании каркаса чаще всего используют проволоку после термообработки, в отличие от обычной, она более стойка к коррозии и в меньшей степени подвержена вытягиванию, а значит, дает возможность соорудить по-настоящему надежный и прочный каркас.

Диаметры оцинкованной вязальной проволоки отличаются от аналогов без покрытия. Проволока с оцинковкой производится в размерах от 0,2 до 6 мм. Проволока без оцинкованного слоя бывает от 0,16 до 10 мм. При изготовлении проволоки допускаются расхождения с указанным диаметром на 0,2 мм. Что касается изделий с оцинковкой, то сечение у них может стать овальным после обработки, но отклонение от указанного стандартом диаметра не может превышать 0,1 мм.

На заводе проволоку фасуют мотками, их намотка бывает от 20 до 250-300 кг. Иногда проволоку наматывают на специальные катушки, и тогда она идет на оптовую продажу от 500 кг до 1,5 тонн. Характерно то, что в намотке проволока по ГОСТу идет цельной нитью, тогда как на катушке допускается сматывать до 3 отрезков.

Наиболее востребованной проволокой для арматуры считается марка ВР, у которой на стенках имеются рифления, что увеличивает ее прочность сцепления с арматурными прутками и своими собственными витками.

В 1 метре проволоки марки ВР содержится различный вес:

  • диаметр 6 мм – 230 гр.;
  • диаметр 4 мм – 100 гр.;
  • диаметр 3 мм – 60 гр.;
  • диаметр 2 мм – 25 гр.;
  • диаметр 1 мм – 12 гр.

Марка ВР не выпускается диаметром 5 мм.

Обзор видов

Для различных целей, связанных не только со строительством, стальная вязальная проволока используется согласно своей номенклатурной специфике. Отожженная проволока считается более пластичной и долговечной. Выбирая материал для тех или иных видов работ, следует учитывать характеристики проволоки.

Белая и черная

Исходя из типа термической закалки, вязальную проволоку подразделяют на необработанную и ту, которая прошла специальный цикл высокотемпературного отжига. Термообработанная проволока в своей номенклатурной маркировке имеет указание в виде буквы «О». Отожженная проволока всегда мягкая, с серебристым отливом, но несмотря на податливость, у нее довольно высокая прочность к механическим и разрывным нагрузкам.

Отжиг у вязальной проволоки делится на 2 варианта – светлый и темный.

  • Светлый вариант отжига стальной катанки производят в специальных печах с установками в виде колпака, где вместо кислорода применяется защитная газовая смесь, препятствующая образованию оксидной пленки на металле. Поэтому такая проволока на выходе получается светлой и блестящей, но и стоит она дороже, чем темный аналог.
  • Темный отжиг стальной катанки выполняется при воздействии молекул кислорода, в результате чего на металле образуется оксидная пленки и окалина, которая и создает темную окраску материалу. Окалина на проволоке не оказывает влияния на ее физико-химические характеристики, но при работе с таким материалом сильно загрязняются руки, поэтому и цена у проволоки ниже. Работу с черной проволокой выполняют только в защитных перчатках.

Отожженная проволока, в свою очередь, может покрываться цинковым слоем или выпускается без такого покрытия, а также некоторые виды проволоки могут быть покрыты защитным антикоррозийным полимерным составом. Проволока светлого отжига имеет в номенклатуре букву «С», а проволока темного отжига маркируется буквой «Ч».

Обычная и повышенной прочности

Наиболее важным свойством стальной катанки является ее прочность. В этой категории выделяют 2 группы – обычную и высокопрочную. Отличаются эти категории прочности друг от друга тем, что для обычной проволоки используется низкоуглеродный состав стали, а для высокопрочных изделий в сплав добавляются специальные легирующие компоненты. В номенклатуре прочность изделия маркируется буквой «В».

У проволоки обычной прочности будет указано «В-1», а у высокопрочных изделий вы увидите пометку «В-2». Если требуется собрать строительный каркас из напрягаемых арматурных прутков, для этой цели применяется изделие с маркировкой «В-2», а при выполнении монтажа из арматуры ненапрягаемого типа применяют материал «В-1».

1 и 2 группы

Вязальный материал должен обладать устойчивостью к разрывному воздействию, исходя из этого, изделия подразделяются на 1 и 2 группы. Оценка строится на сопротивлении металла к удлинению в процессе вытягивания. Известно, что отожженная катанка может показать вытягивание от первоначального состояния на 13-18%, а изделия, не подвергавшиеся отжигу, могут вытягиваться на 16-20%.

При разрывной нагрузке сталь оказывает сопротивление, изменяется оно в зависимости от диаметра проволоки. Например, у изделия без отжига диаметром 8 мм показатель сопротивления к разрыву будет составлять 400-800 Н/мм2, а при диаметре 1 мм показатель составить уже 600-1300 Н/мм2. Если диаметр будет менее 1 мм, то сопротивление к разрыву будет равно 700-1400 Н/мм2.

Со специальным покрытием и без

Стальная катанка может быть с защитным слоем из цинка либо выпускается без покрытия. Проволока с покрытием подразделяется на 2 типа, а отличия между ними заключаются в толщины цинкового слоя. Тонкий слой оцинковки маркируется как «1Ц», а более толстое покрытие имеет обозначение «2Ц». Оба типа покрытия говорят о том, что у материала есть нержавеющая защита. Иногда вязальный материал выпускают и с покрытием из сплава меди и никеля, маркируется она как «МНЖКТ». Стоимость такого изделия очень высокая, по этой причине для строительства оно не применяется, хотя и обладает высокими антикоррозийными свойствами.

Как рассчитать расход?

Расчет количества арматурной проволоки помогает понять, сколько необходимо приобрести материала для выполнения работ и в какую сумму все это обойдется. При оптовых закупках стоимость материала, как правило, указывают из расчета на одну тонну, хотя максимальный вес катушки с катанкой составляет 1500 кг.

Норма вязальной проволоки, которая потребуется для осуществления определенного комплекса работ, рассчитывается исходя из толщины каркасной арматуры и числа узловых соединений конструкции. Обычно при стыковании двух прутков потребуется использовать кусок вязального материала, длина которого не меньше 25 см, а если нужно соединить 2 прутка, то норма расхода составит 50 см на 1 стыковочный узел.

Чтобы упростить задачу подсчета, можно уточнить количество стыковочных узлов и умножить полученное число на 0,5. Готовый результат рекомендуется увеличить примерно вдвое (иногда достаточно и в полтора раза), чтобы иметь запас на случай непредвиденных ситуаций. Расход вязального материала бывает различным, определить его можно опытным путем, ориентируясь на способ выполнения вязальной технологии. Чтобы более точно посчитать расход проволоки на 1 куб. м арматуры, потребуется иметь схему расположения стыковочных узлов. Этот метод подсчетов довольно сложен, но судя по стандартам, выработанным мастерами на практике, считается, что на 1 т прутков нужно как минимум 20 кг проволоки.

В качестве наглядного примера рассмотрим следующую ситуацию: требуется соорудить ленточный тип фундамента размеров 6х7 м, у которого будут выполнены 2 армированных пояса, содержащих 3 прутка в каждом. Все соединения, выполняемые в горизонтальном и вертикальном направлении, должны быть сделаны с шагом в 30 см.

Прежде всего посчитаем периметр будущего каркаса фундамента, для этого умножим его стороны: 6х7 м, в результате получаем 42 м. Далее посчитаем, сколько будет стыковочных узлов в местах пересечения арматуры, помня, что шаг равен 30 см. Для этого разделим 42 на 0,3 и получим в результате 140 точек пересечения. На каждой из перемычек будет стыковаться по 3 прутка, значит, это 6 стыковочных узлов.

Теперь умножим 140 на 6, в результате получим 840 мест соединения прутков. Следующим шагом вычислим, сколько потребуется вязального материала, чтобы состыковать эти 840 точек. Для этого 840 умножим на 0,5, в результате получим 420 м. Чтобы избежать недостатка материала, готовый результат нужно увеличить в 1,5 раза. Умножаем 420 на 1,5 и получаем 630 метров – это и будет показателем расхода вязальной проволоки, необходимой для выполнения каркасных работ и изготовления фундамента размером 6х7 м.

В следующем видео рассказывается о том, как заготовить вязальную проволоку.

чем и как вязать арматуру?

Прочная и качественная арматурная сетка нужна для сохранения пространственной формы фундамента при его заливке. Поэтому и варить ее нельзя – иначе, как объясняют специалисты, «нарушается кристалл железа». И не важно, строится ли большое здание или компактная баня, возможна только вязка арматуры для фундамента, причем качественная и правильным материалом.

А вот способов, как вязать арматуру, сегодня практикуется достаточно много. Но, в общем, все выглядит чаще всего так: сеть вяжется секциями вне траншеи, а потом эти секции просто подвязываются друг к другу. Можно вязать, конечно, и на дне траншеи, но для этого арматуру нужно заранее закрепить. Ведь главное, чтобы она не опускалась на дно траншеи – а для этого опытные строители используют специальные держатели (продаются на рынке).

 Чем вязать? Вязальная проволока VS пластиковые хомуты

Что лучше для вязки арматуры: обычная проволока или модные пластиковые хомуты? Давайте разберемся вместе.

Стальная проволока: где раздобыть и как сделать самому

Вязальная проволока для фундамента делается из отожженной низкоуглеродистой стали. Она мягкая на изгиб, удобная в эксплуатации. По цвету бывает белая – оцинкованная – и черная, без какого-либо покрытия. К слову, что интересно, многие мастера считают красивую оцинкованную проволоку в использовании для фундамента самым настоящим излишеством – ведь в бетоне нет доступа кислороду, а потому никакой коррозии быть не может.

Совет мастера: если вдруг вы приобрели в магазине вязальную проволоку, а она плохо гнется, ее не обязательно сдавать назад – достаточно прогреть в костре в течение получаса и потом охладить на воздухе.

Какого диаметра брать проволоку? Опытные строители говорят, что наиболее удобный и прочный вариант – это 1,2-1,4 мм. На двойку уходит много сил, а единица слишком слаба.

А вот как можно разжиться вязальной проволокой для фундамента. Берем старую покрышку от грузовика и сжигаем ее. В этой покрышке есть металлокорд – его-то как раз и используют в новом качестве. Единственный момент: в покрышках от импортных грузови

Вязка арматуры под ленточный фундамент

Опытные строители знают, что от правильно выбранной схемы армирующего каркаса для создания ленточного фундамента, и правильности проведения монтажа напрямую зависит прочность основания под стены дома. В этой конструкции четко распределены все, так сказать, «обязанности» составляющих её элементов. Так, арматура принимает на себя деформирующие линейные напряжения, возникающую не только от тяжести стен, но и от перепадов температур, а бетонная часть конструкции предотвращает ее сжатие. Таким образом, в комплексе эти материалы создают надежную опору для стен.

Вязка арматуры под ленточный фундамент

Вязка арматуры под ленточный фундамент является оптимальным вариантом скрепления металлического «костяка» железобетонной конструкции. Такое соединение, сохраняя заданные линейные и пространственные формы каркаса, тем не менее оставляет возможность несколько «балансировать» при застывании бетона и набора им марочной прочности, принимая оптимальное положение при воздействии возникающих нагрузок. Если же сделать скелет фундамента жестким, то есть скрепить арматуру сваркой, то даже при незначительной усадке грунта или под давлением стен дома бетонная часть конструкции может начать разрушаться, так как при застывании раствора не произошло оптимального сдвига деталей каркаса и в, казалось бы, прочной монолитной плите сохраняются значительные внутренние напряжения.

Несколько слов об особенностях ленточного фундамента

Ленточный тип фундамента можно смело назвать универсальным, наиболее распространённым, дающим возможность возведения зданий из практически любых строительных материалов. Повсеместное использование этой конструкции основания объясняется в том числе и значительной экономией средств, простотой и доступностью её самостоятельного обустройства, а также тем, что ленточный фундамент всесторонне испытан очень широкой практикой его многолетней эксплуатации.

Ленточный фундамент по праву занимает лидирующие позиции, как наиболее популярный у застройщиков тип основания для зданий

Сам по себе такой фундамент представляет собой железобетонную ленту, которая может иметь разную ширину, толщину и высоту. Эти параметры зависят от проекта будущего здания – размеров стен и материала, из которого планируется возвести стены, общей массивности строения, состояния грунтов на участке застройки и целого ряда других важных факторов. Но в любом случае ленточный фундамент устанавливается по периметру будущего строения, имеет замкнутый контур, который и предназначается для дальнейшего возведения несущих стен. При необходимости этот вид фундамента дополняется внутренними перемычками, которые становятся основой для возведения на них внутридомовых капитальных перегородок.

