Расчет количества буронабивных свай для фундамента калькулятор: Калькулятор буронабивных свайных и столбчатых фундаментов
Калькулятор буронабивных свайных и столбчатых фундаментов
Внимание! В настройках браузера отключена возможность «Использовать JavaSсript». Основной функционал сайта недоступен. Включите выполнение JavaScript в настройках вашего браузера.Информация по назначению калькулятора
Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003
Свайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли. Главным отличием между столбчатым и свайным фундаментом является разная глубина установки опор.
Основными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.
Существует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий. Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.
При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация
Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.
Общие сведения по результатам расчетов
- Общая длина ростверка — Периметр фундамента, с учетом длины внутренних перегородок.
- Площадь подошвы ростверка — Соответствует размерам необходимой гидроизоляции.
- Площадь внешней боковой поверхности ростверка — Соответствует площади необходимого утеплителя для внешней стороны фундамента.
- Общий Объем бетона для ростверка и столбов — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
- Нагрузка на почву от фундамента в местах основания столбов — Нагрузка на почву от веса фундамента в местах основания столбов/свай.
- Минимальный диаметр продольных стержней арматуры — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения ленты.
- Минимальное кол-во рядов арматуры ростверка в верхнем и нижнем поясах — Минимальное количество рядов продольных стержней в каждом поясе, для предотвращения деформации ленты под действием сил сжатия и растяжения.
- Минимальное кол-во вертикальных стержней арматуры для столбов — Количество вертикальных стержней арматуры на каждый столб/сваю.
- Минимальный диаметр арматуры столбов — Минимальный диаметр вертикальных стержней для столбов/свай.
- Шаг поперечных стержней арматуры (хомутов) для ростверка — Шаг хомутов, необходимых для предотвращения сдвигов арматурного каркаса при заливке бетона.
- Величина нахлеста арматуры — При креплении отрезков стержней внахлест.
- Общий вес арматуры — Вес арматурного каркаса.
- Толщина доски опалубки — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
- Кол-во досок для опалубки — Количество материала для опалубки заданного размера.
онлайн калькулятор, какое количество свай нужно, необходимая несущая способностьи подробный монтаж
Фундамент выполняет важную и ответственную функцию, не допускающую никаких сомнений в возможностях или надежности основания.
В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.
Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.
Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.
Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.
Содержание статьи
Какие параметры нужно рассчитать для правильного выбора свайного фундамента
Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы:
- Измеряемые.
- Расчетные.
К измеряемым могут быть причислены все свойства грунта на данном участке:
- Состав слоев.
- Уровень залегания грунтовых вод.
- Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
- Глубина залегания и состав плотных слоев.
К расчетным параметрам относятся:
- Величина нагрузки на основание.
- Несущая способность опоры.
- Схема расположения стволов.
- Параметры свай и ростверка.
Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.
ВАЖНО!
Расчет фундамента — ответственная и очень сложная задача. Ее решение можно поручить только грамотному и опытному специалисту, имеющему соответствующую профессиональную подготовку и квалификацию. Кроме того, заказ на выполнение расчета должен быть оформлен официальным порядком, чтобы проектировщик нес полную ответственность за результат своих действий. Проект, составленный неформальным порядком, может стать приговором как самой постройке, так и людям, проживающим в ней.
Расчет с помощью онлайн-калькулятора
Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.
Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.
Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.
Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.
Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.
Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.
Как найти нагрузку на основание
Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:
- Стены дома.
- Перекрытия.
- Стропильная система и кровля.
- Наружная обшивка, утеплитель.
- Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
- Вес людей и животных.
- Снеговая и ветровая нагрузка.
Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.
Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.
От каких факторов зависит шаг?
Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.
Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.
Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.
Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.
На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м.
Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.
Пример вычисления необходимого количества опор
Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.
Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.
Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.
Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.
Она определяется практически, методом пробного погружения сваи или бурением скважины.
Пример расчета буронабивной основы
Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.
Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.
После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.
Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.
Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.
ОБРАТИТЕ ВНИМАНИЕ!
Необходимо помнить, что все расчеты производятся по формулам, не учитывающим реальной обстановки на участке.
Основные схемы размещения
Существует несколько разновидностей схем расположения свай:
- Свайное поле.
- Свайный куст.
- Свайная полоса.
Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.
Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.
Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.
При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.
Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.
Как правильно рассчитать шаг
Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.
ВАЖНО!
В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.
Оптимальное расстояние
Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.
Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.
Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.
Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.
В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.
Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.
Пример нахождения размеров ростверка
Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.
Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.
Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.
Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.
Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.
Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.
Полезное видео
В данном разделе вы сможете ознакомиться с пособием по расчету свайно-ростверкового, плитно-свайного, а также свайно-ленточного фундамента:
Заключение
Большинство пользователей не производит расчет фундамента, так как это слишком сложная и ответственная задача.
Чаще всего для этого привлекают опытных специалистов.
Как минимум, используются онлайн-калькуляторы, позволяющие получить нужные данные быстро и совершенно бесплатно.
Кроме того, такие ресурсы позволяют найти необходимое количество всех материалов и нередко даже рассчитывают их стоимость для монтажа.
Следует учитывать, что всецело полагаться на качество подсчета при помощи неизвестного алгоритма опасно, надо хотя бы продублировать расчет на другом, подобном ресурсе.
В целом, самостоятельный расчет можно производить только для вспомогательных или хозяйственных построек, чтобы не слишком рисковать своим имуществом, здоровьем и жизнью людей.
Вконтакте
Google+
Одноклассники
Как рассчитать буронабивной свайный фундамент для дома
Вопросы экономии на строительстве фундамента могут быть решены путем использования передовых и безопасных решений, которые отличаются меньшей затратой строительных материалов по сравнению с традиционными вариантами оснований. В частности, с каждым годом возрастает популярность буронабивных фундаментов, которые успели зарекомендовать себя с положительной стороны. Но прежде чем приступать к строительству, необходимо провести тщательный расчет буронабивного фундамента. О том, как это сделать своими силами, вы сможете прочитать в нашей небольшой статье.
С чего начать расчет?
Итак, вы уже знаете, какой дом будете возводить на вашем участке. Все, что вам нужно – последовательно пройти через ряд этапов, большая часть которых сводится к проведению аналитической работы:
- оценить характер грунта;
- просчитать нагрузку от здания;
- провести расчет площади фундамента, вернее – площади его подошвы;
- определиться с параметрами буронабивных свай и их количеством
Оцениваем качественные параметры грунта
В статье «Расчет фундамента» мы приводили достаточно полную информацию о том, как самостоятельно оценить показатели грунта, а также рассчитать требуемую площадь подошвы фундамента. Там же вы можете посмотреть примерный расчет буронабивного фундамента. Стоит учитывать условие, что буронабивное свайное основание не подходит для участков с высоким УГВ.
Рассчитываем нагрузку от дома
На данном этапе необходимо прикинуть примерную нагрузку от будущего сооружения. Как это сделать, описано в этой статье. По сути, требуется лишь просуммировать массу стройматериалов, которая пойдет на строительство надземной части дома – сделать это несложно, имея в своем распоряжении сводные таблицы со средними значениями удельной массы.
