Схема на транзисторе стабилизатор напряжения: Простой мощный параллельный стабилизатор на транзисторах

Опубликовано в Разное
/
20 Мар 2021

Содержание

Параметрический стабилизатор напряжения на транзисторе — radiohlam.ru

Итак, справа изображена схема простейшего транзисторного стабилизатора напряжения.

Обозначения:

  1. Iк — коллекторный ток транзистора
  2. Iн — ток нагрузки
  3. Iб — ток базы транзистора
  4. IR — ток через балластный резистор
  5. Uвх — входное напряжение
  6. Uвых — выходное напряжение (падение напряжения на нагрузке)
  7. Uст — падение напряжения на стабилитроне
  8. Uбэ — падение напряжения на p-n переходе база-эмиттер транзистора

Как такой стабилизатор работает и чем его работа отличается от работы параметрического стабилизатора на стабилитроне? Да почти ничем их работа не отличается, — напряжение на выходе схемы остаётся стабильным в результате наличия на вольт-амперных характеристиках (стабилитрона и p-n перехода база-эмиттер транзистора) участков, на которых падение напряжения слабо зависит от тока. То есть как и у всех параметрических стабилизаторов стабильность достигается внутренними свойствами компонентов.

Действительно, как видно из рисунка, падение напряжения на нагрузке равно разности падений напряжений на стабилитроне и на p-n переходе БЭ транзистора. Поскольку падение напряжения на стабилитроне слабо зависит от тока (на рабочем участке оно равно напряжению стабилизации), падение напряжения на прямосмещённом p-n переходе тоже слабо зависит от тока (для кремниевого транзистора его можно взять примерно таким же, как для обычного кремниевого диода — примерно 0,6 Вольт), то получается, что и выходное напряжение тоже постоянно.

Теперь добавим немного математики.

С напряжением на нагрузке (выходным напряжением) уже всё понятно: Uвых=Uст-Uбэ, давайте рассчитаем R0 и область нормальной работы стабилизатора. Но прежде нарисуем рядом два рисуночка — кусок схемы нашего стабилизатора и кусок простейшего параметрического стабилизатора на стабилитроне:

Похоже, не правда ли? Более того, рассуждения и выводимые из них соотношения для расчёта R

0 и области нормальной работы тоже очень похожи.

Уравнение, описывающее токи и напряжения для выдранного выше куска схемы нашего стабилизатора:

Uвх=Uст+IRR0, учитывая что IR=Iст+Iб, получим

Uвх=Uст+(Iст+Iб)R0   (1)

Для нормальной работы стабилизатора (чтобы напряжение на стабилитроне всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе базы транзистора. Зная это, найдём сопротивление балластного резистора:

R0=(U

вх min-Uст min)/(Iб max+Iст min)   (2)

Если учесть, что в нашем случае, когда транзистор включен по схеме с общим коллектором, ток базы связан с током эмиттера соотношением Iэ=Iб(h21Э+1), ток эмиттера равен току нагрузки (потому что в цепь эмиттера же у нас нагрузка включена), а напряжение на стабилитроне в рабочем режиме меняется незначительно (вместо Uст min возьмём просто Uст), то получим, что

R0=(Uвх min-Uст)/(Iн max/(h21Э+1)+Iст min)   (3)

h21Э+1 — это коэффициент усиления по току для схемы с общим коллектором (h21K), но поскольку h21Э обычно достаточно большой, то нередко слагаемое «+1» выкидывают и считают, что h21К=h21Э

, тогда формула (3) становится чуть проще:

R0=(Uвх min-Uст)/(Iн max/h21Э+Iст min)

Максимальный ток через стабилитрон будет течь при минимальном токе базы транзистора и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

Перегруппировав это выражение, получим:

Или, по другому:

Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно (первое слагаемое в правой части можно считать равным нулю), а также то, что Iн=Iэ=Iбh21Э («+1» — выкинем), тогда уравнение, описывающее область нормальной работы стабилизатора

, примет следующий вид:

(4)

Из этой формулы хорошо видно преимущество такого транзисторного стабилизатора над параметрическим стабилизатором на стабилитроне — при прочих равных параметрах у транзисторного стабилизатора выходной ток может меняться в более широких пределах.

Для примера опять возьмём стабилитрон КС147А (Iст=3..53мА), и прикинем на какой максимальный ток мы сможем рассчитывать при понижении напряжения с 6..10В до 5В при условии, что выходной ток может меняться от нуля до Imax. Транзистор возьмём КТ815А (h21Э=40). Решив совместно систему уравнений (3), (4), получим R0 около 110 Ом и максимальный ток порядка 550 мА.

Однако стоит заметить, что нестабильность выходного напряжения в данном случае будет ещё хуже, поскольку теперь к нестабильности напряжения на стабилитроне добавится ещё нестабильность падения напряжения на p-n переходе транзистора. Плюс мы ещё не учли, что выходное напряжение будет меньше, чем на стабилитроне на величину падения напряжения на p-n переходе, так что по хорошему нам бы надо было взять стабилитрон не на 4,7В, а на 5,1 или даже на 5,6 Вольт (я специально взял для примера такой же стабилитрон, как и в статье про параметрический стабилизатор на стабилитроне, чтобы нагляднее было видно насколько при одном и том же стабилитроне будет отличаться ток нагрузки).