Глубина залегания подошвы ленты может существенно различаться, в зависимости от конкретных обстоятельств. Так, при неустойчивых верхних слоях грунта на участке ведения строительства, подошва ленточной основы полностью заглубляется ниже уровня промерзания или же исполняется в сочетании со свайным фундаментом. Если же грунт плотный, или же тогда, когда планируется строительство небольшого по общей массе здания, то вполне можно обойтись малозаглубленным ленточным фундаментом.

Фундаментная лента может быть глубокого или малого заложения, иногда усиливается дополнительно монолитными сваями

Как бы то ни было, требования к полноценному и качественно исполненному армированию равнозначно важны для любой разновидности ленточного фундамента. Только при таком условии основа оптимизирует нагрузку от стен дома на грунт по всему периметру строения, что минимизирует риск проседания здания, перекос и деформацию всех его составляющих строительных конструкций.

Как залить ленточный фундамент своими руками?

В этой публикации не станем слишком углубляться в тонкости конструкции подобного основания. Вопросам расчета и последовательности проведения работ по самостоятельному строительству ленточного фундамента посвящена отдельная публикация нашего портала.

Какую арматуру используют для вязки каркаса

Итак, переходя к подготовке всего необходимого для обустройства фундамента, необходимо получить информацию о том, какая арматура лучше подходит для формирования каркаса ленточного основания. В наше время в продаже на строительных рынках можно встретить «классическую» стальную и композитную арматуру. Какая из них лучше для ленточного фундамента – в этом стоит разобраться.

Металлическая арматура.

Стальная арматура, применяемая для создания каркасов для заливки фундаментов, должна соответствовать требованиям действующих ГОСТ. В жилом строительстве чаще всего применяется материал, выпущенный в соответствии с ГОСТ-5781-82. Этот стандарт регламентирует параметры горячекатаной арматуры, предназначенной для применения в обычных и предварительно напрягаемых строительных конструкциях.

Для армирования фундаментов чаще всего применяется горячекатаная арматура, выпущенная в соответствии с ГОСТ-5781-82.

В соответствии с положениями ГОСТ, эта арматура подразделяется на шесть классов. Если для первого класса используется обычная низкоуглеродистая сталь, то по мере повышения класса возрастает содержание специальных и даже легирующих добавок, резко повышающих механическую прочность материала.

Арматурные пруты I класса имеют гладкую внешнюю поверхность. Всем остальным (за редким исключением) придается рифлёная форма, так называемый периодический профиль кольцевого, серповидного или смешанного типа. Такая рельефная структура поверхности предназначена для максимального контакта армирующих элементов конструкции с набирающим прочность бетоном.

Для основного армирования ленточного фундамента оптимальным выбором, с позиций вполне достаточной степени прочности и приемлемой цены, станет арматура класса А-III, диаметром от 12 до 18 мм, в зависимости от особенностей создаваемой конструкции. Показатели классов от четвертого и выше останутся просто невостребованными, а вот A-II может оказаться и слабоватой.

Стоит обратить внимание и на наличие буквенного индекса.

  • Так, литер «С» говорит о том, что эта арматура может соединяться посредством сварки. Со всеми другими типами сварочные работы полностью исключаются – структура стали при высокотемпературном нагреве изменяется, и каркас потеряет необходимую прочность.
  • Буквенное обозначение «К» имеют изделия, изготовленные из стали с повышенными антикоррозионными свойствами. Их обычно применяют при возведении объектов, к которым предъявляются особые требования, и для ленточного фундамента под частное строительство приобретение подобной арматуры (а стоит она, безусловно, значительно дороже) не видится необходимостью.
Гладкие горячекатаные пруты класса A-I – оптимальный вариант для изготовления хомутов, объединяющих основную арматуру в единый объемный каркас

А вот для дополнительных элементов конструкции – перемычек, стоек, хомутов, придающих основному каркасу необходимую объемность, вполне подойдут гладкие арматурные стержни класса A-I диаметром 6 мм (при высоте ленты до 800 мм) или 8 мм (при большей высоте). Они легко изгибаются в необходимую конфигурацию, и их прочностных характеристик для такого применения – вполне достаточно. Можно использовать и рифленые пруты класса A-II, но это уже будет несколько дороже.

Цены на арматуру

арматура

Скрепление арматуры чаще всего производится с помощью специальной вязальной проволоки, которая устанавливается и закручивается петлей во всех точках пересечения стальных прутов. Применение сварки не приветствуется сразу по нескольким причинам:

  • Любой, даже качественно исполненный сварной шов – место с повышенной уязвимостью к коррозии.
  • Непровар в месте соединения, который вполне можно не заметить при монтаже каркаса, может обернуться нарушением целостности конструкции на этапе заливки тяжеловесного бетонного раствора.
  • Даже незначительный перегрев прута в точке его пересечения с другим элементом конструкции дает снижение заложенных в него армирующих качеств.

Так что если даже застройщик себя считает опытным сварщиком и имеет в распоряжении аппарат, то все равно от такой операции лучше воздержаться. К слову, к работам по сварке арматурных конструкций, там, где это необходимо в условиях промышленного строительства, допускаются только мастера высшего квалификационного разряда. И при этом должна применяться исключительна арматура, обозначенная литером «С».

Композитная арматура

Композитная арматура – это относительно новый строительный материал. Она может быть произведена на разных основах — это стеклопластик, углепластик или базальтопластик.

Стеклопластиковая арматура – набирающий популярность материал, в применении которого пока что еще не все однозначно

Самой распространенной в этой категории является стеклопластиковая арматура, так как она имеет более доступную цену по сравнению с двумя другими видами, обладая при этом высоким прочностными качествами.

Композитные пруты применяется для армирования разных видов фундаментов, в том числе и ленточных. Преимуществом этого вида арматуры является ее низкая теплопроводность по сравнению с металлическими прутьями. Поэтому эти изделия хорошо подойдут для армирования фундаментов и цокольных стен, которые планируется утеплять, так как за счет этого материала не будет происходить лишних потерь тепла.

Полимерная арматура инертна к внешним воздействиям, поэтому достаточно долговечна — ей не страшна влага и довольно высокие перепады температуры. Если при обустройстве фундамента используется качественный бетон и стеклопластиковая арматура, основа под дом должна получиться прочной и долговечной.

Монтаж полимерных прутьев – существенно проще, чем установка и скрепление металлической арматуры, так как они имеют небольшой вес, легко скрепляются хомутами или проволокой и не оставляют следов ржавчины на руках и одежде.

Можно провести сравнение со стальной арматурой по базовым показателям:

  • Прочность на растяжение, при равном диаметре, у стального прута — 390 МПа, стеклопластикового — 1000 МПа.
  • Стеклопластик имеет массу в 3,5 раза меньше, чем сталь.
  • Сталь подвержена коррозии, полимер устойчив к воздействию кислой среды.
  • Стеклопластик не проводит электричество, в отличие от металла.
  • Сталь имеет высокий показатель теплопроводности, полимер же практически не проводит тепло.
  • Металл – негорючий материал, стеклопластик же относится к слабогорючим самозатухающим.
  • Упругость стали в несколько раз выше, чем у стеклопластика.
  • Полимеры обладают большим сопротивлением на разрыв, однако, при нагревании до очень высоких температур связующий волокна пластик становится мягким, теряя упругость.
  • Композитная арматура скрепляется только пластиковыми хомутами или проволокой, металлическая может быть сварена или скручена проволокой.

Из сравнения характеристик этих двух материалов напрашивается вывод, что для тяжелых построек лучше всего все-таки использовать металлическую арматуру, а для легких сооружений подойдет и каркас для ленточного фундамента из стеклопластика. Однако, следует иметь в виду несколько важных нюансов.

  • На сегодняшний день еще не разработано четких технологических рекомендаций по использованию композитной арматуры – все расчеты пока что базируются на применении стальных изделий. Так что хозяин, принимающий решение об использовании стеклопластикового каркаса, идет на определённый риск.
  • Рынок буквально наводнен стеклопластиковой арматурой весьма сомнительного качества. Это неудивительно – если производство стального проката требует исключительно специфических производственных условий, то линии по выпуску композитных прутов рекламируются и реализуются всем желающим попробовать свои силы в этом бизнесе. Естественно, ни о каком соблюдении ГОСТ в этом случае говорить не приходится – в лучшем случае декларируется соответствие самостоятельно установленным техническим условиям (ТУ), в которых или сознательно занижены, или невнятно изложены критерии оценки качества продукции. А очень часто – партии товара вообще не имеют никакой сопроводительной технической документации.
Если уж брать на себя смелость применения стеклопластиковой арматуры, то только – с качеством, соответствующим ГОСТ. Увы, рынок буквально переполнен низкопробным материалом

На таких прутьях могут быть продольные или поперечные (заметные на срезе) трещины, расслоения, торчащие волокна, узлы, потеки смолы, неравномерный шаг завивки, различие в цвете, что, в свою очередь, говорит о явном несоблюдении температурно-временного режима обработки. Как поведет себя такая арматура в нагруженном состоянии в составе каркаса ленточного фундамента – сказать сложно, и надеяться на то, что «пронесет» — не самое разумное решение.

Схемы распределения арматуры в конструкции каркаса ленточного фундамента

Как уже говорилось выше, арматура в конструкции фундамента способствует равномерному распределению основной нагрузки от веса здания и внешних динамических воздействий, сохраняет целостность конструкции под влиянием возникающих внутренних напряжений Поэтому, насколько качественно будет произведено крепление элементов каркаса, настолько прочен и долговечен будет фундамент, а значит, и всё строение в целом.

Обустраивая каркас ленточного фундамента, нужно учитывать некоторые нюансы:

  • Наибольшие нагрузки выпадают на продольные прутья каркаса верхнего и нижнего (в особенности) пояса армирования. Поэтому, учитывая характеристики грунта и особенности будущего здания, для них выбирается арматура периодического профиля диаметром от 10 мм, а если длина ленты на любом из участков превышает 3 метра (а так чаще всего и получается) то не менее 12 мм.
  • Продольная арматура должна быть расположена на расстоянии от донной части, боковых стен и верхней границы заливки цементного раствора на расстоянии от 30 до 50 мм. Например, если обустраивается фундамент шириной в 400 мм, расстояние между продольными прутьями в горизонтальной плоскости должно составлять 300 мм.
  • Расстояние между двумя соседними параллельными прутьями продольного армирования не должно превышать 400 мм.
  • Для поперечных и вертикальных элементов каркаса используются гладкие прутья диаметром 6÷8 мм (при высоте ленты 800 мм и более – не менее 8 мм). Такого сечения будет вполне достаточно, так как на них выпадает меньшая нагрузка.
Одна из самых простых схем армирования ленточного фундамента неглубокого заложения
  • Расстояние между хомутами (поперечными арматурными отрезками и стойками) может варьироваться от 100 до 500 мм. Последнее значение является максимальным, поэтому превышать его – нельзя.  Лучше всего исходить из расчета, что шаг установки хомутов равен 0,75×h, где h – это общая высота фундаментной ленты.
  • Количество ярусов продольного армирования и количество стержней будет зависеть от высоты и ширины ленточного фундамента. СНиП установлены минимальные соотношения площади сечения ленты и суммарной пощади сечения прутов продольного основного армирования.
  • Если нагрузка на фундамент не будет слишком велика, то конструкция каркаса предельно упрощается и представляет собой в сечении прямоугольник без дополнительных, укрепляющих прутов. То есть в нижнем и верхнем армирующем поясе используются по два продольных прута, которые увязываются с вертикальными и горизонтальными перемычками или готовыми хомутами.

Повышенную сложность представляют участки, требующие дополнительного усиления – это углы и области примыкания фундаментных лент. Подробно об этом рассказывается в соответствующей статье.

Цены на стеклопластиковую арматуру

стеклопластиковая арматура

Как правильно рассчитать и спланировать армирующий каркас ленточного фундамента?

При строительстве крупного загородного дома этот вопрос будет разумнее доверить квалифицированным специалистам. Но если возводится небольшое сооружение, то можно обойтись и самостоятельно – в специальной публикации нашего портала приведены чертежи армирования ленточного фундамента, предложены удобные калькуляторы расчета. 

Проволока для вязки арматурного каркаса

Вязка арматуры при монтаже каркаса фундамента производится проволокой, технические характеристики которой оговорены в документах ГОСТ 3282–74.

