Схема зарядника для шуруповерта: РадиоКот :: «Народный» зарядник для шуруповёрта
РадиоКот :: «Народный» зарядник для шуруповёрта
РадиоКот >Схемы >Питание >Зарядные устройства >«Народный» зарядник для шуруповёрта
Мрр-мяу! Воистину, лень — тормоз прогресса… Уже лет несколько валялся у меня в загашнике шуруповёрт. Польский (если верить паспорту), марки «VERTO», на 12 В. Когда-то выменял его на одну из древних мобил. НОВЫЙ! В УПАКОВКЕ!!! Но, блин, аккумулятор… С полного заряда его через месяц работы уже не хватало на десяток шурупов. Чуть позже я унюхал кем-то выброшенную начинку от аккумулятора BOSH и ею перепаковал свой аккумулятор. Но… те же грабли! Новые покупать задавила жаба. В общем, забросил я его куда подальше.
Так поляцкий продухт и валялся несколько лет. А недавно мне приволокли в ремонт другой шурик, на 14,4 В, марки «MATRIX». Один из шедших в комплекте аккумуляторов сдох, причём бОльшую часть банок тупо закоротило. В результате зарядное издало пшик и прогорело так, что аж корпус деформировался, и блок питания скис. Как всегда, термопредохранитель. Второй аккумулятор оказался вполне живым.
Естественно, просто восстановить «родной» зарядник — не вариант, если возможны такие дефекты. Нужна как минимум защита от перегрузки. Серьёзный зарядник с анализатором городить было влом, кроме того, в умных книжках говорилось, что самым простым в исполнении для NiCd является «капельный» режим заряда — током 0,1С, где С — численный эквивалент ёмкости батареи в ампер-часах. При этом не случается перезаряда и ток заряда по окончании процесса просто компенсирует саморазряд, который у банок от дядюшки Ляо достаточно высок. Таким образом, зарядник просто должен представлять собой стабилизатор тока. Он же не даст спалить блок питания в случае повторения истории с дохлой батареей.
«Родные» же зарядники, как оказалось, не блещут не только сложностью, но и качеством работы. Токозадающий резистор в них очень часто прогорает до дыр в плате, ток задаётся наобум Лазаря, ни тебе защиты, ни стабилизации! Посему от оригинальных китайских плат было решено избавиться и вставить вместо них более пристойный зарядник.
Изваять оный девайс было решено, как всегда, из подручных средств, а именно старого компьютерного железа. В качестве регулирующего элемента был выбран мощный MOSFET с материнской платы. Типовая схема стабилизатора тока на полевом транзисторе была дополнена индикацией питания и процесса заряда. Получилось вот что:
В качестве VT1, VT2 были взяты самые распространённые в компьютерном барахле MMBT3904 (корпус SOT-23 с маркировкой 1Ам, t04, р04 или ещё несколько вариантов). VT3 — APM2025, шотя походу сойдёт любой n-MOSFET, применяемый в стабилизаторах питания материнских плат. Резисторы типоразмера 1206 взяты со старых серверных плат, хотя можно применить и меньшие. Просто под 1206 легче изготовить плату. Оттуда же был сдут и конденсатор того же типоразмера. Единственный выводной резистор — R5, который я установил мощностью 3 Вт. Хотя при желании его можно изваять из нескольких включенных параллельно 1210 от винчестеров, они такой ток выдержат.
Плата, как всегда, была разведена в Sprint Layout 6 и выполнена методом ЛУТ. Совмещение сторон выполнялось булавками через отверстия по краям платы. Переходы между слоями выполнены обрезками выводов, запаянными с двух сторон. Красный провод на фото — ошибка, которая в выложенном варианте платы уже исправлена. 🙂 Разводка выполнялась точно под корпус. Разъём блока питания прикошачен непосредственно к плате. Подгонять эту конструкцию под направляющие в корпусе пришлось дремелем с фрезой, хотя можно и резаком, правда, не так аккуратно.
Заработал зарядник сразу и на ура, что говорит об отсутствии ошибок в монтаже. Рабочую батарею зарядил примерно за три часа, дохлая же не вызвала серьёзного перегрева элементов в течение 20 минут, после чего АКБ была перепакована.
Следующим номером я решил сделать аналогичный девайс и под свой 12В шуруповёрт. Ведь ёмкость их аккумуляторов одинакова, значит, и ток заряда такой же. Вдруг когда дойдут руки купить солидные банки для перепаковки его батареи! Вот вариант его платы:
Как оказалось, перепакованные бошевские банки этой штуковиной заряжаются отнюдь не так уж плохо! Заряда батарей хватало примерно на час непрерывной работы, что для такой дешёвки очень даже пристойно. Вся технология изготовления была такой же, как и в клиентском шуруповёрте. Только стабилитрон я поставил советский двунаправленный — его давно надо было куда-нибудь деть 🙂
Разъём был посажен в корпус посредством того же подпиливания дремелем, после чего плата легла как родная.
В итоге имеем несложную и халявную замену примитивным зарядникам, поставляемым в комплекте с дешёвыми шуруповёртами, что позволяет использовать их батареи на всю доступную ёмкость. Разумеется, при нынешних достижениях микроминиатюризации можно напичкать тот же корпус ещё массой дополнительных прибамбасов — таймером, переключателем режимов заряда, звуковой сигнализацией и т.д. Но это всё уже снижает доступность схемы для повторения слесарем дядей Васей 🙂
Файлы:
Платы в Layout 6
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
готовые варианты и схема самодельного трансформаторного БП
Шуруповерт на аккумуляторной батарее применяется в строительной сфере. Он зарекомендовал себя очень хорошо благодаря его главному преимуществу — мобильности. Износ аккумулятора — основная причина покупки нового устройства, хотя некоторые сдают в мастерскую. Радиолюбители нашли выход из этой ситуации и предлагают использовать подручные материалы. Одним из таких является блок питания для шуруповерта 18в своими руками.
Способы реанимации шуруповерта
Главным преимуществом шуруповерта можно назвать мобильность. Аккумулятора хватает на длительное время и к тому же можно приобрести еще один аккумулятор для этой модели, если объем работ велик и сроки поджимают. Несмотря на то, что АКБ используется в основном литий-ионная (очень качественный тип аккумулятора), есть вероятность выхода из строя цепи питания, а также и самого автономного источника.
Производится питание и подзарядка шуруповерта от сети 220В. На батарею идет напряжение порядка 14в или 20 В (все зависит от конкретной модели). Аккумулятор выдает напряжение питания 12 или 18 вольт соответственно.
Если изделием часто не пользоваться, то со временем батарея приходит в негодность, хотя литий-ионный аккумулятор защищен от перезаряда и полного разряда, нет смысла надеяться на эту защиту. Основными решениями вопроса являются:
- Заменить батарею на исправную (будет сделать достаточно сложно, хотя и возможно).