Расчет параметров и количества буронабивных свай
Очевидно, что от параметров опор, в том числе – от площади подошвы каждой сваи, зависит их требуемое количество. Порядок расчетов такой же, как и при расчете столбчатого фундамента. В конце статьи, на которую мы ссылаемся, приведен пример того, как определиться с количеством опор. Не забываем о том, что минимально допустимый шаг между сваями составляет 2 метра, и все опоры необходимо объединить в одну систему обвязкой железобетонным ростверком. Уже на этом этапе можно «на бумаге» провести достаточно точный расчет прочности фундамента – выдержит ли он воздействия, как со стороны здания, так и со стороны грунта?
Сколько бетона и арматуры потребуется на устройство буронабивного основания
На этапе, когда вы определились с количеством буронабивных свай, самое время определить требуемый объем бетонной смеси. О том, как это сделать, мы писали здесь – рекомендуем ознакомиться с этой тематической статьей. Не забываем и про арматуру для фундамента. При желании, вы можете самостоятельно приготовить бетонную смесь прямо на участке – так будет дешевле и, благо, буронабивное основание нетребовательно к срокам заливки: сваи можно заливать так, как вам удобно!
Загрузка…Калькулятор расчета свайного фундамента — онлайн расчет столбчатого фундамента
С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.
Онлайн-калькулятор для расчета монолитного буронабивного ростверкового фундамента поможет рассчитать размеры фундамента, опалубки, диаметр и общую длину арматуры и объём расходуемого бетона. Перед началом проектирования здания с таким фундаментом обязательно проконсультируйтесь у специалистов, насколько оправдан такой выбор.
Расчеты данного калькулятора основываются на нормативах, приведенных в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».
Столбчатый и свайный фундамент – разновидности фундаментов, в которых используются столбы или сваи в качестве опор. Они погружаются в грунт на необходимую глубину, а их верхние части соединяются цельной железобетонной конструкцией (ростверком), которая не соприкасается с землёй. При столбчатом и свайном варианте ростверкового фундамента отличается глубина установки опор.
Ростверковая конструкция имеет смысл там, где грунт не пригоден для обычного размещения фундамента (слабый грунт, пучинистый, либо промерзающий на значительную глубину). Поскольку сваи забиваются при любых климатических условиях, ростверковый фундамент особенно актуален для регионов с низкими температурами и суровым климатом. Другие преимущества ростверковой технологии – высокая скорость возведения и низкая потребность в земляных работах. Достаточно пробурить отверстия и выполнить установку уже готовых свай.
Многие параметры ростверкового фундамента могут варьироваться. Это форма и материалы свай, способы действия на грунт, способы установки, форма ростверка. Каждый случай ростверкового фундамента должен учитывать расчётные нагрузки, климатические условия, специфику грунта и другие особенности местности и будущего сооружения. Чтобы уточнить все эти моменты, нужно провести необходимые замеры и расчёты, при необходимости – пригласить специалистов. Экономия на первоначальных расчётах может обернуться серьезными последствиями в будущем. Чтобы этого избежать, в первую очередь рекомендуем внимательно изучить данный калькулятор. В нем вы сможете определить будущие расходы и на примере стандартной конструкции определиться с составляющими планируемого фундамента.
Заполняя поля калькулятора, сверьтесь с дополнительной информацией, отображающейся при наведении на иконку вопроса .
Внизу страницы вы можете оставить отзыв, задать вопрос разработчикам или предложить идею по улучшению этого калькулятора.
Разъяснение результатов расчетов
Общая длина ростверка
Суммарный периметр фундамента, включая внутренние перегородки.
Площадь подошвы ростверка
Площадь нижней части ростверка, которая нуждается в гидроизоляции.
Площадь внешней боковой поверхности ростверка
Площадь боковых поверхностей наружной стороны фундамента, нуждающаяся в утеплении.
Объем бетона для ростверка и столбов
Общее количество бетона, которое понадобится для заливки фундамента заданных параметров. Фактическая потребность может оказаться выше из-за уплотнений при заливке, а объём фактически доставленного бетона может оказаться меньше заказанного. Поэтому рекомендуем заказывать бетон с 10-процентным запасом.
Вес бетона
Приблизительный вес бетона при средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
При расчете берется во внимание полный вес конструкции.
Минимальный диаметр продольных стержней арматуры
Рассчитывается по нормативам СНиП. Учитывается относительное содержание продольной арматуры в сечении ленты ростверка.
Минимальное количество рядов арматуры ростверка
Для противодействия естественной деформации ленты ростверка под действием сил сжатия и растяжения, необходимо использовать продольные стержни в разных поясах ростверка (вверху и внизу ленты).
Общий вес арматуры
Вес стержней арматуры, вместе взятых.
Величина нахлеста арматуры
Для крепления стержней арматуры внахлёст, используйте данное значение.
Длина продольной арматуры
Общая длина арматуры включая нахлест.
Минимальное количество продольных стержней арматуры для столбов и свай
Необходимое количество продольных стержней арматуры для каждого столба или сваи.
Минимальный диаметр арматуры для столбов и свай
Минимально допустимый диаметр продольных стержней арматуры, обеспечивающих прочность столбов или свай.
Минимальный диаметр поперечной арматуры (хомутов)
Определяется, основываясь на нормативах СНиП.
Максимальный шаг поперечной арматуры (хомутов)
Рассчитывается таким образом, чтобы при заливке бетона арматурный каркас не был смещён или деформирован.
Общий вес хомутов
Суммарный вес хомутов, которые потребуются при строительстве всего фундамента.
Минимальная толщина доски при опорах через каждый метр
Необходимая толщина досок опалубки при заданных параметрах фундамента и заданном шаге опор. Рассчитывается исходя из ГОСТ Р 52086-2003.
Количество досок для опалубки
Число досок стандартной длиной 6 метров, которые потребуются для возведения всей опалубки.
Периметр опалубки
Общая протяженность опалубки с учетом внутренних перегородок.
Объем и примерный вес досок для опалубки
Такой объем досок потребуется для возведения опалубки. Вес досок рассчитывается из среднего значения плотности и влажности хвойных пород дерева.
Онлайн калькулятор бетона для свайного фундамента. Завод «ЭКОБЕТОН» Вологда
Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента
Поможет оценить и рассчитать всю материальную часть будущего проекта, в том числе позволит определиться с тем, сколько бетона потребует проект. Он является хорошим подспорьем на этапе планирования. Рекомендуем связаться со специалистами для получения рекомендаций касательно фундаментных работ.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003.
Свайный (или столбчатый) – тип фундамента, при возведении которого сваи (столбы) погружают в грунт на нужную глубину. Их верхушки соединяют между собой, не соприкасающейся с землей непосредственно, железобетонной лентой, которая называется ростверк. Глубина, на которую будут забиты или иным способом погружены опоры, является основным отличием между первым и вторым типами.
