Схема подключения магнетрона: Схема подключения магнетрона

Опубликовано в Разное
/
12 Июн 1973

Содержание

Цепи питания магнетрона | yourmicrowell.ru

Для нормальной работы магнетрона необходимо: наличие эмитирующего элемента и присутствие электрического и магнитного полей. Магнитное поле магнетрона создается магнитной системой состоящей из двух кольцевых магнитов, которые входят в конструкцию магнетрона. Электрическое поле возникает в результате подачи высокого напряжения на катод магнетрона. Другими словами, давайте рассмотрим подробнее, что и как, обеспечивает питание магнетрона в микроволновой печи. Схема питания магнетрона изображена на рисунке ниже.

Источник питания состоит из следующих элементов: высоковольтный — силовой трансформатор – «THV», предохранитель – “FHV”, конденсатор – “CHV” (с резистором в одном корпусе) и высоковольтный диод – “DHV”. Высоковольтный — силовой трансформатор содержит три обмотки. Обмотка «1» — является первичной и запитывается от переменного напряжения сети номиналом 220 вольт. Обмотка «2» — накальная обмотка. Эта обмотка представляет собой 2 – 3 витка обычного монтажного провода, довольно большого сечения, ведь цепь накала потребляет весьма большой ток, в районе 10 – ти ампер. С накальной обмотки снимается напряжение порядка трех вольт, необходимое для питания нити накала магнетрона. Обмотка «3» — эту обмотку принято называть анодной. Анодная обмотка – является повышающей, с ее выводов снимается высокое напряжение, порядка 2 – х киловольт, необходимое для основного питания магнетрона. Один из выводов анодной обмотки выводится под клемму, а второй соединен с корпусом трансформатора. Параметры конкретного высоковольтного трансформатора, как правило, расчитываются под параметры конкретной модели магнетрона, то есть, трансформатор и магнетрон образуют пару. Сердечник трансформатора состоит из набора «Ш — образных» пластин, изготовленных из, электротехнической стали, которые соединены в пакет посредством сварки. Высоковольтный трансформатор, без сомнения – является самым тяжелым элементом в конструкции микроволновой печи.

Высоковольтные конденсатор и диод, в совокупности образуют умножитель и выпрямитель напряжения. На схеме питания видно, что анод магнетрона “M1”, являющийся положительным электродом, соединяется с корпусом печи (далее с землей). Следовательно, анодное напряжение подается на катод магнетрона, но в отрицательной полярности. На графике видно, что напряжение, снимаемое с анодной обмотки, представляет собой синусоиду, содержащую положительные и отрицательные полупериоды переменного напряжения. Высоковольтный диод в схеме включен таким образом, что при поступлении с обмотки положительного полупериода, он открывается, и положительная полуволна не проходит к катоду магнетрона. А в цепи высоковольтного конденсатора начинает протекать ток, и конденсатор заряжается по цепи: правая обкладка конденсатора – диод – земля – анодная обмотка — высоковольтный предохранитель – левая обкладка конденсатора. Затем с анодной обмотки поступает отрицательный полупериод напряжения, диод закрывается, и отрицательная полуволна беспрепятственно проходит к катоду. В этот момент, через магнетрон, начинает разряжаться конденсатор. Напряжение, поступившее с анодной обмотки трансформатора и напряжение, снятое с конденсатора складываются, в результате на выходе умножителя мы получаем удвоенное напряжение отрицательной полярности порядка 4кВ. Это напряжение поступает на катод и благодаря этому, между электродами магнетрона возникает необходимое для его работы, электрическое поле. Таким образом, можно сказать, что магнетрон микроволновой печи, питается импульсным напряжением отрицательной полярности.

В цепь анодной обмотки, включен высоковольтный предохранитель, который предназначен для защиты высоковольтного трансформатора от перегрузок, в случае выхода из строя элементов умножителя или магнетрона. Если предположить, что высоковольтный диод или проходной конденсатор фильтра магнетрона пробиты, то в цепи питания магнетрона возникнет короткое замыкание и через анодную обмотку трансформатора начнет протекать повышенный ток, что может привести к выходу из строя высоковольтного трансформатора. В этом случае и должен сработать предохранитель. Разорвав цепь питания магнетрона, он тем самым, разгружает анодную обмотку трансформатора. Нечто подобное произойдет, если вы включите печь в режиме «микроволны» с пустой камерой. В этом случае, потребление энергии магнетроном возрастет в разы, перегрузке подвергнуться все элементы источника питания и если не сработает предохранитель, то из строя может выйти, в первую очередь, сам магнетрон, а затем любой из элементов цепи его питания.

1.6.1. Источник питания магнетрона. Микроволновые печи нового поколения [Устройство, диагностика неисправностей, ремонт]

Читайте также

ОТХОДЫ КАК ИСТОЧНИК ЭНЕРГИИ

ОТХОДЫ КАК ИСТОЧНИК ЭНЕРГИИ Переработка городских отбросов путем их обеззараживания сжиганием — вот та радикальная мера, какую гигиенисты с последних десятилетий XIX века считают оптимальной. Сжигание мусора в те годы вошло в моду, тем более что тогдашние

В ИНДУСТРИИ ПИТАНИЯ

В ИНДУСТРИИ ПИТАНИЯ В нашей стране большое внимание уделяется увеличению выпуска товаров народного потребления и улучшению их качества. Важная отрасль нашего народного хозяйства — пищевая промышленность, на долю которой приходится более половины всех потребительских

1.1. Мощный источник питания, рассчитанный на ток в нагрузке до 10 А

1.1. Мощный источник питания, рассчитанный на ток в нагрузке до 10 А Радиолюбителю необходим безопасный источник питания от сети 220 В, с помощью которого можно налаживать и испытывать самостоятельно собранные электронные устройства, а также ремонтировать устройства

1.2. Бестрансформаторный стабилизированный источник питания на интегральном стабилизаторе

1.2. Бестрансформаторный стабилизированный источник питания на интегральном стабилизаторе Когда необходим источник постоянного стабилизированного напряжения для электронных устройств с небольшим током потребления (до 150 мА), резонно применять недорогие (по

1.3. Простой источник аварийного питания

1.3. Простой источник аварийного питания Электрическая схема, представленная на рис. 1.3, удобна в применении на даче и там, где электроэнергия пока еще поступает нестабильно. Простое устройство, собранное по рекомендуемой схеме, обеспечит автоматическое включение

Глава вторая Незаменимый источник энергии

Глава вторая Незаменимый источник энергии

2.6. Блок питания

2.6. Блок питания Блок питания, как вы можете видеть из названия, отвечает за предоставление питания всем комплектующим компьютера, которые устанавливаются в материнскую плату и не имеют отдельной вилки для розетки. То есть, каждая деталь компьютера, чтобы работать,

Глава 3 Системы питания

Глава 3 Системы питания Для обеспечения функционирования роботам необходимо питание – большинство роботов используют для этого электричество. Для обеспечения мобильных роботов автономным питанием служат два источника: электрические батареи и фотоэлектрические

Глава 2 Импульсный источник вторичного электропитания конструктива ATX фирмы DTK

Глава 2 Импульсный источник вторичного электропитания конструктива ATX фирмы DTK С момента появления системных блоков персональных компьютеров они практически все комплектовались импульсными источниками питания, построенными на основе импульсных преобразователей

2.2. Конструкция блока питания

2.2. Конструкция блока питания Блоки питания для IBM совместимых компьютеров выпускаются в корпусах, унифицированных по габаритным и посадочным размерам. Все узлы блока питания расположены в металлическом корпусе, который служит для механической защиты элементов блока

3.2. Конструкция блока питания

3.2. Конструкция блока питания В состав блока питания для системного модуля персонального компьютера входят: металлический корпус, печатная плата с установленными на ней компонентами электронной схемы, вентилятор, два трехконтактных разъема для подключения к первичной

1.4. Обязательные правила при замене магнетрона

1.4. Обязательные правила при замене магнетрона При замене магнетрона необходимо строго соблюдать правила:1. Диаметр антенны (коаксиальной линии) и крепеж должны точно совпадать с оригиналом.2. Магнетрон должен плотно соприкасаться с волноводом.3. Длина антенны должна

2.2. Еще один способ проверки магнетрона

2.2. Еще один способ проверки магнетрона Отсутствие доступных простых способов достоверной проверки работы магнетронов в СВЧ-печах создает определенные проблемы при ремонте. Предлагаемый ниже метод хоть и требует навыка работы с осциллографом в режиме контроля

Уход за источниками питания

Уход за источниками питания Ежедневное обслуживание включает в себя. Проверить внешним осмотром состояние и крепление аккумуляторной батареи, генератора, реле – регулятора и соединяющих их проводов.Первое и второе техническое обслуживание. Подтянуть крепления

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ — ДВИГАТЕЛЬ (ТП — Д) И ИСТОЧНИК ТОКА — ДВИГАТЕЛЬ (ИТ — Д)

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ — ДВИГАТЕЛЬ (ТП — Д) И ИСТОЧНИК ТОКА — ДВИГАТЕЛЬ (ИТ — Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ Цель: ознакомиться с основными понятиями культуры и режима питанияКультура питания – это знание:• основ правильного питания;• свойств продуктов и их воздействия на организм, умение их правильно выбирать и

Ремонт СВЧ

Древние люди открыли огонь и с его помощью согрелись, защитились и приготовили еду. В плане готовки процесс приготовления пищи не менялся тысячелетиями. Прорыв произошел в двадцатом веке, когда придумали генератор сверх высоких частот (СВЧ) размером с кулак. Тогда решили, что можно приготовить еду и с помощью СВЧ. Электромагнитная волна заставляет колебаться молекулы воды, которые из-за трения разогреваются. Процесс разогревания пищи стал быстрым и СВЧ вошли в нашу жизнь. Бытует мнение, что в СВЧ можно готовить, а не только разогревать. Это мнение ошибочно, т.к. в процессе кипения, жаренья одни химические вещества в пище переходят в другие. Микроволнами этот процесс заменить нельзя. Суть работы СВЧ в том, что генератор, он же магнетрон, генерирует высокую частоту порядка 2,4 ГГц под действием большого управляющего напряжения около 4,2 кВ. Магнетрон по сути лампа. В любой лампе есть нагревательная спираль, которая разогревается и служит источником электронов. Напряжение нагревательной спирали 3 В при токе 20 А. Чтобы электроны пришли в движение нужно электромагнитное поле, которое генерируется трансформатором и составляет 2,1 кВ. Конденсатор и диод составляют умножитель напряжения, которое на магнетроне равно 4,2 кВ при токе 0,5 А.

Микроволновка прочно вошел в нашу жизнь. Очень обидно, когда этот прибор ломается. Схема микроволновки не сложная, поэтому весь ремонт можно сделать самому, но следует соблюдать осторожность – напряжение на вторичной обмотке трансформатора 2,1 кВ.

Табличка с паспортными данными на задней стороне печи сообщает, что напряжение в сети не должно превышать 230 В. Советская энергосистема допускает колебания напряжения в сети от 198 В (10% от 220) до 231 В (105% от 220). Частота тока в сети постоянная и составляет 50 Гц. Печь потребляет от сети 1200 Вт из которых только 800 Вт идет на разогревание пищи. Оставшиеся 400 Вт тратятся на потери в трансформаторе и раскачку магнетрона.

Кожух СВЧ закреплен тремя саморезами. Видимо из целей экономии решили не делать крепление под еще один саморез. Саморезы расположены несимметрично за счет чего и достигается надежное крепление кожуха.

После выкручивания саморезов и сдергивания на себя кожуха обнажаются внутренности печки. Самое почетное место занимает магнетрон – лампа-излучатель для ультракоротких волн. Под магнетроном располагается трансформатор. Немного слева виден большой в виде свертка конденсатор от которого на корпус выведен диод.

Видно, что магнетрон имеет два вывода. Один вывод — провод от низковольтной обмотки трансформатора, а второй — и с низкой и с высокой. Если вскрыть магнетрон, то можно увидеть что контакт с высоковольтной обмотки уходит глубже в сам резонатор. Менять местами концы проводов на магнетрон нельзя.

Силовая схема имеет вид. С1 и R1 помещены в один запаянный кожух – конденсатор. Резистор 10 Мом предназначен для быстрой разрядки конденсатора и ограничения тока при работе магнетрона. VD1 – диодный столб, состоящий из нескольких тысяч последовательно соединенных диодов, поэтому тестером прозвонить этот диод нельзя. FU1 – предохранитель, который срабатывает при ненормальной работе конденсатора, магнетрона и диода.