Для вязки арматуры чаще всего применяется отожжённая стальная проволока марки ВР

Проволока производится из низкоуглеродистой стали и подразделяется на несколько типов:

  • По способу обработки. Существует обработанная термическим способом (отожжённая) и необработанная проволока.
  • По точности изготовления. Так, проволока может быть повышенной точности или обычной.
  • По временному сопротивлению нагрузкам, на разрыв изделия, непрошедшего термическую обработку и бывает первой и второй группы.
  • Проволока может иметь специальное защитное покрытие или быть без него.

Проволока может иметь стальной или черный цвет. Диаметр сечения варьируется от 0,16 до 10 мм. При этом допускаются отклонения в сечении продукции 0,02 мм.

В документах ГОСТ можно найти более подробные характеристики данного изделия. Некоторые из них:

  • Удлинение проволоки, прошедшей термообработку и имеющей защитное покрытие, составляет 12÷18%, а без защиты 15÷20%.
  • У необработанных высокими температурами изделий, в зависимости от их сечения разнится такой параметр, как сопротивление на разрыв и составляет (Н/мм²):

— 590÷1270 для диаметра 1,0÷2,5мм;

— 690÷1370 для диаметра менее 1,0 мм.

Производитель этой продукции должен обеспечивать соответствие следующим нормам ГОСТ:

— изделия без термообработки диаметром от 0,5 до 6,0 мм должны выдерживать целостность после четырех и более сгибов;

— цинковое защитное покрытие должно сохранить целостность и плотно прилегать в стали после накручивания проволоки в виде спирали. При этом допускается наличие небольших цинковых наплывов, налета, белых блесток и цветовой неоднородности;

— в продажу проволока должна поступать в бухтах. Эти бухты могут иметь различный вес, который зависит от диаметра проволоки и наличия или отсутствия защитного покрытия. Так, масса бухты разнится от одного килограмма при сечении изделий 0,16÷0,18 мм до 40 кг при 6,3÷10 мм.

Термообработка проволоки (ее отжиг) делает материал более пластичным, удобным в работе, без существенной потери прочностных качеств. Так что есть смысл сразу приобретать именно такой вариант. Отжиг, конечно, можно провести и самостоятельно – но стоит ли тратить на это силы, когда в продаже уже есть готовая проволока, и по более чем доступной цене?

Наверное, для ленточного фундамента нет и особой необходимости приобретать проволоку с цинковым покрытием, если сразу после монтажа армирующего каркаса будет проводиться заливка бетона. За столь короткий срок коррозия не успеет «сожрать» соединения, а затем, после полного созревания бетона, она будет и вовсе не страшна.

Как правило, при самостоятельном строительстве ленточных фундаментов применяется проволока диаметром 1,2 или 1,4 мм, реже — до 1,8 мм. Миллиметровая для подобных целей все же слабовата – может давать обрывы при затяжке узлов, а с диаметром 2 мм и более – работать будет очень трудно, потребуется немало сил для качественной увязки без каких-либо особых выгод.

Строительный рынок пополнился еще одним чрезвычайно удобным материалом для вязки каркаса. Это – бухты уже готовых проволочных отрезков диаметром, как правило, 1.2 мм и длиной от 80 до 180 мм, уже имеющих по концам готовые петли. Обычно в бухте – 1 тыс. таких изделий.

Бухты готовых проволочных петель «Казачка» или «Зубр» — очень удачная покупка, чрезвычайно упрощающая вязку арматурного каркаса.

Стоимость таких упаковок проволочных петель – весьма доступная, а производительность труда, как показывает практика, возрастает почти втрое.

Ниже читателю предложен калькулятор, который поможет быстро рассчитать, сколько примерно точек соединения предстоит увязать на создаваемом арматурном каркасе, и какое количество проволоки для этого потребуется. При этом учтено, что некоторые участки армирования требуют дополнительного усиления.

Калькулятор расчёта количества проволоки для вязки арматурного каркаса ленточного фундамента

Перейти к расчётам

Следует правильно понимать, что это – минимально необходимое количество материала. При работе вполне вероятны разрывы затягиваемых узлов, собственный брак в работе, да и просто на стройплощадке несложно выронить и потерять нарезанные отрезки проволоки. Стоимость ее – невелика, поэтому вполне можно заложить запас в 50, а то и более процентов. Тем более что раз ведется  пока еще только возведение фундамента, то впереди еще много различных строительных операций, и излишкам проволоки всегда найдется применение.

Инструменты для вязки арматурных прутьев

Скреплять арматуру проволокой вручную, то есть просто усилиями пальцев, практически невозможно, поэтому для проведения этого процесса были созданы специальные инструменты, как ручные, так и механические. Эти приборы и приспособления не только ускорят работу, но и существенно повысят качество связок арматурных элементов.

Итак, вязка прутьев в армирующую конструкцию под фундамент, может осуществляться такими инструментами:

— ручными вязальными крючками, заводского изготовления или самодельными;

— инерционным вязальным крючком полуавтоматического действия;

— специальным вязальным пистолетом;

Кроме этого, для процесса вязки научились применять обычную электрическую дрель (которая переключается на малые обороты) или шуруповерт со специальной самодельной насадкой-крючком.

  • Вязальный пистолет

Самое качественное скрепление получается при использовании специализированного вязального пистолета. Но это достаточно дорогой инструмент, и для того, чтобы изготовить только один фундамент, его редко кто приобретает. В основном его в комплекте своих инструментов имеют профессиональные строители, так как, переходя от объекта к объекту, они не могут терять много времени на и без того довольно длительную и трудоёмкую операцию увязки каркаса.

Цены на вязальный пистолет

вязальный пистолет

Удобный и быстрый способ – с применением специального вязального пистолета. Как знать, может быть, есть возможность аренды…

Для пистолета производятся специальные сменные катушки с намотанной на них проволокой, которыми заряжается прибор. Многие из таких инструментов могут функционировать от аккумулятора, а так как обычно в комплект с вязальным пистолетом идут два аккумулятора, работа может идти практически бесперебойно. Еще одним преимуществом такого прибора можно назвать то, что он не привязан кабелем к розетке, поэтому им можно работать в автономных условиях – при отсутствии близкорасположенных точек подключения к сети.

Вязальный пистолет даёт надежные и совершенно однообразные по усилию затяжки проволоки соединения

Вязальный пистолет захватывает нужную область металлических прутьев, выпускает проволоку и обвязывает их петлей, а затем скручивает края проволоки между собой. Недостаток, кроме высокой стоимости самого прибора – это невозможность работы в некоторых труднодоступных местах, где все равно придется перейти на «ручной труд».

  • Вязальные крючки

Универсальным приспособлением для связывания арматуры в каркасе фундамента можно назвать вязальный крючок, так как им можно работать в самых труднодоступных и узких местах. Крючки имеют небольшой размер, поэтому ими достаточно удобно связывать прутья и в узкой траншее под ленточный фундамент.

Универсальный инструмент для вязки арматуры – крючок на рукоятке

Крючки могут несколько отличаться друг от друга по внешнему виду и конфигурации, поэтому, приобретая этот инструмент, необходимо попросить испытать его на месте. Тот инструмент, который будет удобно «ложиться в руку», а значит, им комфортнее будет работать, и стоит выбрать для дальнейшей работы. Имейте в виду – неудобный крючок способен очень быстро набить мозоли на пальцах.

Удобный для себя крючок вполне можно изготовить самостоятельно

Самодельный крючок делают по типу заводской модели, повторяя ее форму. Для его изготовления может использоваться заточенный отрезок арматуры, который изгибают в тисках, а затем вставляют в ручку. Рукоятку можно сделать из расплавленного пластика, накрутив его на арматуру, или же надев на нее полимерную трубку с толстыми стенками, нагрев ее, а затем остудив. При остывании, пластик плотно прижмется к арматуре, образуя удобную для рабочих манипуляций ручку.

Еще один вариант вязального крючка, конструкция которого значительно ускорит работу по монтажу каркаса – это полуавтоматический инструмент, действующий по инерционному принципу.

Стоимость подобного полуавтоматического крючка – вполне доступная, а работа пойдет значительно быстрее и потребует меньше сил

Сам крючок расположен на своеобразной ножке, имеющей нарезанные пазы по типу спирали. Предусмотрен возвратный пружинный механизм, находящийся внутри рукоятки крючка.

Работает этот инструмент следующим образом: крючком цепляют петли проволоки и подтягивают их вверх, прилагая усилие. В это время ножка при выходе из рукоятки, при перемещении спиральных пазов по направляющим выступам, проворачивается, делая несколько оборотов, скручивая два конца проволоки между собой до упора узла к скрепляемым элементам каркасной конструкции. При необходимости операция повторяется – до достижения требуемой затяжки узла. Таким образом, на увязку точки требуется сего одно-два поступательных движения.

Крючок, изготовленный из стального дюбеля, можно вставить в патрон шуруповерта или дрели

Насадка-крючок, устанавливаемая в дрель или шуруповерт, позволит ускорить выполнение работ с меньшей затратой физических усилий. Эти инструменты быстро проводят скручивание двух концов проволоки до упора, надежно фиксируя перекрещенную арматуру между собой. На трещетке шуруповерта несложно опытным путем выставить оптимальным момент затяжки. Удобнее будет работать с компактным инструментом, так как пространство траншеи под ленточный фундамент часто бывает весьма ограниченным. Кроме того, если в планах использовать для связывания арматуры обычную электрическую дрель, то необходимо будет запастись многометровым удлинителем.

Какой бы инструмент для вязки ни был  выбран, принцип скручивания им проволоки одинаков, поэтому его выбор зависит от финансовых возможностей и предпочтения мастера.

Приемы вязки арматуры

Существует несколько способов ручного связывания металлических прутьев в конструкцию каркаса под фундамент. Они будут далее рассмотрены более подробно.

Металлическая арматура

Вязка арматуры вручную – не слишком сложное, но довольно длительное и трудоемкое занятие. Процесс увязки узла проводится в несколько шагов:

  • Если планируется использовать обычную проволоку (то есть без подготовленных по ее концам петель), то ее нарезать фрагментами длиной по 250÷300 мм.
  • Ровный отрезок проволоки складывается вдвое. Затем этот уже спаренный отрезок изгибается так, чтобы на образовавшуюся петлю приходилось около трети поучившейся длины, а остальное оставалось на свободные концы.
Два приёма увязывания узла – заведение проволочной петли и дальнейшее скручивание крючком
  • Далее, получившимся проволочным «крюком» огибается место соединения двух прутов арматуры.
Заведение проволочной петли за перекрестье арматурных прутьев
  • Образовавшаяся при сложении пополам проволоки петля подцепляется вязальным крючком, и к нему же пригибаются парой оставшиеся свободные концы. После этого начинается их скрутка.
Увязывание узла с помощью полуавтоматического инерционного крючка
  • Крючок нужно поворачивать по часовой стрелке до тех пор, пока скручиваемая проволока не упрется плотно в соединяемую арматуру. Усилие, безусловно, нужно уметь «дозировать» — не стоит затягивать скрученную проволоку слишком туго, иначе она может лопнуть, и процесс придется начинать заново.
  • По завершении работы крючок из петли вытаскивается, «усы» можно пальцами подогнуть к прутьям, чтобы они сильно не торчали – и соединение готово.
С готовыми проволочными элементами работать будет еще проще – выпадает подготовительный процесс нарезки и формирования петли

Еще проще работать с подготовленными проволочными крепежными элементами, имеющие петли по краям. Их также сгибают пополам, а затем в совмещенные петли вставляют крючок и производят скрутку по часовой стрелке.

Скрутка, производимая вручную, может осуществляться также с помощью клещей, но этот инструмент имеет смысл применять только для неотожженой проволоки, имеющей достаточно большой диаметр. Другие виды материала могут просто сломаться под давлением мощного инструмента.

Если для увязки толстой проволоки применяются клещи, то можно руководствоваться показанными приемами работы

Принципы скрепления арматуры вязкой с применением клещей представлен на данной схеме-рисунке:

1 – Связывание арматуры пучком проволоки, то есть несколькими отрезками, сложенными вместе, без подтягивания.

2 – Связка угловых узлов.

3 – Двухрядный узел.

4 – Крестовый узел.

5 – Мертвый узел.

6 – Связка стержней специальным соединительным элементом.

7 – Арматурные стержни.

8 – Соединительный металлический элемент.

9 – Вид спереди.

10 – Вид сзади.

Кроме металлической проволоки, для связки арматурных элементов каркаса используются также пластиковые хомуты.

