Солнечный коллектор что такое: Солнечный коллектор — Что такое Солнечный коллектор?

Опубликовано в Разное
/
25 Июн 1982

Содержание

Солнечный коллектор — Что такое Солнечный коллектор?

Солнечный коллектор – гелиоустановка (для сбора тепловой энергии Солнца), способная нагревать материал-теплоноситель.

Солнечный коллектор — гелиоустановка (для сбора тепловой энергии Солнца), способная нагревать материал-теплоноситель.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд.
Пищевая и текстильная промышленности больше остальных отраслей нуждаются в использовании солнечных коллекторов (при производственных процессах требуется вода с температурой 30-90 °C).

В Европе в 2000 г. общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².

Солнечные коллекторы способны производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.

Известны 2 основных типа солнечных коллекторов:

Плоские

Плоский коллектор состоит из абсорбера, поглощающего солнечное излучение, прозрачного покрытия и термоизолирующего слоя.

В плоском коллекторе работает следующий механизм: падающая энергия передается теплоносителю в коллекторе, эффективность коллектора пропорциональна количеству падающей энергии.

При отсутствии расхода тепла плоские коллекторы способны нагреть воду до 190-200 °C.

Вакуумные

В вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль теплопроводников.

При облучении установки солнечным светом, жидкость, находящаяся в нижней части трубки, нагревается и превращается в пар. Пары поднимаются в верхнюю часть трубки, где, конденсируясь, передают тепло коллектору.

В вакуумных установках возможно повышение температур теплоносителя вплоть до 250-300 °C в режиме ограничения отбора тепла.

Известен также отдельный тип солнечных коллекторов: Солнечные воздушные коллекторы.

Солнечные воздушные коллекторы — это приборы, работающие по принципу гелиоэнергетики, способные нагревать воздух.

Чаще всего солнечные воздушные коллекторы представлены простыми плоскими коллекторными конструкциями.

Они используются:

  • для отопления помещений,

  • для просушивания с/х продукции.

Солнечные коллекторы. Часто задаваемые вопросы.

 

1. Могут ли солнечные водонагреватели являться конкурентоспособной альтернативой газа или электричества?

Солнечная энергия не должна рассматриваться в качестве альтернативы газа или электричества, скорее в качестве дополнения к ним. Она не может полностью заменить потребность в газе или электрическом отоплении, поскольку есть дни с недостаточным уровнем солнечного освещения. Правильный расчёт системы, солнечного нагрева воды, может обеспечить 60% -70% от потребности горячей воды.

Можно точно утверждать что, гелиосистема будет выгодна в том случае, если на объекте отсутствует газ или нагрев воды происходит за счет электричества.

 

2. В течение какого срока солнечный коллектор сможет окупить мои инвестиции?

Для семи из 3-5 человек, стоимость гелиосистемы будет схожа со стоимостью газовой или электрической системой нагрева воды. Сроки окупаемости напрямую зависят от того, в каком колличестве будет потребляться вода, нагретая солнечным коллектором и размера системы.

Эсли на объекте нагрев воды осуществляется за счет электричества, то срок окупаемости будет от 1 года до 2 лет, причем необходимо учитывать, что и работоспособность электрокотлов, электробойлеров и другого отопительного оборудование имеет не такой уж большой срок службы, в отличие от гелиосистемы, которая может проработать не менее 20-25 лет без замены главных и дорогостоящих частей системы. Работая совместно с действующей системой нагрева воды, солнечные коллектора могут экономить до 75% топлива или электроэнергии в осенне-весенний период.

 

3. Могут ли солнечные коллекторы быть использованы в холодных условиях?

Да. Наши вакуумные трубчатые коллекторы могут использоваться при очень низких температурах, в солнечных системах водонагрева, установленных в регионах России, температура в которых достигает -45°C. Удивительно, но даже при этих температурах система может производить горячую воду с хорошей эффективностью за счет вакуума в трубках коллекторов, который является идеальным теплоизолятором. В яркий солнечный день, эффективность коллектора будет примерно одинаковой как в зимний период времени, так и в летний.

 

 

4. Что произойдет, если целостность одной из вакуумных трубок нарушится?

Вакуумные трубки достаточно прочные, и их нелегко разбить, но если это всё-таки произошло, это с лёгкостью решается заменой вакуумной трубки на новую. Хотя наши солнечные коллекторы обладают способностью работать с некоторым количеством повреждённых трубок, рекомендуется повреждённые трубки немедленно заменить, чтобы удерживать эффективность солнечного коллектора на должном уровне. Запасные трубки Вы всегда можете приобрести в нашем магазине.

 

5. Будет ли вода нагреваться в пасмурный день?

Да. Несмотря на то, что тепловая мощность солнечного коллектора снижается в пасмурные дни, поглощаемой энергии хватает для нагрева воды. Если это, по большей степени, туманный день или дождь, то может потребоваться больше ресурсов газового или электрического нагрева, чтобы сохранить температуру воды оптимальной для использования. Солнечная система нагрева воды является автоматизированной, так что вам не придется беспокоиться о нехватке горячей воды в дождливый день.

За своевременным включением котлов, ТЭНов и др нагревательных приборов следит контроллер гелиосистемы.

 

6. Могу ли я использовать солнечный коллектор с системой горячего водоснабжения, которая у меня уже есть?

ДА. Клапаны попросту модернизированы, и они зачастую могут быть использованы, чтобы позволить солнечной энергии подключаться к существующей подаче холодной воды. Если ваш бак не может принять солнечную энергию напрямую, вы можете установить дополнительный накопительный бак для предварительного нагрева холодной воды перед входом в уже существующий. Любая действующая система отопления и водоснабжения может быть доработана гелиосистемой без глобальной реконструкции котельной. Действующая котельная прекрасно будет работать совместно с гелиосистемой, причем экономия топлива и электроэнергии традиционной котельной будет значительной.

 

 

7. Могут ли солнечные коллекторы быть установлены на плоской поверхности?

Да. Они могут быть установлены на плоской крыше или на земле с помощью алюминиевых опорных подставок. Для оптимальной работы солнечного коллектора, его следует установить под углом 45 градусов, чтобы гарантировать оптимальную работу тепловых трубок.

 

8. Как я могу защитить свою солнечную систему при минусовых температурах?

Если ваша солнечная система нагрева воды работает в регионах с минусовыми температурами, то Вам следует принять меры по защите от замерзания. Самым простым способом предотвращения замерзания является использование солнечного контроллера с настройками низких температур. Таким образом, когда температура падает ниже определенной заранее установленной температуры (5°C), насос будет циркулировать и нагревать коллектор водой снизу из резервуара. Насос будет работать сессионно, частота сессий которого зависит от температуры наружного воздуха. В особо холодных регионах целесообразно использовать замкнутый контур с помощью пропиленгликоля, температура замерзания которого ниже 30 градусов.

 

9. Может ли солнечный коллектор стать причиной возникновения пожара во время жаркой и засушливой погоды?

Нет. Все компоненты наших тепловых солнечных коллекторов рассчитаны на воздействие высоких температур и не воспламеняются, так что даже при сильном солнечном свете система нагрева воды не загорится и не подожжёт сухой материал. Даже самым жарким летом к вакуумным трубкам можно прикоснуться и не обжечься, т. к. вся температура находится в самой трубке, за вакуумом.

 

 

10. Может ли солнечный коллектор нагревать воду до достаточно высокой температуры?

Да, в хорошую погоду коллектор может довести воду до кипения. Как правило, это не является необходимым, поэтому система должна быть разработана грамотно. Нелогично доводить воду до кипения в домашних условиях солнечным коллектором, т. к. из за температуры близкой к кипению может произойти деформация пластиковых и резиновых уплотнителей в системе, тем самым увеличивается риск протечек. Если горячая вода не используется в течение одного дня, то на следующий день система будет сбрасывать воду через предохранительный клапан. Это пустая трата энергии и воды! Пожалуйста, используйте разумно энергию, получаемую солнечным водонагревателем, для обеспечения оптимальной производительности и минимального расхода воды.

 

11. Что требуется для обслуживания солнечного коллектора?

При нормальных обстоятельствах обслуживание не требуется. Хотя солнечные коллекторы могут работать с несколькими сломанными трубами, тепловая эффективность будет снижена незначительно. Но разбитые трубки всё же следует заменить как можно скорее.

 

12. Могут ли солнечные коллекторы быть использованы для крупномасштабного производства горячей воды?

Да. Наши солнечные тепловые коллекторы могут быть соединены последовательно или параллельно, чтобы обеспечить крупномасштабное производство горячей воды для нужд коммерческих и муниципальных организаций, таких как школы, гостиницы или офисные здания.

 

 

13. Могу ли я нагреть воду в своём бассейне или спа, используя солнечный коллектор?

Да. Вакуумные трубчатые коллекторы могут быть использованы для нагрева спа или жилого плавательного бассейна. Для любого бассейна, который необходимо нагреть, должен быть использован изолирующий защитный слой, чтобы свести к минимуму потери тепла и испарение.

 

 

14. Вакуумные трубчатые коллекторы более эффективные, чем плоские?

 

Существует небольшая разница между вакуумным трубчатым коллектором и плоским коллектором при сравнении максимальной эффективности. На самом деле, эффективность плоской пластины коллектора может быть выше трубки вакуумного коллектора, но при условиях с минимальными потерями тепла. При средних же показателях за год, вакуумный трубчатый коллектор имеет явные преимущества. Ключевыми являются следующие моменты:

 

1) Солнечные вакуумные трубки могут пассивно отслеживать положение солнца в течение дня из-за цилиндрической формы трубок. Пластина плоского солнечного коллектора обеспечивает выходной импульсной энергии в полдень, когда солнце находится в зените

2) Вакуум в трубках значительно снижает потери конвективного тепла из внутренней части трубки. Таким образом, ветра и низкие температуры оказывают намного меньшее влияние на эффективность вакуумного коллектора.

3) Вакуумные трубки прочны и долговечны, так как сделаны из сверхпрочного боросиликатного стекла. По отдельности трубки стоят недорого и сломанную легко заменить.

4) Из-за различных преимуществ вакуумной трубки коллектора над плоской пластиной коллектора, понадобится меньшее количество коллекторов, чтобы обеспечить такую же производительность нагрева. Например, в семье из 4-5 человек, как правило, потребуется резервуар с 250-300 литров воды. В зависимости от вашего местоположения, летом все 30 вакуумных трубок коллектора будут обязаны предоставлять все потребности в горячей воде и большой процент в другие сезоны.

5) Плоские солнечные коллекторы могут производить подобный выход тепла в вакуумных трубчатых коллекторах, но, как правило, исключительно в солнечных условиях. При среднем в течение всего года, тепловая мощность вакуумной трубки коллектора на квадратный метр на 25%-40% больше, чем плоской пластины коллектора.

 

Как работает солнечный коллектор на вакуумных трубках • Ваш Солнечный Дом

Принцип работы

Солнечный вакуумный коллектор (преобразователь тепловой энергии солнца) обеспечивает сбор солнечного излучения в любую погоду, вне зависимости от внешней температуры. Коэффициент поглощения энергии таких коллекторов, при степени вакуума 10ֿ, составляет 98 %. Солнечные коллекторы обычно устанавливаются непосредственно на крыше зданий таким образом, чтобы наиболее эффективно использовать площадь крыши для сбора энергии. Коллекторы монтируются практически под любым углом, от 5 до 90 градусов. Минимальный угол наклона необходим для обеспечения циркуляции теплоносителя Срок службы вакуумных коллекторов – не менее 20 лет.

Резервуар-теплообменник представляет собой автоматизированную систему преобразования, поддержания и сохранения тепла, полученного от энергии солнца, а также и от других источников энергии (например, традиционный водонагреватель, работающий на электричестве, газе или дизтопливе), которые страхуют систему при недостаточном количестве солнечной энергии. Нагретая таким образом вода поступает из теплообменника внутреннего блока в радиаторы системы отопления, а вода из резервуара используется для горячего водоснабжения.