В самом начале цепи микроволновки стоит фильтр с предохранителем. Фильтр гасит все высокочастотные составляющие, которые проникают из трансформатора в электрическую сеть. Предохранитель защищает по большому счету первичную обмотку трансформатора.

Микроволны большой мощности являются очень опасными, поэтому в печке существует достаточно много всяких блокировок. Блокировки объединяют открывание дверцы, регулятор уровня мощности и времени, двигатель поворота блюда в один узел. Если хотя бы одна из этих блокировок не сработает, то печь не включится и лампочка освещения не засветится.

В современных СВЧ-печах вместо большого и тяжелого трансформатора вставляют более легкий и компактный импульсный блок питания. Но у меня печь с трансформатором, поэтому чинить я буду именно ее. Входная обмотка трансформатора (слева) выполнена тонкими проводами, а две вторичные обмотки (справа) имеют толстую высоковольтную изоляцию. В красном разборном контейнере размещается высоковольный предохранитель.

Для того чтобы убедиться в исправности трансформатора нужно вначале прозвонить все обмотки. Вторичная высоковольная обмотка должна прозваниваться на корпус. Один конец выведен на предохранитель, а второй – прикручен к корпусу. Вторичная низковольная обмотка и первичная не должны прозваниваться на корпус. Если под рукой есть высоковольный вольтметр, то можно смело подключить трансформатор к сети 220 В и проверить на вторичной обмотке 2100 В. Если такого тестера нет, то можно изготовить делитель напряжения. Такой делитель уменьшит все показания в 10 раз (9+1). Тогда померив напряжение показания прибора должны быть примерно 210 В. Только резисторы нужно брать высоковольтные.

Еще один способ измерить выходное напряжение трансформатора – подать меньшее переменное напряжение на вход трансформатора и по расчету вычислить напряжение на вторичной обмотке. У меня под рукой был трансформатор на 36 В. Измерив его напряжение при нагрузке на трансформатор от СВЧ получилось 38,4 В. Выходное напряжение получилось 380 В, а напряжение для нагрева спирали магнетрона – 0,6 В.

Составив пропорцию я получил полную картину напряжений трансформатора СВЧ.

38,4 – 220

380 – X

0,6 – Y

 

X = 380X220/38,4 = 2183 В

Y = 0,6X220/38,4 = 3,45 В

Если под рукой нет трансформатора для проверки можно использовать свойство сетевого трансформатора, заключающееся в обратимости входа трансформатора. Если на вход сетевого трансформатора подается 220 В, а снимается с высоковольтного выхода 2 кВ, то значит вторичная высоковольтная обмотка способна выдержать высокое напряжение без поломок. Значит, для проверки сетевого повышающего трансформатора можно подать напряжение Uф=220 В из розетки на высоковольтный выход и измерить наведенные напряжения на низковольтных входах (24,2 В и 0,38 В). Проблема в том, что у трансформатора СВЧ один вывод вторичной обмотки выведен на корпус. Подключать 220 В нужно к корпусу и выводу с предохранителем при этом на корпусе будет потенциал. Тестеровать трансформатор нельзя на проводящей поверхности и нельзя прикасаться к корпусу трансформатора при включенном напряжении. Лучше всего вначале подключить тестер, а затем включить напряжение на трансформатор.

Составив пропорцию я получил полную картину напряжений трансформатора СВЧ.

220 – 2000

24,2 – X

0,38 – Y

 

X = 24,2X2000/220 = 220 В

Y = 0,38X2000/220 = 3,46 В

Если в микроволновке используется импульсный блок питания — маленький, легкий и на транзисторах, то не нужно подавать 220 В на его выход. Также, не нужно подавать 220 В на обмотку накала магнетрона (3,5 В), она не выдержит и сгорит.

Высоковольный предохранитель располагается в разборном корпусе. Сам предохранитель состоит из стеклянной колбы с подпружиненной вставкой на 550 мА. Предохранитель вставляется в латунные держатели. Часто латунные держатели припаяны к контактным предохранителям.

Магнетрон представляет собой высоковольтную высокочастотную лампу. Для работы магнетрона нужно подать 3 В переменного напряжения для разогревания нити накала в лампе и сгенерировать 4,2 кВ переменного напряжения для работы лампы на нагрузку. Проверить работу магнетрона довольно сложно, поэтому вначале нужно прозвонить два вывода магнетрона на корпус. Ни один из выводов магнетрона на корпус прозваниваться не должен, т.е. сопротивление должно быть очень большим. Сами выводы между собой прозваниваются практически накоротко, образуя подогревающую обмотку с током 20 А при напряжении 3 В.

Сама лампа спрятана в корпусе с алюминиевыми радиаторами, которые охлаждают магнетрон во время работы.

На торце расположен сам излучатель прикрытый стальным колпачком. Под ним скрывается конец стальной сплющенной трубки в которой зажат отвод от лампы. Чтобы контакт между корпусом магнетрона и корпусом лампы был надежным, вставляют плетеное кольцо из медной проволоки. Колпачок является важной деталью — создает направленный луч из магнетрона в камеру печи. Иногда при включении СВЧ-печи из места где расположен магнетрон сыплются искры и слышны хлопки. Причиной этого может быть пробой колпачка. Колпачок стоит снять, почистить все нагары и установить. Не стоит заливать колпачок изоляционными материалами — на таких частотах они не могут быть диэлектриками.

После снятия кожуха, крепящегося на винтах обнаруживается магнит, который усиливает поле магнетрона. Точно такой же магнит стоит и в противоположном конце магнетрона. Магниты крепятся завальцованной пластиной, которая подковыривается отверткой и снимается.

Так выглядит лампа магнетрона. Естественно, что ремонту в бытовых условиях не подвергается. Медные катушки с ферритовыми сердечниками являются фильтром. Корпус магнетрона сделан из меди, а по краям – стальные переходники для надежного крепления керамических контактов.

Дальше разборка возможна только при помощи молотка. Если отбить керамику со стороны контактов, то из магнетрона вынимается два скрепленных контакта. Один более длинный, другой – короче. Оба контакта заканчиваются чашечками. Между чашечками должна стоять нихромовая спираль. Именно она прозванивается, если измерять сопротивление между контактами магнетрона. На картинке спираль отсутствует. Но по тому звонится или не звонится спираль нельзя делать вывод о работоспособности магнетрона. Спираль нужна только для нагрева среды внутри лампы.

Вместе с контактами вынимается и омедненная стальная пластина.

Со стороны сплющенной трубки можно рассмотреть медную полоску, соединяющую корпус лампы и трубку.

Сам корпус сделан из меди и внутри разделен на отсеки. Точность в изготовлении довольно высокая, что вероятно определяют и стоимость магнетрона в 30$.

Конденсатор имеет емкость 0,98 МкФ при входном напряжении 2100 В. У конденсатора есть один вход и два спаренных выхода для подключения диодного столба и магнетрона. Можно прозвонить конденсатор с помощью омметра. Как рабочий так и не рабочий оба набирали заряд. Емкость конденсатора в принципе не критична.

Лампа в СВЧ питается напряжением 220 В и имеет мощность 25 Вт. Лампа впаивается напрямую в контактную пластину. Можно использовать лампу для холодильника на 15 Вт. От такой лампы нужно срезать цоколь и припаять выводы в пластину.

В моем случае печь не грела. Магнетрон не прозванивался на корпус, конденсатор набирал заряд, все предохранители были целы. Вначале заменил магнетрон (30$), но греть не стала, зато перегорел высоковольный предохранитель. Вторым элементом я заменил конденсатор (5$). После этого печь заработала. Заодно, раз уж все детали итак новые поменял диодный столб. Из этого можно уяснить, что если выбивает высовольтный предохранитель и магнетрон не коротит на корпус нужно заменить конденсатор. Если просто не греет и все цепи исправны – заменить магнетрон, но перед этим нужно заменить диодный столб.

Неисправность

Причина

Устранение

Печь не греет, тарелка вращается, предохранитель магнетрона исправен

Неисправен магнетрон

Заменить магнетрон

Печь не греет, тарелка не вращается, предохранитель магнетрона исправен

Не срабатывает блокировка

Проверить все блокировки

Проверить предохранитель на входе печи

Заменить предохранитель

Неисправен питающий кабель

Срастить место пробоя и изолировать

Печь не греет, тарелка вращается, предохранитель магнетрона неисправен

Неисправен или конденсатор или диодный столб

Заменить конденсатор, диодный столб и предохранитель

Устройство микроволновки.

Устройство и конструкция СВЧ-печи

Главная деталь в любой СВЧ печи – это магнетрон. Магнетрон – это такая специальная вакуумная лампа, которая создаёт СВЧ-излучение. СВЧ-излучение весьма интересным образом воздействует на обычную воду, которая содержится в любой пище.

При облучении электромагнитными волнами частотой 2,45 ГГц молекулы воды начинают колебаться. В результате этих колебаний возникает трение. Да, обычное трение между молекулами. За счёт трения выделяться тепло. Оно то и разогревает пищу изнутри.  Вот так вкратце можно объяснить принцип действия микроволновки.

Конструкция микроволновки.

Конструктивно микроволновая печь состоит из металлической камеры, в которой приготавливается пища. Камера снабжена дверцей, которая не позволяет излучению выйти наружу. Для равномерного разогрева пищи внутри камеры установлен вращающийся столик, который приводится в движение мото-редуктором (мотором), который сокращённо называется T.T.Motor (Turntable motor).

СВЧ-излучение генерируется магнетроном и через прямоугольный волновод подаётся в камеру. Для охлаждения магнетрона во время работы служит вентилятор F.M (Fan motor), который прогоняет холодный воздух через магнетрон. Далее нагретый воздух от магнетрона через воздуховод направляется в камеру и также используется для нагрева пищи. Через специальные неизлучающие отверстия часть нагретого воздуха и водяной пар выводится наружу.

В некоторых моделях СВЧ-печей для формирования равномерного нагрева пищи используется диссектор, который устанавливается в верхней части камеры микроволновки. Внешне диссектор напоминает вентилятор, но он предназначен для создания определённого типа СВЧ-волны в камере так, чтобы осуществлялся равномерный прогрев пищи.

Электрическая схема микроволновки.

Давайте взглянем на упрощённую электрическую схему рядовой микроволновки (кликните для увеличения).

Как видим, схема состоит из управляющей части и исполнительной. Управляющая часть, как правило, состоит из микроконтроллера, дисплея, кнопочной или сенсорной панели, электромагнитных реле, зуммера. Это «мозги» микроволновки. На схеме всё это изображено отдельной платой с надписью Power and Control Curcuit Board. Для питания управляющей части микроволновки используется небольшой понижающий трансформатор. На схеме он отмечен как L.V.Transformer (показана только первичная обмотка).

Микроконтроллер через буферные элементы (транзисторы) управляет электромагнитными реле: RELAY1, RELAY2, RELAY3. Они включают/выключают исполнительные элементы СВЧ-печи в соответствии с заданным алгоритмом работы.

Исполнительные элементы и цепи — это магнетрон (Magnetron), мото-редуктор столика T.T.Motor (Turntable motor), охлаждающий вентилятор F.M (Fan Motor), ТЭН гриля (Grill Heater), лампа подсветки O.L (Oven Lamp).

Особо отметим исполнительную цепь, которая является генератором СВЧ-излучения.

Начинается эта цепь с высоковольтного трансформатора (H.V.Transformer). Он самый здоровый в микроволновке. Собственно, это и не удивительно, ведь через него нужно прокачать мощность в 1500 — 2000 Вт (1,5 — 2 kW), необходимых для магнетрона. Выходная же (полезная) мощность магнетрона 500 — 850 Вт.

К первичной обмотке трансформатора подводится переменное напряжение сети 220V. С одной из вторичных обмоток снимается переменное напряжение накала 3,15V. Оно подводится к накальной обмотке магнетрона. Накальная обмотка необходима для генерации (эмиссии) электронов. Стоит отметить, что ток, потребляемый этой обмоткой, может достигать 10A.

Другая вторичная обмотка высоковольтного трансформатора, а также схема удвоения напряжения на высоковольтном конденсаторе (H.V.Capacitor) и диоде (H.V. Diode) создаёт постоянное напряжение в 4kV для питания анода магнетрона. Ток анода небольшой и составляет где-то 300 мА (0,3A).