Такой фундамент лучше подойдет для строительства в условиях слабых, пучинистых, растительных грунтов, либо в регионах, где земля промерзает на большую глубину. Учитывая возможность забивать сваи в любое время года, данный фундамент находит свое применение в областях с холодным климатом. Помимо этого, свайный фундамент может похвастаться быстротой постройки при минимуме земляных работ, которые ограничиваются бурением нужного количества отверстий или забиванием уже готовых свай. Во втором случае необходима специализированная техника.
Свайный фундамент отличается по геометрии свай, материалу, из которого их изготовляют, способу воздействия на почву, технологии монтажа свай и видам ростверка. Понимание климатических факторов, нагрузок на сваи и свойств почвы помогут выбрать вариант, подходящий под конкретную постройку.
Важно не
пытаться производить проектирование самостоятельно в попытке сэкономить и не
заниматься самостроем. Работа без контроля со стороны специалистов с профильным
образованием и опытом работы может привести к таким плачевным последствиям, как
обрушение здания.
Расчет свайного фундамента. Калькулятор онлайн
Расчёт свайного фундамента — это очень важный этап создания проекта будущего дома. Если допустить хотя бы малейшую ошибку срок эксплуатации строения уменьшится на двадцать лет в лучшем случае. При наименее благоприятных обстоятельствах катастрофа может произойти ещё при строительстве.
Если на территории застройки присутствуют неустойчивые грунты, на которых присутствует повышенная влажность, или же какие-либо сложные рельефы, то в таком случае единственно оптимальным выходом будет грамотный расчет свайного фундамента. Основным преимуществом данной конструкции является предельно высокая надежность закрепления даже в относительно слабых грунтах благодаря тому, что опоры погружаются на достаточно большую глубину. Такие конструкции отличаются гораздо большей надежностью и долговечностью, а для их реализации требуется не такое большое количество бетона, но при этом вы должны понимать, что процесс их расчета и возведения является достаточно трудоемким.
Причин для проведения расчёта свайного фундамента можно найти более чем достаточно. Во-первых, правильно смоделированная конструкция обладает большой устойчивостью. Во-вторых, вбивание свай обходится значительно дешевле, нежели, возведение ленточной или плиточной конструкции. В-третьих, при малой несущей способности грунта — свайный фундамент единственно возможный вариант.
Если участок обладает малой несущей способностью, то сделав правильный расчёт, свайного фундамента вам не придётся рыть глубоких траншей, чтобы сделать надёжное основание. Для этого используются винтовые сваи. Но формулы расчёта при использовании таких материалов значительно усложняются.
Виды фундаментов с ростверком
Ростверк представляет собой верхнюю часть фундамента, с помощью которой объединяются в одно целое оголовки свай, и именно ростверк представляет собой опору для будущего здания. Объединение ростверка и свай осуществляется при помощи специализированной сварки или же путем стандартной заливки бетоном.
По способу монтажа ростверки могут подразделяться на несколько категорий:
- Ленточные – объединяются только соседние сваи;
- Плиточные – связывается каждый отдельный оголовок.
По типу материалов:
- Из бетона с арматурой. Под несущие стены осуществляется монтаж свай, а на глубину и ширину ростверка прорываются траншеи небольшой глубины;
- Подвесной бетонный. Является аналогичным предыдущему варианту, однако особенностью такого фундамента является то, что бетонная лента не соприкасается с грунтом, а устройство компенсационного зазора при этом предоставляет возможность предотвратить разрыв опор при возникновении значительного колебания грунта;
- Железобетонные. Изготовление такого фундамента предусматривает использование двутавра или же широкого металлического швеллера, при этом под несущие стены монтируется швеллер 30, в то время как остальные опоры связываются при помощи швеллера 15-20;
- Из дерева. Крайне редкий вариант, который в последнее время практически не используется;
- Комбинированный. Здесь используются не только металлические несущие элементы, но и бетон.
Что собой представляют винтовые сваи
Чтобы провести правильный расчёт свайного фундамента необходимо как можно больше узнать об основном материале. Это позволит максимально точно составить проект, основываясь на характеристиках свайных конструктов, а также их свойствах.
Все сваи сверху объединяются ростверком. Его можно сделать как из деревянных, так и из металлических балок. Также можно взять сплошную железобетонную плиту. Но это сильно прибавит веса основной конструкции.
Свайные конструкты для расчёта фундамента можно изготовить как самостоятельно, так и заказать на заводе. При изготовлении непосредственно на месте строительства их основание лучше всего делать плоским.
Чтобы сделать правильный расчёт свайного фундамента знать только площадь конструкции недостаточно. Необходимо учитывать силу трения, что возникает между боковой поверхностью стержня и землёй.
Раньше винтовые сваи часто применяли военные инженеры при постройке фортификационных сооружений. Это было связано с тем, что они позволяют конструкции выдерживать повышенные нагрузки в экстремальных условиях.
Внимание! Свайные конструкты до сих пор незаменимы при создании мостов и переправ.
Основная часть сваи — это ствол. Его диаметр от 80 до 130 мм. Конец в форме острого конуса. На него приваривается лопасть. Это позволяет максимально быстро и эффективно вворачивать свайные конструкты в грунт.
Некоторые сваи идут без оголовка. В таком случае в конце ствола есть отверстие. В него заводится рычаг, который позволяет вращать сваю с нужной скоростью. Эта особенность даёт возможность при необходимости удлинить ствол. Данная опция крайне необходима, когда работы проводятся на нестабильных грунтах.
К преимуществам свайных конструктов можно причислить:
- Безопасную технологию установки, которая позволяет в кратчайшие сроки возвести фундамент дома.
- Возможность использования на любых грунтах. Единственным исключением являются скальные породы.
- Когда сваи вворачиваются, не образуется ударная нагрузка. Благодаря этой особенности свайные фундаменты можно строить даже в местах плотной застройки, не опасаясь за сохранность ближайших домов.
- Как только будут установлены винтовые элементы, сразу же можно монтировать ростверки. Конечно же, эта особенность учитывается в расчётах.
- Расчёт свайного фундамента можно делать как для холмистой местности, так и для неровных участков.
- Монтаж осуществляется практически в любых погодных условиях. Неважно сколько градусов за окном. Это никак не повлияет на качество фундамента.
- Возможность перепланировки. Ни один другой вид фундамента не даёт столько простора для изменений конструкции, как свайный. При необходимости стальной болт можно выкрутить и ввинтить в другое место.
Зная преимущества и особенности свайного фундамента можно провести максимально точные расчёты, усчитав все особенности конструкции.
Рассчитываем расстояние между сваями и глубину их установки
Расчет свайно-винтового фундамента с ростверком включает в себя большое количество моментов, но в первую очередь определяется глубина заложения свай, которая зависит от вида и сложности грунта. В первую очередь, нужно определить нормативную глубину промерзания грунта в вашем регионе проживания, после чего отмерить ниже 20-25 см – это и будет глубина заложения свай.
После того как будут проведены изыскательские работы, нужно будет определить уровень расположения грунтовых вод, а также возможность его колебания в разные сезоны и качественную характеристику грунта на участке. Лучше всего, если проектированием свайного фундамента, а также его обустройством будет заниматься квалифицированный специалист.