Собственно, методы борьбы с нестабильностью здесь совершенно аналогичные — нужно как-то уменьшить нестабильность напряжения на стабилитроне. Для этого можно, как и в прошлый раз, взять более узкий рабочий участок ВАХ стабилитрона. Это естественно, также приведёт к сужению области нормальной работы (потому что диапазон изменения рабочего тока стабилитрона уменьшится), но в данном случае, когда область нормальной работы и так шире, чем у параметрического стабилизатора на стабилитроне (примерно в h

21Э раз), мы вполне можем себе позволить отказаться от части диапазона выходного тока и/или части диапазона входного напряжения ради увеличения стабильности выходного напряжения.

Ещё больше увеличить область нормальной работы можно, если использовать два транзистора, включенные по схеме Дарлингтона или Шиклаи (рисунок слева). В этом случае h21Э будет гораздо больше.

Ну и самый писк — сделать компенсационный стабилизатор напряжения на операционном усилителе, поскольку коэффициент усиления ОУ не просто больше, а значительно, гораздо, во много — много раз больше, чем у любого транзистора (соответственно, мы сможем в ещё более узком диапазоне менять ток через стабилитрон, получим ещё меньшее изменение напряжения на нём и, как следствие, — ещё более стабильное выходное напряжение).

Есть другой вариант — можно вместо обычного стабилитрона взять интегральный стабилитрон, например, TL431. В этом случае, кроме значительно меньшей нестабильности, получим ещё и возможность регулирования выходного напряжения.

На закуску скажу, что лёгким движением руки такой стабилизатор напряжения можно превратить в стабилизатор тока (нужно просто стабилизировать напряжение не на нагрузке, а на специальном токоизмерительном резисторе).

Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока

Простенькая относительно схемка, со средними параметрами, на основe транзисторoв с большим усилением. Была сделана для своих нужд в качестве лабораторного.
Часто приходилось заниматься ремонтом или запуском разных схем, для которых нужно было просто иметь чем их питать 3V, 5V, 6V, 9V, 12V… И каждый раз искал что-нибудь подходящее. В ход шли блоки питания от калькуляторов, магнитофонов, аккумуляторы, батарейки. Иногда радовался, что соответствующий источник не давал больших токов, таким образом спасая меня от лишних трат. Конечно делал одно- двух-транзисторные стабилизаторы для решения этой проблемы, но резульнаты не удовлетворяли. Где-то на второй волне вдохновения родилось то, с чем хочу поделится.
Применяется до сих пор при ремонте и запуске устройств, если подходит выходное напряжение конечно. А также при не совсем обычном применении – проверка стабилитронов, зарядка пальчиковых аккумуляторов, просто как источник стабильного тока. В таких случаях крайне удобно наличие хотя бы вольтметра на выходе.

Содержание / Contents

Устройство разрабатывалось для выходного напряжения 1…12V и регулирования выходного тока в пределах 0,15…3А. Конечно для хороших результатов поставил транзисторы с усилением более 500 (сняты с платы МЦ-31 телевизора 3усцт), а составной регулирующий – около 10 000 (если измеритель не врёт – взял из модуля СКР телевизора 2усцт, коррекция растра).
Важно наверно, что питал схему от автомобильного аккумулятора, когда снимал данные.
Далее поставил трансформатор и некоторые чудеса, типа 3А при 12V, стали невозможными. Падало напряжение на выходе выпрямителя. Кому ещё интересно – ближе к схеме.
Схема стабилизатора напряжения с регулируемым ограничением выходного тока

Итак, на Х1 подаётся минус источникa напряжения, а с Х2 берётся стабилизированное и ограниченное в выходном токе напряжение. Если вкратце, то VТ3 – регулирующий, VТ4 – компаратор и усилитель сигнала ошибки стабилизатора напряжения, VТ1 — компаратор и усилитель сигнала ошибки стабилизатора выходного тока, VТ2 — датчик наличия ограничения выходного тока. За основу был взят распространённый вариант стабилизатора напряжения.


Исходная схема с фиксированным напряжением и защитой по току

Она слегка изменена, чтобы можно было менять в возможно бОльших пределах выходное напряжение, и убрать блокирование стабилизатора. Добавлен R8, чтобы сделать возможным работу схемы ограничения выходного тока на VТ1. Добавлен R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут уменьшить пульсации на выходе.

Теперь позвольте мне пройтись с объяснениями по второму кругу (cм. первую схему). При появлении на входе Х1 относительно общего провода отрицательного постоянного напряжения в пределах 9…15V, появится ток в цепи R2-VD2-R6-VD1. На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подаётся на базу VТ4, который в результате откроется. Его ток коллектора откроет VТ3. Ток коллектора VТ3 зарядит С2, а через делитель R9, R10 часть напряжения С2 (оно же выходное) поступит на эмитер VТ4. Этот факт не позволит выходному напряжению расти больше чем удвоенное (Uбазы VT4 — 0,6V). Удвоенное потому, что делитель R9, R10 на два. Так как на базе VT4 напряжение стабильно, выходное тоже будет стабильным. Это есть рабочий режим. Транзисторы VТ1, VТ2 закрыты и никак не влияют.

Подсоединим нагрузку. Появится ток нагрузки. Он потечёт по цепи R2, Э-К VТ3 и дальше в нагрузку. R2 здесь работает датчиком тока. Пропорционально току на нём появляется напряжение. Это напряжение суммируется с частью напряжения, взятого с помощью R5 от VD2 и прилагается к базовому переходу VТ1 (R3 – чисто для ограничения тока базы VТ1 при бросках и защиты таким образом VТ1) и когда оно становится достаточным для открытия VТ1, устройство входит в режим ограничения выходного тока. Часть тока коллектора VТ4, который раньше поступал в базу VТ3, сейчас уходит через переход база-эмитер VТ2 в коллектор VТ1.