В результате электроны, эмитированные накальной обмоткой, начинают своё движение в вакууме.

Особая траектория движения электронов внутри магнетрона создаёт СВЧ-излучение, которое и нужно нам для нагрева пищи. СВЧ-излучение отводится из магнетрона с помощью антенны и поступает в камеру через отрезок прямоугольного волновода.

Вот такая несложная, но весьма изощрённая схема является неким СВЧ-нагревателем. Не стоит забывать, что сама камера СВЧ-печи является элементом данного СВЧ-нагревателя, так как представляет, по сути, резонатор, в котором возникает электромагнитное излучение.

Кроме этих элементов в схеме микроволновой печи есть множество защитных элементов (см. термовыключатели KSD и аналоги.). Так, например, термовыключатель контролирует температуру магнетрона. Его штатная температура при работе где-то 800 – 1000C. Этот термовыключатель крепится на магнетроне. По умолчанию он не показан на упрощённой схеме.

Другие защитные термовыключатели подписаны на схеме, как OVEN THERMAL CUT-OUT (устанавливается на воздуховоде), GRILL THERMAL CUT-OUT (контролирует температуру гриля).

При наличии нештатной ситуации и перегреве магнетрона термовыключатель размыкает цепь, и магнетрон перестаёт работать. При этом термовыключатель выбирается с небольшим запасом — на температуру отключения 120 – 1450С.

Весьма важными элементами микроволновой печи являются три переключателя, которые встроены в правый торец камеры СВЧ-печи. При закрытии передней дверцы два переключателя замыкают свои контакты (PRIMARY SWITCH – главный выключатель, SECONDARY SWITCH– вторичный выключатель). Третий – MONITOR SWITCH (контрольный выключатель) – размыкает свои контакты при закрытии дверцы.

Неисправность хотя бы одного из этих выключателей приводит к неработоспособности микроволновки и срабатыванию плавкого предохранителя (Fuse).

Чтобы снизить помехи, которые поступают в электросеть при работающей СВЧ-печи, имеется сетевой фильтр — NOISE FILTER.

Дополнительные элементы микроволновки.

Кроме базовых элементов конструкции, микроволновка может быть оснащена грилем и конвектором. Гриль может быть выполнен в виде нагревательного элемента (ТЭН’а) или инфракрасных кварцевых ламп. Эти элементы микроволновки очень надёжны и редко выходят из строя.

Нагревательные элементы гриля: металло-керамический (слева) и инфракрасный (справа).

Инфракрасный нагреватель представляет собой 2 последовательно включенные инфракрасные кварцевые лампы на 115V (500 — 600W).

В отличие от микроволнового нагрева, который происходит изнутри, гриль создаёт тепловое излучение, которое разогревает пищу снаружи внутрь. Гриль разогревает пищу медленнее, но без него невозможно приготовить поджаристую курочку .

Конвектор — это, не что иное, как вентилятор внутри камеры, который работает в паре с нагревателем (ТЭН’ом). Вращение вентилятора обеспечивает циркуляцию горячего воздуха в камере, что способствует равномерному прогреву пищи.

Про фьюз-диод, высоковольтный конденсатор и диод.

Элементы в цепи питания магнетрона обладают интересными свойствами, которые нужно учитывать при ремонте микроволновки.

  • Так, по умолчанию, высоковольтный конденсатор (H.V.Capacitor) имеет встроенный резистор.

    Он служит для разряда конденсатора. Дело в том, что конденсатор находится под высоким напряжением (2 кВ), и поэтому после выключения СВЧ-печи требуется его разряд. Это предохранительная мера. Также бывает, что резистор внутри конденсатора перегорает, и конденсатор не разряжается. Поэтому перед проведением ремонта микроволновки рекомендуется принудительно разряжать конденсатор на корпус.

    Внешний вид высоковольтного конденсатора 1.0µF * 2100V AC.

  • Высоковольтный диод (H.V. Diode) является комбинированным элементом и состоит из целой вереницы последовательно включенных диодов. Это позволяет составному диоду работать с высоким напряжением. Но в этом кроется подвох. Дело в том, что протестировать такой диод стандартной методикой проверки не удастся. Мультиметр просто не сможет «открыть» такой диод из-за того, что пороговое (прямое) напряжение отпирания (VF) диодов складываются. В результате в прямом и обратном включении высоковольтный диод будет иметь высокое сопротивление.

    Так, например, для диода HVR-1X3 максимальное прямое напряжение (VF) составляет 11V. Если учесть, что обычно падение напряжения на переходе в прямом включении (VF) у кремниевых диодов составляет 1 — 1.1V, то получается, что в диоде HVR-1X3 ориентировочно смонтировано 10 последовательно включенных диодов.

    Максимальное постоянное обратное напряжение такого диода — 12kV!

  • В некоторых микроволновых печах параллельно высоковольтному конденсатору устанавливается фьюз-диод (защитный диод). По сути, фьюз-диод — это двунаправленный высоковольтный супрессор. Он служит для того, чтобы защитить конденсатор от завышенного рабочего напряжения, которое чревато выходом из строя последнего. Но на практике чаще бывает так, что он сам и выходит из строя. В таком случае ремонтники просто удаляют его из цепи, как ненужный аппендикс. На деле оказалось, что микроволновки прекрасно работают и без такого диода.

Для тех, кто желает более детально разобраться в устройстве СВЧ-печей, подготовлен архив с сервисными инструкциями микроволновых печей (Daewoo, SANYO, Samsung, LG). В инструкции приведены принципиальные схемы, схемы разборки, рекомендации по проверке элементов, список комплектующих.

Также рекомендуем ознакомиться с книгой «Ремонт микроволновых печей».

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

общая схема устройства и электроники, ремонт СВЧ-печи

Схема микроволновки Samsung мало отличается от аналогичных устройств. Ознакомиться с ее описанием будет интересно многим. Это полезно для владельцев СВЧ от Самсунг и других производителей. Одним просто любопытно знать, как работает то или иное устройство. Другим знание конструкции поможет не совершать ошибок при эксплуатации. Третьи интересуются схемой, чтобы самостоятельно починить печь.

Конструкция микроволновки

Одна из важнейших деталей, которые превращают компактную камеру в СВЧ-печь, — магнетрон. Так называют вакуумную лампу, способную воспроизводить сверхвысокочастотные волны. Именно СВЧ-волны разогревают пищу. Электромагнитные волны с частотой 2,45 гигагерц воздействуют на молекулы воды в пище, заставляя их двигаться быстрее и увеличивая трение между ними. От этого пища разогревается изнутри. Тесно связана с принципом работы микроволновой печи схема устройства.

В микроволновке один из самых крупных элементов — металлическая камера, в которую ставят пищу. Дверца оборудована специальным стеклом, которое отражает высокочастотные волны. Для более равномерного разогрева пищи используется вращающаяся платформа. В движение она приводится электрическим моторедуктором.

Схема СВЧ-печи также включает в себя следующие элементы:

  • вентиляционные отверстия;
  • корпус;
  • металлическая камера;
  • дверца;
  • дверные защелки;
  • отверстия воздуховода;
  • стеклянная подставка;
  • направляющий ролик;
  • нагревательный элемент;
  • сцепляющая муфта;
  • панель управления;
  • дисплей.

В любой микроволновке есть блокировочные отверстия дверных защелок, ведь прямое воздействие высокочастотных волн негативно сказывается на любом организме.

СВЧ-излучение воспроизводится магнетроном, а в камеру поступает через прямоугольный волновод. При этом устройство нагревается. Для охлаждения в корпусе есть вентилятор, который нагнетает холодный воздух к магнетрону. После нагревания он попадает в камеру с пищей. Излишки воздуха и водяной пар выходят через отверстия. Они тоже оборудованы так, чтобы не выпускать излучение.

Часть моделей из линейного ряда любого ведущего производителя оборудована диссектором. Он устанавливается внутри камеры сверху. Хотя внешне устройство больше похоже на вентилятор, оно необходимо для равномерного прогрева пищи. Это достигается за счет правильного распределения сверхвысокочастотных волн.

Электрическая схема

В микроволновых печах используются разные электрические схемы, но общий макет один. Части электроники можно разделить на управляющую и исполнительную. В первую входят такие элементы:

  • микроконтроллер;
  • панель управления;
  • дисплей;
  • электромагнитные реле;
  • зуммеры.

При их объединении получается своеобразный «мозг» микроволновой печи — плата питания и контроля. Для электроснабжения управляющей части используется понижающий трансформатор небольших габаритов. Микроконтроллер использует транзисторы для управления тремя электромагнитными реле. Их включение и выключение напрямую управляет алгоритмом работы устройства.

Магнетрон микроволновой печи относится к исполнительной части. А также к ней относится мотор стеклянной подставки, охлаждающий вентилятор, лампа подсветки и другие элементы. Один из важнейших участников цепи — высоковольтный трансформатор. Это самый крупный элемент микроволновки, которые способен принимать мощность в 1,5−2 тыс. ватт. Из них около 500−850 — полезная часть. Магнетрон состоит из таких частей:

  • антенна;
  • оплетка;
  • шасси;
  • радиатор;
  • разъем.

На первичную обмотку трансформатора поступает переменный ток с напряжением 220 вольт, а к накальной обмотке магнетрона поступает уже исходящее напряжение 3,15 вольта. Из-за этого происходит эмиссия электронов. Сила потребляемого тока может достигать десяти ампер.

А также есть вторичная обмотка. Вместе со схемой удвоения напряжения, в которой участвует высоковольтный конденсатор и диод, она образует ток с показателем 4 кВт, которым питается магнетрон. Сила у него небольшая — примерно 0,3 А.

Произведенные накальной обмоткой электроны начинают двигаться в вакууме по особой траектории. Так возникает СВЧ-излучение, которое поступает из магнетрона в камеру через антенну и прямоугольный волновод. Сама камера в этой несложной схеме играет роль резонатора. Сверхвысокочастотные волны много раз отражаются от стенок, снова проходя через пищу.

Отчасти управляющими элементами можно назвать защитные механизмы. Например, термовыключатели предотвращают возможный перегрев. Нормальная рабочая температура — от 80 до 100 градусов. Один из термовыключателей устанавливается на магнетрон. Еще два контролируют температуру воздуховода и гриля.

Если один из датчиков распознает критическое значение, то термовыключатель размыкает цепь. Электричество перестает поступать на магнетрон. Обычно это происходит при 120−145 градусах — такая температура все еще безопасна.

В правый торец камеры микроволновки, напротив которого расположена дверца, встроены три переключателя. Главный и вторичный замыкают контакты при закрытии печи, а контрольный размыкает. Если хотя бы один переключатель выйдет из строя, то сработает плавкий предохранитель, и устройство не будет включаться.

Для снижения помех, происходящих в электросети, есть сетевой фильтр.

Дополнительные элементы

В микроволновке есть несколько дополняющих частей. Зачастую СВЧ-печь оснащается грилем в виде нагревательных дуг или инфракрасных кварцевых ламп. В паре с ним работает конвектор. Эти элементы довольно надежны и ломаются в исключительных случаях.

Инфракрасный нагреватель обычно выполняется в виде двух последовательно включенных кварцевых ламп. При их мощности в 500−600 ватт они потребляют ток с напряжением 115 вольт. В отличие от микроволнового варианта нагрева, гриль делает это от верхних слоев ко внутренним. Хотя на это тратится больше времени, иначе поджарить корочку не получится.

Конвектор необходим для правильной циркуляции воздуха. Это помогает пище равномерно разогреться.

Особые части

В цепи питания магнетрона есть особые элементы, свойства которых нужно обязательно учитывать при самостоятельном ремонте. В первую очередь это касается высоковольтного конденсатора. В него встроен резистор, необходимый для разряда. Конденсатор во время работы находится под напряжением до 2 кВ. Однако после окончания работы он может не разрядиться. Это случится при условии, что внутренний резистор перегорел. Поэтому существует важная предохранительная мера: перед началом ремонта микроволновой печи надо принудительно разрядить конденсатор.

Большой высоковольтный диод состоит из множества маленьких. Благодаря их последовательному подключению комбинированный элемент может работать с большим напряжением. Однако это исключает возможность проверки диода стандартной методикой, ведь устройство имеет высокое сопротивление как при прямом, так и при обратном включении.