Осуществляя расчет количества винтовых свай для фундамента в каждом отдельном случае, следует брать в расчет следующие характеристики:
- Насколько прочный используется материал и ростверк;
- Какая присутствует несущая способность у грунта, учитывая также уплотнение в процессе установки опоры;
- Если присутствуют значительные перепады рельефа, то в таком случае определяется и учитывается также несущая способность основания опоры;
- Насколько будут усаживаться сваи под воздействием вертикальной нагрузки;
- Какой вес имеет строение с внутренним содержанием;
- Какие присутствуют сезонные, динамические и ветровые нагрузки.
Помимо этого, в обязательном порядке нужно учитывать осадку свайного фундамента. Свайный фундамент должен делаться в соответствии с рабочим планом, поэтому лучше всего, если его созданием будет заниматься профессиональный архитектор.
Важно! Расчет, а также последующее проектирование свайного фундамента осуществляется только после того, как будут закончены все изыскательские работы на территории, которые проводит квалифицированный специалист.
Данные для вычислительных формул в данном случае будут выбираться в зависимости от качества почвы и ее типа. Стоит отметить, что расчет свайного фундамента по усадке и деформации обуславливает необходимость в максимально возможной точности выходных показателей.
Как закладывать фундамент на основе расчётов
Чтобы построить правильные расчёты необходимо на месте строительства провести геодезические изыскания. В первую очередь нужно под слабыми грунтами определить глубину залегания слоя, который сможет выдержать вес постройки.
Важно! Необходимо делать расчёт таким образом, чтобы свайные конструкты углублялись в несущий слой не менее чем на половину метра.
Чтобы узнать на какую глубину нужно вкручивать сваи, проводится предварительное бурение. Это позволяет определить, где залегают грунтовые воды. Также нужно учитывать, насколько земля промерзает в зимний период.
Весь процесс строительства условно делится на такие этапы:
- Вначале делается разметка и выравнивание. Определяются места, где будут установлены основные сваи. После этого можно монтировать второстепенные элементы. Расстояние между ними должно быть в диапазоне от двух до трёх метров. Стальные болты должны быть под всеми стенами дома.
- Завинчивание начинается с угловых свай. В верхнее отверстие стального болта пропускается лом. Чтобы удлинить рычаг на лом надеваются металлические трубы. При вкручивании отклонение от вертикали не может превысить два градуса. Угол наклона в процессе работы контролируется посредством магнитного уровня.
- Расчёт свайного фундамента на угловых сваях делается с помощью шлангового уровня. Потом наносятся метки. Они определяют горизонтальную плоскость и нижнюю кромку ростверка.
- Вворачиваются оставшиеся сваи.
- Глубина вворачивания должна быть такой, чтобы от верха до земли было 20 см.
- Ненесущая поверхность обрезается по обозначенным уровням.
- Замешивается цементный раствор. Одна часть цемента к четырём частям песка. Им заполняются сваи.
Правильно проведённые расчёты на уровне планирования свайного фундамента позволяют сделать прочное и надёжное строение.
Примеры расчётов
Расчёт прочности одного элемента позволяет определить, сколько, в общем, понадобится свай для фундамента. В качестве константы возьмём расстояние между столбами в два метра. Мало того, согласно современным архитектурным веяниям опоры должны иметь общий ростверк.
Пример один
Диаметр одного металлического болта 30 сантиметров. Расчётная масса здания сто тонн. В формуле расчёта свайного фундамента особую роль играет несущая способность грунта. Возьмём чаще всего встречающийся показатель в четыре килограмма на сантиметр квадратный.
Важно! Нагрузка не должна превышать несущую способность грунта.
Показатель силы, которая будет действовать на каждую сваю в фундаменте обозначается как Fсв. Расчёт параметра проходит по следующей формуле:
(πd2/4)*R
Уточним значения всех переменных:
- π — неизменная величина, бесконечное число, которое для простоты математических исчислений принято обозначать как 3,14.
- d — диаметр металлического болта (30 см).
- R — радиус
Сведём всё в одну формулу:
Fсв=(πd2/4)·R =707,7·4=2826 кг.
Именно такой вес, в данном грунте сможет выдержать одна свая фундамента. Исходя из этих данных — продолжим расчёт.
Общий вес здания ровно 100 тонн. Эта цифра была взята для простоты исчислений. Перед тем как провести дальнейший расчёт свайного фундамента необходимо привести показатели к одной метрической системе. Переведём тонны в килограммы и получим значение N (количество опор).
N= 100000/2826=35,4.
Конечно же, тридцать пять с половиной опор никто монтировать не будет. Поэтому округляем в большую сторону. Выходит, для того чтобы построить дом массой в сто тонн на грунтах с несущей способностью в 4 кг/м2 нужно не менее 36 опор.
Пример два
Чтобы понять алгоритм расчёта свайного фундамента закрепим материал и немного изменим базовые показатели. Расширим основание до 50 сантиметров. Это позволит увеличить практичность всей конструкции. Остальные показатели оставим без изменений.
Fсв=1962,5·4=7850 кг
Проведём расчёт свайного фундамента и получим 13 опор. Как видите, расширение основания позволяет значительно сэкономить на количестве свай, добившись хороших показателей устойчивости конструкции.
Пример три
Расчет свайного фундамента, пример которого вы увидите далее, может использоваться как для легких дачных домов, таки для массивных коттеджей, просто в первом случае используются стандартные винтовые сваи, в то время как при постройке коттеджей нужно будет использовать массивные буронабивные сваи, которые могут выдерживать достаточно серьезные нагрузки.
Для упрощения в примере расчет свайного фундамента осуществляется по винтовым опорам. Стоит отметить, что для таких свай небольшого размера в процессе проведения расчетов не берется в учет бокового трения, которое определяется при возведении тяжелых зданий, которые оказывают на сваи значительное воздействие.
В данном случае будет рассматриваться детальный расчет общего количества свай, а также шага их установки для одноэтажного дома, размер которого составляет 7х7 м:
- Изначально определяется общая масса расходных материалов. Предположим, что общий вес крыши, бруса и облицовки будет составлять 27526 кг с учетом снеговой нагрузки;
- Размер полезной нагрузки составляет 7х7х150=7350;
- Величина снеговой нагрузки составляет 7х7х180=8820;
- Таким образом, приблизительная масса нагрузки на фундамент будет составлять 27526+7350+8820=43696 кг;
- Теперь полученный вес нужно будет умножить на коэффициент надежности 43696х1.1=48065.6 кг;
- Допустим, предусматривается установка винтовых опор, размер которых составляет 86х250х2500. Для того чтобы рассчитать их количество, нужно будет полученную сумму общей нагрузки распределить на ту нагрузку, которая прилагается на каждую сваю. 48065.6/2000=24.03, округляем полученное количество до 24, и получаем точное число нужного нам количества свай;
- Для того чтобы установить 24 опоры, нужно будет использовать шаг установки 1.2 метра. Для формирования половых лаг нужно будет использовать еще две дополнительные сваи, которые уже будут располагаться непосредственно внутри дома.
Таким образом, по вышеприведенной технологи вы сможете рассчитать нужное вам количество свай для любого дома вне зависимости от его особенностей.