Блок управления предназначен для контроля температуры в солнечном коллекторе и резервуаре-теплообменнике, а также для выбора, в зависимости от величины этих температур, оптимального режима работы системы в течение суток. При этом контроллер регулирует поток теплоносителя через теплообменник, определяет направление подачи тепла (на ГВС или на отопление). В ночное время автоматика системы обеспечивает минимально необходимое привлечение дополнительной энергии для поддержания заданной температуры внутри помещения. Система обладает малой инерционностью, быстрым выходом на рабочий режим и позволяет обеспечить:

  • Круглогодичное горячее водоснабжение;
  • Сезонное отопление с экономией традиционных источников тепловой энергии до 80% (в зависимости от географической широты и климатических условий).

Конструкция элементов

вакуумный коллектор

Конструкция коллекторов с вакуумными трубами состоит из параллельных рядов прозрачных трубчатых профилей. Используются трубы типа ”стекло-стекло”. Внутренняя труба покрыта специальным селективным слоем, который хорошо абсорбирует солнечную энергию и препятствует потерям тепла. Такие трубы функционируют и в пасмурную погоду, и при отрицательной температуре, они преобразуют прямые и рассеянные солнечные лучи в тепло. Инфракрасное излучение, которое проходит сквозь облака, также поглощается и преобразуется в тепло. Трубки обычно выполнены из боросиликатного стекла.

Конструкция вакуумных труб похожа на конструкцию термоса: одна трубка вставлена в другую с большим диаметром. Между ними вакуум, который представляет совершенную термоизоляцию. Для всесезонных систем в коллекторах применяются вакуумные трубы с встроенными термотрубками (тепловыми трубками). Термотрубка – это закрытая медная труба с небольшим содержанием легкокипящей жидкости. Под воздействием тепла жидкость испаряется и забирает тепло вакуумной трубки. Пары поднимаются в верхнюю часть – наконечник, где конденсируются и передают тепло теплоносителю основного контура водопотребления или незамерзающей жидкости отопительного контура. Конденсат стекает вниз, и все повторяется снова.

Приемник солнечного коллектора медный с полиуретановой изоляцией, закрыт нержавеющим листом. Передача тепла происходит через медную „гильзу“ приемника. Благодаря этому отопительный контур отделен от трубок, при повреждении одной трубки коллектор продолжает работать. Процедура замены трубок очень проста, при этом нет необходимости сливать незамерзающую смесь из контура теплообменника.

Резервуар-теплообменник

Конструктивно выполнен в виде бойлера-накопителя. Предназначен для накопления и сохранения тепла, и обычно включает в себя одну или две внутренние теплообменные спирали. Остальное оборудование системы обычно включает насос, манометр, клапан давления, вентили, кран регулировки налива воды, соединители, манометр, вентиль безопасности на 6 атм., набор для безопасного подсоединения к отопительной системе. Как опция бак может оснащаться электронагревателем мощностью от 1 до 3 кВт.

При одновременной потребности в горячей воде и отоплении, солнечная энергия распределяется между нагревом главного котла и горячим водоснабжением. При достижении заданной температуры, автоматика переключает подачу тепла на отопительный контур. Такая последовательность работы системы может быть изменена на прямо противоположную, в зависимости от климатической зоны или времени года. Система сконструирована таким образом, что к ней легко могут подсоединяться другие нагревательные системы.

Системный контроллер для солнечных водонагревательных систем

Контроллер предназначен для контроля температуры в солнечном коллекторе, в резервуаре-теплообменнике и выбора, в зависимости от величины этих температур, оптимального режима работы системы в течение суток.

Контроллер выполняет следующие основные функции:

  • Индикацию температуры коллектора;
  • Индикацию температуры в резервуаре;
  • Индикацию температуры обратного потока теплоносителя;
  • Установка температуры включения принудительной циркуляции теплоносителя;
  • Установка времени включения и выключения системы отопления;
  • Установка температуры и времени дополнительного подогрева;
  • Установка температуры “антизамерзания”;
  • Индикацию повреждения датчиков.

Типы гелиосистем

Различают два типа гелиосистем: сезонные и круглогодичные (всесезонные)

К сезонным системам относятся вакуумные коллекторы с прямой теплопередачей солнечной энергии воде. В таких системах вакуумные трубки расположены под определенным углом и соединены с накопительным баком. Из него вода протекает прямо в трубки, нагревается и возвращается обратно.

К преимуществам этой системы относится непосредственная передача тепла воде без участия других элементов. Минусом можно считать несколько больший объем воды контура теплообменника (60-200 литров). Основным преимуществом остается низкая стоимость и высокий КПД, до 98 %.

К всесезонным системам относятся вакуумные коллекторы с термотрубками. Принцип действия таких коллекторов прост и припоминает работу установки центрального отопления. Это закрытая система, в которой, через верхнюю часть коллектора и змеевик протекает, незамерзающая жидкость. Эта жидкость забирает тепло из медных наконечников, а затем горячая жидкость перекачивается через змеевик бака-аккумулятора и нагревает воду в баке. Цикл передачи тепла из коллектора к аккумулятору длится до тех пор, пока длится день (и температура на выходе коллектора выше температуры в баке на уровне теплообменника). Работу насоса контролирует электронный контроллер. Датчики контроллера находятся в коллекторе и в баке-аккумуляторе. Они измеряют температуру в системе. Кроме того, расширительный бак предохраняет систему от слишком высокого давления, возникающего при возрастании температуры и не использовании воды потребителями.

Область применения

  • Обеспечение горячим водоснабжением жилых домов, коттеджей, дачных домиков, гостиниц, ресторанов, теплиц, бассейнов и т.д.;
  • Отопление помещений в весенне-осенний период и экономия энергоносителей системы отопления в зимний период до 50%.
  • Поддерживающее отопление помещений при применении с технологией «теплый пол»

Источник: http://forum.truba.ua/index.php?topic=2983.030 Апрель 2008

Эта статья прочитана 22488 раз(а)!

Продолжить чтение

  • 66

    Интересные ссылки по солнечным коллекторам Солнечные коллекторы: правда и мифы. Приведено сравнение плоских и вакуумных коллекторов. Написано все, на удивление, правильно, видно что писал не журналист, а практик. Видео о солнечных коллекторах https://youtu.be/Bm-hgBhgwL0 Процесс кипячения воды в вакуумной трубке Испытания…

  • 62

    Солнечное тепло: горячее водоснабжение и отопление с вакуумными солнечными коллекторами В вакуумном водонагревателе-коллекторе объем, в котором находится темная поверхность, поглощающая солнечное излучение, отделен от окружающей среды вакуумированным пространством, что позволяет практически полностью устранять потери теплоты в окружающую среду за счет…
  • 60

    Эскизный проект загородного сельского дома с отоплением от солнечного коллектора Вырезка из журнала «Наука и Жизнь», кажется №12 за 1985 год. Арх. А.Семенов. СОЛНЕЧНЫЙ ДОМ Возможность использования солнечной энергии для экономии топлива при обогреве характеризуют следующие цифры. Среднее за год…
  • 58

    ГОРЯЧАЯ? В ЛЮБОЕ ВРЕМЯ! Многие жители села и садоводы имеют на своих участках душ. Как правило, это небольшая отдельно стоящая закрытая постройка с баком на крыше. Из него самотеком по трубе к душевой сетке поступает холодная вода. Конечно, в жаркий…
  • 55

    Солнечное тепло: горячее водоснабжение и отопление В среднем по году, в зависимости от климатических условий и широты местности, поток солнечного излучения на земную поверхность составляет от 100 до 250 Вт/м2, достигая пиковых значений в полдень при ясном небе, практически в…
  • 54

    Какой коллектор лучше — вакуумный или плоский? Вакуумные коллекторы 1. Tрубчатый коллектор работает при рассеянном излучении, в том числе в зимний период и в пасмурную погоду, так как он способен абсорбировать диффузионную радиацию благодаря высокоселективной абсорбционной поверхности. Зависимость КПД коллекторов…

Солнечный коллектор воздуха

Относительно недавно на рынке появились, и уже стали достаточно популярными, воздушные коллекторы на солнечных батареях. «Умельцы» собирают воздушные нагреватели из пивных банок и прочего мусора, снимают видео и обсуждают на форумах. В этой статье мы расскажем о конструкции воздушных коллекторов и о сфере их применения в строительстве домов.

Воздушный коллектор представляет собой некую плоскую камеру, черную изнутри, с одной прозрачной стенкой. С одной стороны в камеру заходит холодный воздух — с другой стороны выходит нагретый. Изготовить воздушный коллектор несложно, по крайней мере гораздо проще, чем водяной, но есть ряд тонкостей..

Насколько полезен воздушный солнечный коллектор?

Применяются воздушные коллектора либо для нагрева приточного воздуха в системах вентиляции, либо для нагрева воздуха в режиме рециркуляции. Вроде бы все просто, но возникает ряд логичных вопросов. Мы уже писали о сложностях солнечного отопления при помощи водяных солнечных коллекторов, с воздушными системами, ровно та же проблема —  солнце плохо светит зимой. Таким образом, применение солнечных коллекторов для отопления ограничено. Это могут быть:

  • жилые дома в южных регионах;
  • цеха, склады, производственные помещения;
  • или дачи и теплицы, отапливаемые преимущественно в межсезонье.

Гораздо больший интерес представляет задача о нагреве приточного воздуха. Дело в том, что в зимний период, перед тем, как подавать свежий воздух в помещение, его нужно нагреть до температуры, близкой к комнатной, и именно для этих целей коллектор воздуха на солнечной энергии крайне полезен. Конечно, солнце зимой светит очень мало, но и приточного воздуха требуется не так уж много. 

Ранее, когда дома остекляли деревянными рамами, проблем с вентиляцией помещений не возникало. С санузле и на кухне работала естественная вытяжка, а свежей воздух поступал через щели в окнах. Сегодня ситуация иная — почти все окна заменены на пластиковые, квартира в целом становится герметичной и если нет дополнительной механической вентиляции, вытяжка не работает должным образом, а притока свежего воздуха практически нет. Между тем, для каждого человека нужно подавать до 60м³*час свежего воздуха, поэтому крайне важно летом открывать окна, а зимой иметь хоть какой-то приток.

Из этих соображений воздушный солнечный коллектор должен висеть на стене и подавать через эту самую стену воздух в комнату. При этом коллектор должен иметь свой вентилятор, работающей от небольшой солнечной батареи, находящейся там же, где и само устройство. Принцип работы довольно прост, солнце светит, воздух нагревается, вентилятор крутится, происходит приток. Если солнце не светит, вентилятор не вращается, и подачи воздуха не происходит.

Именно такие солнечные системы российского производства поставляет наша компания. Небольшая солнечная батарея и вентилятор находятся непосредственно внутри коллектора, плюс само устройство работает как крупнодисперсный фильтр воздуха, что в городских условиях довольно важно. В результате система работает сама по себе, без подключения к электросети и может быть полезна в автономных системах, где подключение к сетевому электричеству отсутствует. Системы комплектуются крепежными элементами для крыши или фасада и системой управления и поставляются в собранном виде с детальной инструкцией по установке.

Конечно, сфера применения воздушных СК не столь велика, однако, при их помощи можно довольно просто и недорого решать очень важную задачу – приток свежего воздуха в помещение в зимний период.