Для многих диодов наибольшее возможное прямое напряжение — 11 вольт, оно достигается путем последовательного соединения десятка более мелких частей. При такой комбинации максимальное постоянное обратное напряжение достигает 12 киловольт.

Двунаправленный высоковольтный супрессор — защитный диод, устанавливаемый параллельно высоковольтному конденсатору. Он необходим для защиты от повышенного напряжения, но часто выходит из строя. Однако микроволновка будет работать даже без него — во время ремонта защитный диод можно просто удалить. По возможности лучше заменить его на новый — так высоковольтный конденсатор будет служить дольше.

Подробную схему микроволновой печи конкретного производителя лучше искать в родной инструкции. Найти ее можно на сайте производителя. Руководство должно содержать рекомендации по проверке элементов, список входящих деталей, схемы и порядок разбора.

Правила безопасности

При использовании и ремонте любой бытовой техники нужно соблюдать правила безопасности. Их нарушение может не только вывести устройство из строя, но и навредить здоровью или жизни человека.

Правильно пользоваться микроволновкой легко:

  • Если дверца открыта, то включать печь нельзя. Такое возможно при повреждении волновода или системы блокировки дверцы.
  • Нельзя подключать снятый магнетрон, это опасно для жизни.
  • Не стоит эксплуатировать печь со сломанными вентилятором, иначе это приведет к поломке магнетрона.
  • Какие-либо действия с деталями микроволновки допустимы лишь после выключения из сети и полной принудительной разрядки высоковольтного конденсатора.
  • Когда ремонт завершен, из волновода нужно удалить все предметы вне зависимости от их размера.
  • Нельзя включать печь без нагрузки. Если нужно отработать ее в холостом режиме, то необходимо обязательно поставить какую-нибудь пищу. Ее можно заменить на емкость с водой.

При разборке следует фотографировать каждый шаг. Если возникнут проблемы со сборкой, то можно будет воспользоваться имеющимися фотографиями. Желательно запечатлеть изначальное положение и крепление всех деталей с помощью мобильных телефонов или цифровых фотоаппаратов.

Особенности ремонта

Одна из самых частых неисправностей связана с тем, что микроволновка никак не реагирует на открытие дверцы и действия с панелью уравнения. Не реже случается так, что печь не греет, хотя и демонстрирует признаки работоспособности: лампочки горят, стеклянный столик вращается.

Если нет реакции на запуск

Сначала нужно проверить, поступает ли ток на сетевой фильтр. Для этого кожух снимают, а высоковольтный конденсатор принудительно разряжают. Мультиметром проверяют шнур питания. Все провода, идущие от розетки до клемм, должны прозваниваться. Клемма заземления должна прозваниваться на корпус.

Если провод цел, то надо проверить состояние сетевого предохранителя. Его можно найти на плате фильтра. В случае неисправности придется поставить такой же. Важно учитывать, что к сгоранию предохранителя привела более серьезная неисправность — не будет лишним осмотреть микроволновку.

При визуальном осмотре лучше пользоваться фонариком и лупой. О проблеме сигнализируют такие факторы:

  • пробои и аномальные отверстия в элементах;
  • потемнения, похожие на гарь;
  • вздутые конденсаторы или деформация других элементов.

Диагностировать неисправность поможет обоняние. Запахи горелой изоляции, вышедших из строя печатных плат или трансформаторного масла довольно яркие, поэтому легко определяются. Если понять, откуда исходит запах, то можно локализовать проблему.

Свет без обогрева

Зачастую к такой ситуации приводят неисправности с высоковольтной цепью или магнетроном. Но перед проверкой этих компонентов надо осмотреть камеру. Нужно убедиться, что нигде нет прожженных отверстий, загрязнений и стертой эмали. Прямоугольную пластину из радиопрозрачного диэлектрика, расположенную слева, надо снять и особо внимательно рассмотреть. Для этого придется промыть его спиртом.

Если на пластине есть сквозные отверстия или потемнения, то ее придется заменить. Скорее всего, это случилось из-за того, что внутрь печи ставили металлическую посуду либо забывали про своевременную чистку.

В цепи магнетрона надо проверить предохранительный диод. Если он сгорел, то достаточно просто поставить новый. Деталь должна иметь оригинальные параметры.

Прогоревший колпачок антенны говорит о необходимости замены магнетрона. То же касается и пробоев в корпусе. Если микроволновая печь служила дольше пяти лет, то ремонт может быть нецелесообразен — экономически выгоднее купить новую технику.

СХЕМА МИКРОВОЛНОВКИ

   Микроволновая печь нашла широкое применение в области бытовых электроприборов для приготовления пищи. Сегодня будет рассмотрено устройство микроволновой печи и типовая схема. Схема работы достаточно интересная, поскольку в микроволновой печи не используется нагревательного элемента, так в чем же секрет? Почему в ней вода начинает кипеть, а тем временем сосуд, в которой налита эта вода, остается холодным? Тут нет никакого волшебства. Дело в том, что в микроволновой печи собрана целая СВЧ станция, главным звеном которой является — магнетрон. Магнетрон — электронная лампа, которая генерирует электромагнитные волны высокой частоты, это происходит благодаря воздействию потока электронов с магнитным полем. Элементы устройства магнетрона:

  1. Металлический колпачок насажан на керамический изолятор 2. 
  3. Внешний кожух магнетрона.
  4. Фланец с отверстиями для крепления. 
  5 Кольцевые магниты служат для распределения магнитного поля. 
  6. Керамический цилиндр для изоляции антенны. 
  7. Радиатор служит для лучшего охлаждения. 
  8. Коробочка фильтра. 
  9. Узел соединения магнетрона с источником питания содержит переходные конденсаторы, которые вместе с дросселями образуют СВЧ фильтр для защиты от проникновения СВЧ излучения из магнетрона. 
  10. Выводы питания.

   Рабочая частота магнетрона специально настроена на частоту резонанса молекул воды, поток электронов заставляет молекулам двигаться с очень большой скоростью, именно это вызывает реакцию кипения. Как мы знаем, почти все организмы и растения в себе содержат воду, поэтому поджаривая мясо мы на самом деле испаряем содержащуюся там воду, ту же функцию делает и магнетрон, только без теплоты и огня. 

   Для работы магнетрона нужно иметь высокое напряжение, которое получается от сетевого трансформатора, его чаще называют МОТ-ом. Такой трансформатор обеспечивает напряжение 2000-2500 вольт при силе тока 700-900мА для питания анодной цепи магнетрона. Ток после трансформатора выпрямляется высоковольтным диодным столбом и только потом поступает на магнетрон. Питание накальной цепи часто обеспечивает отдельный трансформатор. В духовке микроволновки мы можем увидеть осветительную лампу и вентилятор. Функциональная схема блока управления микроволновой печи приведена на рисунке ниже:

   Микроволновые печи с электромеханическим управлением обычно имеют стандартную электросхему. Отличия между различными моделями незначительны. Силовая часть печей с электронными блоками управления практически не отличается от печей с электромеханическим управлением. На принципиальной схеме эти отличия проявляются лишь в том, что вместо контактов таймера присутствуют контакты реле. Такая взаимозаменяемость блоков управления позволяет успешно проводить ремонт сгоревшей электроники, путем замены блока управления на похожий от другой модели. Типовая принципиальная схема механической микроволновой печи Samsung RE290D:

   Другие схемы микроволновок находятся в архивах — клик для скачки.

— принципиальные схемы микроволновок LG
— принципиальные схемы микроволновок SAMSUNG
— принципиальные схемы микроволновок PANASONIC

   Микроволновая печь получила название СВЧ печь, поскольку в ней генерируются волны сверх высокой частоты, поэтому при ремонте таких печей следует соблюдать предельную бдительность и осторожность. Излучение опасно, особенно на близком расстоянии — до 1 метра! А для регистрации излучения можно собрать простейший пробник:

Originally posted 2019-03-24 09:58:49. Republished by Blog Post Promoter

Микроволновые печи с электромеханическим управлением

Микроволновые печи с электромеханическим управлением обычно имеют стандартную электрическую схему. Отличия между различными моделями незначительны и не носят принципиального характера.

Силовая часть печей с электронными блоками управления практически не отличается от печей с электромеханическим управлением. На принципиальной схеме эти отличия проявляются лишь в том, что вместо контактов таймера присутствуют контакты реле. Иногда вместо репе ставится симистор, однако режим его работы фактически тот же, что и у таймера.

Такая взаимозаменяемость блоков управления позволяет, в частности, вдыхать новую жизнь в печи с напрочь сгоревшей электроникой путем замены электронного блока управления на электромеханический или на электронный, но от другой модели. Ограничения на подобную замену связаны, в основном, с габаритными размерами, особенностями крепежа и конструкцией механизма открытия дверцы.

В качестве примера рассмотрим схему микроволновой печи «Samsung RE290D», изображенной на рис. 1.

Рис. 1. Принципиальная электрическая схема микроволновой печи «Samsung RE290D»

Чтобы включить СВЧ нагрев, требуется подать напряжение 220 В на первичную обмотку высоковольтного трансформатора. Это будет происходить, если контакты микропереключателя «Monitor switch» (MS) разомкнуты, а контакты всех остальных элементов цепи замкнуты. Рассмотрим условия, при которых устанавливается требуемое состояние контактов.

Термореле «cavity TCO» и «magnetron TCO» замкнуты, если температура камеры и магнетрона не превышает допустимой температуры.

Микропереключатели «primary switch» (PS) и «secondary switch» (SS) осуществляют блокировку включения магнетрона при открытой дверце и замыкаются при ее закрытии. На рисунке состояние микропереключателей соответствует открытой дверце.

Включение микроволновой печи происходит при установке ручки таймера на заданное время. При этом замыкаются контакты «timer switch» (TS), находящиеся внутри таймера. На обмотку страхующего реле «safety relay» начинает поступать напряжение, и его контакты замыкаются. В результате включаются электродвигатели таймера и вентилятора, а на трансформатор через сопротивление «resistor» подается напряжение.

Микропереключатель «monitor switch» контролирует исправную работу элементов блокировки дверцы. Если по какой-либо причине микропереключатели PS и SS перестанут размыкаться, то попытка включить печь с открытой дверцей приведет к перегоранию предохранителя «monitor fuse».

Вследствие этого включение реле SR станет невозможным, и генерации СВЧ мощности не произойдет. Следует обратить внимание, что для согласованной работы микропереключатель PS должен замыкаться позже, а размыкаться раньше, чем, соответственно, разомкнутся и замкнутся контакты MS. Нарушение этого синхронизма приведет к тому, что контакты PS замкнутся до того, как разомкнется MS, или наоборот, контакты MS замкнутся раньше, чем разомкнется PS. В обоих случаях это приведет к кратковременному короткому замыканию по входу с последующим перегоранием предохранителя. К сожалению, подобный асинхронизм в работе микропереключателей явление нередкое, поэтому, если в микроволновой печи без всяких видимых причин при закрытии или открывании дверцы горят предохранители, проблема, скорее всего, именно в несогласованной работе микропереключателей.

Резистор R1 служит для снижения пускового тока и работает лишь несколько миллисекунде процессе каждого включения, до тех пор пока не сработает реле «inrush relay», напряжение на которое подается одновременно с началом прохождения тока через резистор.

Необходимость сопротивления вызвана тем, что в начальный момент, высоковольтный конденсатор разряжен и в положительный полупериод, когда на диод подано прямое смещение, вторичная обмотка трансформатора оказывается замкнута «накоротко». В результате, при включении печи, происходит резкий бросок тока и она вздрагивает как от испуга, передавая свое душевное состояние окружающим. Сопротивление позволяет ограничить пусковой ток на некоторое время, в течение которого конденсатор постепенно заряжается до номинального значения и печь плавно входит в рабочий режим.

В настоящее время большинство развитых стран имеют стандарты, ограничивающие величину пускового тока, поэтому рассматриваемые элементы становятся обязательным атрибутом микроволновых печей с электромеханическим управлением.

Микропереключатель «VPS switch», установленный на таймере, служит для регулировки мощности. При задании уровня мощности меньше максимального он осуществляет периодическое отключение печи в соответствии с рисунком

Фильтр «noise filter» служит для снижения радиопомех, проникающих по цепям питания во
внешнюю сеть. Схема содержит также лампу накаливания «lamp» и двигатели таймера «timer motor» и вентилятора «fan motor», назначение которых не требует комментариев.