На видео ниже вы сможете посмотреть, как осуществляется расчет свайного фундамента специалистами:
Итоги
Свайный фундамент — это экономичный и быстрый способ создания базы для постройки. Он позволяет работать при любых погодных условиях, а также даёт возможность возводить строения даже на самых проблемных грунтах.
Расчёт свайного фундамента позволяет заранее определить, сколько необходимо свай для дома определённой массы. При помощи формул, описанных в статье, расчёты можно проводить быстро и точно.
Расчета свайного фундамента, столбчатого фундамента
Онлайн калькулятор по расчету буронабивных свайно-ростверковых и столбчатых фундаментов. Определение нагрузки на свайный фундамент.
Выберите тип ростверка:
Параметры ростверка:
Параметры столбов и свай:
Расчет арматуры:
Расчет опалубки ростверк:
Рассчитать
Результаты расчетов
Фундамент:
Общая длина ростверка: 0 м.
Площадь подошвы ростверка: 0 м2.
Площадь внешней боковой поверхности ростверка: 0 м2.
Общий объем бетона для ростверка и столбов (с 10% запасом): 0 м3.
Вес бетона: 0 кг.
Нагрузка на почву от фундамента в местах основания столбов: 0 кг/см2.
Расчет арматуры ростверка:
Расчет арматуры для столбов и свай:
Минимальный диаметр поперечной арматуры (хомутов): 0 мм.
Максимальный шаг поперечной арматуры (хомутов) для ростверка: 0 мм.
Общий вес хомутов: 0 кг.
Опалубка:
Минимальная толщина доски при опорах через каждый 1 метр: 0 мм.
Максимальное расстояние между опорами: 0 м.
Количество досок для опалубки: 0 шт.
Периметр опалубки: 0 м.
Объем досок для опалубки: 0 м3.
Примерный вес досок для опалубки: 0 кг.
Дополнительная информация о калькуляторе
Онлайн калькулятор монолитного буронабивного (свайного и столбчатого) ростверкового фундамента предназначен для расчетов размеров, опалубки, диаметра арматуры, ее количества и объема расходуемого бетона. Для определения подходящего типа конструкции фундамента обязательно проконсультируйтесь со специалистами.
Обратите внимание! В расчётах используются нормативы, приведенные в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».
Данный тип фундамента основывается на сваях или столбах, поэтому его также часто называют столбчатым либо свайным. Глубина установки и несущая способность отличает сваи от столбов.
Вершины столбов или свай связывают между собой сплошной железобетонной лентой, так называемым ростверком. Между ростверком и поверхностью земли остаётся воздушная прослойка некоторой высоты.
Основная причина для выбора ростверкового фундамента – глубокое промерзание или слабость грунта. Этот тип фундамента востребован в местах, где из-за погодных условий другие виды фундамента создавать проблематично. Забивка свай не зависит от климата, что является несомненным преимуществом ростверковой технологии. Другой её плюс – высокая скорость возведения сооружений, поскольку сваи можно подготовить заранее, а их вбивание – ускорить, пробурив в земле отверстия.
На тип ростверкового фундамента влияет материал и форма свай, характер действия на грунт, способы установки и виды непосредственно ростверка. Трудно давать типовые рекомендации, не зная самого сооружения и специфики местности, где оно строится. Перед началом проектирования следует учесть климат местности, свойства грунта, расчётные нагрузки. Безусловно, лучше всего обратиться к специалистам и последовать их рекомендациям, так как есть риск «доэкономиться» до деформации или разрушения будущего строения. Чтобы этого избежать, советуем внимательно ознакомиться с данным калькулятором. Он поможет вам рассчитать расходы при возведении стандартных конструкций и обдумать составляющие будущего фундамента.
Вы можете задать вопрос или предложить идею по улучшению данного калькулятора. Будем рады вашим комментариям!
Пояснения к результатам расчетов
Общая длина ростверка
Внешний периметр ростверка, включая длину внутренних перегородок
Площадь подошвы ростверка
Площадь нижней поверхности ростверка, которая нуждается в гидроизоляции.
Площадь внешней боковой поверхности ростверка
Площадь наружной поверхности фундамента, которая нуждается в утеплении специальными материалами.
Общий объем бетона для ростверка
Суммарный объём бетона, нужный для полной заливки фундамента с обозначенными вами параметрами. При заказе бетона возьмите запас приблизительно в 10%. При заливке могут возникнуть уплотнения, ведущие к повышенному расходу, а доставка может привезти несколько меньший объём, чем вы заказали фактически.
Вес бетона
Примерный вес бетона, который понадобится вам для фундамента. Рассчитан для бетона средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
Давление, которое фундамент оказывает на почву в основании свай или столбов.
Минимальный диаметр продольных стержней арматуры для ростверка
Рассчитывается с учётом содержания продольной арматуры в площади сечения ростверка и нормативов СНиП.
Минимальное количество рядов арматуры для ростверка
Количество стержней продольной арматуры в верхнем и нижнем поясах ленты ростверка, необходимое для предотвращения естественной деформации ленты силами растяжения и сжатия.
Общий вес арматуры
Вес арматурного каркаса.
Величина нахлеста арматуры
При креплении отрезков стержней внахлест следует использовать данное значение.
Длина продольной арматуры
Общая длина арматуры для всего каркаса (с учетом нахлеста).
Минимальное количество продольных стержней арматуры для столбов и свай
Число продольных стержней арматуры располагаемое в каждом столбе или свае.
Минимальный диаметр арматуры для столбов и свай
Предельный минимальный диаметр арматуры столбов, исчисляется в соответствии с нормативами СНиП.
Минимальный диаметр поперечной арматуры (хомутов)
Минимально допустимый диаметр поперечной арматуры в соответствии с нормативами СНиП исходя из заданных параметров.
Максимальный шаг поперечной арматуры (хомутов)
Максимальный шаг хомутов, при котором арматурный каркас будет должным образом выполнять свою функцию. Следует использовать данное значение, либо уменьшить шаг хомутов.
Общий вес хомутов
Общий вес хомутов, необходимых при строительстве фундамента.
Минимальная толщина доски опалубки (при опорах через каждый метр)
Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор. Опалубка рассчитывается для ростверка.
Количество досок для опалубки
Количество материала для опалубки заданного размера. За основу берется доска длиной 6 метров.
Периметр опалубки
Общий периметр опалубки для ростверка, включая внутренние перегородки.
Объем и примерный вес досок для опалубки
Требуемый объем пиломатериала для опалубки в кубических метрах и килограммах.
Бесплатный калькулятор бетонных оснований | SkyCiv
Этот калькулятор расчета бетонных оснований помогает инженерам проектировать фундаменты для опор, комбинированных опор, свай и т. Д. Программное обеспечение включает в себя расчеты опрокидывания, скольжения, конструктивных коэффициентов полезности (односторонний сдвиг, двухсторонний сдвиг, изгиб X и изгиб Y ) и многое другое — согласно AS 3600 и ACI 318. Бесплатный инструмент также рассчитает объем бетона в вашей конструкции.