Самые популярные модели воздушных солнечных коллекторов

SolarFox vsf-1w

Тип крепления — к стене

Макс. площадь, м² — 25

Воздушный поток, м³ — 35

Повышение темп., °С — 15-20°

SolarFox vsf-2w

Тип крепления — к стене

Макс. площадь, м² — 50

Воздушный поток, м³ — 90

Повышение темп., °С — 25-30°

SolarFox vsf-3w

Тип крепления — к стене

Макс. площадь, м² — 80

Воздушный поток, м³ — 110

Повышение темп., °С — 30-35°

SolarFox vsf-4w

Тип крепления — к стене

Макс. площадь, м² — 100

Воздушный поток, м³ — 140

Повышение темп., °С — 35-40°

 

SolarFox vsf-5w

Тип крепления — к стене

Макс. площадь, м² — 150

Воздушный поток, м³ — 200

Повышение темп., °С — 40-45°

SolarFox vsf-1r

Тип крепления — на крышу

Макс. площадь, м² — 25

Воздушный поток, м³ — 35

Повышение темп., °С — 15-20°

 

SolarFox vsf-2r

Тип крепления — на крышу

Макс. площадь, м² — 50

Воздушный поток, м³ — 90

Повышение темп., °С — 25-30°

SolarFox vsf-3r

Тип крепления — на крышу

Макс. площадь, м² — 80

Воздушный поток, м³ — 110

Повышение темп., °С — 30-35°

 

SolarFox vsf-4r

Тип крепления — на крышу

Макс. площадь, м² — 100

Воздушный поток, м³ — 140

Повышение темп., °С — 35-40°

SolarFox vsf-5r

Тип крепления — на крышу

Макс. площадь, м² — 150

Воздушный поток, м³ — 200

Повышение темп., °С — 40-45°

 

Полный ассортимент и цены представлены в разделе каталога Солнечные коллекторы воздуха

Перейти к другим полезным статьям..

Сравнение конструкций различных солнечных коллекторов


 Площадь солнечного коллектора.
     Солнечный коллектор ЯSolar имеет площадь в 2 м². Сторона, обращенная к солнцу, покрыта специальным светопоглощающим слоем и имеет практически 95%-е поглощение тепла. Обратная (теневая сторона) имеет специальное двухслойное утепление 70мм. Подсчитаем потери тепла, происходящие на теневой стороне. Коэффициент теплопередачи утеплителя равен 0,03 Вт/м*°С. С учетом толщины и перепада температуры например в 45°C, получим потери равные 50 Вт. Торцы солнечного коллектора, трубы и пр. будут излучать меньше тепла. Из-за специального селективного покрытия и правильно подобранного расстояния между стеклом и абсорбером излучение тепла и конвекция воздуха будут минимальны. В итоге получаем теплопотери двухметрового плоского солнечного коллектора 250-450 Вт. Данные потери подтверждаются испытаниями и сертификатами солнечного коллектора.
     Для расчета будет брать поток солнечной энергии равный 1000 Вт/м², вычитаем теплопотери и получаем величину 700 Вт/м². Для плоского коллектора площадью 2м² реальная тепловая мощность при разнице температуры 45°C составляет 1300-1400Вт.
     При наличии автоматики, плоские солнечные коллекторы начинают работать при температурах, превышающих всего на несколько градусов температуру нагреваемой жидкости. Это особо актуально для нагрева бассейнов и холодных теплоносителей (например, для тепловых насосов), благодаря этому уменьшаются теплопотери и увеличивается эффективность.

     Следует иметь ввиду, что площадь абсорбера типового китайского вакуумного коллектора с 18 трубками диаметром 47 мм и длинной 1,8м составляет всего 0,047м*1,8м*18= 1,522 м². При лучшем их КПД 75%, основанном на реальных данных центров сертификации, при идеальных погодных условиях 1000 Вт/м² один солнечный коллектор с вакуумными трубками вырабатывает только 1100 Вт. Значений выше этих получить физически не возможно, энергия не берется из ни от куда.


Рабочая площадь плоского и вакуумного солнечного водонагревателя

    Отношение апертуры (рабочей поверхности) к общей площади солнечного коллектора у вакуумного водонагревателя в два раза меньше, чем у плоского солнечного коллектора. Следует иметь ввиду, что площадь абсорбера типового китайского вакуумного коллектора с 18 трубками диаметром 47 мм и длинной 1,8м составляет всего 0,047м*1,8м*18= 1,522 м².

Конструкция качественного плоского солнечного коллектора.
    Плоский коллектор состоит из элемента, поглощающего солнечное излучение, прозрачного покрытия и термоизолирующего слоя. Поглощающий элемент называется абсорбером; он связан с теплопроводящей системой. Прозрачный элемент (стекло) обычно выполняется из закалённого стекла с пониженным содержанием металлов. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Для её повышения применяется специальные оптические покрытия, не излучающие тепло в инфракрасном спектре. Стандартным решением повышения эффективности коллектора также стало применение абсорбера из листовой меди из-за её высокой теплопроводности.

Конструкция солнечного коллектора с вакуумной трубкой
    Стеклянные вакуумные трубки по конструкции являются термосами – одна трубка расположена в другой, между ними технический вакуум. В стеклянную трубку, вставляются медные термотрубки, соединенные со стеклянные трубками тонкими листами алюминия.

   Термотрубка — это закрытая медная труба с небольшим содержанием «легкокипящей жидкости». В качестве «легкокипящей жидкости» используется обычная вода под низким давлением. Под воздействием тепла жидкость испаряется при температуре около 30°С и забирает тепло вакуумной трубки. Пары поднимаются в верхнюю часть головки, где конденсируются и передают тепло теплоносителю основного контура с незамерзающей жидкостью. Конденсат стекает вниз, и все повторяется снова. Но дальнейшем повышении температуры плотность пара будет расти, а плотность воды будет падать. В критической точке плотность станет одинаковой, и процесс конденсации и испарения прекратится, поступающая энергия передается только за счет стенки латунного стержня, при её небольшой толщине (0,5 мм), эффективность передачи будет мала.
    Приемник солнечного коллектора латунный с изоляцией, в лучшем случае, из минеральной ваты толщиной обычно всего 4 см, закрыт листом жести.


 
Реальный КПД вакуумного солнечного коллектора 70%.

    Эффективность вакуумного солнечного коллектора складывается из потерь на отражение и поглощение двойного стекла и теплопотерь, связанных с излучением тепла поглощающим слоем. Также неэффективность получается из-за того, что солнцем нагревается поверхность внутренней стеклянной колбы, от которой тепло передается через стекло (плохой теплопроводник) тонким алюминиевым пластинам на медную трубку.
    Значительны теплопотери возникают через изоляцию приемника коллектора, выполненную из минеральной ваты.

Работа зимой вакуумного и плоского солнечного коллектора

    Начальный КПД (оптический) вакуумных коллекторов ниже чем у плоских на 10-15%. Это подтверждается всеми исследованиями и сертификатами, да и продавцы вакуумных коллекторов не скрывают это. Поэтому при разнице нагреваемого теплоносителя и окружающего воздуха до 50°C эффективнее качественные плоские солнечные коллекторы. При большей разнице эффективность вакуумных по отношение к плоскими является незначительной, при этом световой день в зимний период уменьшается в разы. Поэтому общая годовая производительность тепловой энергии качественных плоских солнечных коллекторов будет выше.

  Любые солнечные коллекторы установленные под углом до 50-70° часто засыпаются снегом, после чего они не работают. Только у плоских солнечных коллекторов возможно реализовать режим принудительной оттайки, путем пропускания горячего теплоносителя несколько минут через солнечный коллектор. Выпавший снег растапливается из-за минимальных теплопотерь через стекло и соскальзывает.

  Также только плоские солнечные коллекторы могут монтироваться вертикально для получения максимум тепловой энергии в зимний период. Термосифонные системы (без электричества) с естественной циркуляцией антифриза круглогодичного использования возможны только с плоскими солнечными коллекторами.

  В зимний период вакуумные трубчатые коллекторы могут покрываться инеем на достаточно продолжительный период. Особенно это актуально для регионов с резким перепадом температур и высокой влажностью.

Улавливание и отражение солнечного света


 
Падение и отражение света от вакуумных трубок

    Благодаря цилиндрической форме трубок солнечные лучи падают на постоянную поверхность перпендикулярно к оси трубки, но при этом все остальные лучи, не перпендикулярные оси трубки, будут отражаться. Это означает что в течении дня получение энергии будет усредненное, в том числе во время прихода максимальной солнечной энергии. Плоские же солнечных коллекторы в период максимальной солнечной интенсивности 11.00-16.00 улавливают максимально возможное количество тепловой энергии. Отражение по вертикале (вдоль трубок) будет такое же как и у плоских солнечных коллекторов.


 
Реальный КПД солнечных коллекторов различных конструкций
в зависимости от разницы температуры коллектора и окружающей среды.

    При выборе солнечного коллектора любой конструкции необходимо учитывать их отличия, стоимость, реальный КПД, цели и климат использования. Идеальных конструкций нет! Доверять проектирование следует профессионалам, имеющим большой опыт монтажа и эксплуатации систем с надёжными солнечными коллекторами. Наши специалисты будут рады оказать Вам качественную помощь в решении задач солнечной энергетики и предоставить объективную консультацию.

Солнечные коллекторы. Какие они бывают?

Классический солнечный коллектор представляет собой металлические пластины черного цвета, установленные на крыше дома. Цвет и положение коллектора предполагает максимальное поглощение и накапливание солнечной энергии. Эти металлические пластины помещаются в корпус, изготовленный из стекла или пластмассы. Наклон к южной стороне, при установке позволит увеличить количество поглощаемой радиации. Проще говоря, солнечный коллектор – это миниатюрная теплица, которая накапливает солнечную энергию под стеклянной панелью. Солнечная радиация распределяется по поверхности равномерно, по этому, чем больше площадь коллектора, тем больше энергии будет поглощено.

На сегодняшний день солнечная энергетика развита достаточно обширно, это дает возможность устанавливать солнечные панели различных комплектаций и размеров. Этот аспект позволяет солнечным коллекторам обеспечивать хозяйственные нужды человека, такие как отопление и снабжение горячей водой.

К примеру, существует несколько отдельных видов солнечных коллекторов, которые различаются, в зависимости от температуры, до которой они способны достигать:

  • Коллекторы низких температур. Такие коллекторы дают достаточно низкие температуры – не выше 50 С. Такие коллекторы, широко применяются для подогрева воды в бассейнах, и в других случаях, когда не требуется слишком высокая температура воды.
  • Коллекторы средних температур. Такой тип коллекторов способен нагревать воду от 50 до 80 С. Зачастую, такой коллектор представляет собой плоскую остекленную пластину, в которой с помощью жидкости происходит теплопередача или же это коллекторы-концентраторы. В последних тепло концентрируется и может использоваться для нагрева воды в жилых секторах.Представлен коллектор-концентратор, в большинстве случаев, вакуумированным трубчатым коллектором
  • Коллектор высоких температур. Зачастую имеют форму параболических тарелок. Такое устройство, в большинстве случаев используется большими предприятиями, которые генерируют электричество и распределяют его для городских электросетей

Интегрированный коллектор

Накопительный интегрированный коллектор

На данный момент одним из самых простых видов солнечных коллектором является емкостной коллектор, который еще называются термосифонным коллектором. Такое название, данный генератор получил за счет того, что он одновременно может и аккумулировать тепло и хранить определенное, уже нагретое, количество воды. Такие коллекторы, зачастую используются для начального нагрева воды, которая впоследствии нагревается до необходимой температуры стандартными установками (газовыми, электрическими колонками и т.д.). Такой метод позволяет экономить на потреблении электричества, за счет того, что в бак котла поступает уже подогретая вода.

Рассмотрим основные плюсы такого вида коллекторов. Первое – это, конечно же, экономия на электричестве. Второе – это возможность использовать достаточно дешевую альтернативу солнечной водонагревательной системе. Третьим плюсом стоит отметить простоту использования коллектора – минимум технического обслуживания, за счет отсутствия в нем движущихся частей (насосов и прочего).

Такие коллекторы бывают также «Integrated Collector and Storage», или, проще говоря, интегрированными коллекторами-накопителями. Такой вид коллектора, зачастую представлен одним или несколькими баками, которые заполнены водой. Эти баки помещаются в теплоизоляционный ящик и накрываются стеклянной крышкой. Порою, в этот же ящик помещаются прибор-рефлектор, который позволяет увеличивать солнечное излучение. Принцип действия данного устройства достаточно прост – солнечный свет, проходя через стекло, нагревает воду. Такая простота функционирования обуславливает достаточно не большую цену самого устройства. Однако стоит помнить, что в холодное время года, воду стоит защищать от замерзания, или же сливать.