Благодаря большому коэффициенту усиления транзисторов, напряжение база-эмитер VТ1 будет поддерживаться около 0,6V. Это значит, что напряжение на R2 будет неизменным, следовательно и ток через него, а дальше через нагрузку тоже. Движком R5 можно выбирать ограничение тока от минимального до почти 3А.
При наличии режима ограничении тока открыт и VТ2, своим током коллектора он зажжёт светодиод HL1. Следует понимать, что ограничение тока «имеет приоритет» перед «стабильностью» выходного напряжения.

На выходе устройства я поставил вольтметр, а вот когда нужно ограничение на определённом токе, просто закорачиваю выход тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.

Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30…50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2…3 раза меньше.

VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2…3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.

С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты — К50-16 на 16V.

Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).

Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.

Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.

Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай.

Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.

Виктор Бабешко повторил конструкцию, прислал свой вариант печатки и фотку.
Файл в LayOut: ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Аурел (AKM)

Молдова, Кишинёв

Люблю что-то делать своими руками. электросеть,отопление,мебель,и особенно разные схемы. До паяльника дорвался в 8 классе.
Начал как положено с детекторного. Напаял ЦМУ, зарядные для автомобильных АКБ, УЗЧ, Собирал телевизоры, дорабатывал Ноту 220С,
таймера, ДУ, БП, разную мелочь.
Есть небольшие свои разработки. Пришёл за информацией. Не верю мелким дом. кинотеатрам. Хочу сделать всё из «авто»-динамиков. Вижу я не один.

 

04.05.18 изменил Datagor. Добавлен чертеж ПП

Параллельный параметрический и последовательный стабилизаторы напряжения

Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “Радиолюбитель“, в разделе “Практикум начинающего радиолюбителя“, мы продолжим рассмотрение статьи “Источники питания радиолюбительских устройств“. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки


Сегодня мы рассмотрим два простейших стабилизатора напряжения:
— параллельный параметрический стабилизатор напряжения на стабилитроне;
– последовательный стабилизатор напряжения на биполярном транзисторе.

Параллельный параметрический стабилизатор напряжения на стабилитроне

Полупроводниковый стабилитрон —  (другое название – диод Зенера)  предназначен для стабилизации постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора он выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах ему отводится только роль источника опорного напряжения.

Один из внешних видов и обозначение стабилитрона:

Как работает стабилитрон

Напряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр). При таком включении через стабилитрон течет обратный ток – Iобр.
При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения. В этот момент вольтамперная характеристика стабилитрона (В

4 схемы на Регулятор напряжения своими руками 0-220в

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

а,а,б,а.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу  до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Название Мощность Напряжение стабилизации Цена Вес Стоимость одного ватта
Module ME 4000 Вт 0-220 В 6.68$ 167 г 0.167$
SCR Регулятор 10 000 Вт 0-220 В 12.42$ 254 г 0.124$
SCR Регулятор II 5 000 Вт 0-220 В 9.76$ 187 г 0.195$
WayGat 4 4 000 Вт 0-220 В 4.68$ 122 г 0.097$
Cnikesin 6 000 Вт 0-220 В 11.07$ 155 г 0.185$
Great Wall 2 000 Вт 0-220 В 1.59$ 87 г 0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Подборка тематических выдержек из статей

LM317T схема включения | Практическая электроника

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

 

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

Урок 1.12 Стабилизаторы напряжения — Радиомастер инфо

 

Стабилизатор напряжения, это устройство, которое при изменении входного напряжения и тока нагрузки удерживает выходное напряжение на заданном неизменном уровне.

 

 

Простейший стабилизатор напряжения, схема:

Основным элементом стабилизатора является стабилитрон, на схеме он обозначен VD. Стабилитрон, это диод, с определенным пробивным обратным напряжением. Напряжение, при котором наступает пробой, называется напряжением стабилизации. Это напряжение остается постоянным при изменении тока через стабилитрон от значения Iст мин до Iст макс. (показано на графике ниже). Величина тока стабилизации задается балластным резистором R. Именно ограничение тока не позволяет выходить из строя стабилитрону при пробивном напряжении на нем. Пробивное напряжение у стабилитрона является рабочим и называется напряжением стабилизации.

Как работает стабилизатор напряжения, рассмотрим на конкретном примере.

Допустим, на выходе нужно иметь постоянное напряжение 12 В, при напряжении на входе 220 В. Задаем диапазон допустимого изменения напряжения на входе, например ±10%. Это значит, что напряжение будет изменяться от 198 В до 242 В. Напряжение после выпрямления диодами так же будет изменяться на ±10%. Но даже уменьшенное на 10% оно должно превышать необходимое на выходе 12 В на величину падения напряжения на балластном резисторе R. С учетом этого, для работы стабилизатора выберем трансформатор, вторичная обмотка которого будет обеспечивать после диодов 15 В, при напряжении на входе трансформатора 220 В. Тогда, при изменении напряжения на входе на ±10% напряжение после выпрямления диодами будет изменяться от 13,5 В до 16,5 В. На балластном резисторе будет падать максимум 4,5 В. Ток стабилитрона возьмем приблизительно средний, 20 мА (смотри слева на вольт-амперной характеристике). Это напряжение делим на выбранный ток стабилитрона 20 мА (0,02 А) и получаем величину сопротивления балластного резистора:

4,5 : 0,02 = 225 Ом, выбираем ближайший стандартный номинал 220 Ом, мощность рассеиваемая этим резистором составит 4,5 В × 0,02 А = 0,09 Вт, ближайший стандарт 0,125 Вт.