- Приобрести новый шуруповерт.
- Переделать шуруповерт с питанием от сети.
Очень просто переделать аккумуляторную модель в сетевую (шуруповерт от сети 220 вольт). Этот вариант обладает преимуществами, например:
- Работа инструмента без перегрузок благодаря постоянному крутящему моменту.
- Можно сделать такую модель, которая будет и подзаряжать аккумулятор любого типа.
- Качество сборки (для блока питания будут использованы детали высокого качества, ведь пользователь делает это для своих целей. Не имеет смысла постоянно отвлекаться на ремонт электрической части — это лишнее ВРЕМЯ, а для некоторых — утрата части дохода).
При переделке шуруповерта на сетевой своими руками исчезнет его мобильность. Это можно исправить, переделав инструмент под аккумуляторную батарею любого типа и на любое питание.
Варианты переделывания
Существует несколько вариантов переделывания шуруповерта, и только пользователь решает для себя какой из них выбрать. Основные способы:
- Применить зарядник для ноутбука (подключить адаптер для ноутбука).
- Использовать компьютерный импульсный блок питания (далее БП) от персонального компьютера.
- Использовать автомобильный аккумулятор.
- Усовершенствовать БП для питания галогенных ламп.
- Собрать БП самостоятельно.
Пункты с 1 по 4 практически не требуют особого навыка и подойдут большинству людей. Суть их заключается в использовании уже готовых устройств, ведь практически все готовые БП защищены от короткого замыкания (КЗ), различного рода перегрузок и помех, а автомобильный аккумулятор является вообще идеальным источником питания.
Зарядка для ноутбука
Очень простой способ, требующий минимум знаний в области радиоэлектроники. Для изготовления блока питания для шуруповерта 12в своими руками подойдет любое зарядное устройство для ноутбука. Для переделывания необходимо выяснить напряжение питания шуруповерта и подобрать соответствующую зарядку. Необходимо произвести следующие действия:
- Разобрать аккумуляторный отсек и достать неисправную аккумуляторную батарею.
- На зарядке от ноута отрезать выходной разъем (не сетевой — входящий. Это очень важно).
- Зачистить провода.
- Включить зарядку (провода не должны соприкасаться) и проверить прибором постоянное напряжение (для этих целей подойдет любой вольтметр с напряжением измерений свыше 50 В или обыкновенный мультиметр).
- После произведения измерений параметров электропитания необходимо припаять провода, соблюдая полярность.
- Закрыть аккумуляторный отсек, поместив в него зарядное устройство, и вывести шнур питания.
- Включить в сеть и проверить работу инструмента.
При покупке зарядного устройства следует обратить внимание на его габариты, а лучше взять шуруповерт с собой, предварительно вытащив батарею и разобрав аккумуляторный отсек. При монтаже нужно соблюдать правила техники безопасности, чтобы избежать поражения электрическим током и предотвратить выход из строя зарядки для ноутбука.
Блок питания компьютера
Еще одним неплохим вариантом является использование блока питания от персонального компьютера и желательно форм-фактора АТ. Основные параметры БП: мощность 300..350 Вт, напряжение 12 В и ток величиной не менее 16 А. Этот вариант не подойдет для шуруповерта на 18 В. Основными преимуществами является наличие кнопки включения, защита от КЗ, перегрузок, а также система охлаждения, которой нет в заводской модели шуруповерта. Для реализации этой идеи необходимо выполнить следующие шаги:
- Раскрутить блок питания АТ.
- Защита от включения снимается путем замыкания зеленого провода с любым черным из этого разъема (при включении БП он не запустится, если не обойти защиту).
- На белых разъемах, которые вставляются в жесткий диск или другой накопитель, оставить желтый и черный провода, а все остальные нужно обрезать и заизолировать.
- Удлинить желтый и черный провода кабелем необходимой длины (желательно припаять, так как скрутки могут окисляться).
- Припаиваем желтый и черный провод, соблюдая полярность, к контактам аккумуляторного отсека и собираем его.
- Для БП можно использовать провод длиннее (сетевой шнур). Кроме того, нужно сделать кожух для БП компьютера в целях соблюдения техники безопасности при работе с электроприборами.
После всех проделанных шагов включаем БП в сеть и запускаем инструмент. Если все сделано верно, то он должен работать. Если вращение происходит в обратную сторону, необходимо разобрать аккумуляторный отсек и изменить полярность. При отсутствии питания следует удостовериться в наличии входного и выходного напряжений.
Автомобильный аккумулятор
Оптимальный способ источника электрической энергии, защищенный от случайных КЗ, напряжение стабилизированное и отсутствуют различные помехи. Существенными недостатками являются его габариты, масса и необходимость зарядки. Пример использования очень прост. Нужно всего-навсего запитать шуруповерт от клемм аккумулятора, использовав при этом кабель нужной длины, и предварительно выпаять старый аккумулятор.
К автомобильному аккумулятору необходимо приобрести зарядное устройство или сделать самодельное трансформаторное ЗУ. Кроме того, нужно защитить аккумулятор от попадания дождя и мусора. Для этого делается специальный корпус с выводами для зарядника и питанием для шуруповерта.
Самодельный БП
Необходимо приниматься за изготовление самодельного БП в том случае, если есть знания в области радиотехники. Нужно подготовить детали и инструмент заранее и полностью сосредоточиться на работе, во время которой возможен выход из строя радиоэлемента или поражение электрическим током (напряжение питания 220 В).
Простейшая схема
При изготовлении необходимо подготовить корпус для монтажа радиодеталей, инструмент, кусок гетинакса, провод и радиодетали. После чего приступить к сборке согласно схеме 1.
Схема 1 – Простой БП на 12 или 18 вольт.
Трансформатор подойдет практически любой со следующими параметрами: мощность 250..300 Вт, напряжение на вторичке 24..30 В, а ток номиналом от 15 А и выше. Диодный мост собирается из мощных диодов (подобрать по справочнику). После сборки необходимо проверить напряжение питания: если оно выше необходимого значения, то нужно уменьшить напряжение II обмотки (уменьшение количества витков). При низком напряжении домотать вторичку проводом такого же сечения. После сборки произвести монтаж в корпусе.
При условии, что шуруповерт недостаточно мощный, можно произвести монтаж, непосредственно, в аккумуляторном отсеке. Если БП собирается отдельно, рекомендуется обеспечить охлаждение, потому что во время запуска двигателя номинальный ток увеличивается в 7 раз. В результате этого увеличения происходит нагрузка на БП, и он начинает греться. Нагревание происходит из-за недостаточной мощности источника питания. После готовности БП нужно проверить шуруповерт: запускать его несколько раз и удостовериться в отсутствии нагрева радиоэлементов. При эксплуатации переделанного шуруповерта нужно придерживаться основных требований:
- Необходимо давать инструменту время на остывание после каждых 20..30 минут работы.