Плоские коллекторы

Такие коллекторы, пожалуй, самые популярные для использования в бытовых условиях, для нагрева воды и в отопительных системах. Внешне, такое устройство выглядит как обычный металлический ящик. Однако внутри него находиться черная платина, которая поглощает солнечный свет. Крышка у этого ящика должна быть в обязательном порядке, стеклянной или пластмассовой, дабы лучше пропускать солнечную энергию.

Остекление плоского солнечного коллектора может быть прозрачным или матовым. Зачастую, все же, отдается предпочтение матовому остеклению, поскольку такое стекло позволяет пропускать только свет. А также, содержание железа в стекле должно быть очень низким, что бы позволить пропускать большую часть поступающего света, в коллектор. Принцип действия заключается в том, что солнечный свет, попадая на пластину, тепловоспринимающую пластину, которая и вырабатывает тепло. Стекло служит теплоизоляцией, а для повышения КПД коллектора, его стенки прокладывают теплоизолятором. Такая конструкция, позволяет снизить тепловые потери до минимума.

Пластина абсорбента, или же пластина, поглощающая солнечный свет, зачастую окрашена в черный цвет, дабы увеличить количество поглощаемой солнечной энергии, ведь тот факт, то темные тела притягивают ее больше – ни для кого не секрет. Проходя через стекло, и попадая на поглощающую пластину, солнечная радиация превращается в тепловую энергию. Далее, чтобы продолжить процесс, полученное тепло передается тепловому носителю. Тепловым носителем может выступать воздух или жидкость, которые циркулируют в трубах. К сожалению, даже полностью черные поверхности, способны отражать около 10% солнечной радиации, падающей на нее. Дабы избежать этого, абсорбирующие пластины покрываются дополнительно специальным покрытием, которое призвано удерживать солнечный свет попадающие на пластину. Такое покрытие служит дольше обычной краски и позволяет повысить КПД коллектора. В состав такого селективного покрытия входит слой аморфного полупроводника, который наноситься на металлическое основание пластины.

Абсорбирующие пластины изготавливаются из металла, который наилучшим образом проводит тепло. Высокий уровень теплопроводности металла позволит уменьшить теплопотери при передаче переработанной энергии теплоносителю. К списку таких металлов можно причислить медь и алюминий. Разница между ними заключается в том, что медная пластина способна лучше проводить тепло, и более устойчива к коррозиям, в отличии от алюминиевой пластины.


Плоские солнечные коллекторы бывают жидкостными или воздушными. А в зависимости от наличия остекления, и тот и другой вид бывает как остекленным, так и не остекленным.

Жидкостные коллекторы

В солнечных коллекторах этого типа, теплоносителем выступает жидкость. Солнечная энергия, перерабатывается в поглощающей пластине в тепло, и передается жидкости, которая течет по трубам, прикрепленным к пластине. Эти трубы могут идти параллельно друг другу, но на каждой, в обязательном порядке должно быть входное и выходное отверстие. Существует возможность расположение труб в виде змеевика. Такое положение уменьшает количество соединительных отверстий, что, в свою очередь, снижает вероятность протекания. Таким образом, змеевидное расположение обеспечивает более равномерный поток жидкости-теплоносителя. Однако, могут возникать сложности при спуске жидкости перед похолоданием, поскольку в изгибах трубы может остаться жидкость.

Простые системы жидкостных солнечных коллекторов предполагают использование обычной воды, которая сразу же, нагреваясь в коллекторе, поступает пользователю. Такие модели называют «разомкнутыми» или «прямыми» системами. Однако применение таких коллекторов неудобно в регионах с низким температурным режимом. Поскольку, при снижении температуры ниже точки замерзания – необходимо сливать воду. В этот период систему использовать невозможно. Альтернативой является использование незамерзающих жидкостей вместо воды. Этот вид системы жидкостных солнечных коллекторов использует жидкие теплоноситель, который, поглощая тепло, направляется в теплообменник. Зачастую теплообменником является водяной бак, конструкция которого предполагает передачу тепла воде. Такую систему называют «замкнутой» или «непрямой».

Остекление жидкостных коллекторов позволяет нагревать воду для бытовых нужд, и для отопления дома, поскольку их КПД выше, чем у неостекленных аналогов. Неостекленные коллекторы, зачастую используют для нагрева воды в бассейнах. В последних приборах не требуется нагревать температуру до высоких температур. Это позволяет использовать менее дорогие материалы, такие как пластмасса и резина.

Воздушные коллекторы

Теплоносителем в воздушных коллекторах выступает воздух, а он не замерзает и не кипит, в отличие от воды. Этот факт позволяет избежать проблем, которым подвержены жидкостные коллекторы. К тому же, утечка в системе воздушных коллекторов приносит намного меньше трудностей, хотя, конечно же, обнаружить ее достаточно сложно. Стоит помнить, что перед материалами, используемыми в воздушных солнечных коллекторах, не стоят особо сложные эксплуатационные задачи. По этому, в воздушных системах возможно использование более дешевых материалов.

Конструкция воздушных коллекторов, представляет собой сочетание плоских коллекторов. Такой прибор используется в основном для просушки сельскохозяйственной продукции, или же для отопления помещений. Металлические панели и многослойные неметаллические экраны могут послужить поглощающими пластинами в конструкции воздушных коллекторов. Теплоноситель проходит через стенки поглотителя с помощью естественной конвекции, или с помощью специального вентилятора.

Теплопроводимость воздуха, на порядок хуже, чем проводимость тепла, жидкостью. По этому, поглотитель получает значительно меньше тепла от воздуха, чем от жидкости. Вентилятор, присоединенный к поглощающей пластине, позволяет увеличить поток воздуха, таким образом, улучшая теплоотдачу. Однако и в этой конструкции есть свои недостатки. Для работы вентиляторов, необходимо дополнительно использовать электроэнергию, а это, в свою очередь увеличивает затраты на работу системы. В условиях холодного климата, необходимо направлять воздух между поглощающей пластиной и утепленной стенкой коллектора, это позволяет избежать потерь тепла. Но не стоит применять такою циркуляцию, если, все же, воздух в помещении, нагревается на 17 С больше, чем воздух на улице. В этом случае, воздух может спокойно циркулировать без потерь эффективности.

Поговорим о достоинствах воздушных коллекторов. В первую очередь – это простота и надежность. Воздушные коллекторы имеют достаточно простое устройство, благодаря этому снижается уровень необходимости технического обслуживания, при этом увеличивая их безусловную надежность. При достойных условиях эксплуатации, срок службы качественного воздушного коллектора колеблется от 10 до 20 лет. За счет того, что теплоносителем выступает воздух, исключается необходимость использования теплообменника и термоизоляции в холодное время года.

Однако не все так красочно, в сфере солнечных воздухонагревателей. Все дело в том, что применение таких установок распространено исключительно для отопления помещений и просушки сельскохозяйственной продукции, причем, в основном, в развивающих странах. Причиной этому стало то, что существуют некоторые ограничения, для использования в промышленных условиях. Начнем с того, что по сравнению с жидкостными, воздушные коллекторы занимают достаточно большую площадь, за счет низкого уровня удельной теплоемкости. К тому же, требуется оборудовать длинный воздуховод для эффективной работы коллектора. И самая главная трудность – это необходимость использования электроэнергии для прогонки воздуха через функциональные части коллектора. Еще иногда встречаются сложности с аккумулированием самой теплоты. Все эти проблемы, даже в регионах с достаточным количеством солнечных дней, приводит к значительному увеличению стоимости на эксплуатацию и установку воздушных коллекторов.

Принцип действия солнечных коллекторов

Элементарный воздушный коллектор

Воздушные солнечные коллекторы делятся на две группы, в зависимости от способа циркуляции воздуха. В самом простейшем случае, поток теплоносителя (воздуха) в коллекторе проходит как раз под поглотителем. Таким образом, данный коллектор позволяет повысить температуру воздуха, не больше чем на 3-5 С. Причиной такого низкого КПД является потери тепла на конвекцию и излучение.

Любой прозрачный материал, с низкой проводимостью инфракрасного излучения, позволяет снижать уровень теплопотерь, при накрывании им поглотителя. Все дело в том, что поток воздуха, образовывается или под поглотителем, или между поглотителем и данным прозрачным покрытием. Прозрачная крышка (из особого стекла или пластмассы) позволяет не на много снижать уровень излучения тепла с поглотителя. Однако, это снижение конвективных тепловых потерь, может позволить увеличить температуру до 20-50 С. Но и этот параметр будет зависеть от интенсивности солнечной энергии попадающей в коллектор и качества воздушного потока. Как плюс к этому всему, наблюдается, также снижение тепловых потерь на излучение, за счет снижения температуры поглотителя. Но стоит помнит, что при этом происходит еще и снижение возможности абсорбента поглощать энергию, за счет его запыления, в том случае, если поток воздуха проходит с обеих сторон.

Накрытый поглотитель в воздушном коллекторе

Отказ от остекления металлического ящика и теплоизоляции, в некоторых случаях, позволяет существенно снижать затраты. Дело в том, что изготовляется такой коллектор из перфорированного металла черно цвета. Такой материал позволяет улучшать качество теплообмена. Принцип этого процесса заключается в том, что этот металл нагревается достаточно быстро, а вмонтированный вентилятор втягивает теплый воздух, через отверстия в металлических листах. Коллекторы такого типа, достаточно часто используются в жилых домах. Зачастую размеры такого прибора составляют 2,4 м?0,8 м, при этом скорость нагрева воздуха составляет 0,002 м3/с. Даже в солнечный зимний день, температура воздуха, который нагревается в коллекторе, может достигать разницы в 28 ?С по сравнению с наружным. К тому же, стоит учесть, что в значительной мере улучшается качество воздуха, поскольку нагревается непосредственно воздух, поступающий снаружи.

Одним из главных плюсов подобных коллекторов, является тот факт, что они достаточно эффективны. КПД некоторых промышленных моделей может достигать 70%. А их стоимость снижается, за счет уменьшается количество используемых материалов.

Вакуумированный солнечный коллектор

Плоские солнечные коллекторы, изначально создавались для использования в местах с большим количеством солнечной энергии. При плохой погоде, их эффективность достаточно не значительна. Холодная, ветреная, пасмурная погода – не позволяют работать таким коллекторам в полную мощь. Но и это не все – повышенная влажность в значительной мере неблагоприятно сказывается на состоянии внутренних деталей такого коллектора. А это влечет за собой уменьшение срока службы коллектора, а также ухудшение эффективности его работы. Дабы устранить такие недостатки были созданы вакуумированные солнечные коллекторы.

Современные вакуумированные солнечные коллекторы способны нагревать воду, для обеспечения хозяйственных нужд. Принцип действия такого прибора заключается в следующем: солнечная энергия, проходя через наружную трубку, попадает в поглощающую трубку, где и происходит превращение солнечной энергии в тепло. А далее, переработанное тепло передается теплоносителю (жидкости). Сам коллектор представляет собой сочетание определенного количества параллельных рядов стеклянных трубок. К каждой из этих трубок прикрепляется трубчатый поглотитель с селективным покрытием (аналог пластины-поглатителя в вышеописанных плоских коллекторах). Нагретая в коллекторе жидкость поступает в бак накопитель, и уже там отдает все полученное тепло воде.

Трубки в вакуумированном коллекторе можно менять. Добавлять или даже убирать, в зависимости от необходимости. Это позволяет называть такие коллекторы модульными. Но стоит помнить, что между трубками коллектора должен быть вакуум, что бы уменьшить потери тепла в процессе конвекции. Однако, радиационная потеря тепла остается. Уточним, что радиационная потеря тепла – это то тепло, которое идет на нагревание поверхностей рабочих частей коллектора. Но не стоит думать, что эти потери существенно повлияют на эффективность работы коллектора. Радиационная потеря достаточно мала, по этому можно уверенно считать, что рабочие характеристики вакуумированного коллектора достаточно велики.