Для наглядности сведем эти данные в таблицу:

Напряжение сети Напряжение после выпрямителя Ток стабилитрона Напряжение на нагрузке
220 В 15 В 14 мА 12 В
198 В 13,5 В 7 мА 12 В
242 В 16,5 В 20 мА 12 В

Вывод.

При изменении напряжения на первичной обмотке трансформатора от 198 В до 242 В, напряжение после выпрямления диодами будет меняться от 13,5 В до 16,5 В, а на выходе стабилизатора напряжение будет оставаться равным 12 В. Все лишнее напряжение будет падать на балластном резисторе R.

Другими словами при повышении напряжения ток через стабилитрон будет увеличиваться, что приведет к увеличению падения напряжения на балластном резисторе, в результате чего на выходе стабилизатора напряжение останется неизменным.

Основным недостатком рассмотренной схемы является то, что ток нагрузки не может превышать 0,1 тока через стабилитрон. В нашем примере, максимальный ток нагрузки не может превышать 20 мА × 0,1 = 2 мА. Если ток будет больше, то выходное напряжение не сможет удерживаться на заданном уровне 12 В.

Стабилизатор напряжения с усилителем на транзисторе.

Чтобы стабилизатор мог обеспечивать больший ток в нагрузке, применяют усилители на транзисторах. Ниже приводится простейшая схема стабилизатора напряжения с усилителем на одном транзисторе.

Принцип работы этого стабилизатора аналогичный описанному выше. Отличие состоит в том, что ток нагрузки не течет через стабилитрон, а течет через коллектор-эмиттер транзистора. Стабилитрон поддерживает на базе транзистора стабильное напряжение, такое же стабильное напряжение, отличающееся на небольшое (меньше 1 вольта) падение напряжения на открытом pn переходе база-эмиттер транзистора, будет и на нагрузке.

Максимальный ток нагрузки будет равен току стабилитрона, умноженному на коэффициент усиления транзистора, который может быть равен 10 и намного выше.

Для повышения коэффициента стабилизации при больших токах нагрузки может применяться несколько транзисторов. Выпускаются микросхемы, внутри которых собраны все детали стабилизатора. Эти микросхемы имеют всего три вывода для подключения: вход, общий и выход. Стабилизаторы, схемы которых построены по такому принципу, называются компенсационными.

Основной недостаток компенсационных стабилизаторов – большая мощность, рассеиваемая на регулирующем элементе. При больших токах обязательно применение радиаторов для охлаждения. Такой принцип не позволяет достигать высоких значений коэффициента полезного действия (кпд).

Импульсный стабилизатор напряжения.

Для повышения кпд стабилизаторов был разработан принцип на основе широтно-импульсного модулятора.

Суть этого принципа в следующем. Переменное напряжение после выпрямления диодами подается на схему, состоящую из импульсного ключа и генератора прямоугольных импульсов частотой несколько килогерц. Эти импульсы открывают и закрывают мощный транзисторный ключ. После прохождения ключа импульсы преобразуются в постоянное напряжение. Чем больше длительность этих импульсов, тем выше постоянное напряжение. Если на выходе поставить устройство контроля за величиной постоянного напряжения и связать его с управлением длительностью импульсов генератора, то получим эффективный стабилизатор.

Например, зададим выходное напряжение 12 В. Если оно начнет по каким-либо причинам увеличиваться устройство контроля начнет уменьшать длительность импульсов генератора и вернет выходное напряжение в норму. Если выходное напряжение начнет уменьшаться, то по этой же причине длительность импульсов генератора начнет увеличиваться и компенсирует это уменьшение.

Мощный ключ в такой схеме имеет два устойчивых состояния – полностью открыт или полностью закрыт. При этом величина выходного напряжения прямо пропорциональна времени открытого состояния ключа. Падение напряжения на нем минимально и он практически не греется, что существенно повышает кпд таких стабилизаторов.

Пример структурной схемы импульсного ста

Цепи стабилизатора напряжения

с использованием транзистора и стабилитрона

В этой статье мы подробно обсудим, как создавать индивидуальные схемы транзисторных стабилизаторов напряжения в фиксированных режимах, а также в переменных режимах.

Все цепи линейного источника питания, которые предназначены для получения стабилизированного постоянного напряжения и тока на выходе, в основном включают в себя транзисторные и стабилитронные каскады для получения требуемых регулируемых выходов.

Эти схемы, в которых используются дискретные части, могут быть в виде постоянно фиксированного или постоянного напряжения или стабилизированного регулируемого выходного напряжения.

Простейший регулятор напряжения

Вероятно, самым простым типом стабилизатора напряжения является стабилитрон шунтирующего стабилизатора, который работает с использованием базового стабилитрона для регулирования, как показано на рисунке ниже.

Стабилитроны имеют номинальное напряжение, эквивалентное предполагаемому выходному напряжению, которое может точно соответствовать желаемому выходному значению.

Пока напряжение питания ниже номинального значения напряжения стабилитрона, он показывает максимальное сопротивление в диапазоне многих МОм, что позволяет питанию проходить без ограничений.

Однако, в момент, когда напряжение питания увеличивается сверх номинального значения «напряжения стабилитрона», происходит значительное падение его сопротивления, в результате чего перенапряжение шунтируется на землю через него, пока напряжение питания не упадет или не достигнет уровня напряжения стабилитрона. .

Из-за этого внезапного шунтирования напряжение питания падает и достигает значения стабилитрона, что вызывает повторное увеличение сопротивления стабилитрона. Затем цикл быстро продолжается, обеспечивая стабилизацию подачи на номинальном значении стабилитрона и никогда не позволяя ему превышать это значение.