Этот онлайн-калькулятор фундаментов представляет собой упрощенную версию нашего программного обеспечения для проектирования фундаментов / опор, которое способно выдерживать большее количество нагрузок и типов фундаментов, включая комбинированные опоры и несимметричные изолированные опоры.Просто начните с выбора кода дизайна и начните с добавления или редактирования размеров вашего фундамента с помощью параметров ширины, высоты и глубины. Фигура автоматически обновится.
Этот простой в использовании инструмент поможет инженерам рассчитать ряд важных результатов для изолированных и комбинированных опор. К ним относятся опрокидывание, требования к размерам, скольжение, давление грунта, коэффициенты прочности на сдвиг и изгиб в одном и двух направлениях. Это дает инженеру хорошее представление о том, пройдет ли фундамент или нет.Калькулятор оснащен интерактивной графикой, несколькими типами нагрузки, встроенным армированием и мощным отчетом о расчетах. Некоторые из этих функций заблокированы в бесплатной версии, но не стесняйтесь проверять нашу страницу программного обеспечения Foundation Design для получения дополнительной информации о функциях и возможностях полных версий.
С помощью этого калькулятора фундамента общего назначения можно также рассчитать бетонные сваи и фундаменты свайных крыш. Это может быть разработано в контексте ACI 318 или AS 3600 (и AS 2159 для почвы).Это программное обеспечение для бетонных свай будет отображать результаты проверки осевого изгиба, концевого подшипника, изгиба *, бокового * и сдвига *. Примечание: любые результаты, отмеченные звездочкой (*), доступны только в платной версии.
Наряду с расчетными коэффициентами опрокидывания, скольжения и бетона калькулятор также рассчитает объем бетона в подушке. Результат вернет кубические метры бетона для метрической системы и кубические футы для британской системы единиц. Этот калькулятор оценивает количество бетона, необходимого для ваших изолированных опор, для быстрого выполнения расчетов и оценок габаритов.
Дальнейший проект фундамента можно рассчитать с помощью нашей полной версии Foundation Design Software. Это программное обеспечение позволит рассчитывать бетонные опоры ACI 318 и AS 3600 (также известные как бетонные опоры) с полной нагрузкой и результатами. Сюда входит подробный отчет о расчетах и дополнительных конструктивных особенностях. Это программное обеспечение для проектирования фундамента также можно использовать для расчета и проектирования бетонных свай в соответствии с AS 3600 (AS 2159) и ACI 318 с несколькими слоями грунта, дополнительными возможностями загрузки и без ограничений.
SkyCiv предлагает инженерам широкий спектр программного обеспечения для структурного анализа и проектирования облачных вычислений. Как постоянно развивающаяся технологическая компания, мы стремимся внедрять инновации и совершенствовать существующие рабочие процессы, чтобы сэкономить время инженеров в их рабочих процессах и проектах.
Вместимость сваи — обзор
Время влияет на изменения осевой нагрузки в глинистом грунте
Вместимость сваи, рассчитанная по предыдущему уравнению, не учитывает влияние старения с течением времени на емкость сваи, учитывая, что на старой платформе который был построен 40 лет назад и более, если пересмотреть расчет, вы можете обнаружить, что он отличается от коэффициента безопасности API в дополнение к условиям окружающей среды. Эффект времени, несомненно, влияет на емкость сваи, как при нормальных явлениях со временем, когда сваи работают с окруженный грунт как единое целое, поэтому существует дополнительная адгезия, не учитывается в расчетах.Поэтому недавно было проведено исследование, чтобы определить поведение осевой способности глинистой почвы во времени.
Кларк (1993) и Богард и Мэтлок (1990) провели полевые исследования, в которых было показано, что время, необходимое забивным сваям для достижения предельной прочности в связном грунте, может быть относительно большим — до 2–3 лет.
Стоит отметить, что в течение короткого периода времени после установки наблюдается значительное увеличение прочности, и это происходит из-за того, что показатель прочности быстро увеличивается после непосредственного движения, и этот показатель уменьшается в процессе рассеивания.
Во время забивки сваи в обычных или легких переуплотненных глинах почва, окружающая сваю, значительно нарушается, напряженное состояние изменяется, и это также создает большое превышение порового давления. После установки сваи это избыточное поровое давление начинает рассеиваться, что означает, что окружающий грунт вокруг свай начинает консолидироваться, и, исходя из этого, емкость сваи в глинистой почве со временем увеличивается. Этот процесс называется « настройка ». Скорость рассеяния избыточного порового давления зависит от радиального коэффициента уплотнения, диаметра сваи и слоистости грунта.
В наиболее распространенном случае, когда забивные трубные сваи, поддерживающие конструкцию, имеют расчетные нагрузки, прикладываемые к сваям вскоре после установки, при проектировании свай следует учитывать характеристики времени уплотнения. В традиционных стационарных морских сооружениях время между установкой сваи и полной загрузкой платформы составляет от 1 до 3 месяцев, но в некоторых случаях ввод в эксплуатацию и запуск происходят раньше, и в этом случае эта информация должна быть передана. для инженерного бюро, поскольку ожидаемое увеличение пропускной способности со временем является важными проектными переменными, которые могут повлиять на безопасность системы фундамента на ранних этапах процесса консолидации.
Поведение сваи при значительных осевых нагрузках в высокопластичных, нормально консолидированных глинах было изучено с помощью большого количества испытаний свайных моделей и некоторых натурных испытаний на нагрузку.
В результате этого исследования рассеяния порового давления с данными нагрузочных испытаний в разное время после забивки сваи были получены эмпирические корреляции между степенью консолидации, условиями закупоривания и сдвиговой способностью ствола сваи. Это исследование показало, что результаты испытаний стальных свай с закрытым концом в сильно переуплотненной глине указывают на отсутствие значительного изменения несущей способности с течением времени.Это противоречит испытаниям стальных свай с закрытым концом диаметром 0,273 м (10,75 дюйма) в переуплотненной глине, где была обнаружена значительная и быстрая установка за 4 дня, поэтому емкость сваи в конце установки так и не восстановилась полностью.
Поэтому очень важно подчеркнуть, что осевая способность сваи с течением времени находится в стадии исследования и разработки, и нет твердой формулы или уравнения, которым следовало бы следовать, но следует сосредоточить внимание на исследованиях, проводимых на конкретном участке. местоположение, а также зависит от предыдущей истории местоположения.
(PDF) Оценка оседания фундамента буронабивных свай
289
Linas Gabrielaitis et al. / Procedure Engineering 57 (2013) 287 — 293
Поскольку основное назначение фундамента — воспринимать нагрузки от оборудования и передавать эти нагрузки на сваи,
он должен удовлетворять критериям осадки и динамики. Согласно анализу напряжений, вызванных нагрузками, газовое и паротурбинное оборудование
требовало глубокого свайного фундамента.Проектирование глубокого свайного фундамента состоит из трех основных этапов, заказанных
следующим образом:
1. Определение DWL (расчетная рабочая нагрузка) и SWL (безопасная рабочая нагрузка) для одиночной сваи на основе конструктивных характеристик
( SWL — базовая расчетная нагрузка)
2. Получить несущую способность и соответствующие осадки для нескольких длин свай в соответствии с геотехническими параметрами
грунта на месте (исходя из всех грунтовых и лабораторных испытаний, не только CPT).Здесь выбирается наименьшая требуемая длина сваи,
для оптимальной несущей способности (ближайшая выше SWL) с приемлемой осадкой
Для проверки фактического поведения нескольких решеток свай под фундаментной плитой, чтобы получить наиболее равномерную Распределение нагрузки
в головках свай, ближайшем ниже SWL, сводя к минимуму количество свай, но также гарантируя равномерную осадку плиты
, минимальные дифференциальные осадки между сваями и, следовательно, минимизирующие напряжения, вызванные оседанием в плите
.