На данный момент, создано большое количество вакуумированных коллекторов, которые имеют различные комплектации, а, следовательно, и разные эксплуатационные характеристики и особенности.

Создание вакуумированного коллектора – это достаточно сложный и трудоемкий процесс. Особенные трудности вызывает запайка оболочки коллектора. Проблема заключается в том, что по сей день не найдено достаточно эффективного метода создания эффективной высоковакуумной системы, при не больших затратах.

Стоит помнить, что такие вакуумированные коллекторы достаточно эффективны, по сравнению с обычными плоскими коллекторами. Все дело в том, что эффективность работы вакуумированного коллектора не зависит от качества радиации, т.е. как в условиях прямой, так и рассеянной радиации, данный коллектор работает одинаково эффективно. К тому же, вакуумное строение коллектора позволяет свести к минимуму потери тепла. Помимо всего вышесказанного, такие приборы достаточно долго и качественно служат, полностью обеспечивая все хозяйственные нужды человека.

Концентраторы

Фокусирующий солнечный коллектор

Концентраторы или же коллекторы отличаются от предыдущих описанных коллекторов тем, что их принцип действия заключается в концентрации солнечных лучей. Делается это за счет зеркальных поверхностей, которые направляют солнечную энергию конкретно на поглотители. Температура, которая обеспечивается концентраторами значительно выше, чем максимальная температура плоских коллекторов. Но стоит помнить, что концентраторы могут воспринимать исключительно прямую солнечную радиацию, по этому. В пасмурную погоду их использование не возможно. Такой тип коллекторов-концентраторов, особенно эффективен в регионах близких к экватору и в пустынных районах с большим количеством солнечных дней.

Для более эффективной работы концентратора, используется специальный прибор, который отслеживает направление солнечных лучей и поворачивает прибор к солнцу. В зависимости от оси, по которой может вращаться, такой коллектор различают одноосные и двуосные следящие устройства. Первые предполагают вращение устройства с востока на запад, а вторые, предполагают поворот устройства во все четыре стороны света, для того что бы точно отслеживать направление солнца в течение всего года. Данные коллекторы-концентраторы, в основном используются в промышленных условиях. Причиной этому стала достаточно большая стоимость этого устройства, а также необходимость постоянного технического обслуживания. Для бытового применения, они просто не приемлемы.

Солнечные печи и дистилляторы.

Солнечная печь

Помимо всех вышеописанных приборов, существуют также приборы, которые имеют достаточно простую структуру, и узкую сферу применения. К примеру, такие приборы могут выступать в роли солнечной печи, для приготовления пищи, или солнечного дистиллятора – прибора достаточно дешево очищающего воду любого состояния.

Поговорим про солнечные печи. Они достаточно просты, как при эксплуатации, таки при изготовлении. Солнечные печи представляют собой достаточно хорошо теплоизолированную коробку, которая покрыта материалом, отражающим свет (фольгой, например). Эта коробка накрывается стеклом и оборудована внешним отражателем. Кастрюля черного цвета послужит поглотителем, поскольку может намного быстрее нагреваться. Такие печи, можно использовать для стерилизации воды, при кипении.

Что касается солнечных дистилляторов, то они могут в результате своей работы предоставлять дистиллированную воду достаточно дешево, притом, что брать воду, можно практически из любого источника. Принцип работы солнечного дистиллятора лежит в основе процесса испарения, а сам прибор использует солнечную энергию, с целью ускорить этот процесс. За день работы, небольшой солнечный дистиллятор может произвести около 10 литров идеально чистой воды.

На данный момент солнечная энергия используется достаточно обширно. Одним из самых эффективных примеров его использования является метод нагрева воды солнечной энергией. Несколько миллионов жителей нашей планеты, уже достаточно долго и давно используют солнечные коллекторы для обеспечения своих нужд. Такие приборы достаточно эффективны, не требуют особых затрат на эксплуатацию, к тому же не приносят вреда окружающей среде.

Типы солнечных коллекторов | Atmosfera™. Альтернативные источники энергии. Солнце. Ветер. Вода. Земля.

Плоские солнечные коллекторы

Основным элементом плоского солнечного коллектора является абсорбер — металлическая пластина со специальным поглощающим покрытием и напаянным на нее проточным трубопроводом. Абсорбер заключен в специальный корпус, у которого лицевая стенка прозрачная (через нее в коллектор проникает солнечное излучение), а тыльная утеплена минераловатной плитой либо слоем другого утеплителя.

Внутренний трубопровод, по которому циркулирует теплоноситель, на абсорбере может располагаться по-разному. Выделяют 2 основных типа расположения: “меандр” и “арфа”. Компания Атмосфера предлагает плоские солнечные коллекторы обоих типов.

Для повышения эффективности коллектора на абсорбер может быть нанесено специальное селективное покрытие. Наличие селективного покрытия значительно увеличивает производительность плоского коллектора, но, в то же время, увеличивает его стоимость.

Для уменьшения теплопотерь в холодное время года корпус плоского коллектора делают максимально герметичным. Таким образом теплоизоляция абсорбера достигается за счет слоя воздуха или инертного газа со стороны прозрачной передней стенки, и слоя утеплителя со стороны задней стенки.

Плоские коллекторы являются более эффективными в теплое время года, однако в зимнее время их эффективность значительно снижается по причине достаточно высоких теплопотерь.

Существуют также еще один вид плоских солнечных коллекторов — вакуумный плоский коллектор. В вакуумном плоском коллекторе теплоизоляция абсорбера от окружающей среды достигается не за счет слоя теплоизоляции, а за счет создания внутри короба глубокого вакуума, предотвращающего теплопотери. Такие коллекторы обладают максимальной продуктивностью среди плоских коллекторов, однако, являются более сложными в монтаже и эксплуатации, и, что существенно, очень дорогими.

Неоспоримыми преимуществами плоских солнечных коллекторов являются их невысокая цена при высокой эффективности в теплое время года. К недостаткам можно отнести низкую производительность в зимний период, а также сравнительное неудобство их монтажа на труднодоступные кровли. Плоский коллектор являются цельной неразборной конструкцией, из-за чего поднимать и устанавливать на крышу его приходится целиком.

 

солнечных коллекторов | Министерство энергетики

Что такое солнечные коллекторы?

В установках концентрации солнечно-тепловой энергии (CSP) коллекторы отражают и концентрируют солнечный свет и перенаправляют его в приемник, где он преобразуется в тепло, а затем используется для выработки электроэнергии. В башенных (или центральных приемных) установках зеркала, известные как гелиостаты, отслеживают солнце по двум осям, причем каждый гелиостат обычно находится на своем основании, фундаменте и двигателе, чтобы направлять солнечный свет на приемник на вершине башни.В установках с параболическим желобом зеркала выравнивают внутреннюю часть решетки в форме желоба, которая следует за солнцем только в одном направлении и концентрирует свет на линейной приемной трубе. Узнайте больше о том, как работает CSP.

Почему так важны солнечные коллекторы?

Коллекторы — это отправная точка для преобразования солнечного света в энергию. Они должны быть спроектированы так, чтобы эффективно концентрировать свет, сводя к минимуму затраты на изготовление, установку и эксплуатацию. Коллекторы, которые могут экономически эффективно достичь высокой концентрации солнечного света, могут напрямую повысить эффективность приемника.В настоящее время коллекторы могут составлять 25 или более процентов от общих капитальных затрат системы для заводов CSP. Управление технологий солнечной энергии Министерства энергетики США (SETO) работает над снижением затрат на коллекторы с целью в 50 долларов за квадратный метр для высокоавтономных гелиостатов, чтобы достичь своей цели 0,05 доллара за киловатт-час для базовых станций CSP с минимум 12 часов хранения тепловой энергии. Узнайте больше о целях SETO в области CSP.

SETO Исследования в области солнечных коллекторов

SETO финансирует исследования и разработки в этой области с целью повышения производительности и снижения стоимости солнечных коллекторов и производства прототипов, демонстрирующих жизнеспособность передовых технологий для будущей интеграции в установки CSP.В частности, проекты, финансируемые SETO, работают над разработкой решений, которые позволят солнечным коллекторам работать в полной мере без участия человека, снижая эксплуатационные расходы и максимизируя эффективность сбора тепловой энергии. Некоторые из программ финансирования SETO имеют проекты, ориентированные на солнечные коллекторы:

Чтобы просмотреть конкретные проекты солнечных коллекторов, выполните поиск в базе данных исследований солнечной энергии.

Дополнительные ресурсы

Узнайте больше об исследованиях CSP, других исследованиях солнечной энергии в SETO, а также действующих и бывших программах финансирования SETO.

Что такое солнечный коллектор?

Сила солнца бесплатна, чиста и доступна. Сегодня все большее количество разнообразных устройств и систем используют солнечную энергию, чтобы немного облегчить нашу жизнь. Вот что вам нужно знать о солнечных коллекторах, что это такое и как они работают.

Что такое солнечный коллектор?

Солнечный коллектор — это устройство, которое концентрирует и собирает солнечное излучение. Обычно они используются в качестве источника тепла, особенно в качестве альтернативного вида нагрева воды для бытовых нужд.Но они также встречаются в более крупных массивах, работающих на тепловых солнечных электростанциях.

Как работают солнечные коллекторы?

Есть много разных типов солнечных коллекторов, но все они работают в основном одинаково. Коллектор устанавливается там, где он может получать много солнечного света, например, на крыше дома.

Здесь солнечный свет собирается на темно-черном материале, который покрывает трубы внизу, по которым течет вода для нагрева. Поскольку черный материал поглощает тепло солнца, он сильно нагревается и передает это тепло в водопроводные трубы внизу.

Концепция очень проста и может использоваться различными способами для нагрева воды или даже шляпы до значительно более высоких температур по сравнению с температурой окружающей среды.

Различные типы солнечных коллекторов

Плоские коллекторы

Этот тип солнечных коллекторов состоит из простого отсека, например коробки с прозрачным стеклом наверху и темно-черной абсорбирующей пластины внизу.

Солнечное излучение, собираемое на пластинах поглотителя, передается в виде тепловой энергии воде или воздуху, проходящему через отсек.Верхнее остекление иногда обрабатывают световозвращающим покрытием, которое повышает энергоэффективность отсека.

Материалы всегда являются важной частью эффективного коллектора, и эти коробки обычно изготавливаются из меди.

Коллекторы с вакуумными трубками

Поскольку вакуум является отличным изолятором, вакуумные трубки позволяют повысить эффективность сбора солнечного излучения. Внутри откачанной трубки находится абсорбционная пластина в виде черных материалов, обернутая вокруг медных трубок или «тепловых трубок», по которым проходит специальная жидкость под точным давлением.

На одном конце трубы высокое давление и жидкость внутри кипит. На «холодном» конце трубы давление конденсируется. Такое расположение упрощает направление тепловой энергии на один терминал. Когда тепло движется к горячему концу отопительных труб, оно передается нагреваемой воде.

Коллекторы линейного фокуса

Коллекторы линейного фокуса также называют параболическими желобами. В этом типе солнечных коллекторов используются материалы с высокой отражающей способностью, чтобы сосредоточить солнечное тепло в одной точке, где его можно собирать в больших количествах.

Вода, которая будет нагреваться, проходит через желоб в фокусе этой группы отражающих пластин. Специальная конструкция линейного солнечного коллектора означает, что солнечное тепло усиливается на нагревательном желобе и, следовательно, может выдерживать особенно высокие температуры.

Этот тип устройства обычно используется для создания пара, необходимого для питания солнечной электростанции. Некоторые конструкции можно даже поворачивать так, чтобы они всегда были обращены к солнцу, чтобы максимально увеличить количество солнечного излучения, собираемого каждый день.