Чтобы получить указанную выше стабилизацию, входное напряжение должно быть немного выше требуемого стабилизированного выходного напряжения.

Избыточное напряжение выше значения стабилитрона вызывает срабатывание внутренних «лавинных» характеристик стабилитрона, вызывая мгновенный эффект шунтирования и падение напряжения питания до тех пор, пока оно не достигнет номинального значения стабилитрона.

Это действие продолжается бесконечно, обеспечивая фиксированное стабилизированное выходное напряжение, эквивалентное номинальному значению стабилитрона.

Преимущества стабилизатора напряжения на стабилитроне

Стабилитроны очень удобны там, где требуется стабилизация постоянного напряжения при малом токе.

Стабилитроны легко настраиваются и могут использоваться для получения достаточно точного стабилизированного выходного сигнала при любых обстоятельствах.

Для настройки каскада стабилизатора напряжения на основе стабилитрона требуется только один резистор, и его можно быстро добавить в любую схему для достижения желаемых результатов.

Недостатки стабилизаторов со стабилизацией напряжения

Хотя источник питания со стабилизацией стабилизации сигнала является быстрым, простым и эффективным методом достижения стабилизированного выхода, он имеет несколько серьезных недостатков.

  • Выходной ток низкий, что может поддерживать высокие токовые нагрузки на выходе.
  • Стабилизация возможна только при малых дифференциалах входа / выхода. Это означает, что входное напряжение не может быть слишком высоким, чем требуемое выходное напряжение. В противном случае сопротивление нагрузки может рассеять огромное количество энергии, что сделает систему очень неэффективной.
  • Работа стабилитрона обычно связана с генерацией шума, который может критически повлиять на работу чувствительных схем, таких как конструкции усилителей Hi-Fi, и других подобных уязвимых приложений.

Использование «усиленного стабилитрона»

Это версия с усиленным стабилитроном, в которой используется BJT для создания переменного стабилитрона с улучшенными возможностями управления мощностью.

Давайте представим, что R1 и R2 имеют одинаковое значение, что создаст достаточный уровень смещения для базы BJT и позволит BJT работать оптимально. Поскольку минимальное требование к прямому напряжению базового эмиттера составляет 0,7 В, BJT будет проводить и шунтировать любое значение, превышающее 0,7 В или самое большее 1 В, в зависимости от конкретных характеристик используемого BJT.

Таким образом, выход будет стабилизирован приблизительно на уровне 1 В. Выходная мощность этого «усиленного переменного стабилитрона» будет зависеть от номинальной мощности BJT и номинала нагрузочного резистора.

Однако это значение можно легко изменить или отрегулировать до другого желаемого уровня, просто изменив значение R2. Или проще, заменив R2 горшком. Диапазон потенциалов потенциометра R1 и R2 может составлять от 1 кОм до 47 кОм, чтобы получить плавно регулируемый выходной сигнал от 1 В до уровня питания (максимум 24 В).Для большей точности вы можете применить следующую формулу делителя напряжения:

Выходное напряжение = 0,65 (R1 + R2) / R2

Недостаток стабилитрона

Еще раз, недостатком этой конструкции является высокая рассеиваемая мощность, которая увеличивается пропорционально разница на входе и выходе увеличивается.

Чтобы правильно установить значение резистора нагрузки в зависимости от выходного тока и входного питания, можно соответствующим образом применить следующие данные.

Предположим, что требуемое выходное напряжение составляет 5 В, требуемый ток — 20 мА, а входное напряжение — 12 В.Тогда, используя закон Ома, мы имеем:

Нагрузочный резистор

= (12-5) / 0,02 = 350 Ом

Вт = (12-5) x 0,02 = 0,14 Вт или просто 1/4 Вт.

Схема регулятора последовательного транзистора

По сути, последовательный стабилизатор, который также называется последовательным транзистором, представляет собой переменное сопротивление, создаваемое с помощью транзистора, подключенного последовательно с одной из линий питания и нагрузкой.

Сопротивление транзистора току автоматически регулируется в зависимости от выходной нагрузки, так что выходное напряжение остается постоянным на желаемом уровне.

В цепи последовательного регулятора входной ток должен быть немного больше, чем выходной ток. Эта небольшая разница — единственная величина тока, которая используется схемой регулятора сама по себе.

Преимущества последовательного регулятора

Основным преимуществом схемы последовательного регулятора по сравнению с регулятором шунтового типа является его лучшая эффективность.

Это приводит к минимальному рассеянию мощности и потерям из-за тепла. Из-за этого большого преимущества

Принципиальная схема

и его работа

В системе питания регулятор является важным компонентом, используемым для управления выходной мощностью в силовой электронике.Силовую электронику можно определить как управление, а также преобразование электроэнергии в части электроники. Стабилизатор напряжения генерирует стабильный выходной сигнал при изменении входа или нагрузки. Существуют различные типы стабилизаторов напряжения, такие как стабилитрон, последовательный, шунтирующий, фиксированный положительный, IC, регулируемый, отрицательный, двойное отслеживание и т. Д. В этой статье обсуждается обзор серийного транзисторного регулятора напряжения.

Что такое стабилизатор напряжения серии транзисторов?

Последовательный стабилизатор напряжения можно определить как регулятор, который имеет ограничения, такие как высокое рассеивание, менее эффективный, а также напряжение транзистора и напряжения стабилитрона при повышении температуры.