В зависимости от модели микроволновой печи, она может не иметь каких-либо рассмотренных компонентов или, наоборот, иметь дополнительные (например, при использовании комбинированных способов нагрева), однако это не вносит существенных изменений в работу электрической схемы.

В отличие от силовой части микроволновых печей, схемы электронных блоков управления имеют гораздо большее разнообразие. Особенно отличаются между собой печи, не имеющие специализированного микроконтроллера, построенные на основе дискретных элементов. Это характерно для первых моделей, которые в настоящий момент не выпускаются, но еще имеются в обиходе. В связи с этим не имеет смысла рассматривать какую-либо из схем в качестве примера.

Вместо этого рассмотрим работу некоторых наиболее часто встречающихся узлов и связанные с ними неисправности.

Схема начальной установки (рис. 2), предназначена для предварительного сброса в «0» ячеек памяти ОЗУ и установки всех имеющихся в схеме триггеров, счетчиков и т.п. в исходное состояние при подаче напряжения на блок управления.

Рис. 2. Схема начальной установки

В момент включения микроволновой печи в сеть конденсатор С разряжен, поэтому напряжение на нем равно «0» и на вход «reset» контроллера поступает сигнал сброса. Через короткий промежуток времени конденсатор зарядится через сопротивление R до напряжения питания, сигнал сброса на входе исчезнет и схема будет готова к дальнейшей работе.

Иногда сигнал сброса формируется не только при включении питания, но и при его снятии. Схема устройства, выполняющего данную функцию, показана на рис. 3.

Рис. 3. Схема начальной установки и контроля питания

Данная схема производит общий сброс и в том случае, если по какой-либо причине напряжение питания на микроконтроллере превысит допустимое.

Генератор тактовых импульсов, как правило, находится внутри микроконтроллера, за исключением источника опорной частоты, в качестве которого обычно используется кварцевый резонатор. Схема его подключения и сигналы на входе (BQ1) и выходе (BQ2) каскада усиления показаны на рис. 4.

Рис. 4. Схема подключения кварцевого резонатора

Формирователь сетевых синхроимпульсов предназначен для привязки времени включения и выключения силового источника питания к моменту прохождения амплитуды сетевого напряжения через ноль. Это позволяет предотвратить нежелательные выбросы тока в момент коммутации. Схема формирователя представлена на рис. 5.

Рис. 5. Схема формирователя импульсов

Он представляет собой транзисторный усилитель ключевого типа. В отрицательный полупериод транзистор закрыт и напряжение на выходе равно нулю. В положительный полупериод транзистор быстро входит в насыщение и амплитуда сигнала на выходе становится равной напряжению питания транзистора. Изменение выходного напряжения на выходе усилителя воспринимается микроконтроллером как момент перехода сетевого напряжения через ноль.

Коммутация элементов силовой цепи, как правило, производится посредством реле, установленных на блоке управления. Схема включения реле показана на рис. 6.

Рис. 6. Схема управления включением реле

Особенностью многих схем аналогичного назначения является невозможность включения силовой цепи (реле RY1) без предварительного включения вентилятора (реле RY2) и при открытой дверце камеры. В рассматриваемом случае это достигается тем, что ток через транзистор Q3, который включает реле RY1, может протекать только при замкнутом микропереключателе «DOOR» и открытом транзисторе Q2, включающем вентилятор, лампу и двигатель столика.

Схема формирования импульсов звуковой частоты предназначена для генерации зуммером звукового сигнала. Во многих случаях эта функция выполняется микроконтроллером с помощью программных средств. Однако в некоторых печах микроконтроллер задает только время звучания сигнала, а генератор звуковой частоты выполнен на дискретных элементах. В качестве примера рассмотрим рис. 7.

 

Рис. 7. Схема генератора сигнала звуковой частоты

Схема состоит из мультивибратора на транзисторах Q1, Q2 и усилителя на транзисторе Q3.
При отсутствии управляющего сигнала все транзисторы закрыты. При поступлении сигнала управления (+5 В) база транзистора Q2 оказывается под высоким потенциалом и он отпирается. Происходит постепенный заряд конденсатора С1 через резистор R4. В какой-то момент напряжение на нем, а соответственно, и на базе транзистора Q1 превысит напряжение отпирания, транзистор Q1 откроется, в результате чего напряжение на базе транзистора Q2 упадет и он закроется.

Конденсатор начнет разряжаться через сопротивления R1, R2, пока напряжение на нем не упадет до такого значения, при котором закроется транзистор Q1. После этого весь цикл будет повторяться до тех пор, пока не исчезнет управляющий сигнал. В те моменты, когда открыт транзистор Q1, будет открываться и транзистор Q3, в результате чего на вход зуммера будет поступать переменный сигнал звуковой частоты.

Схема контроля питания (рис. 8) производит общий сброс микроконтроллера, в том случае, если питающее напряжение на нем превышает допустимый уровень.

Рис. 8. Схема контроля питания

Напряжение стабилизации на стабилитроне чуть меньше напряжения питания, поэтому в обычном режиме падение напряжения на резисторе R1 и соответственно на базе транзистора составляет доли вольта. Транзистор закрыт, но находится на грани открытия. Прирост напряжения выше номинального полностью падает на резисторе R1, поэтому даже относительно небольшое увеличение напряжения питания, свидетельствующее о неполадках в схеме стабилизации, приводит к быстрому отпиранию транзистора и формированию сигнала сброса.

Подключение клавиатуры осуществляется в мультиплексном режиме (рис. 9).

 

Рис. 9 Схема подключения клавиатуры

На линии сканирования от микроконтроллера поочередно поступают короткие импульсы, синхронно смещенные относительно друг друга по времени.

При нажатии одной из кнопок последовательность импульсов, проходящих по подключенной к ней линии сканирования, поступает на соответствующую ей линию отклика и возвращается обратно в микроконтроллер, на один из его входов. Номер входа, по которому вернулись импульсы, и время их прибытия позволяют микроконтроллеру однозначно определить, какая из кнопок в данный момент нажата.

Поскольку подключение клавиатуры во многом аналогично рассмотренному ранее подключениюзнакосинтезирующих индикаторов, то в обоих случаях можно использовать одни и те же линии сканирования.

Диоды D1 — D4 служат для предотвращения замыкания выходов микроконтроллера при одновременном нажатии нескольких кнопок. Резисторы R1 — R4 фиксируют состояние логического «0», если ни одна из кнопок на данной линии отклика не нажата.

В рассматриваемом случае активным является низкий уровень напряжения, поэтому резисторы подключены к шине питания «-5 В».

Источники питания для цепей блока управления, как правило, имеют несколько выходных напряжений. Например, на рис. 10 показан источник питания, используемый во многих микроволновых печах компании «Samsung».

Рис. 10. Типовая схема питания блока управления микроволновой печи

В цепи накала люминесцентного индикатора используется переменное напряжение 2,5 В.

Анодное напряжение — -31 В создается схемой удвоения на диоде D2 и конденсаторе С2,-работа которой аналогична работе силового блока питания. Питание репе и зуммера осуществляется от стабилизированного напряжения -12 В, формируемого выпрямителем на диоде D1, управляющим транзистором Q, источником опорного напряжения на стабилитроне ZD и резисторе R1 и сглаживающими фильтрами на конденсаторах С1 и С3.

Дополнительный стабилизатор на интегральной микросхеме IC1 осуществляет питание микроконтроллера. На вход IC1 подается напряжение -12 В, с выхода снимается хорошо стабилизированное напряжение -5 В.

Параллельно первичной обмотке трансформатора иногда включается варистор, полупроводниковый прибор на основе окиси цинка. Назначение варистора состоит в том, чтобы предохранить блок питания от скачков напряжения (которые могут происходить при отключении мощной нагрузки, например магнетрона).

Вольт-амперная характеристика варистора напоминает аналогичную характеристику двунаправленного стабилитрона (рис. 11).

Рис. 11. Внешний вид, условное обозначение и вольт-амперная характеристика варистора

Скачок напряжения на входе трансформатора приводит к резкому снижению сопротивления варистора и, как следствие, к выравниванию напряжения. Поскольку при этом через варистор протекает большой ток, то длительное воздействие повышенного напряжения приводит к его перегоранию.

При выходе варистора из строя замену ему можно не искать, достаточно выпаять его останки из платы и зачистить обугленные места. С учетом того, что в России повышенное напряжение в сети явление нередкое, в микроволновые печи, поставляемые в нашу страну, варистор, как правило, не ставится.

В некоторых печах (например, «Moulinex») используются бестрансформаторные блоки питания (рис. 12).

Рис. 12. Схема бестрансформаторного блока питания

Вместо трансформатора в данной схеме используется делитель напряжения, основными элементами которого являются конденсаторы С1 и СЗ и резистор R2. Сетевое напряжение, выпрямленное диодом D1, делится на перечисленных элементах пропорционально их сопротивлениям.

Реактивное сопротивление конденсатора обратно пропорционально его емкости и может быть вычислено по формуле:

Если частота f измеряется в герцах, а емкость С в фарадах, то размерностью сопротивления Хс будут Омы. По сравнению с обычным резистивным делителем емкостной обладает тем преимуществом, что преобразует напряжение практически без потерь мощности.

Диод D1, помимо основной своей функции, связанной с выпрямлением напряжения, не позволяет разряжаться конденсатору С3, когда напряжение на нем превышает напряжение на входе. В итоге на конденсаторе С3 накапливается заряд, создающий постоянное напряжение величиной около 30 В.

В дальнейшем оно с помощью цепочки стабилитронов преобразуется в ряд стабилизированных напряжений, необходимых для работы блока управления. Резистор R1 служит для разрядки конденсатора С1 после отключения печи из сети. Характерной особенностью аналогичных блоков питания является то, что общая шина связана не с корпусом печи, а с одним из выводов сетевого напряжения.

Если в розетке, к которой подключена микроволновая печь, нулевой и фазовый провод перепутаны местами, то все элементы блока управления могут находиться под напряжением 220 В. Это никак не отражается на работе самого блока управления, но требует осторожности при проведении ремонтных работ.

 

Удачи в ремонте!

С магнетроном вблизи и лично

Сегодня большинство людей знакомятся с магнетроном как с источником микроволн в бытовых микроволновых печах. Микроволновое излучение передается в секцию печи по волноводу.

Типичная схема микроволновой печи. Щелкните изображение, чтобы увеличить.

Микроволновые печи также являются излюбленной мишенью мусорщиков и экспериментаторов, которые любят разбирать вещи. Магнетрон — это один из часто очищаемых компонентов. Вы можете найти обычные магнетроны для духовки на eBay по цене от 15 до 50 долларов.Также там вы найдете высоковольтные трансформаторы, необходимые для питания магнетрона. Это компоненты специального назначения, которые обычно выдают несколько киловольт для анода магнетрона и около 5 В для нити накала магнетрона. Интересно, что эти трансформаторы, похоже, находятся в том же ценовом диапазоне eBay, что и магнетроны, которые они питают.

В Интернете можно найти планы для СВЧ-печей своими руками. К сожалению, на этих страницах редко приводятся предупреждения об обратной стороне воздействия микроволн и о потенциально опасных компонентах контура духовки.Во-первых, хрусталик человеческого глаза не имеет кровообращения и склонен к перегреву под воздействием микроволнового излучения. Такое воздействие может вызвать у человека катаракту спустя годы. Кроме того, конечно, необходимо учитывать многокиловольтное напряжение, необходимое для работы магнетрона. И цепь магнетрона содержит мощный силовой конденсатор, запасенная энергия которого может быть смертельной. Существует распределенная емкость, сохраняющая энергию, о которой следует беспокоиться после выключения устройства.

Типовые соединения высоковольтной части цепи магнетрона.

Есть и другие предостережения. Керамические изоляторы, связанные с магнетроном, опасны при повреждении, поскольку они содержат оксид бериллия. Вдыхаемая пыль оксида бериллия, канцероген, может вызвать неизлечимое заболевание легких, известное как бериллиоз. Нити магнетрона содержат радиоактивный торий в смеси с вольфрамом. Не снимайте нить и не оставляйте ее без присмотра.