Коллекторы точечного фокуса

Как и коллектор линейного фокуса, коллектор точечного фокуса использует параболическую тарелку для фокусировки солнечного излучения в определенной точке. Эти тарелки обеспечивают улучшенный сбор солнечной энергии, отслеживая движение солнца по небу.

Часто точечные фокусы, собранные солнечными батареями, используются для питания концентрированной гальваники, вместо того, чтобы производить тепло, эти параболические системы производят электричество с повышенной эффективностью.

Различия между солнечными панелями и солнечными коллекторами

Как и солнечный коллектор, солнечные панели поглощают энергию солнца и преобразуют ее в энергию, которую можно использовать для различных целей.Но есть некоторые важные отличия, о которых вам следует знать.

Панели солнечных батарей

Фотоэлектрические элементы внутри солнечной панели позволяют ей выполнять свою работу по поглощению солнечной энергии и преобразованию ее в электрическую энергию в виде постоянного тока. Мощность солнечной панели может составлять от 100 Вт до 320 Вт.

Панели солнечных батарей имеют рейтинг эффективности от 11% до 15% и в значительной степени зависят от количества солнечного света, попадающего на панель.

Площадь солнечной панели не играет большой роли в ее эффективности, и даже очень маленькие солнечные панели могут быть очень эффективными.Эффективность солнечной панели может быть улучшена или снижена за счет наклона или наклона панели, направления, в которое она обращена, и количества тени, которая покрывает ее расположение.

Преимущества солнечной панели
  • Экологичность
  • Низкие эксплуатационные расходы
  • Без шума, без движущихся частей
  • Простота установки
  • Содействует энергетической независимости
Недостатки солнечной панели
  • Высокие начальные затраты
  • Ремонт дорогие
  • Нет электричества ночью или при плохих погодных условиях
  • На эффективность солнечных панелей может повлиять загрязнение
Области применения солнечных панелей

Солнечные коллекторы

Солнечный коллектор поглощает солнечное излучение, которое собирается в виде тепловой энергии и используется.Эта тепловая энергия может использоваться в различных лучах, от горячей воды для домашнего использования до энергии пара, которая может использоваться для выработки электроэнергии на солнечной электростанции.

Производительность солнечного коллектора зависит в первую очередь от размера солнечного коллектора. Чем большую площадь покрывает солнечный коллектор, тем больше солнечного излучения поглощается и передается всему, что нагревается.

Наклон и положение солнечного коллектора также будут играть важную роль в уровне излучения, падающего на коллектор.Другие факторы, которые могут повлиять на эффективность солнечного коллектора, включают приток тепла, потери тепла за счет конвекции и теплопроводности, а также коэффициент преобразования, который варьируется в зависимости от конструкции.

Преимущества солнечных коллекторов
  • Высокая эффективность
  • Площадь и эффективность можно улучшить с помощью недорогих зеркал
  • Концентрированный свет может подаваться через оптические волокна
  • Тепло может сохраняться для выработки электроэнергии в ночное время и в пасмурную погоду
Недостатки солнечных коллекторов
  • Низкая производительность в условиях рассеянного света
  • Требуется отслеживание солнца для поддержания оптимальной фокусировки солнечного света.
Приложения для солнечных коллекторов
  • Охлаждение с помощью солнечной энергии: может использоваться для поддержки охлаждения в крупных коммерческих помещениях.
  • Солнечное отопление бассейна: Для нагрева большого бассейна до желаемой температуры требуется энергия. Но эту энергию можно уменьшить с помощью энергии нагрева бассейна с плоскими солнечными коллекторами.
  • Дополнительное отопление: Солнечные коллекторы могут накапливать тепло летом и обеспечивать его зимой.
  • Нагрев воды: солнечные коллекторы могут использоваться для нагрева горячей воды в различных бытовых целях.

Солнечный коллектор — обзор

7.7 Солнечные тепловые коллекторы

Солнечные тепловые коллекторы преобразуют солнечное излучение в тепло и передают это тепло среде (воде, солнечной жидкости или воздуху). Солнечные водонагревательные системы (SWH) или системы SHW хорошо зарекомендовали себя в течение многих лет и широко используются во всем мире. В моноблочной системе SWH резервуар для хранения устанавливается горизонтально прямо над солнечными коллекторами на крыше. Перекачивание не требуется, так как горячая вода естественным образом поднимается в бак за счет пассивного теплообмена.В системе с насосной циркуляцией резервуар для хранения устанавливается на земле или на полу ниже уровня коллекторов; Циркуляционный насос перемещает воду или теплоноситель между резервуаром и коллекторами. Существует несколько типов солнечных тепловых коллекторов:

Вакуумные трубчатые коллекторы являются наиболее эффективным, но наиболее дорогостоящим типом солнечных коллекторов для горячей воды. Эти коллекторы имеют стеклянные или металлические трубки с вакуумом, что позволяет им хорошо работать в более холодном климате.

Солнечные водонагреватели периодического действия, также называемые интегральными коллекторами-накопителями (ICS), имеют резервуары для хранения или трубки внутри изолированного ящика, южная сторона которого застеклена для улавливания солнечной энергии.

Плоский коллектор представляет собой коробку, покрытую стеклом или пластиком, с металлической пластиной-поглотителем на дне. Остекление или покрытие на пластине абсорбера помогает лучше поглощать и удерживать тепло.

Неглазурованные плоские коллекторы, обычно сделанные из резины, в основном используются для обогрева бассейнов.

Воздухосборники используются в основном для отопления помещений в доме. Плоские солнечные коллекторы представляют собой прочные всепогодные коробки, в которых находится темная пластина-поглотитель, расположенная под прозрачной крышкой. Они являются наиболее распространенным типом коллекторов, используемых для нагрева воды во многих странах, хотя по многим параметрам они уступают вакуумным трубчатым коллекторам.

Вакуумные трубки с тепловыми трубками сконструированы таким образом, что конвекция и тепловые потери исключены, в то время как плоские солнечные панели содержат воздушный зазор между абсорбером и крышкой, который позволяет возникать тепловым потерям.Кроме того, системы с тепловыми трубками способны ограничивать максимальную рабочую температуру, тогда как системы с плоскими пластинами не имеют внутреннего метода ограничения тепловыделения, которое может вызвать сбой системы. Наконец, системы с вакуумными тепловыми трубками легки, просты в установке и требуют минимального обслуживания. С другой стороны, системы с плоскими пластинами сложны в установке и обслуживании, и их необходимо полностью заменить, если одна из частей системы перестает работать. На рисунках 7.19 и 7.20 показаны два типа солнечных коллекторов, которые обычно устанавливаются в Южной Австралии.

Рисунок 7.19. Вакуумная трубка. (Сейчас горячая вода).

(Из http://raypower.in/home-creative/home-demo-page/).

Рисунок 7.20. Плоские солнечные тепловые коллекторы.

(с https://www.bba-online.de/fachthemen/energie/sonnenkollektor-fuer-waermepumpen/#slider-intro-1).

Солнечный коллектор с вакуумными трубками состоит из полых стеклянных трубок. Весь воздух удаляется из трубок для создания вакуума, который действует как отличный изолятор. Поглотительное покрытие внутри трубки поглощает солнечное излучение.Эта энергия передается жидкости, движущейся через коллектор, а затем в резервуар для горячей воды. В более прохладном климате теплообменник используется для отделения питьевой воды от нетоксичного антифриза в коллекторе.

Солнечные водонагреватели периодического действия, также называемые системами ICS, состоят из резервуара для воды или трубок внутри изолированного застекленного ящика. Через солнечный коллектор течет холодная вода. Вода нагревается и поступает в резервуар резервного нагрева воды. Некоторое количество воды можно хранить в коллекторе до тех пор, пока она не понадобится.Системы ICS представляют собой тип прямой системы SWH, в которой циркулирует вода для нагрева, а не используется теплоноситель для улавливания солнечного излучения (рисунки 7.21 и 7.22).

Рисунок 7.21. Прямые системы. (A) Пассивная система CHS с баком над коллектором. (B) Активная система с насосом и контроллером, управляемым фотоэлектрической панелью.

(Из самоизданной работы Jwhferguson, 2010 г .; получено по адресу http://www.solarcontact.com/solar-water/heater).

Рисунок 7.22. Косвенные активные системы. (C) Непрямая система с теплообменником в баке.(D) Система обратного слива с резервуаром для обратного слива. На этих схемах контроллер и насос приводятся в действие от электросети.

(Из SomnusDe 2010, Wolff Mechanical Inc; доступ по URL-адресу http://azairconditioning.com/residential/solar-heaters/).

Плоский солнечный коллектор представляет собой изолированный ящик, покрытый стеклом или пластиком, с металлической пластиной-поглотителем на дне. Атмосферостойкие коллекторы обычно покрываются покрытием, которое лучше поглощает и сохраняет тепло. Жидкий теплоноситель течет по металлическим трубкам, расположенным под пластиной поглотителя.Затем жидкость проходит через теплообменник перед попаданием в резервуар для хранения. Неглазурованные плоские коллекторы (без изоляции или абсорбирующего покрытия) не работают в прохладном или ветреном климате, но отлично подходят для нагрева воды в бассейне (Solar Tribune, 2012).

Солнечные коллекторы горячего воздуха монтируются на южных вертикальных стенах или крышах. Солнечное излучение, достигающее коллектора, нагревает пластину поглотителя. Воздух, проходящий через коллектор, забирает тепло от пластины поглотителя.

Замерзание, перегрев и протечки менее опасны для солнечных коллекторов, чем для жидкостных коллекторов.Однако, поскольку жидкость является лучшим проводником тепла, солнечные коллекторы, использующие воду или теплоноситель, больше подходят для нагрева горячей воды для дома. Солнечный коллектор горячего воздуха чаще всего используется для отопления помещений. Есть два типа воздухосборников: застекленные и неглазурованные (Energy4You, 2012).

Системы SWH рассчитаны на подачу горячей воды в течение большей части года. В более холодном климате может потребоваться газовый или электрический усилитель в качестве резервного для подачи достаточного количества горячей воды.

Что такое солнечный коллектор? Почему это важно? Обзор и типы

Солнечные коллекторы — это устройства, которые собирают солнечное излучение и используют его для выработки тепла для приготовления пищи, нагрева воды или выработки электроэнергии.Солнечные коллекторы не новы — они использовались с 18, -го, -го века как солнечные печи, а с 19-го, -го, -го века — для выработки пара и электричества.

Типы солнечных коллекторов

Солнечный коллектор может стоить миллиарды долларов, чтобы доставить электричество в целые города, или менее 100 долларов, чтобы взять с собой в поход. Но физика, лежащая в основе технологии, более или менее такая же.

Солнечные печи

Женщины в Кении пекут торты на солнечной печи.

Джонатан Торговник / Getty Images

До появления фотоэлектрических (ФЭ) элементов для преобразования солнечной световой энергии (фотонов) непосредственно в электричество (вольты) солнечные коллекторы поглощали тепло для приготовления пищи. В 1767 году женевский натуралист и физик Гораций де Соссюр создал солнечную печь, которая подняла температуру до 230 градусов по Фаренгейту (110 градусов по Цельсию). Солнечные печи до сих пор используются во всем мире как практичный способ приготовления пищи без электричества или сгорания.

Древесина и другое биотопливо, такое как торф, по-прежнему являются основными источниками топлива для приготовления пищи почти для половины населения мира.Замена дров на солнечные печи может помочь предотвратить вырубку лесов: по данным Solar Cookers International, одна солнечная плита предотвращает заготовку тонны древесины в год. Приготовление пищи с использованием солнечного тепла также снижает выбросы углерода от сжигания древесины и снижает загрязнение воздуха в помещении.

Водонагреватели

весна78 / Getty Images

Солнечные водонагреватели часто представляют собой небольшие черные панели, установленные на крыше. Панели могут быть ошибочно приняты за фотоэлектрические солнечные панели, но дома обычно нуждаются только в одной или двух панелях для обслуживания водонагревателя.