Некоторые мастера отдают при увязке каркаса предпочтение пластиковым затяжкам-хомутам

У этих крепежных элементов есть ряд своих достоинств и недостатков, о которых нужно знать, выбирая эту технологию увязки каркаса.

К «плюсам» хомутов из пластика можно отнести несколько моментов. Это:

  • Простота и удобство проведения процесса увязки каркаса.
  • Скрепление арматуры хомутами не требует каких-либо дополнительных инструментов.
  • Быстрота проведения работ, минимальные затраты физических усилий.
  • Прочность связки после отвердевания бетона.

«Минусами» пластиковых креплений называют следующие факторы:

  • Весьма высокая общая стоимость материала.
  • Недостаточная прочность крепежных узлов до заливки бетонного раствора и его созревания.
  • Невозможность производить монтаж каркаса при отрицательных температурах, так как прочность соединений под их воздействием ослабляется, а пластик теряет эластичность, становится хрупким.

Если есть финансовые возможности, а работа должна быть произведена быстро и без применения дополнительных инструментов, то можно использовать пластиковые хомуты с сердцевиной из металла. Такие затяжки обладают преимуществами как пластиковых, так и металлических крепежных элементов, то есть простотой монтажа и прочностью соединения. Правда, за это придется раскошелиться.

Использование дополнительных деталей для пространственной фиксации арматуры

В некоторых случаях для установки арматурных прутьев применяют так называемые «бобышки» — фиксаторы, изготовленные из пластика. Конструкции их бывают весьма разнообразны, и такие изделия применяются либо как временно скрепляющие прутья элементы, либо как как подставки для нижнего ряда арматурных прутьев или в роли своеобразных «калибраторов» — для боковых.

Пластиковые вставки – для правильного формирования объемного каркаса и для соблюдения необходимых дистанций от поверхностей дна и стенок опалубки

В каркасе под ленточный фундамент такие вставки применяют для соблюдения расстояния между арматурными элементами и стенками опалубки, так как между ними должен сохраняться зазор для бетонного слоя шириной в 50 мм.

Еще один прием связывания арматуры на пересечениях — это применение специальных стальных монтажных скоб. Их изготавливают  из стальных прутьев с высоким показателем упругости, диаметром от 2 до 4 мм, то есть они действуют буквально как пружина, а внешне чем-то напоминают скрепку.

Соединительный узел двух перекрещивающихся прутов арматуры, собранный с применением специального пружинящего коннектора-скрепки

Такая скрепка-коннектор изогнута с созданием петли, а оба конца ее заканчиваются крючками. Как устанавливается подобное соединение — хорошо показано на иллюстрации. Безусловно, это удобно, но приобретение большого количества таких скрепок обойдется весьма недешево.

Вязка стеклопластиковой арматуры

Вязка этого вида арматуры несколько отличается от работы над скреплением металлических прутьев. При выборе композитного армирующего материала для создания каркаса, прежде чем перейти к его вязке, нужно обязательно произвести точные расчеты по распределению веса конструкции. Если при монтаже металлического каркаса могут быть допущены небольшие погрешности, то для стеклопластика они недопустимы. А о сложности именно этого момента уже упоминалось выше.

В зависимости от тяжести материала стен, расстояние между полимерными прутьями может составлять 150÷350 мм. Если фундамент делается под легкие постройки, то расстояние может быть увеличено до 600 мм. Но увы, четких нормативов пока нет.

В хомуты согнуть стеклопластиковую арматуру не получится, поэтому каркас вяжется с применением отдельный перемычек и стоек

При укладке нижнего армирующего пояса под него обязательно, и с довольно-таки малым шагом устанавливаются пластиковые подставки. Они необходимы для того, чтобы при заливке в опалубку бетонного раствора, армирующий каркас не стал проседать под тяжестью раствора. В этих же целях достаточно часто для упрочнения стеклопластикового каркаса применяют металлические пруты, которые сохранят конструкцию в первоначальном виде  на этапе заливки.

Вязка конструкций из композитной арматуры производится также разными способами, некоторые из которых практически не отличаются от крепежных операций на металлических каркасах.

Самый простой и быстрый способ – это применение пластиковых хомутов-затяжек
  • Вязка пластиковыми или металлопластиковыми хомутами – это самый простой, удобный и быстрый способ скрепления, но весьма затратный.
Для монтажа композитных каркасных конструкций могут применяться специальные пластиковые крепления
  • Крепление специальными пластиковыми креплениями, которые защелкиваются на прутьях арматуры в местах их соединения – этот способ считается самым надежным для полимерных каркасов.
  • Металлической (алюминиевой) мягкой проволокой. Вязка производится по тому же принципу, что и на стальных каркасах, то есть с помощью крючка. Однако, учитывая специфические свойства алюминиевой проволоки, ее нельзя затягивать очень сильно, иначе она легко сломается.

Еще раз заметим: прежде чем выбрать композитную арматуру, необходимо взвесить все «за» и «против», и быть готовым взять ответственность за неудачу на себя. Для строительства фундаментов частных домов все-таки чаще всего используется металлическая арматура, каркасные конструкции из которой легко просчитываются, будут предсказуемы, так как уже проверены многолетней практикой.

В завершение публикации – несколько полезных видеосюжетов с технологическими рекомендациями по процессу вязки арматурного каркаса.

Полезные видеоматериалы — в помощь начинающему строителю

Видео: как правильно вязать арматуру крючком

Видео: полезные приспособления для быстрой и точной сборки арматурного каркаса

Видео: приспосабливаем шуруповерт для вязки арматуры

технических документов | WRI — Институт армирования проволоки

Недавно обновленные публикации

WWR 600-DDG Руководство по проектированию и детализации арматуры сварной проволокой ( «Руководство» ) 2020, 10 глав
Руководство по проектированию и детализации арматуры сварной проволокой ( «Руководство» ) предоставляет подрядчикам и проектировщикам исчерпывающий эталон для включения WWR в контрактные документы, используемые на месте. Это объясняет на примере, почему (а) специалисту по проектированию конструкций (EOR) не нужны закрытые знания, чтобы внедрить WWR в свои контрактные чертежи, и (б) протокол, используемый для проектирования и детализации железобетона. не требует капитального ремонта, чтобы приспособиться к использованию WWR.Руководство лучше всего использовать в качестве дополнительного документа к разработке и детализации публикаций по стандартам, создавая ценность, предлагая подробную информацию, специфичную для армирования сварной проволокой.


Новые публикации

Подробное руководство по спецификациям армирования сварной проволокой

Специальные публикации

TF 101-R-14: Исторические данные о проволоке, треугольной проволочной сетке / сетке и армировании бетона из сварной проволоки (WWR) 2014, 9 страниц
Этот технический факт послужит руководством для профессионалов в области проектирования, подрядчиков и владельцев зданий / мостов. физико-механические свойства старой проволоки и проволочной сетки и арматуры из сварной проволоки.Имеются ссылки на стандарты ASTM, которые определяют структурные свойства, используемые в период с 1900-х по 1960-е годы, а также таблица размеров проводов с указанием диаметров, площадей и масс. Примерная таблица включена в номенклатуру треугольной проволоки, использовавшейся в начале 1900-х годов. Кроме того, рассказ об истории проволоки, проволочной сетки и WWR для армирования бетона и заявление об «этой современной эпохе» — или о том, где сегодня находится отрасль WRI.


TF100-R-06: Men of Steel 1980, обновлено в 2006 г., 26 страниц
Рассказ об армировании сварной проволокой и Институте армирования проволоки в честь 50-летия.


WWR-400-R-03: Арматура из сварной проволоки для изгиба 1999, 12 страниц
Публикация с наглядным и описательным изображением по изготовлению на заводе или на месте гибки сварной проволоки для каркасов колонн, корзин балок , а также армирование сдвигом как для монолитных, так и для сборных / предварительно напряженных конструктивных элементов.


WWR-500-R-16: Руководство по стандартной практике — Арматура сварной проволокой 2016
В этом руководстве представлена ​​текущая информация о продукте, спецификации материалов и свойства, а также перечислены текущие положения Кодекса ACI 318, касающиеся WWR.Таблицы и вспомогательные средства проектирования прилагаются к сращиванию и площадям поперечных сечений для различных расстояний между проводами. Два новых раздела охватывают испытания проволоки и арматуры сварной проволоки, а также инструкции по обращению и размещению.


Образец технических условий на сварную проволочную арматуру (WWR) 2018, 6 страниц
У нас было много запросов на образец технических условий, которые специалисты по проектированию и строительству могут просмотреть при подготовке собственной строительной документации.Это образец спецификации, подготовленный инженером с производителем-членом WRI. (Просмотрите Заявление об отказе от ответственности WRI, прилагаемое в конце документа.)


WRI Tech Facts

TF 202-R-18: Как указать, заказать и использовать арматуру сварной проволокой в ​​жилом и малом коммерческом строительстве — Обновлено 2018 г. — 8 страниц
Подробная публикация, которая отвечает на многие вопросы о спецификациях и номенклатуре размеров и стилей проводов для Информация для заказа.В нем также есть инструкции по размещению и поддержке WWR. Есть множество примеров, таблиц данных и фотографий.


TF 204-R-14: Сварные армированные проволокой откидные панели 2014, 5 страниц
Этот технический факт представляет собой обучающий инструмент для строительства откидных стен, армированных сварной проволокой.


TF 205-R-18: Сварная проволочная сетка в конструкции бетонной балочной перекрытия 1993, первый выпуск, 2 страницы
Информативная публикация, в которой упоминаются преимущества армирования сварной проволокой (WWR) как в одностороннем, так и в двустороннем направлении балочная конструкция.Учитывает минимальные требования к стали, интервалы, конструктивные соображения, спецификации Строительного кодекса ACI и использование высокопрочного конструктивного материала WWR.


TF 206-R-14: Метрическое армирование сварной проволокой Обновлено в 2014 г.
Третий выпуск 5 страниц Преобразование стандартных стилей, эквивалентных американским (фунт), в метрические стили. Обсуждение и примеры техники мягкого преобразования.


TF 208-R-08: (D) Структурное армирование из высокопрочной сварной проволоки — Текущие знания о продукте 2008, 3-е издание, 7 страниц
Этот технический факт описывает текущие производственные возможности, применимые спецификации и номенклатуру, обращение и разгрузку, размещение, чтобы получить правильное расположение, покрытие WWR и метрики.Таблицы включены, чтобы упростить преобразование единиц и узнать, какие общие стили производятся, и определить площади стали для различных расстояний между проволоками.


TF 209-R-08: Средства проектирования для армирования сварной проволокой (включая сравнительные таблицы WWR / арматуры) 2008, 2-й выпуск, 14 страниц
В этом выпуске содержатся списки стандартов ASTM и AASHTO, применимых к проволоке и WWR. Также физические свойства ASTM для минимального предела текучести и прочности на разрыв и минимальные критерии прочности сварного шва на сдвиг.Есть примеры, использующие прилагаемые 4 набора таблиц. В таблицах сравниваются различные расстояния между арматурными стержнями при пределе текучести 60 тыс. Фунтов на квадратный дюйм с различными расстояниями между арматурными стержнями при пределе текучести 60, 70, 75 и 80 тыс. Фунтов на квадратный дюйм.


TF 209-R-08M: Метрическая система: Вспомогательные средства проектирования для арматуры сварной проволокой (включая сравнительные таблицы WWR / арматуры) 2008, 2-й выпуск, 14 страниц
Этот выпуск представляет собой метрическую версию TF 209-R- 08.


TF 306-R-10: (D) Сварная проволочная арматура для круглых бетонных труб 2010, 16 страниц, Комитет по трубам WRI
Этот технический факт предназначен для предоставления обоснованных рекомендаций для использования при оценке арматурной стали в бетоне труба.Информация в таблицах в книге была собрана с использованием опубликованных проектов арматуры Американского общества испытаний и материалов «Стандартные технические условия для железобетонных водопропускных труб, ливневых водостоков и канализационных труб», обозначение C 76.


TF 311M-03: (D) Метрическая сварная проволока для армирования бетонных труб 1995, 6 страниц, комитет по трубам WRI
В этом техническом факте изложены принципы армирования и их необходимость в конструкции бетонных труб.Объясняются требования D-Load и производственные спецификации. В примерах показаны метрические стили WWR по сравнению со стилями в фунтах. В других таблицах показаны канадские стандарты, коэффициенты пересчета, расстояния между проводами WWR для обычных труб, а также общие характеристики проводов и размерные характеристики для метрических размеров, а также для размеров в фунтах.