Магнетрон с резонатором генерирует микроволновое излучение, пропуская поток электронов мимо массива полостей, состоящих из просверленных отверстий в медном корпусе.Эти носители заряда заставляют микроволны колебаться внутри тела, а затем попадают в волновод, где без потерь передаются в корпус печи. Физические размеры резонатора определяют частоту выходного микроволнового излучения. Магнетрон, в отличие от аналогичных электронных ламп с катодом и анодом, не может усилить сигнал. Это всего лишь осциллятор.

Магнетрон подключен к выходу высоковольтного источника постоянного тока. Нагретый катод излучает электроны, которые, как в стеклянной вакуумной трубке, текут к аноду, который представляет собой весь медный корпус магнетрона.В ранних моделях внешний электромагнит с питанием от постоянного тока создавал статическое магнитное поле, перпендикулярное потоку электронов. Современные магнетроны используют постоянные магниты, среди предметов, которые часто выбрасываются. В любом случае магнитный поток и поток электронов перпендикулярны друг другу.

Резонатор магнетрона, используемый для генерации микроволнового излучения.

Под влиянием магнитного поля на поток электронов действует сила, перпендикулярная его криволинейному пути между электродами.Кривизну можно изменить, изменяя либо магнитное поле, либо электрический потенциал между катодом и анодом. При наличии сильного магнитного поля поток электронов отсутствует. При промежуточной магнитной напряженности электроны могут ударяться об анод.

На этом критическом магнитном уровне магнетрон генерирует радиочастотную энергию. Это связано с тем, что часть электронов, не достигнув анода, выбирает круговой путь в непосредственной близости от анода. Эти электроны излучают RF.Частота зависит от физического размера сборки, поэтому ранние исследователи легко могли создавать микроволновые генераторы. Только магнетроны, в отличие от обычных электронных ламп, могли излучать высокую мощность в микроволновом диапазоне радиочастотного спектра. Однако это устройство сначала имело ограниченное применение из-за его нестабильности и низкой выходной мощности.

Настоящая полость в очищенном магнетроне. Кто-то добрался до постоянного магнита, который обычно находится наверху этой полости.

Эти ограничения были преодолены за счет внедрения магнетрона с отрицательным сопротивлением или с разъемным анодом. Эта модель состояла из анода, состоящего из двух частей. Пространство между двумя полуцилиндрами изолировало их электрически, так что к каждому можно было приложить отдельные смещения. Два полуцилиндра можно было заряжать одинаковым напряжением, и в этом случае магнетрон работал так же, как и более ранние модели. Приложение немного разных напряжений к двум анодам заставляло электроны притягиваться и течь к более положительно заряженной пластине.К двум пластинам был подключен внешний генератор. Когда было приложено сильное магнитное поле, электроны следовали по петлеобразной, а не по круговой траектории к анодам, и общая выходная мощность была больше, чем в одноанодном магнетроне. Однако недостатком является то, что часть электронов возвращается на катод, который затем перегревается и высвобождает еще больше электронов, вызывая лавинообразное состояние.

Магнетрон с резонансным резонатором, также известный как магнетрон с электронным резонансом, обеспечивает мощный высокочастотный выходной сигнал и не вызывает проблемы перегрева, как в модели с разъемным анодом.Колебания создаются формой анода.

Магнетрон с резонансным резонатором состоит из одного сплошного блока, просверленного через геометрическую ось. Весь металлический блок — это анод. Обычно имеется девять (предпочтительно нечетное число) просверленных отверстий меньшего размера, равномерно расположенных вокруг центрального отверстия и каждое из которых соединено с ним посредством узкой прорези. В центральном отверстии проходят подводящие провода к нагревателю и катоду, покрытому оксидом. Через одно из маленьких отверстий проходит выходной контур связи, который позволяет извлекать высокочастотную энергию и направлять ее в волновод.

Сборка аналогична LC-генератору. Конденсаторы состоят из параллельных сторон соединительных пазов, а индукторы — из круглых отверстий. Выходная частота зависит от размеров этих элементов.

В резонирующих полостях генерируется большое количество высокочастотной энергии. Поскольку полости открыты с одного конца, они синхронизируются и функционируют как единый генератор. При включении колебания требуют немного изменяющегося времени, поэтому фаза не сохраняется.Более того, от импульса к импульсу частота может незначительно изменяться. Но это не проблема для РЛС непрерывного действия и, конечно, не для микроволновых печей.

В современных магнетронах с резонатором нагретый катод находится в центре большого центрального отверстия, из которого удаляется воздух. Постоянный магнит создает магнитное поле, перпендикулярное электрическому полю и потоку электронов.

Электроны, движущиеся от катода к аноду, под действием магнитного поля вынуждены следовать круговой траектории, которая в сочетании с прямым путем к аноду фактически представляет собой спираль из-за силы Лоренца, силы, действующей на заряженную частицу. движется через электрическое и магнитное поле.Когда электроны пересекают щели, связанные с отдельными резонансными полостями, в каждой полости формируется высокочастотное радиополе, часть которого выводится антенной и подается в волновод, а затем в нагрузку, либо в кухонную камеру, либо в сборка радара. Частота излучаемых микроволн определяется размером резонансных полостей в сочетании с размером щелей.

Современный магнетрон достаточно эффективен. Примерно 65% электроэнергии от источника питания становится микроволновым излучением.Баланс мощности рассеивается в виде тепла. Важно активное охлаждение. Это обеспечивается вентилятором, который вы слышите, когда работает микроволновая печь. Более мощные магнетроны, используемые в некоторых радиолокационных приложениях, имеют водяное охлаждение.

Магнетроны S-диапазона регулярно вырабатывают до 2,5 МВт пиковой микроволновой энергии и непрерывно обеспечивают мощность более 3,75 кВт. Эти мощные магнетроны надежны и эффективны по сравнению с другими микроволновыми генераторами, но они не обеспечивают точного контроля фазы и частоты.

Тем не менее, дни очистки магнетронов микроволновых печей подходят к концу. Появление мощных транзисторов, способных работать с микроволновыми частотами, может сделать их устаревшими. Первоначально твердотельное усиление мощности имеет более высокую стоимость, что указывает на то, что оно может раньше преобладать в крупных коммерческих, а не в жилых помещениях.

РЕШЕНО: Имеет ли значение, если провода F и FA

ИСТОЧНИК: Провода к магнетрону

Это имеет значение!

Провод от отвода высокого напряжения трансформатора высокого напряжения идет только к одной стороне конденсатора высокого напряжения.Никакой другой провод не подключен к этому выводу высоковольтного конденсатора.

Другая сторона высоковольтного конденсатора подключается к аноду (A) высоковольтного диода и к выводу «FA» магнетрона.

Катод (K) высоковольтного диода подключен к заземлению шасси.

Пара проводов, подключенных к вторичной (более тонкой) обмотке высоковольтного трансформатора, является нитью накала и подключается к клеммам «F» и «FA» магнетрона.

Должно быть «мини-руководство» (техническое описание), спрятанное внутри устройства за панелью управления или с левой стороны за решеткой, что очень полезно при поиске и устранении неисправностей, тестировании и обнаружении компонентов.

Имеется общая электрическая схема и схема.

Мы будем рады помочь вам бесплатными советами и будем признательны за вашу обстоятельную оценку нашего ответа.

Чтобы получить дополнительную бесплатную помощь, напишите мне по адресу http://www.microwavecontrol.com.

РЕШЕНО: Заменяю Магнетрон.2 терминала

ИСТОЧНИК: Провода к магнетрону

Это имеет значение!

Провод от отвода высокого напряжения трансформатора высокого напряжения идет только к одной стороне конденсатора высокого напряжения.Никакой другой провод не подключен к этому выводу высоковольтного конденсатора.

Другая сторона высоковольтного конденсатора подключается к аноду (A) высоковольтного диода и к выводу «FA» магнетрона.

Катод (K) высоковольтного диода подключен к заземлению шасси.

Пара проводов, подключенных к вторичной (более тонкой) обмотке высоковольтного трансформатора, является нитью накала и подключается к клеммам «F» и «FA» магнетрона.

Должно быть «мини-руководство» (техническое описание), спрятанное внутри устройства за панелью управления или с левой стороны за решеткой, что очень полезно при поиске и устранении неисправностей, тестировании и обнаружении компонентов.

Имеется общая электрическая схема и схема.

Мы будем рады помочь вам бесплатными советами и будем признательны за вашу обстоятельную оценку нашего ответа.

Чтобы получить дополнительную бесплатную помощь, напишите мне по адресу http://www.microwavecontrol.com.

Как работают магнетроны? — Объясни, что это за штука

Хотите приготовить ужин за пять минут или сделать самолет безопаснее? летать в непогоду? Тогда тебе понадобятся микроволновки. Это невидимое, сверхэнергетические коротковолновые радиоволны, которые распространяются на скорости света, делая важные вещи в микроволновых печах и радиолокационно-навигационное оборудование. Сделать микроволновую печь легко, если у вас есть оборудование — удобный гаджет, называемый магнетроном. Что это и как это работает? Возьмем пристальный взгляд!

Фото: Магнетрон с резонатором CV64, разработанный в Бирмингеме в 1942 году, был достаточно мал, чтобы поместиться внутри самолета.Подобные устройства впервые позволили самолетам использовать радиолокационную защиту. Выставка в Think Tank (музей науки в Бирмингеме, Англия). Приносим извинения за немного плохое качество изображения: экспонат находится в стеклянной витрине и его сложно сфотографировать.

Как работает магнетрон?

Изображение: Справа: один из рисунков высокоэнергетического магнетрона, разработанного в 1940-х годах Перси Спенсером, который усовершенствовал микроволновую печь, работая в Raytheon.(Я раскрасил его так, чтобы он соответствовал моему рисунку ниже.) Вы можете увидеть увеличенную версию этого рисунка и прочитать полную техническую информацию через Google Patents. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Магнетроны ужасно сложны. Нет, правда — они ужасно сложный! Чтобы понять, как они работают, я считаю полезным сравнить их к двум другим вещам, которые работают аналогичным образом: телевизор старого образца набор и флейта.

Магнетрон имеет много общего с электронно-лучевым. (электронная) трубка, герметичная стеклянная колба, которая превращает изображение в телевизор старого образца.Трубка — это сердце телевизора: она делает картинку вы можете увидеть, стреляя пучками электронов в экран, покрытый в химических веществах, называемых люминофором, поэтому они светятся и выделяют точки света. Вы можете прочитать все об этом в нашей основной статье на телевидение, но вот (вкратце) то, что происходит. Внутри телевизора, есть отрицательно заряженная электрическая клемма, называемая катодом который нагревается до высокой температуры, поэтому электроны «выкипают» из него. Они ускоряются вниз по стеклянной трубке, привлеченные положительно заряженный терминал или анод и достигают таких высоких скоростей, что они промчаться мимо и врезаться в люминофорный экран на конце трубки.Но Магнетрон не имеет той же цели в жизни, что и телевизор. Вместо того, чтобы делать изображение, он предназначен для генерации микроволн — и он делает это немного как флейта. Флейта — это открытая труба, наполненная воздухом. Дуть поперек верхнюю часть правильным образом, и вы заставляете ее вибрировать в определенном музыкальный тон (называемый его резонансной частотой), генерирующий звук, который вы можете услышать, который прямо соответствует длине трубка.

Задача магнетрона — генерировать довольно короткие радиоволны.Если бы вы могли их видеть, вы могли бы легко измерить их школьной линейкой. Обычно они не короче 1 мм (0,04 дюйма; самое короткое деление на метрической линейке) и не более 30 см (12 дюймов; длина типичной школьной линейки). Магнетрон делает свое дело резонирует как флейта, когда вы накачиваете в нее электрическую энергию. Но, в отличие от флейта, она производит электромагнитные волны вместо звуковых, поэтому вы не можете услышать резонансную энергию, которую он производит. (Вы также не можете увидеть эту энергию, потому что ваши глаза не чувствительны к коротковолновым, микроволновым радиация).