- Не работать на большой высоте или делать это аккуратно (возможно падение БП и, вследствие этого, утрата равновесия и получение травмы).
- Следить за состояние питающего кабеля, он не должен пережиматься (может привести к КЗ, которое чревато отрицательными последствиями для инструмента и человека).
При КЗ происходит плавление металла. В результате этого возможны ожоги и металлизация кожи (вкрапление в нее частичек расплавленного металла). Кроме того, возможен преждевременный выход из строя самого инструмента и БП. При соблюдении мер предосторожности шуруповерт может прослужить очень долго.
Таким образом, при выходе аккумулятора шуруповерта на 18 В или 12 В, вовсе необязательно покупать новую батарею или шуруповерт. Все зависит от сферы применения инструмента: при надобности мобильности инструмента следует заменить аккумулятор или приобрести новый шуруповерт. В случае когда мобильность не играет особой роли, нужно переделать его на питание от сети. Следуя простым рекомендациям и соблюдая правила техники безопасности, можно не только увеличить вероятность продления срока эксплуатации, но и снизить риск получения травмы.
Зарядное устройство для дрели шуруповерта
Ни один ремонт не обходится без дрели. Этот электрический прибор питается от сети или батареи. Если для работ выбрана аккумуляторная дрель, для нее понадобится еще и зарядное устройство. Его продают в комплекте с устройством. Однако и такой элемент рано или поздно выходит из строя. Чтобы не случилось досадного обстоятельства, следует изучить конструкционные возможности и описание зарядок. Особенно стоит познакомиться со схемой зарядного устройства дрели-шуруповерта. Это поможет узнать, как правильно его отремонтировать.
Виды зарядных устройств
Существует множество разновидностей приборов для зарядки аккумуляторных дрелей. Они отличаются ценой, принципом работы и особенностями ремонта. Каждый из видов шуруповертов следует рассмотреть подробнее.
Аналоговые устройства со встроенным блоком питания
Такие приборы довольно популярны благодаря невысокой стоимости. Если дрель не будет использована в профессиональных целях, не стоит делать упор на продолжительность работы. Главное условие, которому должен отвечать самый простой зарядник – он должен обеспечивать достаточную токовую нагрузку для зарядки батареи шуруповерта.
Важно! Для начала заряда необходимо, чтобы напряжение на выходе блок питания оказалось выше, чем номинальный показатель батареи прибора.
Работа аналогового устройства с блоком питания осуществляется довольно просто. Такой зарядник эксплуатируется, как стабилизатор. Для примера необходимо рассмотреть схему зарядного устройства для батареи от 9 до 11 В. Не имеет значения, батарея какого типа используется. Аккумуляторные дрели-шуруповерты довольно распространены среди домашних мастеров, поэтому знание особенностей их ремонта пригодится каждому.
Такой блок питания многие домашние мастера собирают своими руками. Спаивание схемы можно провести только на универсальной плате. Чтобы обеспечить рассеивание тепла, микросхемы стабилизатора, необходимо найти радиатор из меди 20 кв. см площади.
Внимание! Стабилизаторы эксплуатируются по компенсационному принципу. Лишнюю энергию можно отвести в виде тепла.
Благодаря выходному трансформатору понижается переменное напряжение с 220 В до 20 В. Рассчитать, какой будет мощность трансформатора, можно по току напряжения на выходе зарядки. Выпрямление переменного тока осуществляется диодным мостом.
После выпрямления ток оказывается пульсирующим. Однако такая особенность тока негативно сказывается на функционировании схемы. Пульсации можно сгладить фильтрующим конденсатором (C1). В качестве стабилизатора используется микросхема КР 142ЕН. Радиолюбители называют ее «кренка». Чтобы получилось напряжение 12 В, необходимо иметь микросхему с индексом 8Б. Управление собирается на транзисторе VT2. Кроме того, используются подстроечные резисторы. Автоматика на такие приборы не устанавливается. Как долго будет заряжаться аккумулятор, зависит от пользователя. Чтобы контролировать заряд, собирается довольно простая схема на транзисторе VT1. В схеме присутствует и диод VD2. Когда будет достигнуто напряжение заряда, индикатор угасает.
В более современных системах имеется коммутатор. Благодаря ему отключается напряжение по окончании заряда. При покупке дешевого шуруповерта с ним в комплекте идет простой зарядник. Это объясняет, почему такие устройства ломаются очень часто. При покупке такого шуруповерта потребитель рискует остаться с новым, но нерабочим прибором. Однако зарядное устройство легко собрать своими руками. Главное – иметь схему.
Самодельный прибор может прослужить намного дольше покупного. Чтобы подобрать значение батареи дрели-шуруповерта, понадобится опытным путем настроить трансформатор и стабилизатор.
Аналоговые устройства с внешним блоком питания
Сама схема зарядного устройства довольно проста. В комплекте с таким прибором идет сетевой блок питания и зарядник. Не имеет смысла осматривать блока питания. Его схема отличается стандартным исполнением. Она включает диодный мост, трансформатор, выпрямитель и конденсаторный фильтр. Обычно на выходе имеется 18 В.
Управление осуществляется с помощью небольшой платы, которая имеет размеры спичечного коробка. Такие сборки не имеют теплоотводной системы. По этой причине такие устройства быстро выходят из строя. Поэтому пользователи часто интересуются, как зарядить аккумуляторную дрель-шуруповерт без зарядника.
Решить эту проблему можно довольно просто:
- Одним из главных условий является наличие источника питания. При исправной работе «родного» блока можно создать простую схему управления. Если весь комплект вышел из строя, может быть использован блок питания от ноутбука. На выходе получаются нужные 18 В. Такой источник может обладать мощностью, которой хватит для любого аккумулятора.
- Вторым условием служит умение собирать электросхемы. Детали обычно выпаиваются из старых бытовых приборов. Кроме того, большинство из них продается на радиорынке.
Блок управления должен иметь схему, как на фото:
На вход устанавливается стабилитрон 18 В. Схема, которой будет управляться зарядник, работает на транзисторе КТ817. Чтобы обеспечить усиление, устанавливается транзистор КТ818. При этом он оборудуется радиатором для отвода тепла. В зависимости от того, какой будет ток заряда, на нем может рассеиваться до 10 Вт. Необходимо, чтобы радиатор обладал требуемой площадью – от 30 до 40 кв. см.
Ненадежность китайских аккумуляторов объясняется экономией производителей «на спичках». Чтобы установить точный ток заряда, следует иметь подстроечник 1 Ком. На выходе устанавливается резистор 4,7 Ом. Он также должен обеспечивать достаточное рассеивание тепла. Выдаваемая мощность не превышает 5Вт.