TF 700-R-07 (WRI / CRSI 81): Проектирование фундаментов плит на земле — Обновление включено
Оригинал 1981 г., 36 страниц, Обновление — 8 страниц
Помощь в проектировании и строительстве, определяемая многими моделями, органы местного и государственного кодекса.Его используют многие испытательные и инспекционные агентства. Он содержит материал для детализации плит на земле и несущих бетонных конструкций на мягких или обширных почвах, распространенных во многих частях страны.


TF 702-R-08: Опоры необходимы для долговременной работы арматуры сварной проволокой в ​​плитах класса Обновлено 2008 г., 6 страниц
Рассмотрены вопросы «зачем» и «где» необходимы опоры. в этой публикации. Рассмотрены типы опор для ВВР и влияние условий подосновы на их выбор.Предлагаемые расстояния между опорами представлены для демонстрации различных расстояний при задании широких интервалов WWR (сквозных стилей) по сравнению с стилями с меньшими интервалами.


TF 704-R-03: Армирование из высокопрочной сварной проволоки по сравнению с арматурой 1995, 2 страницы
Этот технический факт демонстрирует реальный проект распределительного предприятия, который позволил значительно сэкономить затраты на размещение WWR по сравнению с арматурой. Высокопрочный WWR позволил сэкономить только на материалах, чтобы убедить владельца и подрядчика использовать WWR.Заявления подрядчика подтверждают важность и жизнеспособность использования WWR вместо арматуры при бетонном покрытии, на автостоянках и плитах на земле.


TF 705-R-03: Инновационные способы усиления плит на земле 1996, 8 страниц, Роберт Б. Андерсон, P.E.
Существует пять процедур проектирования с примерами, разработанными г-ном Андерсоном, ведущим консультантом по железобетонным плитам на земле. В публикации приведены формулы и примеры расчетов, которые показывают, как с увеличением площади стали достигается больший контроль ширины трещин.Теория сопротивления земляного полотна объясняется здесь более подробно с акцентом на процедуру для жилых и легких коммерческих проектов. Остальные четыре процедуры следует использовать для различных структурных применений, когда нагрузки на колеса и стойки играют большую роль в конструкции плиты. Имеется таблица сечений и масс для различных расстояний между проволоками (от 3 до 16 дюймов).


Примеры из практики WRI

CS 1-2005: Пример — правильно размещенный WWR обеспечивает качественные бетонные тротуары. 2005, 2 страницы
В тематическом исследовании описывается использование конструкционной сварной проволочной арматуры при строительстве тротуаров в Нью-Йорке.


CS 1-2008: Долговечность 2008, 4 страницы
От картофеля до пекарни и прачечной — некоторые переходят к решениям для стеновых панелей с армированием сварной проволокой.


CS 3-2018: мосты, пешеходные дорожки и подходы 2018, 4 страницы
Арматура из сварной конструкционной проволоки — лучший выбор в транспортном секторе.


CS 193-R-03: Практический пример — Каркас пола — One Peachtree Office Tower , Атланта, Джорджия, 1992, 2 страницы Расчет стоимости системы каркаса бетонного пола позволил четырехдневный / этажный цикл, при котором башня оставалась в рабочем состоянии график.


CS 194-R-03: Практический пример — многократное использование, один проект — Джейкобс Филд, Кливленд Индианс Болл Парк , Кливленд, Огайо, 1994, 4 страницы
Изучено использование 490 тонн высокопрочного WWR для мощения, плит — монолитные, поддерживаемые коридорные плиты, сборные железобетонные элементы и каркасы для сдвига балок.Оптимизация затрат сыграла большую роль в экономии денег и помогла строительству опережать график. Экономия затрат в размере 125 000 долларов США была достигнута за счет сокращения времени оборота формовки и времени размещения. Использование высокопрочного WWR по сравнению с обычным усилением позволило сэкономить 15% затрат на материалы.


CS 196-R-03: Практический пример — Сборное железобетонное строительство — Модульные сборные ячейки для исправительных учреждений 1997, 4 страницы
В этой публикации представлены истории трех проектов тюремных камер из сборного железобетона от 3 различных производителей сборного железобетона.В нем обсуждается экономия времени и затрат при проектировании сборных модулей на объектах. Как высокопрочная арматура сварной проволокой также экономит деньги. История болезни представляет собой наглядный обзор того, как изготавливаются модули, и предлагает временные рамки производственного процесса.


CS 198-R-03: Практический пример — Бетонные мосты со структурной арматурой из высокопрочной сварной проволоки 1998, 6 страниц
Обсуждаются исследования, проведенные Университетом Небраски по сборным / предварительно напряженным двутавровым балкам, а также некоторые фактические конструкции и конструкции. строительство с использованием этого исследования.Кроме того, некоторые недавние инновации в использовании арматуры из сварной проволоки при замене настила моста. В тематических исследованиях показаны некоторые сборные железобетонные элементы рельсов моста, срединные барьеры и звуковые стены.


CS 199-R-03: Практический пример — Сборная труба — (D) Трубопровод из сборного железобетона, армированный сварной проволокой, для Луисвилля, штат Кентукки, Управление международного аэропорта 1999, 6 страниц Международный аэропорт Луисвилля является 8-м по величине аэропортом для грузовых авиаперевозок в мире. и 5-е место в США.S. В связи с недавним расширением мощения на территории площадью 3000 акров возникла необходимость в закрытой сливной системе, способной обрабатывать более 1200 кубических футов в секунду ливневой воды. Администрация аэропорта одобрила использование сборных железобетонных труб диаметром 96 и 108 дюймов в качестве альтернативного решения для заливки бетонных коробов. Расчеты и эскизы инженера включены в этот технический факт.


CS 294-R-03: (D) Практический пример — Плиты — Распределительный центр Kohl’s Corporation , Финдли, Огайо 1994, 4 страницы
История болезни промышленного объекта площадью 756 000 квадратных футов, где плиты были размещены менее чем за месяц .Волокна были предложены в качестве замены WWR. В замене было отказано, так как владелец желал структурной целостности в случае разрушения основы. В результате получаются качественные монолитные плиты и мощение, армированные WWR, без оседания и исключительного качества поверхности с минимальными промежуточными трещинами. На усадочных соединениях пропила не наблюдается скручивания и смещения.


CS 298-R-03: Практический пример — Строительство туннеля — Тоннель метро в Вашингтоне: прогресс в армировании бетона 1998, 2 страницы
Метро Вашингтона, округ Колумбия, входит в число наиболее уважаемых в мире систем общественного транспорта.В удлинении зеленой линии на 1,1 мили используется арматура из высокопрочной сварной проволоки, эквивалентная площади стали № 6 @ 6 дюймов в качестве первичной арматуры и арматуры № 4 @ 16 дюймов с температурой / усадкой. Сварные проволочные листы отгружались радиально гнутыми.

, 1999, 4 страницы .Люк Снелл включает в себя две промышленные плиты — одной трехлетней давности и другой 11-летней давности. Исследованию дорожных покрытий между штатами Il DOT более 30 лет. Исследование показывает, что при правильном размещении и поддержке WWR можно ожидать высокого качества и долгой работы.


Пример из практики, Новая Зеландия: Мальборо-Парк Скейтборд Bowl, North Shore City, Окленд. 2003, 2 стр.
WRI благодарит Альянс по развитию маркетинга армирования сварной проволокой Новой Зеландии за разрешение WRI разместить это тематическое исследование на веб-сайте WRI.WWRMDA является владельцем и владельцем авторских прав на это тематическое исследование. В тематическом исследовании описывается использование конструкционной сварной проволоки при строительстве чаши для скейтборда площадью 900 квадратных метров.


Пример из практики, Новая Зеландия: торговый центр Palms, Redevelopment, Крайстчерч. Дополнительная фотография. 2003, 2 стр.
WRI благодарит Альянс по развитию маркетинга армирования сварной проволокой Новой Зеландии за разрешение WRI разместить это тематическое исследование на веб-сайте WRI. WWRMDA является владельцем и владельцем авторских прав на это тематическое исследование.В тематическом исследовании основное внимание уделяется использованию 1800 листов из 665 WWR площадью более 25 000 квадратных метров, которые были использованы для покрытия полов в супермаркетах и ​​для парковки автомобилей.

* * * * * * *

УВЕДОМЛЕНИЕ ОБ ОТКАЗЕ ОТ ОТВЕТСТВЕННОСТИ

Публикации, диаграммы, таблицы и статистические данные, доступные на веб-сайте WRI, предназначены только для использования в качестве информационных ресурсов для пользователей веб-сайта WRI. WRI, его должностные лица, директора, сотрудники, уполномоченные представители, агенты и назначенные лица не делают никаких заявлений и не дают никаких гарантий относительно содержания публикаций, диаграмм, таблиц и статистических данных, а также отказываются от любой ответственности за любой ущерб или убытки. физическим лицам или имуществу, включая прямые, косвенные, случайные, косвенные или штрафные убытки, гонорары или расходы адвокатов, возникающие в результате или связанные с использованием публикаций, диаграмм, таблиц и / или статистических данных, доступных на веб-сайте WRI.Никакие советы, информация или документация, полученные вами от персонала WRI или веб-сайта, не создают никаких гарантий или обязательств со стороны WRI.

ВСЕ ДОКУМЕНТЫ являются PDF-файлами Adobe Acrobat Reader. Щелкните здесь, чтобы загрузить Adobe Acrobat Reader DC

Арматурная сетка

Проволочная сетка обычно помещается в бетонные плиты по двум основным причинам:

— для предотвращения разрушения и разрушения, когда плита со временем треснет

— для повышения прочности плиты на изгиб.

Кроме того, другая ситуация, когда проволочная сетка может принести пользу, — это когда существует плохое или слабое земляное полотно, и можно ожидать его движения или оседания. Проволочная сетка в плите может придать бетону прочность на растяжение / изгиб, распределяя нагрузки по большей площади.

Обычно считается, что стальная проволочная сетка предохраняет плиту от растрескивания. Точность этой теории зависит от того, где размещена проволочная сетка, и насколько хорошо земляное полотно спроектировано и уплотнено:

Когда проволочная сетка установлена ​​в нижней 1/3 плиты, она будет иметь повышенную прочность на изгиб (и, в свою очередь, на растяжение), когда одна точечная нагрузка сгибает плиту вниз.

При размещении в верхней 1/3 плиты она будет иметь повышенную прочность на изгиб между двумя точечными нагрузками, которые изгибают обе стороны плиты вниз.

Вот почему некоторые инженеры обычно указывают сетку как на верхней, так и на нижней 1/3 плиты. Многие инженеры просто считают, что размещение в центре плиты является логическим компромиссом, предлагающим некоторое увеличение прочности на изгиб в обоих случаях изгиба, упомянутых выше. Проволочная сетка может иметь эпоксидное покрытие (чтобы противостоять коррозии и ржавчине) или «черная» сталь без покрытия.

Проволочная сетка с эпоксидным покрытием

Иногда инженер требует, чтобы сетка была размещена на валиках или стульях, чтобы гарантировать, что сетка будет располагаться в правильной части секции плиты. Доступно множество видов подкладок из проволочной сетки; Существуют отдельные пластиковые опоры, которые поддерживают сетку на пересечении проводов. Чаще всего используются сплошные стальные опоры, которые укладывают параллельно друг другу так часто, как это требуется для поддержки сетки и любого движения сверху.

Это представляет проблему при укладке бетона, так как рабочим приходится ходить или маневрировать вокруг приподнятой проволочной сетки.Также, если автобетононасосу необходимо подъехать в пределах предполагаемой площади плиты во время укладки, это практически невозможно, если на опорных балках установлена ​​приподнятая сетка. Из-за этого иногда рабочие поднимают сетку на нужную высоту с помощью специального инструмента при укладке бетона.

Наиболее распространены следующие размеры сварной проволочной сетки:

6 × 6 W1,4 / W1,4 10/10 (20 фунтов / 100SF)

6 × 6 W2.1 / W2.1 8/8 (30 фунтов / 100SF)

6 × 6 W2.9 / ширина 2,9 6/6 (41 фунт / 100 кв.футов)

6 × 6 W4.0 / W4.0 4/4 (56 фунтов / 100SF)

4 × 4 W1.4 / W1.4 10/10 (20 фунтов / 100SF)

4 × 4 W2.1 / W2.1 8/8 (30 фунтов / 100SF)

4 × 4 W2.9 / W2.9 6/6 (41 фунт / 100SF)

4 × 4 W4.0 / W4.0 4/4 (56 фунтов / 100SF)

За этим обозначением стоит следующее значение:

6 × 6 (отверстия 6 на 6 дюймов) W1,4 / W1,4 (площадь в квадратных дюймах поперечного сечения провода 0,014 кв. Дюйма) 10/10 (сечение провода 10)

Вышеуказанные размеры ячеек обычно составляют 8 х 12.Листы 5 футов или 8 футов x 15 футов. Дорожная сетка для бетонного покрытия бывает разных размеров, чем стандартная листовая сетка, и обычно более прочная.