Солнечные коллекторы также могут быть сконфигурированы как серия черных коллекторных трубок, которые в целом действуют одинаково: как панели, так и трубки имеют теплопоглощающие материалы, которые проводят тепло к водопроводу. Часто, как на фото здесь, водонагреватель крепится к панелям на крыше, чтобы уменьшить теплопотери и увеличить давление воды. Солнечные водонагреватели также можно использовать для обогрева бассейнов.

На коммерческой основе солнечные водонагреватели используются с тех пор, как Кларенс Кемп представил Climax в 1891 году.Вскоре они стали популярными, особенно в солнечном климате, таком как Калифорния и Флорида, но отрасль была парализована из-за того, что коммунальные компании стимулировали потребителей переходить на газовые и электрические водонагреватели.

Повторное внедрение солнечных водонагревателей может бороться с изменением климата. В зависимости от климатической зоны солнечные водонагреватели, по оценкам, могут удовлетворить более 80% годовой потребности региона в горячей воде и сократить выбросы парниковых газов от нагрева воды более чем на 90%.

Производство электроэнергии в жилых домах

Небольшие коллекторы, доступные в бытовом масштабе, включают параболические солнечные коллекторы, которые имеют форму большой спутниковой тарелки, но содержат зеркала, а не антенны. Они вырабатывают электричество, направляя солнечный свет на двигатель Стирлинга. В отличие от двигателя внутреннего сгорания или тепловой электростанции, такой как ядерная установка или установка на ископаемом топливе, двигатель Стирлинга не выделяет парниковые газы и не выделяет пар, поэтому при производстве электроэнергии теряется мало воды.Благодаря небольшому количеству движущихся частей и отсутствию выбросов, их можно безопасно использовать на заднем дворе или на крыше.

ser_igor / Getty Images

Помимо прямой выгоды от сокращения выбросов, распределенные энергоресурсы, такие как местные солнечные коллекторы, могут помочь снизить общие системные затраты на производство и распределение электроэнергии. Поскольку солнечные коллекторы находятся близко к источнику спроса на электроэнергию, затраты на передачу электроэнергии потребителям минимальны или отсутствуют. Домовладельцы могут пользоваться энергетической независимостью, хранить собственное электричество, чтобы свет оставался включенным даже во время перебоев в подаче электроэнергии, и уменьшают потребность коммунальных предприятий в строительстве новых линий электропередачи для подачи энергии с удаленных электростанций.

Что такое распределенные энергетические ресурсы?

Распределенные энергоресурсы (DER) децентрализованы, обычно меньше по размеру, управляются локально и ближе к потребителям по сравнению с обычными электростанциями. DER включают солнечную энергию в жилых и общественных помещениях, малую гидроэлектростанцию, биомассу и геотермальную энергию.

Солнечные коллекторы коммунального назначения

Солнечная электрическая генерирующая система Ivanpah.

Стив Прол / Getty Images

В самом большом масштабе солнечные коллекторы используются на электростанциях концентрированной солнечной энергии (CSP) для производства сотен мегаватт электроэнергии.Они используют большое количество зеркал, чтобы направлять солнечный свет на центральную башню с солнечными коллекторами, тем самым выделяя огромное количество тепла. Тепло производит пар для вращения турбины и создает электричество. В замкнутом контуре почти вся вода, используемая для производства пара, охлаждается, улавливается и повторно используется.

Крупномасштабные проекты, такие как комплекс солнечной электростанции Ivanpah в пустыне Мохаве, имели неоднозначный успех, и разработка новых проектов в Соединенных Штатах прекратилась.Во время веерных отключений электроэнергии в Калифорнии в 2020 году комплекс Иванпа не смог работать на полную мощность. И хотя заводы CSP обещают обеспечивать чистую возобновляемую электроэнергию при полной работе, Ivanpah по-прежнему требует, чтобы сжигание природного газа увеличивалось каждое утро. Во всем мире проектов CSP было немного.

Неиспользованный ресурс

Солнце является источником почти всей жизни на Земле, но пропорционально оно остается самым недостаточно развитым природным ресурсом, который мы можем использовать для подпитки современной цивилизации.По сравнению с фотоэлектрическими солнечными панелями, солнечные коллекторы представляют собой относительно недорогие и низкотехнологичные способы использования этой энергии. Любой, кто когда-либо зажигал что-то в огне, просто используя солнечный свет и увеличительное стекло, знает о силе, которой обладает этот неиспользованный ресурс.

Технический справочник — EnergyPlus 8.0

Солнечные коллекторы — это устройства, которые преобразуют солнечную энергию в тепловую за счет повышения температуры циркулирующего теплоносителя. Затем жидкость можно использовать для нагрева воды для бытового горячего водоснабжения или отопления помещений.Плоские солнечные коллекторы, использующие воду в качестве теплоносителя, солнечные коллекторы Integral-Collector Storage, использующие воду, и неглазурованные солнечные коллекторы, использующие воздух, в настоящее время являются единственными типами коллекторов, доступных в EnergyPlus.

Плоские солнечные коллекторы

[ССЫЛКА]

Входной объект SolarCollector: FlatPlate: Water предоставляет модель плоских солнечных коллекторов, которые являются наиболее распространенным типом коллекторов. Стандарты были установлены ASHRAE для тестирования производительности этих коллекторов (ASHRAE 1989; 1991), а Solar Rating and Certification Corporation (SRCC) публикует каталог коммерчески доступных коллекторов в Северной Америке (SRCC 2003).

Модель EnergyPlus основана на уравнениях, содержащихся в стандартах ASHRAE и Duffie and Beckman (1991). Данная модель применяется к остекленным и неглазурованным плоским коллекторам, а также к рядам трубчатых, т.е. вакуумных трубчатых, коллекторов.

Расчеты солнечного света и затенения [ССЫЛКА]

В объекте солнечного коллектора используется стандартная поверхность EnergyPlus, чтобы воспользоваться преимуществами подробных расчетов солнечного излучения и затенения. Солнечное излучение, падающее на поверхность, включает пучковое и диффузное излучение, а также излучение, отраженное от земли и прилегающих поверхностей.Также учитывается затенение коллектора другими поверхностями, например, близлежащими зданиями или деревьями. Точно так же поверхность коллектора может затенять другие поверхности, например, уменьшая падающее излучение на крышу под ней.

Thermal Performance [ССЫЛКА]

Тепловой КПД коллектора определяется как отношение полезного притока тепла жидкостью коллектора к общему солнечному излучению, падающему на общую площадь поверхности коллектора.

где

q = полезный приток тепла

A = общая площадь коллектора

I солнечная = общая падающая солнечная радиация

Обратите внимание, что КПД определен только для I solar > 0.

Энергетический баланс солнечного коллектора с двойным остеклением показывает взаимосвязь между свойствами остекления, свойствами поглощающей пластины и условиями окружающей среды.

где

g1 = коэффициент пропускания первого слоя остекления

g2 = коэффициент пропускания второго слоя остекления

абс = поглощающая способность пластины абсорбера

R рад = сопротивление излучению от поглотителя до внутреннего остекления

R conv = конвективное сопротивление от абсорбера до внутреннего остекления

R cond = сопротивление проводимости от абсорбера к наружному воздуху через изоляцию

T abs = температура пластины абсорбера

T g2 = температура внутреннего остекления

T воздух = температура наружного воздуха

Приведенное выше уравнение можно аппроксимировать более простой формулировкой как:

где

F R = эмпирически определенный поправочный коэффициент

() = произведение всех коэффициентов пропускания и поглощения

U L = общий коэффициент тепловых потерь, объединяющий термины излучения, конвекции и теплопроводности

T дюйм = температура рабочей жидкости на входе

Подставляя это в уравнение,

Линейную корреляцию можно построить, рассматривая F R () и -F R U L как характеристические константы солнечного коллектора:

Аналогичным образом можно построить квадратичную корреляцию, используя форму:

Коэффициенты уравнения эффективности первого и второго порядка перечислены в Справочнике сертификатов SRCC для солнечных коллекторов .

Модификаторы угла падения [ССЫЛКА]

Как и в случае с обычными окнами, коэффициент пропускания остекления коллектора зависит от угла падения излучения. Обычно коэффициент пропускания максимален, когда падающее излучение перпендикулярно поверхности остекления. Условия испытаний определяют коэффициенты эффективности при нормальном падении. Для углов, отклоняющихся от нормы, коэффициент пропускания остекления модифицируется с помощью коэффициента модификатора угла падения .

Дополнительное тестирование определяет модификатор угла падения как функцию угла падения.Эта связь может соответствовать линейной корреляции первого порядка:

или квадратичная корреляция второго порядка:

Коэффициенты модификатора угла падения b 0 и b 1 обычно отрицательны, хотя некоторые коллекторы имеют положительное значение для b 0 . Коэффициенты уравнения модификатора угла падения как первого, так и второго порядка перечислены в Справочнике сертификатов SRCC для солнечных коллекторов .

Коэффициенты уравнения модификатора угла падения SRCC действительны только для углов падения 60 градусов или меньше. Поскольку эти кривые могут быть действительными, но плохо вести себя для углов более 60 градусов, модель EnergyPlus отключает усиление коллектора для углов падения более 60 градусов.

Для плоских коллекторов модификатор угла падения обычно симметричен. Однако для трубчатых коллекторов модификатор угла падения различается в зависимости от того, параллелен ли угол падения трубкам или перпендикулярен им.Их называют биаксиальными модификаторами. Некоторые специальные плоские коллекторы также могут демонстрировать эту асимметрию. Текущая модель еще не может обрабатывать два набора модификаторов угла падения. Тем временем рекомендуется осторожно аппроксимировать трубчатые коллекторы, используя параллельную или перпендикулярную корреляцию.

Модификаторы угла падения рассчитываются отдельно для излучения солнца, неба и земли. Модификатор чистого угла падения для всего падающего излучения рассчитывается путем взвешивания каждого компонента с помощью соответствующего модификатора.

Для излучения неба и земли угол падения приблизительно определяется с помощью уравнений Брандемюля и Бекмана:

где — наклон поверхности в градусах.

Модификатор чистого угла падения затем вставляется в уравнение полезного тепловыделения:

Уравнение также изменено соответствующим образом.

Температура на выходе [ССЫЛКА]

Температура на выходе рассчитывается с использованием полезного притока тепла q, определяемого уравнением, температуры жидкости на входе T в и массового расхода, доступного из моделирования установки:

где

= массовый расход жидкости через коллектор

c p = удельная теплоемкость рабочего тела

Решетка для Т из ,

Если нет потока через коллектор, T out — это температура застоя жидкости.Это вычисляется путем установки левой части уравнения на ноль и решения для T в (что также равно T из для случая отсутствия потока).

Источники [ССЫЛКА]

ASHRAE. 1989. Стандарт ASHRAE 96-1980 (RA 89): Методы испытаний для определения тепловых характеристик неглазурованных плоских солнечных коллекторов жидкостного типа. Атланта: Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

ASHRAE.1991. Стандарт ASHRAE 93-1986 (RA 91): Методы испытаний для определения тепловых характеристик солнечных коллекторов. Атланта: Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Даффи, Дж. А. и Бекман, В. А. 1991. Солнечная инженерия тепловых процессов, второе издание. Нью-Йорк: Wiley-Interscience.

Корпорация по оценке и сертификации солнечной энергии. 2004. Справочник сертифицированных SRCC рейтингов солнечных коллекторов, OG 100. Какао, Флорида: Корпорация по оценке и сертификации солнечной энергии.