Собранная схема довольно просто размещается в корпусе стандартной зарядки. Радиатор необязательно выносить. Главное – чтобы внутри корпуса была достаточная циркуляция воздуха. Блок питания от ноутбука при этом по-прежнему используется согласно своему предназначению.
Важно! Одним из главных минусов аналоговых зарядных устройств является длительный процесс заряда. В случае с бытовой аккумуляторной дрелью-шуруповертом это не страшно. На простые работы его хватает. Достаточно поставить его заряжаться в ночь перед работами. Простая китайская батарея в шуруповерте обычно держится от 3 до 5 часов работы.
Импульсные
Профессиональные шуруповерты предназначены для интенсивного использования. Поэтому простои при выполнении работ недопустимы. Стоит помнить, что каждый серьезный прибор имеет высокую цену. Поэтому ценовой вопрос следует опустить. Кроме того, в комплекте обычно имеется 2 батареи.
Импульсный блок питания дополняется «умной» схемой управления. Благодаря этому аккумулятор заряжается на все 100% всего за час. Такой же зарядник аналогового типа можно соорудить своими руками. Однако его габариты будут равны размерам самого шуруповерта.
Импульсные приборы хороши тем, что лишены многих недостатков. Они довольно компактны, обладают высокими токами заряда и оборудуются продуманной системой защиты. Имеется лишь одна проблема – схема таких устройств довольно сложна, что сказывается на стоимости прибора.
Однако даже такой аппарат можно соорудить своими силами. Экономия выходит примерно в 2 раза.
Стоит рассмотреть вариант для никель-кадмиевых батарей, которые оборудованы третьим сигнальным контактом. Собирается схема устройства на MAX713. Этот контроллер является довольно популярным. Выходное напряжение будет составлять 25 В. Ток при этом будет постоянным. Собрать подобный источник питания достаточно просто.
Зарядное устройство оборудовано несколькими функциями, делающими его интеллектуальным. После того как уровень напряжения будет проверен, необходимо запустить режим ускоренного разряда. Это позволит предотвратить эффект памяти. Заряд при этом осуществляется за полтора часа. Главной отличительной чертой схемы является возможность выбора типа аккумулятора и напряжения заряда.
При выходе фирменной зарядки профессионального прибора можно хорошо сэкономить на ремонте зарядного устройства для шуруповерта. Схема может быть собрана самостоятельно.
Блок питания для шуруповерта
Довольно часто владельцы дрелей-шуруповертов сталкиваются с ситуацией, когда сам прибор исправно работает, а блок аккумуляторов вышел из строя. Существует множество способов решения этой проблемы. Однако не каждый станет работать с токсичными деталями.
Чтобы продолжать работать с шуруповертом, следует подсоединить внешний блок питания. При наличии стандартного китайского прибора с батареями 14,4 В допускается использование автомобильного аккумулятора. Однако есть и другой вариант – найти трансформатор с выходным напряжением 15-17 В, чтобы собрать полноценный блок питания.
Необходимые детали при этом отличаются дешевизной. Прежде всего, понадобится термостат и диодный мост. Другие элементы конструкции выполняют сервисные функции – показывать входное и выходное напряжение. Стабилизатор приобретать не нужно. Это объясняется нетребовательностью электродвигателя шуруповерта.
Выводы
Как видно, сборка зарядного устройства для аккумуляторной дрели выполняется довольно просто. Главное – не решать сразу выбрасывать электроприбор. При полном выходе аккумуляторов из строя прибор можно переоборудовать под сетевой. Такая работа тоже имеет много тонкостей, с которыми следует познакомиться.
Чтобы соорудить собственную зарядку для шуруповерта, понадобится узнать схему такого устройства и характеристики основных деталей. Сам процесс сборки довольно прост. Главное – уметь работать с паяльником.
Даже при выходе из строя блока питания профессиональной модели шуруповерта его можно сделать сетевым. Если решено ремонтировать прибор самостоятельно, о цене деталей можно не беспокоиться – на радиорынке они стоят копейки. Знание таких особенностей ремонта аккумуляторных шуруповертов поможет выполнить работу самостоятельно.
Как правильно заряжать аккумуляторный электроинструмент | Аксессуары к инструментам | Блог
Процесс зарядки аккумуляторного инструмента довольно тривиален и достаточно неинформативен: аккумулятор устанавливается в зарядное устройство, после чего последнее включается в розетку. Как только индикатор укажет на полный заряд — все, процесс можно считать завершенным.
Это видимая сторона медали. На самом деле, в зависимости от типа используемых источников питания, в паре «аккумулятор/зарядное устройство» протекают процессы, сильно разнящиеся друг от друга. Рассмотрим их более детально.
Как правильно заряжать NiCd аккумуляторы
Никель-кадмиевые источники питания до сих пор можно встретить во многих видах аккумуляторного инструмента. Они достаточно дешевы, неприхотливы и просты в использовании.
К сильным сторонам NiCd батарей можно смело отнести:
- долговечность. Аккумуляторы этого типа способны без особых потерь выдержать порядка 1000 циклов заряда/разряда без существенной потери емкости, позволяя ей оставаться на уровне 80 %. Пик производительности NiCd элемента питания приходится на первые 300-400 циклов заряда/разряда;
- высока нагрузочная способность. Источник питания выдает стабильный ток разряда практически во всем диапазоне своей емкости.
Из графика видно, что при токе разряда величиной 1С стабильность напряжения на клеммах аккумулятора сохраняется в диапазоне 80 % его емкости. Падение напряжения проявляется при расходе оставшихся 20 % заряда.
Здесь следует сделать одно очень важное отступление.
Ток заряда и ток разряда аккумулятора принято «привязывать» к емкости источника питания, которая обозначается символом «С». К примеру, у аккумулятора емкостью 1000 мА∙ч ток разряда, обозначенный как 1С, составит 1 А.
- сохранение рабочих характеристик при отрицательных температурах. Пожалуй, это единственные представители аккумуляторных систем, которые без проблем могут как работать, так и заряжаться на морозе;
- длительное хранения без потери рабочих характеристик. Только NiCd аккумуляторы позволительно хранить долгое время полностью разряженными;
- невысокая стоимость аккумуляторных элементов.
К недостаткам никель-кадмиевых источников питания относятся:
- необходимость в первоначальном обслуживании. Для «вывода» аккумулятора на номинальное значение его емкости потребуется произвести 5–7 полных циклов заряда/разряда;
- наличие «эффекта памяти», существенно снижающего емкость аккумулятора. Источник питания не рекомендуется заряжать при его неполном разряде, поскольку это чревато деградацией элемента и существенной потерей эксплуатационных характеристик.
«Эффект памяти» — потеря емкости аккумулятора вследствие кристаллизации электролита, ведущей к уменьшению площади активной поверхности для протекания электрохимических реакций.