Как это:

Like Loading …

PPT — Арматура из гофрированного провода как экономичная альтернатива усилению стен MSE Презентация в PowerPoint

  • Арматура из гофрированного провода как рентабельная альтернатива усилению стен MSE Доктор Джеймс Бэй , Доктор философии, факультет гражданского строительства и экологической инженерии Университета штата Юта Дж.Аарон Дженсен, E.I. American Geotechnics ITD PDC 3 апреля 2013 г.

  • Назначение • Испытание матов из стальной проволоки с растяжимыми характеристиками в полномасштабной стене MSE • Наблюдение за поведением стены; в активном состоянии или в каком-то состоянии покоя • Дальнейшее расширение понимания и технологии стен MSE • Обеспечение арматурного продукта MSE, который будет эффективным и снижает затраты • Обеспечить промышленность армирующим материалом, который будет загружаться в активное состояние без отрицательных эффектов ползучести

  • Значение K для AASHTO Design • kr = K * ka • K — показатель поведения в активном состоянии или в состоянии покоя • Значение K определяет факторы, применяемые к нагрузкам в зависимости от типа арматуры Рис. .11.10.6.2.1-3 Конструкция моста AASHTO

  • Для перехода в активное состояние требуется небольшой прогиб стены от 0,1% до 0,2% от высоты стены * Для стены высотой 20 футов, прогиб которой составляет всего 0,25 дюйма. — 0,5 дюйма. Прогибы должны постепенно увеличиваться по мере строительства стены * Boneparte, RA (1988). Расширяемость арматуры в конструкции стен из армированного грунта, Kluvwer Academic Publishers, Лондон. Клаф, Дж. У., и Дункан, Дж. М. (1991) Инженерное руководство Фонда «Давление Земли» (2-е изд.) Х.Я. Фанд и В. Рейнхольд, Нью-Йорк, стр. 224-235.

  • Гофрированные стальные стержни обеспечивают требуемую растяжимость Давление перекрытия Гофрированная стальная проволока W3.5

  • Поведение при обжиме • Обжимы не уменьшают предельную нагрузку, если радиусы изгиба соответствуют спецификациям AASHTO (Suncar, 2010) • Гофры становятся жесткими по мере развития деформации • Гофры не ползут, как геосинтетические материалы • 2-3 гофра в стержне обеспечивают достаточную растяжимость • Позволяют грунту выдерживать большее напряжение, чем нерастяжимый проволочный мат

  • Общий дизайн стены • Дизайн основан на AASHTO Метод LRFD • Предполагалось, что арматура из гофрированной стальной проволоки ведет себя как полностью растяжимый продукт (kr = ka) • Требования к внешней и общей устойчивости были выполнены в соответствии со спецификациями

  • Краткое изложение конструкции стены • Расстояние между продольными проволоками = 16 дюймов.• Расстояние между поперечными проволоками = 24 дюйма • Толщина подъема = 2,0 фута при подъеме на 1 фут для уплотнения • Угол трения грунта, f = 38 • Вес единицы грунта, г = 120 фунт / фут стены) • Проволочные маты W5.0 в нижней половине стены • Проволочные маты W3.5 в верхней половине стены

  • Расчетные напряжения AASHTO

  • Высота стены MSE

  • Контрольно-измерительные приборы • Провода W 3,5 и W 5,0 слишком малы, чтобы их можно было легко прикрепить к тензодатчикам • Сконструированные датчики силы в стиле «собачьей кости» • В каждом датчике используется полный мост Уитстона: 2 осевых датчика и 2 датчика Пуассона • Каждый датчик откалиброван индивидуально • Провода коврика были разрез и датчики прикреплены к матам

  • Датчики силы

  • Строительство стены • Построено в Университете штата Юта в заброшенном песчано-гравийном карьере • Построено с 9 по 13 августа 2011 г. Отдельные более тяжелые торцевые маты ilized

  • Фундамент и лицевой мат

  • Маты и датчики

  • Защита датчиков чистым песком

  • 902 Исследование прогибов поверхностей

  • Конструкция стены

  • Завершенная стена

  • ОБЗОР ИЗМЕРЕНИЙ СТЕНЫ

  • Сводка по каждому измерению силы • Только Измерение силы 1 из 48 датчиков во время строительства, и это был резервный датчик • После строительства произошла дополнительная потеря датчика и возможное смещение базовой линии • Мониторинг продолжался до лета 2012 г.

  • Сводка отклонений • Достигнутые целевые деформации 0.25–0,5 дюйма • Деформации прогрессировали во время строительства • Деформации от первых двух подъемов над матом были больше, чем требовалось для достижения активного состояния • Никаких заметных долговременных деформаций не было измерено • Стена была эксгумирована летом 2013 года и каждый прогиб обжима был измерен

  • ПОВЕДЕНИЕ И СРАВНЕНИЯ

  • Измеренные силы армирования в сравнении с прогнозами AASHTO

  • Определение в комментарии AASHTO (C11.10.6.2) • «Нерастяжимые арматуры достигают своей максимальной прочности при деформациях, меньших, чем напряжение, необходимое для достижения максимальной прочности грунта». • «Расширяемое армирование достигает своей максимальной прочности при деформациях, превышающих деформацию, необходимую для того, чтобы грунт достиг максимальной прочности». • Гофрированная арматура явно удовлетворяет этому критерию растяжимой арматуры.

  • Кодекс AASHTO только различает арматуру «Металлическая» и «Геосинтетическая»

  • Сводка сравнений AASHTO • AASHTO значительно переоценивает натяжение, за исключением верхней части стены. значительно более низкие расчетные напряжения, чем для нерастяжимой арматуры.

  • Метод K-жесткости • Эмпирический подход, основанный на измерениях в самых разных стенах • Использует нетреугольные распределения давления, аналогичные тем, которые используются для земляных работ с подкосами и связями, для прогнозирования натяжения арматуры • Распределение давления основано на жесткости стеновых элементов

  • Жесткость различных арматурных стенок MSE

  • Измеренные силы армирования по сравнению сПрогнозы K-жесткости

  • По Аллену и Батерсту, 2003 г.

  • Сводка прогнозов K-жесткости • Метод K-жесткости более точно предсказывает измеренное натяжение арматуры, чем уменьшение AASHTO • Обжимные стенки US жесткость арматуры на 85%, что приводит к снижению натяжения арматуры на 40% по сравнению с матами без гофрирования • Арматура из гофрированной стальной проволоки (полурастяжимая арматура) немного жестче, чем геосинтетика, но намного более гибкая, чем обычная металлическая арматура

  • Наблюдения за стеной УрГУ • КРИМПЫ РАБОТАЮТ !!! Стена ведет себя как стена с расширяемой арматурой • AASHTO обычно завышает прогнозируемое натяжение арматуры.• Метод K-жесткости лучше предсказал натяжение арматуры ~

  • Продолжение работы • Строительство и, возможно, инструментальное оснащение постоянных или временных стен с использованием проволочных матов с гофрировкой для разработки дополнительных тематических исследований • Изменение геометрии обжима для уменьшения деформаций при низком напряжении

  • ССЫЛКИ AASHTO. (2010). Технические условия на проектирование моста AASHTO LRFD (5-е изд.). Американская ассоциация государственных служащих автомобильных дорог и транспорта, Вашингтон Д.К. Аллен, Т. М., и Батерст, Р. Дж. (2003). Прогнозирование нагрузок на арматуру в железобетонных стенах. Департамент транспорта штата Вашингтон, Сиэтл, Вашингтон. Бонапарт Р., Шмертманн Г. (1988). «Расширяемость арматуры в конструкции стены из армированного грунта». Применение полиметрического армирования в грунтовых удерживающих конструкциях, П. Джаррет и А. МакГаун, изд., Kluwer Academic Publishers, Norwell, 409-457. Suncar, О. (2010). Вытягивание и поведение при растяжении гофрированной стальной арматуры для стен MSE.Университет штата Юта, Логан, штат Юта. Яннас, С. Ф. (1985). Восприимчивость к коррозии внутренне армированных грунтовых подпорных стен. FHWA RD-83-105. Федеральное управление шоссейных дорог, Министерство транспорта США, Вашингтон, округ Колумбия

  • Есть вопросы?

  • Обучение с подкреплением — функция ценности | by Jingles (Hong Jing)

    Алгоритм обучения с подкреплением для агентов, чтобы выучить крестики-нолики, используя функцию ценности

    Intuition

    После долгого рабочего дня вы выбираете один из двух вариантов: отправиться домой и напишите статью на Medium или пообщайтесь с друзьями в баре.Если вы решите пообщаться с друзьями, они сделают вас счастливыми; Отправляясь домой, чтобы написать статью, вы в конечном итоге почувствуете усталость после долгого рабочего дня. В этом примере удовольствие от жизни — это награда, а чувство усталости рассматривается как отрицательная награда, так зачем писать статьи?

    Потому что в жизни мы думаем не только о немедленных наградах; мы планируем курс действий, чтобы определить возможные будущие награды, которые могут последовать. Возможно, написание статьи может улучшить ваше понимание конкретной темы, получить признание и, в конечном итоге, даст вам работу мечты, о которой вы всегда мечтали.В этом сценарии получить работу своей мечты — это отложенное вознаграждение из списка предпринятых вами действий, затем мы хотим присвоить значение для нахождения в этих состояниях (например, «иду домой и напишу статью»). Чтобы определить значение состояния, мы называем это «функцией значения».

    Итак, как мы можем извлечь уроки из своего прошлого? Допустим, вы приняли несколько отличных решений и находитесь в лучшем состоянии своей жизни. Теперь оглянитесь на различные решения, которые вы приняли, чтобы достичь этой стадии: чему вы приписываете свой успех? Какие предыдущие состояния привели вас к этому успеху? Какие действия вы совершили в прошлом, которые привели вас к такому состоянию получения этой награды? Как действие, которое вы делаете сейчас, связано с потенциальной наградой, которую вы можете получить в будущем?

    Вознаграждение против функции ценности

    Вознаграждение является немедленным.Это может быть набор очков в игре за сбор монет, победа в матче в крестики-нолики или получение работы своей мечты. Эта награда — то, что вы (или агент) хотите получить.

    Чтобы получить награду , функция ценности является эффективным способом определения значения нахождения в состоянии. Обозначается V (s) , эта функция значения измеряет потенциальные будущие вознаграждений , которые мы можем получить, находясь в этом состоянии s .

    Определите функцию значения

    Рис. 1: Состояние A приводит к состоянию B или C

    На рис. 1 как определить значение состояния A? Существует 50–50 шансов попасть в следующие 2 возможных состояния: состояние B или C.Значение состояния A — это просто сумма вероятностей всех следующих состояний, умноженная на награды за достижение этого состояния. Значение состояния A равно 0,5.

    Рис. 2: Односторонние будущие состояния

    На рисунке 2 вы попадаете в состояние D только с 1 возможным путем в состояние E. Поскольку состояние E дает вознаграждение из 1, значение состояния D также равно 1, поскольку единственный результат — получить награду .

    Если вы находитесь в состоянии F (на рисунке 2), которое может привести только к состоянию G, за которым следует состояние H.Так как состояние H имеет отрицательное вознаграждение из -1, значение состояния G также будет равно -1, как и для состояния F.

    Рис. 3: Находясь в состоянии J, вы приближаетесь к состоянию K

    В этой игре в тик- tac-toe, получение 2 X секунд подряд (состояние J на ​​рисунке 3) не приводит к выигрышу в игре, следовательно, награда отсутствует . Но нахождение в состоянии J приближает вас на один шаг к достижению состояния K, завершая ряд X , чтобы выиграть игру, таким образом, находясь в состоянии J, вы получите хорошее значение .

    Рис. 4. Состояние M имеет более высокое значение, чем состояние N.

    На рис. 4 вы окажетесь в состоянии L, обдумывая, где разместить следующие X . Вы можете разместить его вверху, таким образом, вы перейдете в состояние M с 2 X s в той же строке. Другой вариант — разместить его в нижнем ряду. Состояние M должно иметь более высокое значение и значение по сравнению с состоянием N, поскольку оно приводит к более высокой вероятности победы.