Краткая история магнетронов

  • 1920-е годы: американский инженер Альберт У. Халл изобретает первый магнетрон, работая в General Electric. [1]
  • 1934: Артур Л. Сэмюэл из Bell Telephone Laboratories изобретает резонаторный магнетрон. [2]
  • 1936–7: Советские ученые Николай Алексеев и Дмитрий Маляров создают магнетрон с четырехсегментным резонатором. Хотя подробности их работы просачиваются в Германию, в Великобритании это остается неизвестным. и США.[3]
  • 1939: два физика, Джон Рэндалл и Гарри Бут, работают в Бирмингемский университет, Англия, самостоятельно разработал гораздо более мощный магнетрон, который достаточно компактен, чтобы поместиться на кораблях, самолетах и подводные лодки. [4]
  • 1940-е: американский инженер Перси Спенсер случайно обнаруживает что микроволны, производимые магнетроном, обладают достаточной мощностью, чтобы нагреть и готовить еду. Он патентует микроволновую печь в 1950-х годах.
  • 1943: Впервые установлен британский резонаторный магнетрон.[3]
  • 1976: исследователи Массачусетского технологического института Джордж Бекефи и Таддеус Орзеховски разрабатывают релятивистский магнетрон, который примерно в 10–100 раз мощнее магнетрона с резонатором. Они достигают мощности 900 МВт по сравнению с 10 МВт или около того, которые тогда могли производить магнетроны с резонатором. [5]
  • 2009: исследователи из Мичиганского университета при финансовой поддержке ВВС США. объявляют о разработке более компактного магнетрона большей мощности, который может улучшить разрешающую способность радиолокационной навигации.

Фото: Внутри вашей микроволновой печи находится магнетрон, обычно сразу за панелью управления и приборной панелью справа. Если открыть дверцу, то иногда можно увидеть магнетрон и его охлаждающие ребра через перфорированную металлическую решетку, отделяющую его от основной рабочей камеры.

Узнать больше

На сайте

Книги

Статьи

Легко читаемый
История и развитие магнетронов
  • Андрей Хаф и удивительный микроволновый усилитель Джека Коупленда и Андре А.Хаэф. IEEE Spectrum, 25 августа 2015 г. Изучение работы забытого персонажа из истории микроволнового излучения.
  • [PDF] Изобретение резонаторного магнетрона и его внедрение в Канаде и США Полом А. Рэдхедом. Физика в Канаде, ноябрь / декабрь 2001 г. Это превосходный краткий отчет о том, как развивались магнетроны во время Второй мировой войны в США, Великобритании и Канаде. [Архивировано через The Wayback Machine.]
  • Полость магнетрона во Второй мировой войне: была ли секретность оправданной? Бернарда Ловелла, Notes and Records Лондонского королевского общества, Vol.58, No. 3 (сентябрь 2004 г.), стр. 283–294.
  • Личности в науке: Альберт В. Халл, Scientific American, Vol. 168, № 5, май 1943 г., стр. 195. Краткая биография первопроходца магнетронов — и почему его работа так важна в военное время.
  • Резонаторный магнетрон: не только британское изобретение Ива Бланшара и др., Журнал IEEE Antennas and Propagation Magazine, октябрь 2013 г.
Более техническая
  • Обзор релятивистского магнетрона Дмитрия Андреева, Артема Кускова и Эдла Шамилоглу.Материя и радиация в крайностях 4, 067201 (2019). Включает отличный обзор общей истории магнетронов и множество полезных ссылок.
  • Исторические заметки о резонаторном магнетроне Х.А.Х. Бут и Дж. Рэндалл. Труды Института инженеров по электротехнике и радиоэлектронике, номер 7, июль 1976 г., стр.724. Как два британских пионера разработали первые военные магнетроны.

Патенты

Работа: Иллюстрации оригинального резонаторного магнетрона Артура Сэмюэля из его Патент США №2063342: Устройство электронного разряда, любезно предоставлено Бюро по патентам и товарным знакам США.Как и на рисунках выше, анод окрашен в красный цвет, катод — в желтый, а катушка, окружающая стеклянную газоразрядную трубку, темно-серого цвета.

Если вы хотите прочитать подробные технические описания того, как устроены магнетроны и как они работают, патенты — отличное место для начала. Их не всегда так легко понять, но описания чрезвычайно подробны и, как правило, имеют очень четкие обозначенные диаграммы. Вот несколько, с которых можно начать: вы найдете гораздо больше, если выполните поиск в USPTO (или в Google Patents), используя ключевое слово «магнетрон»:

  • Патент США № 2099533: Магнетрон Дитриха Принца, Telefunken Gesellschaft, 30 июля 1935 г.Ранний немецкий дизайн магнетрона.
  • Патент США №2063342: Устройство электронного разряда, автор Артур Л. Самуэль, Bell Telephone Laboratories, 8 декабря 1936 г. Первый магнетрон с резонатором.
  • Патент США № 2408 235: Высокоэффективный магнетрон Перси Л. Спенсера, Raytheon Manufacturing Company, 24 сентября 1946 г. Полный текст патента Перси Спенсера на магнетрон резонатора, проиллюстрированный выше.
  • Патент США № 7906912: Магнетрон, выданный Такеши Исии и др. Panasonic Corporation, 15 марта 2011 г.Очень подробное описание типа магнетрона, который вы найдете в современной микроволновой печи.

Список литературы

  1. ↑ Личности в науке: Альберт В. Халл.
  2. ↑ Патент США №2063342: Устройство электронного разряда, автор Артур Л. Самуэль.
  3. ↑ Полостной магнетрон во Второй мировой войне: была ли секретность оправданной? Бернарда Ловелла. Николай Алексеев и Дмитрий Маляров — Пути жизни изобретателей мультирезонаторного магнетрона Н. А. Борисовой, 2011 21-я Международная Крымская конференция «СВЧ и телекоммуникационные технологии», Севастополь, 2011, с.97–99.
  4. ↑ Исторические заметки о резонаторном магнетроне Х.А.Х. Бут и Дж. Рэндалл.
  5. ↑ Обзор релятивистского магнетрона Дмитрия Андреева, Артема Кускова и Эдла Шамилоглу.

Daewoo KOC154K9A27 Микроволновая печь Принципиальная схема — Устранение неполадок

Схема Схема, Электросхема, Диагностика — Daewoo KOC154K9A27 Микроволновая печь Высокий напряжение присутствует на высоковольтной клемме высоковольтного трансформатора во время любого цикла приготовления. Это Нет необходимости и не рекомендуется пытаться измерить высокое напряжение. Перед прикасаясь к любым компонентам духового шкафа или проводке, всегда отключайте духовку от источника питания источник и разрядить конденсатор.

Высокий трансформатор напряжения
1) Снимите соединения с клемм трансформатора и проверьте целостность.
2) Нормальные показания должны быть следующими:
Вторичная обмотка … прибл. 100 Ом ± 10%
Обмотка накала … прибл. 0,1 Ом
Первичная обмотка… Прибл. 1,4 Ом

2. Высоковольтный конденсатор
1) Проверьте целостность конденсатора с помощью измерителя на самой высокой шкале Ом.
2) Нормальный конденсатор на короткое время покажет целостность, а затем покажет 10 МВт после зарядки конденсатора.
3) Закороченный конденсатор будет непрерывным.
4) Открытый конденсатор будет показывать постоянное 10 МОм.
5) Сопротивление между каждым терминалом и шасси должно быть бесконечным.
3. Высоковольтный диод
1) Изолируйте диод от цепи, отсоединив провода.
2) С помощью омметра, установленного на максимальную шкалу сопротивления, измерьте сопротивление. через выводы диода.
Поменяйте местами провода измерителя и снова наблюдайте за показаниями сопротивления. Метр с Диапазон 500 кОм или выше. батареи следует использовать для проверки сопротивления диода спереди и сзади, в противном случае бесконечное сопротивление может быть прочитано в обоих направлениях. Сопротивление нормального диода будет бесконечным в одном направление и несколько сотен кОм в обратном направлении.
4. Магнетрон
Для полной диагностики магнетрона см. «Измерение микроволн. Выходная мощность.»Проверка целостности может указывать только на то, что нить накала или закороченный магнетрон. Для диагностики обрыва нити накала или закороченного магнетрона,
1) Изолируйте магнетрон от цепи, отсоединив провода.
2) Проверка непрерывности на выводах нити накала магнетрона должна показать 0,1. Ω или меньше.
3) Необходимо проверить целостность цепи между каждым выводом накала и корпусом магнетрона. читать открывать.
5. Предохранитель
Если предохранитель в первичной цепи и цепи контрольного переключателя перегорел, когда дверь разомкнут, проверьте первичный и контрольный выключатели перед заменой перегоревшего предохранителя.Если предохранитель перегорел из-за неправильной работы переключателя, замените неисправен выключатель и предохранитель одновременно. Замените только предохранитель, если переключатели работают нормально.

ПЕЧАТНАЯ ПЛАТА Принципиальная схема (схема) Щелкните изображение, чтобы увеличить

Схема подключения

ЦЕПЬ ПРОЦЕДУРА ПРОВЕРКИ
1. Проверка трансформатора низкого напряжения
Трансформатор низкого напряжения расположен на печатной плате.
Условия измерения: Входное напряжение: 120 В / Частота: 60 ​​Гц
ПРИМЕЧАНИЕ
1.Напряжение вторичной обмотки низковольтного трансформатора изменяется пропорционально к колебаниям напряжения источника питания.
2. Допустимый допуск вторичного напряжения в пределах ± 5% от номинального. Напряжение. [Каждая точка измерения должна быть измерена с помощью точек заземления.]
Чемодан без микроволнового излучения
1) При нажатии кнопки M / W включается лампа духовки, а двигатель вентилятора и поворотный стол. поверните, и на дисплее загорится индикатор готовки.
* Причина: РЕЛЕ 1 не работает.

2) При нажатии кнопки M / W лампа духового шкафа не включается, а мотор поворотного стола не вращается, но на дисплее загорается индикатор готовки.

* Причина: РЕЛЕ 6 не работает. 3) При нажатии кнопки M / W лампа духовки включается, а двигатель вентилятора не вращается, а на дисплее загорится индикатор готовки.
* Причина: РЕЛЕ 7 не работает.
4. Случай отсутствия нагрева верхнего гриля
При прикосновении к кнопке GRILL1 & COMBI включается лампа духового шкафа и двигатель вентилятора и двигатель поворотного стола вращается, и на дисплее загорается индикатор готовки.
* Причина: РЕЛЕ 4 не работает.
5. Случай отсутствия нагрева нижней решетки
При прикосновении к кнопке GRILL2 & COMBI включается лампа духового шкафа и двигатель вентилятора и двигатель вращающегося подноса вращается, и на дисплее загорается индикатор готовки.
* Причина: РЕЛЕ 9 не работает.
6. Случай отсутствия нагрева конвекционного гриля
При прикосновении к кнопке КОНВЕКЦИЯ включается лампа духовки, а также двигатель вентилятора и поворотный стол. двигатель вращается, и на дисплее загорается индикатор готовки.
* Причина: РЕЛЕ 3 не работает.
7. Случай отсутствия остановки таймера обратного отсчета
Когда дверь открывается во время работы, таймер обратного отсчета не останавливается.

Как отремонтировать микроволновую печь LG, не нагревающуюся

Эта микроволновая печь LG MS-1921HE принадлежит моему двоюродному брату, и во время визита нашей семьи в их дом его жена сказала мне, что она не нагревается, хотя она включается и вращается (работает, но не нагревается).Я принес домой, чтобы починить.

Как обычно, открыл крышку и тщательно прочистил изнутри воздуходувкой и щеткой. Некоторая грязь на колпачках и в некоторых труднодоступных местах была стойкой и неотделимой!

Принес его на рабочий стол и сначала разрядил высоковольтные конденсаторы. Затем проверьте наличие ослабленных контактов, предохранителей, дверных переключателей, механических поворотных переключателей температуры и мощности, целостности цепи на первичной и вторичной обмотках трансформатора большой мощности и ESR конденсаторов.Все было в порядке. Так что удалили все разъемы один за другим, очистили и смазали и вернули их на место.

Взял духовку на свою кухню, так как у меня нет подключения 15А в переоборудованной мастерской в ​​спальне. Проверил и обнаружил, что духовка включается и вращается, но не нагревается или совсем не нагревается. Вернул на рабочий стол, снял колпачки.

Затем удалил соединитель магнетрона и подключил плавкий предохранитель к контактам высоковольтного соединителя, выходящим из вторичной обмотки трансформатора.(Эту идею подали мои друзья-технари)

Отнес духовку на кухню, воткнул вилку в розетку и включил. Провод стал красным и перегорел, что указывало на то, что до этого момента все было в порядке, и проблема действительно была в магнетроне. (Предостережение: эта часть выходного сигнала работает около 5000 В! Итак, мы должны быть предельно осторожны при выполнении всего этого). Так что отнес духовку в мою мастерскую и снял ее.