- высокий саморазряд. Неиспользуемая аккумуляторная батарея теряет до 10 % заряда в первые сутки хранения, и до 20 % своей емкости в течение месяца;
- необходимость технического обслуживания. Чтобы аккумуляторы долгое время сохраняли свои эксплуатационные характеристики, их нужно раз в три месяца подвергать циклу полного заряда/разряда, даже если они не используются;
- рост давления при высокой температуре. При нагреве «банки» элемента до 70˚С в области электродов активно выделяется кислород. В конструкции элемента предусмотрен защитный клапан, стравливающий чрезмерное давление, но характеристики аккумулятора при его срабатывании безвозвратно снижаются;
- токсичность кадмия. Элементы этого типа требуют соблюдения особых условий утилизации.
Для качественного заряда и использования имеющейся мощности NiCd аккумулятора по максимуму, его следует заряжать малым зарядным током, величина которого составляет порядка 0,1С. Да, подготовка аккумулятора к работе займет уйму времени (порядка 14–16 часов), но это исключит его нагрев и порчу.
Ускорить зарядку можно используя следующую схему:
- первые 10 % емкости — зарядка током 2С;
- с 10 % до 70 % — током 1,5С;
- остаток до 100 % — током 0,5С.
Такая схема позволит получить полностью заряженный источник питания по прошествии 5–6 часов. Главное, чтобы зарядное устройство было качественным и обеспечивало такой алгоритм зарядки (умело отслеживать наполнение емкости банок аккумулятора по росту температуры и/или росту напряжения на выводах элемента) и своевременно меняло величины зарядных токов.
Как правильно заряжать NiMH аккумуляторы
Довольно схожи с NiCd источниками питания по параметрам и эксплуатационным характеристикам никель-металл гидридные аккумуляторы. Но они более экологичны, поскольку не содержат кадмия.
NiMH источники питания обладают практически теми же «плюсами», что и их предшественники. При этом «эффект памяти» у них менее выражен, им присуща большая емкость при тех же массогабаритных показателях.
Без нескольких ложек дегтя тоже не обошлось. Во-первых, NiMH аккумуляторы несколько дороже никель-кадмиевых собратьев. Во-вторых, жизненный цикл источников питания ограничен 500 циклами. В-третьих, у металл гидридных аккумуляторов больший саморазряд, достигающий 30 % потерь в месяц.
Чтобы сохранить работоспособность элементов, неиспользуемых длительное время, хранить их нужно в полностью заряженном состоянии, периодически устраивая им полный цикл разряда с последующим зарядом.
Методология зарядки NiMH аккумуляторов схожа с зарядкой никель-кадмиевых элементов, но имеет свои особенности. Во-первых, заряжать их малыми токами (0,1С–0,3С) довольно проблематично, поскольку зарядному устройству сложно «отследить» полный заряд батареи, а большие токи приводят к чрезмерному нагреву элемента и его ускоренной деградации. Оптимальным считается зарядка аккумуляторов токами 0,5С. Во-вторых, следует четко контролировать время заряда рекомендованное производителем. Дело в том, что никель-металл гидридные аккумуляторы очень любят перезаряд и возникающий вследствие него перегрев.
Нужно четко контролировать температуру аккумуляторов! При ее превышении значения в 45 ˚С зарядку следует прервать полностью или остановить на время, необходимое для остывания элементов. Это действие существенно продлит их срок службы.
Поскольку NiMH аккумуляторы более привередливы к режиму зарядки, категорически запрещается использовать для их пополнения энергией зарядное устройство, предназначенное для NiCd аккумуляторов. Его более «топорные» алгоритмы заряда гарантированно выведут металл-гидридный элемент из строя.
Обратная совместимость зарядок позволительна. Никель-кадмиевые источники питания без проблем заряжаются зарядными станциями от NiMH аккумуляторов.
Как правильно заряжать Li-Ion аккумуляторы
Новые модели электроинструмента, в большинстве своем оснащаются Li-Ion источниками питания. Сильными сторонами литиевых аккумуляторов являются:
- малый вес. Это очень важное свойство, поскольку речь идет о ручном инструменте, который приходится держать в руках по несколько часов кряду;
- высокая удельная емкость литиевых элементов. При одинаковых габаритных размерах с аккумуляторами предыдущих поколений, емкость Li-Ion батареи будет превышать их в 1,5–3 раза;
- низкий саморазряд. При длительном хранении неиспользуемый аккумулятор разряжается ориентировочно на 5 % в месяц;
- практически отсутствует «эффект памяти», что дает конечному пользователю возможность подзаряжать аккумулятор по мере необходимости, не особо заморачиваясь с контролем остатка заряда;
- высокая энергоэффективность. Пиковые токи нагрузки могут превышать 30С, хотя наилучшие результаты в плане отдачи энергии достигаются при значениях, не превышающих 10С.
Недостатки тоже имеются:
- крайне плохая переносимость низких температур. Емкость падает просто катастрофически;
- высокая стоимость, обусловленная ценой материалов, используемых при изготовлении элементов и необходимостью наличия в схеме BMS-контроллера батареи (BMS — Battery Monitoring System), отслеживающего параметры «здоровья» аккумулятора;
BMS-контроллер отслеживает уровень напряжения на каждом элементе аккумуляторной сборки и принудительно отключает его при достижении значения 4,2 В. Превышение этого порога может привести к возгоранию аккумулятора.
- ограниченный жизненный цикл. Li-Ion аккумулятор, как правило, может пережить 1000 циклов заряда/разряда без существенной потери емкости.
На длительное хранение литиевые аккумуляторы рекомендуется отправлять наполовину заряженными.
Для зарядки Li-Ion источников питания применяется так называемый алгоритм CC/CV (constant current/constant voltage), означающий сначала зарядку постоянным по величине током, а затем напряжением с постоянным значением.
На первом этапе поддерживается постоянное значение тока заряда, которое находится в диапазоне 0,5С-1С.
Производители Li-Ion аккумуляторов рекомендуют заряжать их изделия током 0,8С и ниже, для продления срока службы элементов.
На этом этапе напряжение на контактах довольно быстро растет. При достижении значения в 4,2 В на один элемент, что составляет порядка 80 % от полной емкости батареи, начинается второй этап зарядки, при котором напряжение поддерживается на достигнутом уровне, а ток постепенно снижается до значений 0,05С–0,1С. При их достижении зарядка считается оконченной.
Как правило, стандартное время зарядки Li-Ion аккумулятора составляет 2–3 часа, но оно во многом зависит от емкости используемой в электроинструменте батареи и имеющегося в арсенале мастера зарядного устройства.
Чтобы ориентировочно оценить время зарядки, нужно емкость аккумулятора разделить на ток заряда, выдаваемый зарядным устройством.