Схема последовательного транзисторного регулятора напряжения

Эта схема регулятора напряжения показана ниже. Следующая схема может быть построена как на транзисторе, так и на стабилитроне. В этой схеме ток нагрузки протекает через транзистор серии Q1. Это причина называть этот регулятор последовательным транзисторным регулятором напряжения. Когда на входные клеммы схемы подается нерегулируемый источник постоянного тока, мы можем получить регулируемый выход через нагрузку.Здесь стабилитрон обеспечивает опорное напряжение.

Схема последовательного регулятора напряжения транзистора

Регулятор напряжения последовательного транзистора работает , когда напряжение на базе транзистора поддерживается на уровне стабильного напряжения на диоде. Например, если напряжение стабилитрона равно 8 В, базовое напряжение транзистора останется примерно 8 В. Следовательно, Vout = VZ — VBE

Operation

Этот транзистор может работать в двух случаях, например, когда выходное напряжение увеличивается и уменьшается.

Когда выходное напряжение уменьшается

Когда в цепи понижается напряжение включения / выключения, тогда напряжение BE увеличивается, что заставляет транзистор работать больше. В результате выходное напряжение будет поддерживаться на стабильном уровне.

Когда увеличивается выходное напряжение

Когда в цепи повышается выходное напряжение, тогда напряжение BE будет уменьшаться, и транзистор будет работать хуже. В результате выходное напряжение будет поддерживаться на стабильном уровне.

Преимущества / недостатки

Преимущества s регулятора напряжения этой серии перечислены ниже.

  • Основное преимущество этой схемы регулятора напряжения заключается в том, что изменения в токе Зенера уменьшаются на коэффициент ß. Следовательно, эффект импеданса стабилитрона будет значительно уменьшен, и мы сможем получить дополнительный стабилизированный выход.

Недостатки регулятора напряжения серии перечислены ниже.

  • Корректировки в пределах тока Зенера уменьшены до значительной суммы; произведенное количество не совсем стабильно.Это происходит из-за того, что как VZ, так и VBE уменьшаются при повышении комнатной температуры.
  • Изменить напряжение o / p непросто, потому что таких ресурсов нет.

Таким образом, КПД стабилитрона RPS (стабилизированного источника питания) становится чрезвычайно низким при большом токе нагрузки. В этих условиях часто используется стабилитрон, похожий на транзистор, для поддержания стабильного напряжения на выходе. По сути, транзисторные регуляторы напряжения, которыми управляет стабилитрон, подразделяются на два типа, а именно последовательные регуляторы напряжения и шунтирующие регуляторы напряжения.Вот вам вопрос, какова основная функция регулятора напряжения?

Схемы транзисторно-стабилитронного стабилизатора


Рис. 1 Типовая схема стабилитрона.

, автор Lewis Loflin

Обновлено, отредактировано в октябре 2016 г. В нем будут рассмотрены основные операции стабилитронов и их использование в качестве регуляторов напряжения. Они будут использоваться вместе с обычными биполярными транзисторами для увеличения выходного тока и могут использоваться студентами и любителями для реальных регуляторов напряжения.Нижеследующее предназначено только для информационных целей и не дает никаких гарантий.

Связанные — Эксперименты с шунтирующим стабилизатором TL431A типа регулируемого стабилитрона.

Видео на YouTube: Учебное пособие по стабилитронам.

Стабилитрон — это твердотельное устройство с двумя выводами, которое при прямом смещении будет проводить и действовать как любой другой кремниевый диод. В режиме обратного смещения всегда используются стабилитроны, предназначенные для пробоя при определенном напряжении. На рис.1 показано базовое подключение стабилитрона.

Z1 и Rs подключены последовательно, а нагрузочный резистор RL на 200 Ом параллельно Z1. Наш общий ток (Is) протекает через Rs и делится через Z1 (24 мА) и RL (51 мА). Z1 при 10,2 В поддерживает постоянное напряжение на RL, когда Vin изменяется в определенном диапазоне. Если Vin падает до 14 вольт, ток стабилитрона Iz падает, чтобы поддерживать напряжение на RL. Если Vin увеличивается, скажем, до 18 вольт, то ток стабилитрона Iz увеличивается, поддерживая напряжение на RL.

В любое время падение напряжения на Z1 плюс Rs всегда равно напряжению питания Vin, в то время как напряжение на RL, таким образом, IL постоянно.Если Rs слишком мало, чрезмерный ток приведет к перегреву Z1. Если Rs слишком велико, нам не хватает минимального тока Iz для поддержания регулирования напряжения. Обратите внимание на следующее:

 
Is = Iz + IL = 24 мА + 51 мА = 75 мА;
Rs = VRs / Is = 5,8 В / 75 мА = 77 Ом.
  

Следующий вопрос заключается в том, какой ток эта схема может обеспечить нагрузке? Давайте посмотрим на проблему.


Рис.2

На рис. 2 мы видим исправную схему стабилизации стабилитрона при Z1 = 5.1 вольт при питании 10 вольт. Но что происходит, если мы увеличиваем нагрузку от RL? Обратите внимание, что для правильной работы мы должны поддерживать минимальное значение Iz.


Рис. 3

На Рис. 3 мы понизили RL с 200 Ом до 150 Ом, увеличив IL. Хотя общий ток Rs остается неизменным, часть тока для Z1 (Iz) идет в RL, и мы находимся на грани отсутствия регулирования напряжения.


Рис. 4

На Рис. 4 RL теперь составляет 100 Ом и потребляет такой большой ток от Z1, что у нас больше нет никакого регулирования напряжения.Эта установка практически бесполезна в качестве источника питания, за исключением малых токов. Вот почему мы используем транзисторы вместе со стабилитронами.