    Следовательно, в любом данном состоянии мы можем выполнить действие , которое приближает нас (или агента) к получению награды , выбирая состояние, которое дает нам наивысшее значение .

    Крестики-нолики — инициализация функции значения

    Функция значения В (с) для игры в крестики-нолики — это вероятность выигрыша для достижения состояния с . Эта инициализация выполняется для определения состояния выигрыша и проигрыша. Мы инициализируем состояния следующим образом:

    • В (с) = 1 — если агент выиграл игру в состоянии с , это конечное состояние
    • В (с) = 0 — если агент проиграл или связал игру в состоянии с , это конечное состояние
    • В (с) = 0.5 — в противном случае 0,5 для нетерминальных состояний, которые будут точно настроены во время обучения

    Крестики-нолики — обновление функции значения

    Обновление функции значения — это то, как агент учится на прошлом опыте, обновляя значение из состояния, прошедшие в тренировочном процессе.

    Рис. 5. Обновление значения состояния s

    Состояние

    Обучение с подкреплением с Keras + OpenAI: DQN | автор: Яш Патель

    Краткое резюме

    В прошлый раз в нашем учебнике по Keras / OpenAI мы обсудили очень простой пример применения глубокого обучения в контекстах обучения с подкреплением.В ретроспективе это был невероятный показ! Если вы посмотрите на данные обучения, то модели со случайной вероятностью обычно могут выполнять только 60 шагов в среднем. И все же, обучаясь на этих, казалось бы, очень посредственных данных, мы смогли «превзойти» среду (т.е. получить производительность более 200 шагов). Как это возможно?

    Мы можем почувствовать это интуитивно. Давайте представим совершенно случайный ряд, который мы использовали в качестве обучающих данных. Крайне маловероятно, что какие-либо две серии будут иметь большое перекрытие друг с другом, поскольку они генерируются совершенно случайно.Тем не менее, есть — это ключевых особенностей, которые являются общими для успешных испытаний, например, толкание тележки вправо при наклоне шеста вправо и наоборот. Итак, обучая нашу сетевую сеть на всех этих данных испытаний, мы извлекаем общие закономерности, которые способствовали их успеху, и можем сгладить детали, которые привели к их независимым неудачам.

    При этом среда, которую мы рассматриваем на этой неделе, значительно сложнее, чем на прошлой неделе: MountainCar.

    Более сложные среды

    Несмотря на то, что кажется, что мы можем применить ту же технику, что применяли на прошлой неделе, есть одна важная особенность, которая делает это невозможным: мы не можем генерировать данные для обучения. В отличие от очень простого примера Cartpole, случайные движения часто просто приводят к тому, что испытание заканчивается у нас у подножия холма. То есть у нас есть несколько испытаний, которые в итоге имеют одинаковые значения -200. Это практически бесполезно для использования в качестве обучающих данных.Представьте, что вы были в классе, где независимо от того, какие ответы вы поставили на экзамене, вы получили 0%! Как вы собираетесь извлечь уроки из этого опыта?

    Случайные вводы для среды «MountainCar-v0» не дают никакого результата, который стоит или полезно тренировать на

    . В соответствии с этим, мы должны найти способ постепенного улучшения предыдущих испытаний. Для этого мы используем одну из основных ступеней обучения с подкреплением: Q-обучение!

    Теоретические основы DQN

    Q-обучение (которое, кстати, ничего не означает) сосредоточено на создании «виртуальной таблицы», которая учитывает, сколько вознаграждения назначается за каждое возможное действие с учетом текущего состояния окружающей среды.Давайте разберем это шаг за шагом:

    Вы можете представить себе сеть DQN как внутренне поддерживающую электронную таблицу значений каждого из возможных действий, которые могут быть предприняты с учетом текущего состояния среды

    Что мы подразумеваем под «виртуальной таблицей»? ” Представьте, что для каждой возможной конфигурации пространства ввода у вас есть таблица, в которой назначается оценка для каждого из возможных действий, которые вы можете предпринять. Если бы это было возможно волшебным образом, вам было бы очень легко «обыграть» окружающую среду: просто выберите действие, набравшее наибольшее количество очков! Два момента, которые следует отметить об этом счете.Во-первых, эта оценка обычно называется «Q-оценкой», отсюда и происходит название всего алгоритма. Во-вторых, как и в случае с любой другой оценкой, эта оценка Q имеет значение , что не означает вне контекста их моделирования. То есть у них нет абсолютного значения , но это прекрасно, поскольку оно нам нужно исключительно для сравнений.

    Зачем тогда нам нужна виртуальная таблица для каждой конфигурации ввода ? Почему у нас не может быть только одна таблица, чтобы управлять ими всеми? Причина в том, что в этом нет смысла: это было бы то же самое, что сказать, что наилучшее действие, которое следует предпринять, находясь на дне долины, — это именно то, что вы должны предпринять, когда находитесь на самой высокой точке левый уклон.

    Теперь основная проблема с тем, что я описал (поддержание виртуальной таблицы для каждой конфигурации ввода ), заключается в том, что это невозможно: у нас есть непрерывное (бесконечное) пространство ввода! Мы могли бы обойти это, дискретизируя пространство ввода, но это кажется довольно хитрым решением этой проблемы, с которым мы будем сталкиваться снова и снова в будущих ситуациях. Итак, как нам это обойти? Применяя нейронные сети к ситуации: вот откуда D в DQN!

    DQN Agent

    Итак, теперь мы свели проблему к поиску способа присвоения различных действий Q-score с учетом текущего состояния.Это ответ на очень естественный первый вопрос, на который нужно ответить при использовании любой NN: каковы входы и выходы нашей модели? Степень математики, которую вам необходимо понять для этой модели, представляет собой следующее уравнение (не волнуйтесь, мы его разберем):

    Q, как уже упоминалось, представляет собой значение, оцененное нашей моделью с учетом текущего состояния (s ) и предпринятые действия (а). Однако цель состоит в том, чтобы определить общее значение для состояния . Что я имею в виду? , общее значение равно , и — это немедленное вознаграждение, которое вы получите , и — ожидаемое вознаграждение, которое вы получите в будущем, находясь на этой должности.То есть мы хотим учесть тот факт, что стоимость позиции часто отражает не только ее немедленную прибыль, но и будущую прибыль, которую она дает (черт возьми, глубоко). В любом случае, мы дисконтируем будущие вознаграждения, потому что, если я сравниваю две ситуации, в которых я ожидаю получить 100 долларов, одна из двух будет в будущем, я всегда буду соглашаться на текущую сделку, поскольку положение будущей сделки может измениться между тем, когда Я заключил сделку и когда получу деньги. Гамма-фактор отражает эту остаточную стоимость для ожидаемой будущей прибыли от государства.

    Вот и все: это все математические вычисления, которые нам понадобятся! Пора действительно перейти к коду!

    Реализация агента DQN

    Сеть Deep Q вращается вокруг непрерывного обучения, а это означает, что мы не просто накапливаем кучу данных испытаний / обучения и вводим их в модель. Вместо этого мы создаем обучающие данные в ходе запускаемых нами испытаний и вводим в них эту информацию сразу после запуска пробной версии. Если сейчас все это кажется несколько расплывчатым, не волнуйтесь: пора взглянуть на этот код.Код в основном вращается вокруг определения класса DQN, где фактически будет реализована вся логика алгоритма, и где мы предоставляем простой набор функций для фактического обучения.

    DQN Hyperparameters

    Прежде всего, мы собираемся обсудить некоторые параметры, актуальные для DQN. Большинство из них являются стандартными для большинства реализаций нейронных сетей:

     class DQN: 
    def __init __ (self, env):
    self.env = env
    self.memory = deque (maxlen = 2000)

    self.гамма = 0,95
    self.epsilon = 1,0
    self.epsilon_min = 0,01
    self.epsilon_decay = 0,995
    self.learning_rate = 0,01

    Давайте рассмотрим их по очереди. Первый — это просто среда, которую мы предоставляем для удобства, когда нам нужно ссылаться на фигуры при создании нашей модели. «Память» является ключевым компонентом DQN: как упоминалось ранее, испытания используются для непрерывного обучения модели. Однако вместо того, чтобы тренироваться на испытаниях по мере их поступления, мы добавляем их в память и тренируемся на случайной выборке из этой памяти.Почему это делается вместо того, чтобы просто тренироваться на последних испытаниях x в качестве нашей «выборки»? Причина несколько тонкая. Представьте, что вместо этого мы должны были просто тренироваться на самых последних испытаниях в качестве нашей выборки: в этом случае наши результаты будут изучать только самые последние действия, которые могут не иметь прямого отношения к будущим прогнозам. В частности, в этой среде, если бы мы двигались по правой стороне склона, обучение на самых последних испытаниях повлекло бы за собой обучение на данных, на которых вы двигались вверх по склону вправо.Но это не имело бы никакого отношения к определению того, какие действия предпринять в сценарии, с которым вы скоро столкнетесь, взбираясь на левый холм. Таким образом, взяв случайную выборку, мы не искажаем наш обучающий набор, а вместо этого в идеале узнаем о масштабировании всех сред, с которыми мы могли бы столкнуться в равной степени.

    Итак, теперь мы обсудим гиперпараметры модели: гамма, эпсилон / эпсилон-распад и скорость обучения. Первый — это коэффициент амортизации будущего вознаграждения (<1), рассмотренный в предыдущем уравнении, а последний - стандартный параметр скорости обучения, поэтому я не буду обсуждать его здесь.Второй, однако, интересный аспект RL, заслуживающий отдельного обсуждения. В любом виде обучения у нас всегда есть выбор между исследованием и эксплуатацией. Это не ограничивается информатикой или академическими науками: мы делаем это изо дня в день!

    Рассмотрите рестораны в вашем районе. Когда вы в последний раз ходили в новую? Наверное, очень давно. Это соответствует вашему переходу от разведки к эксплуатации : вместо того, чтобы пытаться найти новые и лучшие возможности, вы выбираете лучшее, что вы нашли в прошлом опыте, и максимизируете свою полезность оттуда.Сравните это с тем, когда вы переехали в свой дом: в то время вы не знали, какие рестораны были хорошими или нет, и поэтому были соблазнены изучить ваши варианты. Другими словами, существует четкая тенденция к обучению: исследуйте все варианты, когда вы о них не знаете, и постепенно переходите к использованию, когда у вас сложится мнение о некоторых из них. Таким же образом мы хотим, чтобы наша модель отражала эту естественную модель обучения, и эпсилон играет эту роль.

    Эпсилон обозначает ту часть времени, которую мы посвятим исследованиям.То есть в части self.epsilon испытаний мы просто предпримем случайное действие, а не то, которое мы прогнозировали бы как лучшее в этом сценарии. Как уже говорилось, мы хотим делать это чаще, чем не вначале, прежде чем мы сформируем стабилизирующие оценки по этому вопросу, и поэтому инициализируем эпсилон близким к 1,0 в начале и уменьшаем его на некоторую долю <1 на каждом последующем временном шаге.

    Модели DQN

    Был один ключевой момент, который был исключен при инициализации DQN выше: фактическая модель, используемая для прогнозов! Как и в нашем оригинальном руководстве по Keras RL, нам напрямую предоставляются входные и выходные данные в виде числовых векторов.Таким образом, нет необходимости использовать более сложные уровни в нашей сети. Oth

    Что такое обучение с подкреплением? Полное руководство

    При предполагаемом размере рынка в 7,35 миллиарда долларов США искусственный интеллект растет не по дням, а по часам. McKinsey прогнозирует, что методы искусственного интеллекта (включая глубокое обучение и обучение с подкреплением) потенциально могут приносить от 3,5 до 5,8 трлн долларов в год в девяти бизнес-функциях в 19 отраслях.

    Хотя машинное обучение рассматривается как монолит, эта передовая технология диверсифицирована с различными подтипами, включая машинное обучение, глубокое обучение и современные технологии глубокого обучения с подкреплением.

    Что такое обучение с подкреплением?