Быстрая зарядка аккумуляторного инструмента
Теоретически, возможность быстрой зарядки присутствует во всех рассмотренных типах аккумуляторов. В случае с NiCd и NiMH источниками питания, возможна быстрая зарядка большими токами (1С–3С) до 70 % от заявленной емкости, но краеугольным камнем является необходимость контроля температуры заряжаемых источников питания, поскольку существует огромная вероятность лавинообразного роста давления внутри элемента и его физического повреждения.
В лагере литиевых аккумуляторов ситуация несколько иная. В продаже можно встретить достаточное количество «быстрых зарядок», с номинальными значениями зарядных токов 8 А и даже 16 А.
Но здесь важно понимать, что их максимальные величины будут использоваться лишь на первом этапе зарядки, до достижения элементами порога в 4,2 В, а далее зарядка идет по обычному сценарию.
Конечно, быстрые зарядки существенно экономят время, но производители крайне неохотно идут по пути увеличения тока, прекрасно понимая, что такие режимы (зарядные токи достигают 2С или даже 3С) существенно снижают жизненный цикл аккумулятора. Репутация дороже.
Внимательный читатель возразит, что, мол, в мобилках давно и повсеместно используются технологии быстрой зарядки, и они практически никак не сказываются на снижении жизненного цикла аккумулятора! И будет прав, но лишь отчасти. Здесь мы сталкиваемся с большой маркетинговой уловкой, которая под видом «быстрой зарядки» предлагает пользователю щадящую аккумулятор технологию с зарядными токами уровня 0,9С–1,1С (при стандартных 0,5С–0,8С). Когда как в настоящей «быстрой зарядке» речь идет о значениях зарядных токов, начиная от 2С.
Но пора остыть и вернуться к последнему графику, чтобы понять, что производителю просто невыгодно «убивать» аккумулятор смартфона, ставя под сомнение надежность своей марки.
Более наглядно о технологии быстрой зарядки рассказано в видеоблоге:
Хотя в ролике речь идет о мобильных устройствах, озвученные в нем тезисы, справедливы и для литий-ионных аккумуляторов для электроинструмента.
Зарядное устройствоCircuitsfree electronic circuit links
Зарядное устройство 12 В — переменный источник питания — Схема, представленная здесь, может заряжать свинцово-кислотную батарею 12 В емкостью от 50 до 80 Ач (даже до 100 Ач) и даже может использоваться как Регулируемая мощность 18 В постоянного тока __ Electronics Projects for You
Вход 12 В Зарядное устройство для аккумулятора 12 В — Хорошо подходит для зарядки гелевых аккумуляторов от автомобиля при работающем или остановленном двигателе. __ Дизайн Манфреда Морнхинвега
Зарядное устройство для дифференциальной температуры, 12 В, 4 элемента AA. В этом проекте вносится ряд улучшений по сравнению с моей схемой зарядного устройства NIC D.Новая схема работает от 12 В постоянного тока, что позволяет использовать ее в автомобиле или от солнечной системы на 12 В. Кроме того, светодиод датчика тока проверяет, получают ли элементы зарядный ток. Обратите внимание, что схема датчика тока __ Разработана G. Forrest Cook
12v_To_24v_Solar_Battery_Charger — Некоторое время назад я получил электронное письмо от посетителя Discover Circuits. Он хотел знать, как можно использовать одну солнечную панель на 12 В для зарядки батареи свинцово-кислотных аккумуляторов на 24 В. Он сказал, что использовал 24-вольтовую батарею для работы аварийной системы электроснабжения 120 В переменного тока.Используя более высокое напряжение 24 В вместо 12 В, его преобразователь постоянного тока в переменный мог выдавать больше пиковой мощности для запуска таких устройств, как колодезные насосы и оконные кондиционеры. . . . Hobby Circuit Дэвида Джонсона P.E. — июль 2017 г.
Зарядное устройство для 2-элементных литий-ионных аккумуляторов— Эта схема была создана для зарядки пары литиевых элементов (3,6 В каждый, емкость 1 ампер-час), установленных в портативном транзисторном радиоприемнике. Зарядное устройство работает, подавая короткий импульс тока через последовательный резистор, а затем отслеживая напряжение батареи, чтобы определить, требуется ли еще один импульс.Ток можно регулировать путем изменения последовательного резистора или регулировки входного напряжения __ Разработано Биллом Боуденом
Схема изолятора батареи 2–12 В с LTC4412 — только что анонсировал небольшой аккуратный чип (LTC4412). Он был разработан для использования вместе с внешним силовым полевым транзистором P-канала, чтобы сформировать идеальную диодную функцию с очень низким падением напряжения 0,05 В. Микросхема контролирует напряжение на eit. . . Hobby Circuit, разработанный Дэвидом А. Джонсоном P.E. — август 2006 г.
Зарядное устройство для литий-ионных аккумуляторов с 2-элементными солнечными панелями. На этой схеме показано компактное зарядное устройство на солнечных батареях, использующее LTC3105 в качестве повышающего преобразователя и LTC4071 в качестве шунтирующего литий-ионного зарядного устройства.Двухэлементная солнечная панель мощностью 400 мВт обеспечивает входную мощность для LTC3105 для выработки тока заряда более 60 мА при полном солнечном свете. Контроль максимальной мощности предотвращает повышение напряжения солнечной панели __ Linear Technology / Analog Devices App Note, 1 июля 2011 г.
Для питания литиевых элементов 3,3 В требуется один индуктор — 05.08.99 Идеи дизайна EDN: из-за растущей популярности литий-ионных (литий-ионных) батарей и источников питания 3,3 В разработчикам портативного оборудования часто приходится создавать напряжение 3,3 В. источник питания, который может питать один литий-ионный элемент __ Дизайн схемы Мэтта Шиндлера и Джея Сколио, Maxim Integrated Products, Саннивейл, Калифорния
4-элементный никель-кадмиевый стабилизатор / зарядное устройство для портативных компьютеров — DN54 Примечания по конструкции__ Linear Technology / Analog Devices
4_D-Cell_LED_Lantern_Modified — Однажды, делая покупки в магазине спортивных товаров, я заметил компактный светодиодный фонарь.Похоже на фонарь, который я мог переделать. Светодиоды фонаря были сгруппированы в три секции по 7 светодиодов в каждой, ориентированные под углом 120 градусов. Светодиоды были стандартными эпоксидными типами Т 1-3 / 4. Фонарь имел трехрежимный переключатель, который выбирал между выключенным, полным и половинным режимами. В режиме половинной мощности горела только половина из 21 светодиода. На полной мощности горели все светодиоды. . . . Hobby Circuit Дэвида Джонсона P.E. — сентябрь 2017 г.