Рис. 5

Чтобы обойти ограничения мощности, мы используем транзистор с последовательным проходом. На рис. 5 NPN-транзистор с коэффициентом усиления Hfe или постоянного тока, равным 100, фактически «умножает» 1 мА от цепи стабилитрона до 100 мА. Причина, по которой я выбрал стабилитрон на 5,6 В, заключается в том, чтобы компенсировать падение 0,6 В на переходе B-E Q1. Да, вам нужен конденсатор емкостью 100 мкФ, чтобы пульсации источника питания не вызывали проблем.По мере того, как мы потребляем больше тока нагрузки, 99% тока происходит из Q1.


Рис. 6

На рис. 6 мы используем два NPN-транзистора в конфигурации Дарлингтона для увеличения выходного тока до 1 А через нагрузку 12 Ом. Мне пришлось использовать стабилитрон на 13,2 В, чтобы компенсировать падение напряжения на двух переходах B-E.


Рис. 7

На рис. 7 мы используем Дарлингтон, такой как TIP120, для увеличения выходного тока до 1 А через нагрузку 12 Ом.


Фиг.8

На рис. 8 показан стабилизатор на стабилитроне для источника питания с отрицательной полярностью. Транзистор NPN был заменен транзистором PNP, а полярность стабилитрона и конденсатора 100 мкФ была изменена. Все текущие потоки тоже почитались.

На этом завершается введение в регулирование напряжения на основе стабилитронов.

Учебное пособие: Схемы стабилизатора транзистора-стабилитрона
Уловки и подсказки для регуляторов напряжения серии LM78XX
Базовое руководство по устранению неисправностей источника питания

Стабилизатор напряжения

на транзисторе

Стабилизатор напряжения с транзистором обычно состоит из биполярного переходного транзистора (bjt) с возможностью обработки большого тока в конфигурации эмиттерного повторителя, управляемого стабилитроном и резистором. делитель потенциала (PD) сеть.Сначала мы используем стабилитрон и резистор на входной шине, чтобы создать PD, обеспечивающий регулируемый выход. Этот выход PD затем управляет базовым переходом транзистора, поэтому его выход также регулируется. Преимущество использования транзистора с эмиттерным повторителем состоит в том, что он обеспечивает большую мощность, чем мог бы один стабилитрон.

Эти типы цепей обычно используются в кассетные магнитофоны для подачи стабилизированного напряжения на двигатель постоянного тока. Таким образом, по мере разряда батарей двигатель получает одинаковое напряжение, тем самым поддерживая постоянную скорость.

Для типа транзистора необходимо обращать внимание на его способность выдерживать ток и значение h FE . Многие транзисторы общего назначения могут выдерживать токи до 1 А, и они полезны, если все, что вам нужно, составляет 500 мА или меньше.

Если транзистор h FE был 50, и вам нужно было обеспечить выходной ток 500 мА к устройству, то мы должны помнить следующую формулу из теории транзисторов класс.

ч FE = I ВЫХ / I B

Следовательно, при перестановке получаем

I B = I ВЫХ / ч FE

I B = 0.5/50

I B = 0,010 А

Ток, проходящий через резистор R, разделяется между стабилитроном и базовым переходом, поэтому применяется следующая идентичность.

I R = I Z + I B

Из документации на стабилитрон мы находим, что нам необходимо, чтобы через стабилитрон проходил не менее 10 мА (или 0,010 А), чтобы поддерживать его в области пробоя, поэтому мы можем рассчитать I R следующим образом.

I R = 0,01 + 0,01

I R = 0,02 А

Если мы использовали стабилитрон с напряжением 6,8 В, а напряжение питания должно было быть 10 В, то падение напряжения на резисторе R составит 3,2 В, потому что мы вычитаем два напряжения, так как это частичный разряд.

Теперь, когда у нас есть напряжение на резисторе R и ток, протекающий через него, остается просто использовать закон Ома для вычисления его значения.

R = V / I

R = 3.2 / 0,02

R = 160 Ом

Требования к питанию

Когда выходной ток схемы равен нулю (когда мы снимаем нагрузку), весь ток (0,02 А) пройдет через резистор R и стабилитрон. Поскольку нам известны напряжения на обоих элементах PD и ток, протекающий через них, мы можем рассчитать их требования к мощности.

Мощность = ток × Напряжение

Требуемая мощность стабилитрона = 0,02 × 6,8

Требуемая мощность стабилитрона = 0.136 Вт

Требуемая мощность резистора

= 0,02 × 3,2

Требуемая мощность резистора

= 0,064 Вт

Как вы можете видеть, требования к мощности стабилитрона очень малы, потому что нам нужен очень небольшой ток от PD, идущий к базе bjt, а bjt управляет мощностью через нагрузку.

Цепь регулятора напряжения постоянного тока

— Пост электроники

Регулятор напряжения постоянного тока

Регулятор напряжения постоянного тока — это устройство, которое поддерживает постоянное выходное напряжение обычного источника питания независимо от колебаний нагрузки или изменений на входе a.c. вольтаж .

Как правило, электронные схемы на лампах или транзисторах требуют источника постоянного тока. сила. Однако батареи для этой цели используются редко, поскольку они дороги и требуют частой замены. Итак, на практике d.c. Питание для электронных схем удобнее всего получать от коммерческого переменного тока. линий с использованием системы выпрямителя-фильтра, называемой постоянным током. источник питания.