При проектировании глубокого свайного фундамента требуемая длина сваи (для данного диаметра сваи) была оценена из
нагрузок надстройки, допустимого напряжения в материале сваи и свойств грунта на месте. Он был основан на следующих этапах
[11–12]:
1. Свойства грунта были определены на основе исследования участка и программы исследования грунта в соответствии с IEC [10] и
Литовские правила
2. Нагрузки на надстройку были получены из производитель газовых и паровых трибун, описанный в публикации [12]. Он
включал расчетную контрольную нагрузку 2500 кН и рабочую рабочую нагрузку 2239 кН
3.Были приняты буронабивные сваи диаметром 880 мм, которые лежали на очень плотном песчаном дне. На основе данных
из предыдущих двух шагов, оценка длины сваи была выполнена по несущей способности сваи и осадки
Этапы 1 и 3 описаны в следующих разделах, поскольку расчет осадки фундамента буронабивных свай
из надстройка — основная цель этой работы. При этом расчет несущей способности буронабивных свай составил
, комплексно проанализированный в предыдущих работах [11–12].
3. Физико-механические свойства почвы
Свойства почвы были определены в результате исследования участка и программы исследования почвы на территории Электренайской электростанции,
Литва. Геологические исследования включали скважины (BH), конусные и динамические испытания (PT) и пробные карьеры (TP).
Всего пробурено 8 скважин глубиной 30 м и глубиной 45 м. Для определения гранулометрического состава, пластичности и плотности по Проктору из пробных карьеров были взяты образцы грунта по заказу
.Проведено 21 испытание конусного зондирования (КЗП) глубиной от
до 15 м. В 4 точках ниже 15 м были проведены точные измерения порового давления (CPTu).
Было проведено 16 испытаний на динамическое проникновение (DPSH) на глубину до 25–35 м. XIII инженерно-геологический
пластов (ЭГЛ) определено на исследуемой территории на основании данных обследования скважин, раскопок
и грунта, а также лабораторных исследований.
Поверхность исследуемого участка выровнена и большая часть площади заменена искусственным грунтом (tplIV), состоящим из
илистого песка (SU, SUo), глины низкой пластичности (TL), глины средней пластичности (TM), илистой глины. (ТУ) и гравийный песок (ГУ). Толщина искусственного слоя почвы
колеблется от 0,5 м до 2,20 м с высотами от 96,0 до 97,9 м. Глубина
лимногляциальных отложений колеблется от 13,20 м до 15,80 м. Высота подошвы слоя колеблется от 82.От 14 м до 84,93 м
высоты. Ниже илистый песок (СУ, СУо) присутствовал до 67,7 м над уровнем моря.
Из исследования инженерно-геологических слоев были обобщены четыре геологических слоя:
1. Глинистые отложения от средних до твердых, TU, TL, TM (глубина этого слоя до 15 м от поверхности)
2. Средняя до крупного илистого песка, плотного (глубина этого слоя до 19 м от поверхности)
3. Песок пылеватый от среднего до крупного, среднеплотный (глубина этого слоя до 25 м от поверхности)
4.Песок алевритовый от среднего до крупного, очень плотный (глубина этого слоя до 30 м от поверхности)
5. Эти четыре слоя использовались при проектировании и расчетах свайного фундамента [11]
Эти четыре слоя использовались в конструкция и расчеты свайного фундамента. Описание этих слоев представлено
на рис. 1.
В нашем случае φ ‘получается из результатов SPT, которые были получены из теста DPSH и описаны в таблице 1. Чтобы применить данные
DPSH, данные N20 DPSH были преобразованы до значений N30 SPT, где N — количество ударов, зарегистрированное в стандартном тесте на проникновение
[9].Согласно Еврокоду 7, N30 был исправлен на (N1) 60. Хотя SPT не рассматривается как усовершенствованный и полностью надежный метод исследования
, значения N дают полезную информацию относительно плотности связных грунтов
и относительной плотности несвязных грунтов. Принятые значения сопротивления сдвигу φ ’вместе со значениями
удельного веса для активной зоны представлены в таблице 1. График изгиба стержня
для свайного фундамента с расчетами
🕑 Время чтения: 1 минута
Чтобы четко понимать график изгиба стержней свайного фундамента, необходимо знать типовые детали армирования свайного фундамента.Свайный фундамент — это распространенный тип глубокого фундамента, используемый для поддержки тяжелонагруженных конструкций, когда рассматриваемый участок имеет очень слабый грунт, который по своей природе сжимается. План типового свайного фундамента Типичная конструкция свайного фундамента имеет несущую конструкцию, поддерживаемую крышкой сваи, которая, в свою очередь, поддерживается несколькими сваями, как показано на плане и на виде спереди на рисунках ниже.Рис.1: Устройство свайного фундамента — надстройка, свайная шапка и сваи
Технические характеристики конструкции и детали армирования свайного фундамента На рисунке 2 показаны типовые детали армирования и чертеж свайного фундамента.Детали свайного колпачка в этой статье не объясняются.Рис.2: Детали свайного фундамента
Вся конструкция ясно видна из рисунка 2. Каркас свай имеет вертикальную арматуру, удерживаемую наружным и внутренним кольцами. К арматуре при свайном строительстве относятся:- Вертикальное армирование
- Усилитель наружного кольца
- Усилитель внутреннего кольца
Рис.3: Детали поперечного сечения в разрезе A-A на рисунке 2
Длина развертки ‘L d ’ предусмотрена за пределами прохода колонны в заглушку сваи. Рекомендуемая длина анкеровки указывается в нижней части колонны, как показано на рисунке 2. На рисунке:- Длина сваи = 20 м
- Диаметр сваи = 0,6 м
- Диаметр:
- Вертикальное армирование = 20 мм — 12 шт.