Регулятор 5 В — Прокрутите для этого — Вам нужно добавить регулятор 5 В для питания USB-устройства, и этот регулятор должен быть с низким падением напряжения, потребляющим «микро» мощность, чтобы не разряжать батарею на свой собственный.В корпусе PWP есть коммерческие стабилизаторы, такие как TPS76750Q, которые справятся с этой задачей с помощью всего лишь пары хороших керамических байпасных конденсаторов. (Существует поразительное количество подходящих вариантов регуляторов.) Но если вам нравится собирать свой гаджет из имеющихся деталей, ниже приведены несколько схем, которые будут работать. __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.
Солнечное зарядное устройство 5 В — В этом проекте используется аккумулятор 1,2 В и солнечная панель от солнечного садового светильника. Эти фонари можно купить менее чем за 5 долларов.00 в большинстве магазинов по 2,00 доллара или аналогичных магазинов, где продаются предметы домашнего обихода. __ Связаться с Коллином Митчеллом
Зарядное устройство для гелевых аккумуляторов на 6 В — для этой схемы требуется стабилизированный входной каскад постоянного тока 10 В, способный обеспечить ток 2 А. Начинает цикл зарядки при 240 мА и при полной зарядке автоматически переключается в состояние плавающего заряда (постоянный заряд) 12 мА. __ Разработан Тони ван Рооном VA3AVR
Тестер аккумуляторов NMH / NiCd 6 В — я разработал эту схему для проверки аккумуляторных батарей на 6 В в условиях постоянного тока.В соответствии с конструкцией схема прикладывает к аккумуляторной батарее нагрузку 10 А. На главном силовом транзисторе необходимо использовать радиатор. . . Схема Дэйва Джонсона P.E. — декабрь 2004 г.
Полевое зарядное устройство 7,2 В — Это зарядное устройство было разработано мной в 1993 году, чтобы удовлетворить мою потребность. Это было у меня два R.C. модели лодок, которым требовалось по 2 аккумулятора, и мне нужно было заряжать их одновременно от автомобильного аккумулятора. Я не мог найти для этого коммерческое подразделение, поэтому придумал аккуратный проект, чтобы оплатить счет.Макет был выполнен на 2 прототипах, одна плоская, а другая вертикальная для отображения гистограмм. Перед ними отображается красный фильтр. __ Разработан Тони ван Рооном VA3AVR
Зарядное устройство для литий-ионных аккумуляторов на 8 солнечных элементов, версия 2 — Джим Уилбер рассмотрел мою конструкцию зарядного устройства и прислал мне несколько предложенных изменений. Он предложил использовать идеальную диодную ИС LTC4412 для отключения пути тока от солнечного элемента к батарее в темноте. Он также отметил, что версия 2.Выбранный мною регулятор 5 В от Seiko больше не производился и предлагал использовать шунтирующий источник. . . Схема Дэвида А. Джонсона P.E. — май 2013 г.
8 Светодиодный светильник на солнечных батареях. За последние несколько лет я модифицировал множество солнечных садовых и дорожных светильников. Я покупаю некоторые устройства в магазинах товаров для дома, а затем полностью их выпотрошиваю. Достаю аккумулятор, электронную плату управления, светодиод и солнечную панель. Затем я заменяю эти компоненты новыми. Увеличиваю размер солнечной панели и аккумулятора.Я использую более эффективный и яркий светодиод. . . Схема Дэвида Джонсона P.E. — сентябрь 2017 г.
Зарядное устройство Nicad 9 В — Только схема __ Разработано Яном Хамером
Зарядное устройство для аккумулятораСхемы | CircuitDiagram.Org
Вот схема контроля батареи, которую можно использовать для контроля напряжения свинцово-кислотных батарей 12 В, таких как автомобильные. Схема построена на микросхеме LM3914 …
Это проект автомобильного зарядного устройства mini USB. Схема может заряжать USB-устройства от автомобильного аккумулятора…
Схема полностью автоматического зарядного устройства для никель-металлгидридных аккумуляторов с использованием интегрального стабилизатора положительного напряжения IC 7805, обеспечивающего постоянный ток для зарядки аккумуляторов …
Очень интересная и полезная схема зарядного устройства для нескольких аккумуляторов nicd & nimh, которая может заряжать аккумуляторы многих электронных устройств, например радио, mp3-плееров, сотовых телефонов …
Это портативное зарядное устройство USB с питанием от батареи. Эта схема может заряжать ваши КПК, Ipods, MP3-плееры и любое устройство, которое подключается к компьютеру через USB для зарядки…
Это схема зарядного устройства для никель-кадмиевых аккумуляторов. Эта схема может заряжать аккумуляторную батарею 12 В nicd. Но вы также можете заряжать аккумуляторы 6 В и 9 В …
Схема зарядного устройства для свинцово-кислотных аккумуляторовс использованием известной микросхемы IC LM 317. Схема обеспечивает правильное напряжение для зарядки герметичных свинцово-кислотных аккумуляторов 12 В или аккумуляторов SLA 12 В …
Вот схема зарядного устройства для солнечных батарей, которое может заряжать 12-вольтовые батареи SLA. Эта схема зарядного устройства для солнечных батарей имеет функцию автоматического отключения, поэтому она автоматически прекращает зарядку, когда батарея полностью заряжена…
Это схема простого зарядного устройства для одноячеечной литий-ионной батареи. В этой схеме зарядного устройства для литий-ионных аккумуляторов используется стабилизатор LP2931 IC …
Это принципиальная схема полностью автоматического зарядного устройства 12 В для зарядки аккумуляторов автомобилей и т. Д. Эта схема имеет максимальную скорость зарядки 2 ампера …
Схема может заряжать никель-кадмиевые батареи 2,4 В, 4,8 В и 9,6 В. Микросхема LM317T, показанная на этой схеме зарядного устройства для никель-кадмиевых аккумуляторов, используется для регулирования…
Вот схема зарядного устройства 6 В, 4,5 Ач, которая может заряжать свинцово-кислотные батареи 6 В, 4,5 Ач. Схема очень проста и состоит всего из нескольких компонентов …
Показанный здесь проект представляет собой схему резервного питания от батареи 6 В. Схема проста в сборке и работает как мини-ИБП для устройств на 6 В.
Хорошая схема зарядного устройства для щелочных батарей. Интересная особенность этой схемы заключается в том, что в ней используется светодиод, который будет показывать заряд батареи миганием, когда вы подключаете полностью разряженную батарею, светодиод мигает быстрее, но когда начинается процесс зарядки аккумулятора, скорость мигания светодиода уменьшается медленно и полностью прекращается. когда аккумулятор будет полностью заряжен.
Это схема преобразователя постоянного тока в постоянный, это универсальная схема, которая может использоваться для многих целей на этой схеме. LT1073 используется для преобразования 1,5 В в 5 В, напряжение может быть взято от батареи 1,5 В любого размера, например AA или AAA.