    Обучение с подкреплением — это обучение моделей машинного обучения принятию последовательности решений. Агент учится достигать цели в неопределенной, потенциально сложной среде. При обучении с подкреплением искусственный интеллект сталкивается с игровой ситуацией. Компьютер пытается найти решение проблемы методом проб и ошибок. Чтобы заставить машину делать то, что хочет программист, искусственный интеллект получает либо вознаграждение, либо штрафы за свои действия.Его цель — максимизировать общую награду.
    Хотя дизайнер устанавливает политику вознаграждения, то есть правила игры, он не дает модели никаких подсказок или предложений о том, как решить игру. Модель должна выяснить, как выполнить задачу, чтобы получить максимальную награду, начиная с совершенно случайных испытаний и заканчивая сложной тактикой и сверхчеловеческими навыками. Используя возможности поиска и множество испытаний, обучение с подкреплением в настоящее время является наиболее эффективным способом продемонстрировать творческие способности машины.В отличие от людей, искусственный интеллект может собирать опыт из тысяч параллельных игровых процессов, если алгоритм обучения с подкреплением работает на достаточно мощной компьютерной инфраструктуре.

    Примеры обучения с подкреплением

    В прошлом применение обучения с подкреплением ограничивалось слабой компьютерной инфраструктурой. Однако по мере того, как суперпользователь ИИ в нарды Джерарда Тезауро развивался в шоу 1990-х годов, прогресс все же произошел. Этот ранний прогресс сейчас быстро меняется с появлением новых мощных вычислительных технологий, открывающих путь совершенно новым вдохновляющим приложениям.
    Обучение моделей, управляющих автономными автомобилями, является отличным примером потенциального применения обучения с подкреплением. В идеальном случае компьютер не должен получать инструкции по вождению автомобиля. Программист избежал бы жесткой привязки всего, что связано с задачей, и позволил бы машине учиться на собственных ошибках. В идеальной ситуации единственным жестко закрепленным элементом была бы функция вознаграждения.

    • Например, , в обычных обстоятельствах мы бы потребовали, чтобы автономное транспортное средство ставило безопасность на первое место, минимизировало время поездки, уменьшало загрязнение, предлагало пассажирам комфорт и соблюдало нормы закона.С другой стороны, в случае с автономным гоночным автомобилем мы уделяем больше внимания скорости, чем комфорту водителя. Программист не может предсказать все, что может случиться в дороге. Вместо того, чтобы строить длинные инструкции «если-то», программист подготавливает агент обучения с подкреплением, чтобы он мог учиться на системе вознаграждений и наказаний. Агент (другое название алгоритмов обучения с подкреплением, выполняющих задачу) получает вознаграждение за достижение определенных целей.
    • Другой пример: deepsense.ai принял участие в проекте «Учимся бегать», целью которого было обучить виртуального бегуна с нуля. Бегуна является передовой и точной моделью опорно-двигательного аппарата разработана биомеханика лаборатории Стэнфордский Нейромускульной. Обучение агента бегу — это первый шаг к созданию нового поколения протезов ног, которые автоматически распознают характер ходьбы людей и настраиваются так, чтобы их было легче и эффективнее. Хотя это возможно и было сделано в лабораториях Стэнфорда, жесткая привязка всех команд и прогнозирование всех возможных схем ходьбы требует большой работы от высококвалифицированных программистов.

    Чтобы узнать больше о реальных приложениях обучения с подкреплением, прочтите эту статью.

    Проблемы с обучением с подкреплением

    Основная задача обучения с подкреплением заключается в подготовке среды моделирования, которая сильно зависит от выполняемой задачи. Когда модель должна стать сверхчеловеческой в ​​играх Chess, Go или Atari, подготовка среды моделирования относительно проста. Когда дело доходит до создания модели, способной управлять автономным автомобилем, создание реалистичного симулятора имеет решающее значение, прежде чем позволить автомобилю ездить по улице.Модель должна выяснить, как затормозить или избежать столкновения в безопасных условиях, когда жертва даже тысячи автомобилей обходится с минимальными затратами. Перенос модели из учебной среды в реальный мир — вот где все усложняется.
    Масштабирование и настройка нейронной сети, управляющей агентом, — еще одна проблема. Нет другого способа общаться с сетью, кроме как через систему вознаграждений и штрафов. Это, в частности, может привести к катастрофическому забыванию , когда приобретение новых знаний приводит к удалению некоторых старых из сети (читать дальше в этом выпуске, см. этот документ, опубликованный во время Международной конференции по машинному обучению).
    Еще одна проблема — достижение локального оптимума, то есть агент выполняет задачу как есть, но не оптимальным или требуемым образом. «Прыгун», прыгающий, как кенгуру, вместо того, чтобы делать то, что от него ожидалось, — ходьбу, — отличный пример, который также можно найти в нашем недавнем сообщении в блоге.
    Наконец, есть агенты, которые оптимизируют приз без выполнения той задачи, для которой он был разработан. Интересный пример можно найти в видео OpenAI ниже, где агент научился получать награды, но не завершать гонку.

    Чем отличается обучение с подкреплением от глубокого обучения и машинного обучения?

    На самом деле не должно быть четкого разделения между машинным обучением, глубоким обучением и обучением с подкреплением. Это похоже на отношение параллелограмм — прямоугольник — квадрат, где машинное обучение является самой широкой категорией, а глубокое обучение с подкреплением — самой узкой.
    Точно так же обучение с подкреплением — это специализированное приложение методов машинного и глубокого обучения, предназначенное для решения проблем определенным образом.

    Хотя идеи кажутся разными, между этими подтипами нет резкого разделения. Более того, они объединяются в рамках проектов, так как модели созданы не для того, чтобы придерживаться «чистого типа», а для выполнения задачи наиболее эффективным способом. Итак, «что именно отличает машинное обучение, глубокое обучение и обучение с подкреплением» — на самом деле сложный вопрос.

    • Машинное обучение — это форма ИИ, в которой компьютерам дается возможность постепенно улучшать выполнение конкретной задачи с помощью данных без непосредственного программирования (это определение Артура Ли Самуэля.Он ввел термин «машинное обучение», который бывает двух типов: машинное обучение с учителем и машинное обучение без учителя

    Машинное обучение с учителем происходит, когда программист может предоставить метку для каждого обучающего ввода в систему машинного обучения.

    • Пример — путем анализа исторических данных, взятых с угольных шахт, deepsense.ai подготовил автоматизированную систему для прогнозирования опасных сейсмических событий за 8 часов до их возникновения. Записи сейсмических событий были взяты на 24 угольных шахтах, которые собирали данные в течение нескольких месяцев.Модель смогла определить вероятность взрыва, проанализировав показания за предыдущие 24 часа.

    Некоторые шахты можно точно определить по их основным значениям рабочей высоты. Чтобы затруднить идентификацию, мы добавили гауссов шум

    С точки зрения ИИ, одна модель выполняла одну задачу с уточненным и нормализованным набором данных. Чтобы узнать больше об этой истории, прочитайте наш блог.
    Обучение без учителя имеет место, когда модели предоставлены только входные данные, но нет явных меток.Он должен рыться в данных и находить скрытую структуру или взаимосвязи внутри. Дизайнер может не знать, что это за структура или что найдет модель машинного обучения.

    • В качестве примера мы использовали прогноз оттока. Мы проанализировали данные о клиентах и ​​разработали алгоритм для группировки похожих клиентов. Однако мы не сами выбирали группы. Позже мы смогли определить группы высокого риска (с высоким уровнем оттока клиентов), и наш клиент знал, к каким клиентам им следует обратиться в первую очередь.
    • Другой пример обучения без учителя — обнаружение аномалии, когда алгоритм должен определить элемент, который не вписывается в группу. Это может быть некорректный продукт, потенциально мошенническая транзакция или любое другое событие, связанное с нарушением нормы.

    Глубокое обучение состоит из нескольких уровней нейронных сетей, предназначенных для выполнения более сложных задач. На создание моделей глубокого обучения вдохновил дизайн человеческого мозга, но в упрощенном виде.Модели глубокого обучения состоят из нескольких слоев нейронной сети, которые в принципе отвечают за постепенное изучение более абстрактных функций конкретных данных.
    Хотя решения для глубокого обучения способны давать изумительные результаты, с точки зрения масштаба они не могут сравниться с человеческим мозгом. Каждый уровень использует результат предыдущего в качестве входных данных, и вся сеть обучается как единое целое. Основная концепция создания искусственной нейронной сети не нова, но только недавно современное оборудование обеспечило достаточную вычислительную мощность для эффективного обучения таких сетей на достаточном количестве примеров.Расширенное внедрение привело к появлению таких фреймворков, как TensorFlow, Keras и PyTorch, которые сделали построение моделей машинного обучения намного более удобным.

    • Пример: deepsense.ai разработал модель на основе глубокого обучения для Национального управления океанических и атмосферных исследований (NOAA). Он был разработан для распознавания китов по аэрофотоснимкам, сделанным исследователями. Для получения дополнительной информации об этом исчезающем виде и работе deepsense.ai с NOAA прочтите нашу запись в блоге.С технической точки зрения распознавание конкретного экземпляра китов по аэрофотоснимкам — это чистое глубокое обучение. Решение состоит из нескольких моделей машинного обучения, выполняющих отдельные задачи. Первый отвечал за поиск головы кита на фотографии, в то время как второй нормализовал фотографию, вырезая и поворачивая ее, что в конечном итоге обеспечивало единый вид (фотография на паспорт) одного кита.


    Третья модель отвечала за распознавание определенных китов по фотографиям, которые были подготовлены и обработаны ранее.Сеть, состоящая из 5 миллионов нейронов, располагалась на кончике капота. Более 941000 нейронов искали голову и более 3 миллионов нейронов были использованы для классификации конкретного кита. Это более 9 миллионов нейронов, выполняющих задачу, что может показаться большим количеством, но бледнеет по сравнению с более чем 100 миллиардами нейронов, работающих в человеческом мозгу. Позже мы использовали аналогичное решение на основе глубокого обучения для диагностики диабетической ретинопатии с использованием изображений сетчатки глаза пациентов.
    Обучение с подкреплением , как указано выше, использует систему вознаграждений и штрафов, чтобы заставить компьютер решить проблему самостоятельно.Участие человека ограничивается изменением окружающей среды и настройкой системы вознаграждений и штрафов. Поскольку компьютер максимизирует вознаграждение, он склонен искать неожиданные способы сделать это. Вовлечение человека направлено на предотвращение использования системы и мотивацию машины выполнять задачу ожидаемым образом. Обучение с подкреплением полезно, когда нет «правильного способа» выполнить задачу, но есть правила, которым модель должна следовать, чтобы правильно выполнять свои обязанности. Возьмем, к примеру, дорожный кодекс.

    В частности, если искусственный интеллект будет управлять автомобилем, обучение игре на некоторых классических играх Atari можно считать значимым промежуточным этапом. Возможное применение обучения с подкреплением в автономных транспортных средствах — это следующий интересный случай. Разработчик не может предсказать все будущие дорожные ситуации, поэтому позволить модели тренироваться с системой штрафов и вознаграждений в разнообразной среде, возможно, является наиболее эффективным способом для ИИ расширить опыт, который он имеет и собирает.

    Заключение

    Ключевым отличительным фактором обучения с подкреплением является то, как обучается агент. Вместо того чтобы проверять предоставленные данные, модель взаимодействует с окружающей средой, ища способы максимизировать вознаграждение. В случае глубокого обучения с подкреплением нейронная сеть отвечает за хранение опыта и, таким образом, улучшает способ выполнения задачи.

    Является ли обучение с подкреплением будущим машинного обучения?

    Хотя обучение с подкреплением, глубокое обучение и машинное обучение взаимосвязаны, никто из них не собирается заменять другие.Ян ЛеКун, известный французский ученый и руководитель отдела исследований в Facebook, шутит, что обучение с подкреплением — это вишенка на большом торте искусственного интеллекта с машинным обучением самого пирога и глубоким обучением глазурью. Без предыдущих итераций вишня ничего бы не увенчала.
    Во многих случаях использования классических методов машинного обучения будет достаточно. Чисто алгоритмические методы, не связанные с машинным обучением, обычно полезны при обработке бизнес-данных или управлении базами данных.
    Иногда машинное обучение только поддерживает процесс, выполняемый другим способом, например, путем поиска способа оптимизации скорости или эффективности.
    Когда машине приходится иметь дело с неструктурированными и несортированными данными или с различными типами данных, нейронные сети могут быть очень полезны. Как машинное обучение улучшило качество машинного перевода, было описано в The New York Times.

    Сводка

    Обучение с подкреплением, несомненно, является передовой технологией, которая может изменить наш мир. Однако его не нужно использовать в каждом случае. Тем не менее, обучение с подкреплением кажется наиболее вероятным способом сделать машину творческой, поскольку поиск новых, инновационных способов выполнения ее задач на самом деле является творчеством.

    Оставить комментарий