- Наружное спиральное кольцо = 8 мм @ 200 мм с / с
- Внутренние спиральные стяжки = 16 мм @ 2000 мм с / с
- Нижняя длина анкеровки = 300 мм
- Длина развертки = 40d
- Прозрачная крышка = 75 мм
Спецификация | Диаметр стержней (м) | №Прутков (м) | Длина стержней (м) | Общая длина (м) |
Вертикальная полоса | 12 | 12 | 21,3 | 255,6 |
Стержень внутреннего кольца | 16 | 11 | 1,58 | 17,4 |
Стержень наружного кольца | 8 | 101 | 1,65 | 166,65 |
Новый метод расчета осадки одиночной сваи и группы свай в мягком грунте
В этой статье математическими методами описана кривая τ -z одиночной сваи.На основе одномерного подобия кривых τ -z получены кривые τ -z одиночной сваи при различных нагрузках. Он изучает распределение осевой силы одиночной сваи, принимая во внимание собственный вес сваи и коэффициент сопротивления концов сваи, и устанавливает расчетное уравнение осадки для одиночной сваи. Эффект взаимного усиления между сваями полностью учитывается, и оседание каждой фундаментной сваи в группе свай рассчитывается с использованием метода сдвигового смещения.Анализ примера показывает, что распределение осевой силы одиночной сваи с учетом собственного веса и отношения сопротивления торца сваи хорошо согласуется с экспериментальными данными. Погрешность осадки одиночной сваи, рассчитанная традиционным методом, составляет 18,52% по сравнению с измеренным значением. Если не учитывать собственный вес и коэффициент торцевого сопротивления, погрешность достигает 2,26%. Однако при их учете погрешность может уменьшиться до 1,64%. Он хорошо применим для расчета осадки группы свай по кривым τ -z одиночной сваи.Кроме того, он может лучше прогнозировать поведение группы свай при оседании в аналогичных условиях.
1. Введение
В последние десятилетия некоторые методы использовались для расчета осадки групп свай. В основном они включают метод эквивалентного фундамента опоры, метод слоистого суммирования, метод передачи нагрузки и метод анализа конечных элементов [1]. По применению этих методов было проведено множество исследований. В методе эквивалентного фундамента сваи и методе слоистого суммирования группа свай и шапка считаются единым целым, что хорошо для расчета общей осадки группы свай.Однако он не может анализировать дифференциальную осадку между сваями в основании свайной группы. Метод передачи нагрузки очень эффективен при расчете осадки одиночной сваи, в то время как он не может учитывать сплошность грунта и взаимодействие между сваей и окружающей почвой, как это используется при расчете групповой сваи. Метод анализа конечных элементов может хорошо описать геометрические характеристики группы свай и конкретные параметры грунта вокруг сваи. Однако из-за сложности моделирования на точность расчета сильно влияет выбор параметров, что в некоторой степени приводит к некоторым ограничениям в инженерных приложениях.
Метод смещения при сдвиге был предложен Куком в 1974 году. Смещение грунта, вызванное напряжением сдвига вала, рассматривается как логарифмическое отношение радиального расстояния от сваи. Взаимодействие между сваями можно рассматривать по принципу суперпозиции. Это простой и эффективный метод анализа реакции сваи на осевую нагрузку [2, 3]. Позже метод сдвигового смещения используется для анализа группового эффекта свай и взаимодействия сваи [4, 5]. Основываясь на методе смещения сдвига, Lin et al.В [6, 7] предложена упрощенная формула коэффициента взаимодействия и установлено матричное уравнение гибкости для расчета осадки свайной группы.
На практике испытания одиночной сваи статической нагрузкой проводились при проектировании фундамента большинства проектов. Это привлекает все больше и больше внимания исследователей к тому, как использовать результаты испытаний одиночных свай для эффективной оценки деформационного поведения групп свай.
В основном исследователи оценивали оседание групп свай через кривую осадки-осадки одиночной сваи.Параметры фундамента получают путем обратного анализа нагрузочного испытания, а взаимодействие между сваями описывается коэффициентом взаимного взаимодействия [8, 9]. Мао и Цзян [10] проанализировали нагрузочные испытания одиночной сваи и получили эквивалентный модуль деформации. Решение Миндлина, решение Буссинеска и принцип суперпозиции использовались для расчета взаимодействия между сваями в группе свай, а программа C ++ была скомпилирована для расчета осадки группы свай.Pan et al. [11] установили модель передачи нагрузки для одиночной сваи, которая аналогична гиперболической функции. Основываясь на методе Рунге-Кутта, они рассмотрели взаимодействие сваи с сваей и предложили улучшенный метод передачи нагрузки для расчета реакции группы свай. Ключом к расчету осадки группы свай одной сваей является анализ взаимодействий между сваями. Более того, учет эффектов взаимного усиления играет очень важную роль при анализе взаимодействий между сваями.Liang et al. [12], Янь и Чжан [13] и Синь [14] рассмотрели влияние самой фундаментной сваи на деформацию грунта и изучили эффект усиления группы свай. Шейл и МакКейб [15] учли эффект усиления разгруженной сваи и рассчитали осадку фундамента свайного плота нелинейным итерационным методом. Осадка свай в групповом свайном основании связана не только с поверхностным трением свай, но и с эффектом взаимного усиления других окружающих свай [15, 16].
Помимо кривой «нагрузка-оседание», кривые τ -z, полученные в результате испытания на статическую нагрузку, также содержат обширную информацию о взаимодействии сваи и грунта. Более того, он может хорошо отражать обратную связь сваи и грунта под осевой нагрузкой. В этой работе аппроксимируются кривые τ -z, полученные в результате испытания при определенной нагрузке, и, таким образом, кривые τ -z при различных нагрузках получаются из них. Принимая во внимание влияние наличия свай на окружающий грунт и эффект взаимного усиления между сваями, оседание группы свай выводится по кривым τ -z одиночной сваи.По сравнению с методом численного анализа предложенный в данной работе метод значительно экономит время расчета, а результаты расчетов хорошо согласуются с тестовым значением.
2. Установка и изготовление одинарной сваи
При различной осевой нагрузке на верхнюю часть сваи, хотя величина бокового трения сваи по глубине разная, ее кривые близки друг к другу в касательном направлении соответствующего бокового трения, когда глубина меняется. Другими словами, развитие бокового трения сваи по глубине при различных уровнях нагрузки имеет определенную пропорциональную зависимость.Они похожи в одномерном направлении. Для описания этого явления было введено одномерное подобие. В этой работе на основе примера функциональные выражения между трением на поверхности и глубиной одиночного ворса получены путем подбора. По одномерному подобию кривых τ -z получены несопоставимые функциональные выражения при различных нагрузках.
Для сверхдлинной сваи в мягком грунте несущая способность, обеспечиваемая концом сваи, очень мала при рабочей нагрузке.Практически вся несущая способность обеспечивается трением о кожу сваи, а оседание вершины сваи происходит почти за счет сжатия тела сваи, что проявляется как чисто фрикционная свая [15, 17]. Поэтому предполагается, что сваи, изучаемые в этой статье, ведут себя как сваи трения.
Испытание на нагрузку на одиночную сваю S3 в многослойных грунтах было получено из Xin [18]. Участок имеет 23,36 метра илистой глины, а толщина рыхлого грунта составляет 52,3 метра. Параметры почв приведены в таблице 1.На рисунке 1 представлена схематическая диаграмма толщи сваи и грунта. Испытательная свая S3 имеет диаметр 1,1 м и длину 88,17 м. Это типичная сверхдлинная свая в мягком грунте. Несущий слой — это умеренно выветренная коренная порода, а осадка вершины сваи составляет 49,52 мм под несущей нагрузкой.
|