Постоянный ток. напряжение от обычного источника питания остается постоянным, пока переменный ток напряжение сети или нагрузка не изменились.Однако во многих электронных приложениях желательно, чтобы постоянный ток напряжение должно оставаться постоянным независимо от изменений переменного тока. сеть или нагрузка. Для этого используется стабилизатор постоянного напряжения.

Типы регуляторов постоянного напряжения

Регулятор напряжения постоянного тока обычно использует электронные устройства для достижения этой цели. Различные типы регуляторов постоянного напряжения:

Стабилизатор постоянного напряжения для низких напряжений

Для низкого постоянного тока выходное напряжение (до 50 В), используется либо стабилитрон, либо стабилитрон в сочетании с транзистором.Такие блоки питания называются транзисторными блоками питания. Источник питания транзистора может давать только низкие стабилизированные напряжения, потому что безопасное значение VCE составляет около 50 В, и если оно будет выше этого значения, может произойти пробой перехода.

Регулятор напряжения постоянного тока для высоких напряжений

Для напряжений выше 50 В используются лампы накаливания в сочетании с ламповыми усилителями. Такие источники обычно называются ламповыми источниками питания и широко используются для правильной работы вакуумных клапанов.

Схема регулятора напряжения постоянного тока

Схема стабилизатора напряжения на стабилитроне

Схема стабилизатора напряжения серии

Схема регулятора напряжения обратной связи серии

Схема транзисторного шунтирующего стабилизатора напряжения

Принципиальная схема регулятора напряжения с шунтовой обратной связью

Схема регулятора напряжения накаливания

Принципиальная схема триодного регулятора напряжения серии

Схема двойного триодного регулятора напряжения серии

Схема регулятора напряжения

IC

Существует четыре основных типа регуляторов напряжения IC, поэтому я покажу вам принципиальную схему каждого из них по отдельности.

Принципиальная схема стабилизатора постоянного положительного напряжения

Принципиальная схема стабилизатора отрицательного напряжения

Схема регулируемого регулятора напряжения

Схема двойного следящего регулятора напряжения

Вам могут понравиться следующие статьи

Сасмита

Привет! Я Сасмита. В Электронной Почте.com Я продолжаю свою любовь к преподаванию. Я магистр электроники и телекоммуникаций. И, если вы действительно хотите узнать обо мне больше, посетите мою страницу «О нас». Узнать больше

Цепи стабилизации напряжения

с использованием транзистора (BJT) и стабилитрона

Цепи регулирования напряжения (регуляторы напряжения):

Регулировка напряжения в цепи означает, что нам в голову придет стабилитрон. Но это не универсальное решение для регулирования напряжения..
В этом коротком посте мы вкратце обсудим различные схемы регулятора напряжения ….
Рекомендуется прочитать о том, как стабилитрон обеспечивает стабилизацию напряжения в цепи, прежде чем продолжить ….

Стабилитрон на основе стабилитрона:



Мы можем сделать простой стабилизатор напряжения, используя стабилитрон, как показано на рисунке ниже.
Поскольку мы уже подробно обсуждали регулирование напряжения с помощью стабилитрона, здесь мы увидим ограничения / ограничения.

  1. Выходное напряжение V OUT не регулируется до точного значения.
  2. Стабилитрон обеспечивает лишь умеренную защиту от пульсаций напряжения.
  3. При изменении импеданса нагрузки стабилизатор стабилитрона не работает эффективно.
  4. Для соответствия большим колебаниям нагрузки следует использовать стабилитрон с большой номинальной мощностью. Это будет дорого.

Транзисторный стабилизатор напряжения: Схема № 1

На схеме ниже показан стабилизатор напряжения на транзисторе.
По сравнению с стабилитроном обеспечивает лучшее регулирование.
Эта схема обеспечивает регулировку напряжения при большом изменении нагрузки.
В дополнение к этому, он обеспечит высокий выходной ток с лучшей стабильностью.

Эта схема аналогична предыдущей, за исключением того, что стабилитрон подключен к базе npn-транзистора.

  • Стабилитрон используется для регулирования тока от коллектора к эмиттеру.
  • Конденсатор (C) встроен для уменьшения шума стабилитрона.
  • В сочетании с резистором (R) он также образует RC-фильтр, который используется для уменьшения пульсаций напряжения.
  • BJT используется в конфигурации эмиттер-повторитель.
    т.е. эмиттер будет следовать за базой.
  • Стабилитрон используется для регулирования базового напряжения, которое приводит к регулируемому напряжению эмиттера.

Обратите внимание, что в транзисторе ток, требуемый базой, всего лишь в 1 / hFE умноженный на ток эмиттера и коллектора. Таким образом, стабилитрон малой мощности может регулировать базовое напряжение BJT, которое может пропускать через него большой ток.

Стабилизатор напряжения на основе
BJT: Схема № 2
  • В некоторых случаях стабилитрон, подключенный к базе транзистора, не обеспечивает достаточного тока базы.
  • Для решения этой проблемы используется дополнительный транзистор, как показано на следующей схеме.
  • Этот дополнительный транзистор действует как усилитель.
  • Он усиливает ток, посылаемый на базу верхнего транзистора (т. Е. Ток базы верхнего BJT).

Спасибо, что прочитали о схемах регулирования напряжения…

Подробнее:

Идеи проекта Arduino в реальном времени (проекты аналогового ввода)
Разница между механическим и электронным коммутатором
Мини-проект электроники для студентов-дипломников
Как использовать микросхему мостового выпрямителя? Как определить терминалы?

Пожалуйста, оставьте свои комментарии ниже …


.

Оставить комментарий