Номер модели этого магнетрона — 2M213, крепежные зажимы находились спереди.Нам нужно купить замену, соответствующую монтажу и высоковольтному разъему. Получил 2M214 вместо 2M213, и от друзей я узнал, что это нормально. Подключил новый магнетрон.

Еще раз проверил все соединения, снова отнес духовку на мою кухню, налил немного воды в пластиковый контейнер, пригодный для использования в микроволновой печи, и включил духовку. Механические переключатели ручные. Чтобы выбрать желаемую мощность, необходимо повернуть выключатель питания. Переключатель таймера должен быть установлен на желаемое время, указанное на циферблате.Затем духовка включится, и ручка переключателя начнет медленно возвращаться к нулю, для чего внутри есть пружинная спираль, как в старых настенных часах.

Такие же механизмы есть и в некоторых стиральных машинах-полуавтоматах. На этом переключателе также есть звонок, когда он достигает 0, и нажимается рычаг, чтобы подать сигнал, как велосипедный звонок. (См. Картинку выше). Духовка работала хорошо, и вода, оставленная мной для теста, закипела.

Выключил сеть, снял горячий сосуд и принес духовку в мою мастерскую.Поставил крышку на место и сделал тщательную чистку шкафа. Посмотрите на духовку, чтобы увидеть, как она сияет, как новая, и снова готова к приготовлению пищи!

Еще одна работа выполнена удовлетворительно!

Эта статья была подготовлена ​​для вас Парасураманом Субраманианом из Индии. Ему 66 лет, он имеет более чем 30-летний опыт работы с антикварным оборудованием Valve Radio, Amps, Reel Tape Recorders и в настоящее время изучает курсы по новейшим технологиям, проводимые Ассоциацией техников электроники штата Керала.Он получил степень бакалавра делового администрирования и ушел на пенсию в американской компании.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о публикации приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Вы можете проверить его предыдущую статью о ремонте ниже :

https: // jestineyong.com / crt-tv-repair-flyback-replace /

Вы также можете проверить статью о ремонте микроволновых печей от Умберто и Сэма:

Faulty Big Capacitor In Microwave Oven

http://www.repairfaq.org/sam/micfaq.htm

Нравится (129) Дизлайк (0)

MAGNETRON THEORY ~ электрика и электроника

До сих пор мы обсуждали микроволновую энергию и ее характеристики. Если вы не видели эту статью, нажмите здесь, чтобы просмотреть статью о микроволновой энергии.В этом разделе мы рассмотрим, как генерируется микроволновая энергия. Компонент, используемый для генерации микроволновой энергии в микроволновой печи, называется магнетроном. Это термоэмиссионное устройство, в некоторых отношениях похожее на термоэмиссионный диод. Чтобы понять основную работу магнетрона, ниже обсуждается работа термоэмиссионного диодного клапана.

РАБОТА С ТЕРМИОННЫМ ДИОДОМ:
Диод состоит из двух электродов, которые
  • Анод
  • Катод

Эти электроды заключены в вакуумную стеклянную или металлическую оболочку.Катод покрыт материалом, который при нагревании испускает электроны (субатомные частицы). Катод необходимо нагреть, чтобы освободить эти электроны. В магнетроне катод нагревается напрямую и обычно называется нитью накала. Анод используется для сбора электронов, производимых нитью накала. Для этого анод должен быть положительным по отношению к нити накала. Электроны — это отрицательно заряженные частицы, поэтому они притягиваются к положительному аноду. Электроны будут течь постоянно, пока сохраняется разность потенциалов, обеспечивая протекание тока через устройство.

МАГНИТРОН РАБОТА:

Магнетрон — это термоэмиссионный диод специальной конструкции, обеспечивающий автоколебание. Основными отличиями являются форма и структура анода и добавление двух сильных внешних магнитов, один над и один под анодной камерой. Результирующее магнитное поле очень велико, так как вместе с анодным напряжением оно определяет путь, по которому будут двигаться электроны.

Без магнитов электроны двигались бы прямо к аноду обычным путем по прямой линии. Когда магниты установлены, сильное магнитное поле, приложенное к оболочке магнетрона, заставит электроны, испускаемые нитью накала, двигаться по спирали, когда они движутся к анодной структуре .

Форма анода образует четное количество структур, называемых объемными резонаторами, которые образуют отдельные настроенные цепи. Эти настроенные схемы будут колебаться, поскольку прохождение электронов наводит в них заряды. Все настроенные схемы соединены вместе по фазе, и результирующая мощность передается через антенну, которая соединена с анодной структурой, в резонатор.Далее следует более подробное объяснение этой концепции.

МАГНИТРОН КОНСТРУКЦИЯ:

На схеме ниже показан типичный магнетрон, используемый в микроволновой печи Sharp. Слева показан внешний вид, а с правой стороны показаны виды

в разрезе.

При осмотре магнетрона может показаться, что есть только две клеммы для подключения.Фактически они предназначены для нити накала и катода. Однако следует отметить, что анодная структура электрически соединена с внешним корпусом магнетрона, поэтому он содержит третье соединение.

Как обсуждалось в разделе «Основные операции с термоэмиссионным диодом», анод находится под положительным потенциалом по отношению к нити накала. Анод магнетрона соединен с его внешним металлическим корпусом, который, в свою очередь, заземлен.Следовательно, возникает необходимость приложить к нити отрицательный потенциал.

Во время работы магнетрон довольно сильно нагревается до температуры примерно 96 градусов Цельсия. По этой причине его необходимо охлаждать, воздух постоянно обдувается вентилятором. Ребра охлаждения прикреплены к магнетрону, чтобы обеспечить свободный поток воздуха вокруг анодной конструкции, максимизируя рассеивание избыточного тепла.

ПРИНЦИПЫ РАБОТЫ МАГНИТРОНА:

Как видно из приведенной ниже схемы, магнетрон имеет анодную резонаторную структуру особой формы, которая создает двенадцать полых резонаторов, образованных анодными лопатками.

Каждый объемный резонатор образует обычную параллельную настроенную цепь, которая состоит из конденсатора, подключенного параллельно катушке индуктивности. В случае объемного резонатора емкость создается лопатками, которые рассматриваются как две пластины конденсатора, а зазор между лопатками является диэлектриком. Длина каждой лопасти составляет индуктивность. На приведенной ниже схеме анод магнетрона показан в виде обычных компонентов для облегчения понимания

.

Обычная параллельная настроенная схема, необходимая для генерации на частоте 2450 МГц, потребует очень малых значений индуктивности и емкости.Их можно рассчитать с помощью следующего уравнения.

F = 1➗2ℼ√ (LC)

Поэтому возможные значения могут быть:

C (емкость) 64,95 x 10-12 Фарад (64,95 пФ)

L (индуктивность) 64,95 x 10-12 Генри (64,95 pH)

Приведенные выше примеры не являются практическими значениями, но они показывают, что значения емкости и индуктивности, создаваемые в магнетроне объемными резонаторами, очень малы.

Соединяя друг с другом все остальные анодные лопатки, используя модовые или стяжные кольца, можно гарантировать, что соседние полые резонаторы колеблются на 180 градусов не в фазе, когда магнетрон активен. Эта конфигурация показана на схеме ниже.

На схеме ниже показана анодная структура магнетрона и положение магнитов. Вокруг камеры присутствует сильное магнитное поле.Влияние магнитного поля заставляет электроны двигаться по спиральной траектории к аноду.

Для правильной работы магнетрона необходима очень большая разность потенциалов между нитью накала и анодом, причем анод должен быть положительным по отношению к нити накала. На практике это достигается подключением анода к земле и приложением высокого отрицательного напряжения к нити накала.

Когда нить нагревается, электроны возбуждаются и начинают прыгать с нити.Эти свободные электроны образуют облако или «пространственный заряд» вокруг нити. Затем электроны притягиваются к аноду из-за его положительной полярности. Однако они вынуждены идти по спирали из-за влияния внешнего магнитного поля, которое создается магнитами над и под анодной камерой (закон Лоренца) . По мере приближения электронов к объемным резонаторам они индуцируют заряд внутри резонатора, и это вызывает начальные колебания. Их движение по зазорам лопаток создает эффект положительной обратной связи, в результате чего колебания продолжаются.

По мере развития колебаний некоторые резонаторы будут находиться в отрицательном состоянии, а некоторые — в положительном, причем каждый объемный резонатор будет сдвинут по фазе на 180 градусов со своим соседом. Эти условия меняются по мере завершения цикла колебаний, то есть резонаторы, которые были положительными, становятся отрицательными, а те, которые были отрицательными, становятся положительными. Это оказывает дополнительное влияние на пути, по которым проходят электроны.

Любой электрон в области отрицательно заряженной лопасти резонатора отталкивается из-за их «одинаковых зарядов», отрицательных электронов и отрицательно заряженного резонатора.Скорость этих электронов заставляет их возвращаться к нити накала, где они сталкиваются с ней, вызывая «обратный нагрев» и «вторичную эмиссию». И наоборот, электроны вблизи положительно заряженного резонатора притягиваются дальше к аноду, где они, наконец, приземляются.

Как показано на схемах ниже, эти два условия создают структуру электронов внутри камеры магнетрона. Этот паттерн обычно называют «эффектом колеса со спицами»; «спицы» образуются из-за того, что положительно заряженные полые резонаторы притягивают электроны к аноду.Пространства между спицами вызваны отталкиванием электронов отрицательно заряженными резонаторами.

Важно помнить, что полярность заряда в объемных резонаторах постоянно меняется. По мере того, как колебание продолжается, в течение одного полупериода работы электроны притягиваются чередующимися резонаторами и отталкиваются другими. В следующем полупериоде полярность изменится. Этот эффект вместе с магнитным полем заставляет «колесо со спицами» вращаться так, что «спицы» всегда указывают на положительно заряженные объемные резонаторы, и, следовательно, зазоры выровнены с отрицательно движущимися объемными резонаторами.По мере продолжения колебаний «колесо со спицами» будет постепенно вращаться.

На приведенной выше диаграмме показан рисунок «колеса со спицами», образованный электронным облаком в двух максимальных состояниях колебаний.

Из приведенной ниже схемы видно, что все двенадцать объемных резонаторов эффективно подключены параллельно, поэтому мощность, доступная от каждого из них, складывается. Поскольку объемные резонаторы расположены параллельно, можно подключить антенну (антенну) к любой из анодных лопаток, что позволяет передать общее количество произведенной микроволновой энергии через волновод в полость печи.

При замене магнетрона следует обратить внимание на следующие моменты:

• Вокруг антенны установлена ​​ВЧ-прокладка для предотвращения утечки микроволновой энергии через уплотнение между магнетроном и волноводом. При установке магнетрона всегда следите за тем, чтобы прокладка не деформировалась.

• При обращении следите за тем, чтобы не оставлять жирных отложений вокруг или на антенне, которые могут обугливаться, что в дальнейшем вызовет искрение.

• Убедитесь, что соединения с клеммами магнетрона надежны.Если они ослабнут, произойдет перегрев и повреждение.

• Всегда помните о 3D-проверках при работе с магнетроном и высоковольтной цепью.

Несколько микроволн Sharp могут использовать один и тот же тип магнетрона, но имеют разную выходную мощность ВЧ. Это связано с тем, что выходная ВЧ-мощность прямо пропорциональна анодному току, которым можно управлять в схемах ВЫСОКОГО НАПРЯЖЕНИЯ. Потенциал накала изменяется, чтобы обеспечить требуемую мощность для отдельных моделей.

ЕСЛИ ВАМ НРАВИТСЯ СОДЕРЖАНИЕ, ПОЖАЛУЙСТА, ОСТАВЬТЕ ГОЛОСОВАНИЕ И В СЛУЧАЕ КАКИХ-ЛИБО СОМНЕНИЙ, ПОЖАЛУЙСТА, КОММЕНТАРИЙ НИЖЕ, МЫ ОТВЕТИМ НА ЭТО. ПОЖАЛУЙСТА, ПОДПИСАТЬСЯ НА НАШ ПРОФИЛЬ GOOGLE ИЛИ БЛОГ ДЛЯ БУДУЩИХ ОБНОВЛЕНИЙ! ПРИЯТНОГО ДНЯ .

Оставить комментарий