Миниатюрная схема зарядного устройства для литий-ионных аккумуляторов с малым падением напряжения с использованием LTC1731.
Полезная схема солнечного зарядного устройства, схема заряжает батареи типа AA или AAA. Наилучшая мощность зарядки достигается при помещении схемы под прямыми солнечными лучами.Эту схему также можно использовать для питания любого оборудования, например радио, дискового манипулятора, ладони и т. Д., В котором используются батареи типа AA или AAA.
Эта цепь резервного аккумулятора 9 В будет работать как мини-ИБП. Схема мгновенно перейдет на питание от батареи, если входное напряжение отсутствует …
Вот схема простого DIY-телефона на солнечных батареях или зарядного устройства USB. Эта схема зарядного устройства USB на солнечной батарее может использоваться для зарядки …
Вот проект простой схемы монитора батареи.Схема будет контролировать напряжение батарей 12 и 9 В и указывать с помощью светодиода, когда уровень заряда батареи будет …
Это проект универсальной схемы таймера автоматической зарядки аккумулятора. Схема способна заряжать многие типы аккумуляторов от 5 до 12 вольт …
На рисунке ниже показан очень полезный проект монитора уровня заряда батареи с использованием микросхемы TL071. Схема проста и удобна в сборке и использовании …
Вот очень полезный проект отключения низкого напряжения аккумулятора или цепи отключения.Аккумуляторы обеспечивают очень хорошую производительность и срок службы, если мы позаботимся о …
Это очень полезный проект простой схемы индикатора состояния батареи 12 В. Схема будет отображать уровень напряжения аккумулятора 12В четырьмя светодиодами …
Чтобы батареи прослужили дольше, необходимо заботиться о них, одним из основных факторов, ослабляющих аккумуляторные батареи, является их глубокая разрядка …
В этой статье описывается очень простая схема автоматического зарядного устройства 12, 9 В, 6 В.Схема может быть настроена для зарядки аккумуляторов разного напряжения …
Вот очень простая схема автоматического зарядного устройства 12 В и 6 В с реле автоматического отключения. Термин «автоматическое отключение» означает, что цепь автоматически …
Мы часто чувствуем потребность в автоматическом ИБП (источник бесперебойного питания) или в цепи обратной батареи для наших проектов на 5 В, 6 В и 9 В. Итак, здесь мы разработали хороший …
Этот блок аккумуляторов для сотовых телефонов своими руками можно использовать в качестве резервного зарядного устройства для мобильных телефонов и других устройств, например MP3-плееров, iPad, iPod и любых других устройств…
Очень полезный проект простого аварийного сотового телефона или мобильного зарядного устройства. Схема также может использоваться для зарядки других устройств, которым требуется вход 5 В для зарядки …
Проект простой схемы автоматического резервного батарейного питания 12В. Схема автоматически переключает нагрузку на батарею при отсутствии сетевого питания …
На рисунке ниже показан очень простой и полезный проект индикатора низкого напряжения для батарей 12 В с использованием микросхемы таймера 555.Схема укажет, активировав светодиод …
Вот очень простой и легкий проект индикатора разряда батарей 555 для 6В батарей. Каждый раз, когда батарея полностью разряжается, она теряет часть своей емкости из-за …
Вот очень простой и легкий проект индикатора разряда батарей 555 для 6В батарей. Схема автоматически отключит аккумулятор от нагрузки при напряжении …
.Схема может быть отрегулирована для автоматической зарядки любого типа аккумуляторной батареи от 6 В до 24 В и подачи максимального тока 10 А…
Схема может быть с батареями 12 В, размещенными где угодно, например, на солнечных установках, ИБП и т. Д. Она может использоваться с любыми типами батарей, такими как герметичные свинцово-кислотные, свинцово-кислотные, …
Эту простую двухступенчатую схему контроля высокого и низкого уровня заряда батарей можно использовать с различными батареями от 6 В до 12 В. Схема довольно проста в сборке и использовании невысокой стоимости …
Простой недорогой и точный монитор напряжения батареи с 4 светодиодами с использованием двух рабочих ИС lm358 …
Это интеллектуальное зарядное устройство позаботится о вашей перезаряжаемой батарее и автоматически начнет зарядку при падении напряжения батареи…
Хороший 4-х светодиодный индикатор батареи LM324. Схема универсальна и может применяться от аккумуляторов любого типа и напряжения …
Вот проект схемы монитора батареи, использующей LM339 IC. Схема может использоваться для контроля любых типов аккумуляторов от 6В до 12В …
На рисунке ниже показан проект монитора автомобильного аккумулятора с функцией отключения разряда аккумулятора. Схема может использоваться с любым транспортным средством …
Это проект недорогого 8-светодиодного монитора батареи, использующего LM324 IC.Схема может использоваться для контроля различных напряжений и типов батарей. Используется два LM324 …
Выход велосипедного динамо-машины можно использовать для питания различных устройств, в этой статье мы обсуждаем схему зарядного устройства USB для велосипеда своими руками …
Вот очень интересный и полезный проект схемы автоматической велосипедной динамо-фары и зарядного устройства …
Эта схема обеспечивает раннее предупреждение или индикацию неисправности автомобильного аккумулятора путем включения зуммера на несколько секунд, чтобы вы могли понять, что аккумулятор сейчас…
Вот очень полезный проект схемы сигнализации полного заряда аккумулятора. Схема может использоваться с разными типами аккумуляторов с разным напряжением …
На рисунке показана цепь аварийной сигнализации индикатора низкого уровня заряда батареи, цепь может быть настроена для контроля любого типа батареи от 6 В до 24 В. Он подаст звуковой сигнал …
Резервный аккумуляторный источник питания необходим в ситуациях, когда требуется непрерывная работа оборудования без отключения питания во время отключения электроэнергии…
Солнечные панели являются хорошим источником бесплатной энергии, солнечные системы обычно используются для зарядки высокоамперных аккумуляторов 12 В, в некоторые дни аккумуляторы заряжаются целый день …
Это проект простого транзисторного зарядного устройства для солнечных батарей с функцией автоматического отключения, которое будет заряжать батарею от солнечной панели и отключать ее при заполнении …
ИСLM3914 предназначена для измерения уровней напряжения источников питания и аккумуляторов, но ее можно легко превратить в очень интеллектуальное автоматическое зарядное устройство, которое можно использовать…
Вот проект автоматического зарядного устройства 12 В и 6 В с функцией автоматического определения заряда батареи. Обычно зарядные устройства предназначены для зарядки батарей с одним напряжением …
На рисунке ниже показана регулируемая цепь отключения разряда батареи для всех аккумуляторных батарей. Аккумуляторы очень дороги, будь то свинцово-кислотные батареи, …