Интегральный коллектор-накопитель (ICS) Солнечный коллектор [ССЫЛКА]

Солнечные коллекторы со встроенными моделями накопителей используют объект SolarCollector: IntegralCollectorStorage, а входные параметры характеристик этого коллектора предоставляются объектом SolarCollectorPerformance: IntegralCollectorStorage. Эта модель основана на подробных уравнениях энергетического баланса солнечных коллекторов, которые объединяют в себе накопитель. В этой модели есть два варианта представления нижней части коллектора за пределами граничных условий: AmbientAir и OtherSideConditionsModel.AmbientAir просто применяет температуру наружного воздуха, используя комбинированную конвекцию и радиационную проводимость, а OtherSideConditionsModel применяет комбинированные модели излучения и конвекции, которые возникают в естественно вентилируемой полости, чтобы представить нижнюю часть коллектора за пределами граничных условий. Более позднее граничное условие учитывает затенение коллектора на подстилающей поверхности, следовательно, коллектор ICS можно считать неотъемлемой частью ограждающей конструкции здания. Принципиальная схема прямоугольного солнечного коллектора ICS показана на Рисунке 273 ниже:

Принципиальная схема прямоугольного интегрированного коллекторного накопителя

Расчеты солнечного света и затенения [ССЫЛКА]

В объекте солнечного коллектора используется стандартная поверхность EnergyPlus, чтобы воспользоваться преимуществами подробных расчетов солнечного излучения и затенения.Солнечное излучение, падающее на поверхность, включает пучковое и диффузное излучение, а также излучение, отраженное от земли и прилегающих поверхностей. Также учитывается затенение коллектора другими поверхностями, например, близлежащими зданиями или деревьями. Точно так же поверхность коллектора затемняет поверхность крыши под ней, поэтому прямая солнечная радиация не падает на поверхность крыши. Коллектор и крыша за пределами граничных условий должны быть указаны как OtherSideConditionModel, чтобы учесть влияние затенения солнечного коллектора на поверхность крыши.

Математическая модель

[ССЫЛКА]

Солнечный коллектор со встроенным коллектором-накопителем (ICS) представлен с использованием двух уравнений баланса энергии переходных процессов, показанных ниже. Эти уравнения представляют собой уравнение баланса энергии для пластины поглотителя и воды в коллекторе.

Где,

м p C p = теплоемкость поверхности поглотителя, Дж / ° C

A = общая площадь коллектора, м 2

() e = произведение коэффициента пропускания-поглощения абсорбционной пластины и системы покрытия

I t = общее солнечное излучение, (Вт / м 2 )

h pw = коэффициент конвективной теплопередачи от пластины абсорбера к воде, (Вт / м2 ° K)

U t = общий коэффициент теплопотерь от поглотителя в окружающий воздух, (Вт / м2 ° K)

T p = средняя температура пластины абсорбера, (° C)

T w = средняя температура воды в коллекторе, (° C)

T a = температура окружающего воздуха, (° C)

м w C pw = теплоемкость водной массы в коллекторе, (Дж / ° C)

U s = удельная проводимость изоляции со стороны коллектора, (Вт / м 2 ° K)

U b = проводимость изоляции дна коллектора, (Вт / м 2 ° K)

T osc = наружная температура нижней изоляции, определенная на основе модели состояния другой стороны, (° C)

T wi = Температура на входе подпиточной или водопроводной воды, (° C)

= расход воды через коллектор, (Вт / ° C)

Граничное условие модели с другой стороной, представленное T osc , позволяет нам применить реалистичное внешнее граничное условие для коллектора, установленного на крыше здания.Этим также учитывается затеняющее воздействие коллектора на подстилочную поверхность (крышу). С другой стороны, если заданы граничные условия для окружающего воздуха, коллектор не затеняет нижнюю поверхность, на которой он установлен.

Два уравнения баланса энергии можно записать как неоднородную ДУ первого порядка с постоянными коэффициентами. Начальными условиями для этих уравнений являются средняя температура пластины поглотителя и средняя температура воды в коллекторе на предыдущих временных шагах.

Два связанных дифференциальных уравнения первого порядка решаются аналитически. Вспомогательное уравнение связанного однородного дифференциального уравнения имеет вид:

Это вспомогательное квадратное уравнение всегда имеет два различных действительных корня ( 1 и 2 ), следовательно, решение однородного уравнения является экспоненциальным, а общие решения дифференциальных уравнений даются как:

Постоянные члены A и B являются частным решением неоднородных дифференциальных уравнений, коэффициенты экспоненциальных членов ( c 1 , c 2 , r 1 , и r 2 ) определяются из начальных условий температуры воды в абсорбере и коллекторе ( T p0 , T w0 ) и даются по формуле:

Модель тепловой сети

: [ССЫЛКА]

Модель тепловой сети требует также баланса энергии для каждой крышки коллектора.Предполагается, что уравнение теплового баланса крышек коллектора подчиняется установившейся формулировке без учета их тепловой массы. Представление коллектора ICS в тепловой сети показано на рисунке 274. Кроме того, тепловой баланс на каждой поверхности покрытия требует знания количества поглощенной солнечной фракции, которое определяется на основе анализа трассировки лучей. Для модели тепловой сети, показанной выше, общий верхний коэффициент теплопотерь определяется комбинацией последовательно включенных сопротивлений следующим образом:

или

Коэффициенты конвективной и радиационной теплопередачи в уравнении выше вычисляются на основе температур на предыдущем временном шаге и определяются, как описано в разделе Коэффициенты теплопередачи .

Схема тепловой сети солнечного коллектора ICS

Тепловой баланс крышки коллектора

Игнорируя тепловую массу крышки коллектора, для каждой крышки формулируются уравнения стационарного теплового баланса, которые позволяют нам определять температуру крышки. Представление теплового баланса поверхности крышки показано на Рисунке 275 ниже.

Тепловой баланс поверхности крышки коллектора

Уравнение устойчивого теплового баланса покровного слоя определяется по формуле:

Линеаризуя обмен длинноволновым излучением и представляя условия конвекции с использованием классического уравнения для закона охлаждения Ньютона, уравнения для температур крышек 1 и 2 имеют следующий вид:

Где,

c = средневзвешенное поглощение солнечной энергии покрытий 1 и 2 , (-)

h r, c1-a = скорректированный коэффициент радиационной теплопередачи между крышкой 1 и окружающим воздухом, (Вт / м 2 K)

h c, c1-a = коэффициент конвективной теплопередачи между крышкой 1 и окружающей средой, (Вт / м 2 K)

h r, c2-c1 = коэффициент радиационной теплопередачи между крышками 1 и 2 , (Вт / м 2 K)

h c, c2-c1 = коэффициент конвективной теплопередачи между крышками 1 и 2 , (Вт / м 2 K)

h r, p-c2 = коэффициент теплоотдачи излучения между крышками 2 и пластиной поглотителя, (Вт / м 2 K)

h c, p-c2 = коэффициент конвективной теплопередачи между крышками 2 и пластиной абсорбера, (Вт / м 2 K)

q LWR, 1 = длинноволновый радиационный обменный поток на стороне 1 крышки коллектора, (Вт / м 2 )

q CONV, 1 = конвекционный тепловой поток на стороне 1 крышки коллектора, (Вт / м 2 )

q LWR, 2 = длинноволновый радиационный обменный поток на стороне 2 крышки коллектора, (Вт / м 2 )

q CONV, 2 = конвекционный тепловой поток на стороне 2 крышки коллектора, (Вт / м 2 )

q солнечная энергия, абс. = чистая солнечная радиация, поглощаемая крышкой коллектора, (Вт / м 2 )

R = тепловое сопротивление для каждой секции вдоль пути теплового потока, (м 2 K / Вт)

Модель с другой стороны

[ССЫЛКА]

Солнечные коллекторы

ICS обычно устанавливаются на поверхности теплопередачи зданий, поэтому коллекторы затеняют нижележащую поверхность теплопередачи и требуют уникального граничного условия, которое отражает среду воздушной полости, создаваемую между нижней частью поверхности коллектора и подстилающей поверхностью.Модель условий на другой стороне, которая позволяет нам оценить температуру на другой стороне, T osc , может быть определена на основе установившегося теплового баланса с использованием известной температуры воды коллектора на предыдущем временном шаге.

Иллюстрация для модели

в состоянии другой стороны

Игнорируя тепловую массу нижней изоляции коллектора, установившийся поверхностный тепловой баланс может быть сформулирован на внешней плоскости нижней поверхности коллектора, обращенной к полости, как показано на рисунке 4.Уравнение теплового баланса на внешней плоскости нижней поверхности коллектора имеет вид:

****

Подставляя уравнения для каждого члена в уравнение выше, получаем:

****

Упрощение дает нижнюю изоляцию при температуре другой стороны:

Температура воздуха в полости определяется из теплового баланса воздуха в полости следующим образом:

Где

h ~ r, cav ~ = линеаризованный коэффициент излучения для подстилающей поверхности в полости, (Вт / м 2 K)

h ~ c, cav ~ = коэффициент конвекции для подстилающей поверхности в полости, (Вт / м 2 K)

T , поэтому = температура наружной поверхности подлежащей теплопередающей поверхности, (ºC)

= массовый расход воздуха за счет естественной вентиляции, (кг / с)

q cond = теплопроводность теплового потока через дно изоляции и, (Вт / м 2 )

q conv, cav = конвекционный тепловой поток между нижней внешней поверхностью коллектора и воздухом полости, (Вт / м 2 )

q рад, cav = обменный поток длинноволнового излучения между нижней внешней поверхностью коллектора и внешней поверхностью подстилающей поверхности, (Вт / м 2 )

Температура воздуха в полости определяется из баланса энергии воздуха в полости.Баланс тепла воздуха требует норм естественной вентиляции воздуха в вентилируемой полости. Расчет скорости вентиляции описан в другом месте этого документа. Объект SurfaceProperty: ExteriorNaturalVentedCavity требуется для описания свойств поверхности, характеристик полости и отверстия для естественной вентиляции.

коэффициентов теплопередачи [ССЫЛКА]

Уравнения, используемые для определения различных коэффициентов теплопередачи в уравнениях абсорбера и теплового баланса воды, приведены ниже.Поглощенная солнечная энергия передается воде путем конвекции. Предполагая, что естественная конвекция преобладает в теплопередаче для горячей поверхности, обращенной вниз, и поверхности комка, обращенной вниз, следующая корреляция для числа Нуссельта, сделанная Фуджи и Имура (1972). Число Нуссельта для горячей поверхности, обращенной вниз, дается по формуле:

.

Число Нуссельта для горячей поверхности вверх и холодной поверхности вниз определяется по формуле:

****

****

****

Где,

= угол наклона коллектора к вертикали, радиан

г = постоянная силы гравитации, 9.806 (м / с 2 )

T r = эталонные свойства, в которых рассчитываются теплофизические свойства, (° C)

L c = характерная длина пластины абсорбера, (м)

k = теплопроводность воды при нормальной температуре, (Вт / мК)

= кинематическая вязкость воды при нормальной температуре, (м 2 / с)

= коэффициент температуропроводности воды при эталонной температуре, (м 2 / с)

β v = коэффициент объемного расширения, рассчитанный при Tv, Tv = Tw + 0.25 (Тп-Тв), (К-1)

Nu = число Нуссельта, рассчитанное для свойств воды при эталонной температуре, (-)

Gr = число Грасгофа, рассчитанное для свойств воды при эталонной температуре, (-)

Pr = число Прандтля, рассчитанное для свойств воды при эталонной температуре, (-)

Различные коэффициенты радиационной и конвективной теплопередачи задаются следующими уравнениями.Коэффициенты конвективной теплопередачи между крышками и пластиной поглотителя оцениваются на основе эмпирической корреляции для числа Нуссельта для воздушного зазора между двумя параллельными пластинами, разработанной Hollands et al. (1976) это:

Для математического упрощения приведены коэффициенты обмена длинноволновым излучением между внешней крышкой коллектора и небом и землей с привязкой к температуре окружающего воздуха.

Коэффициент конвективной теплопередачи от внешнего покрытия к окружающему воздуху определяется по формуле:

Когда граничным условием нижней поверхности является AmbientAir, комбинированная проводимость от внешнего покрытия к окружающей среде рассчитывается по приведенному ниже уравнению (Даффи и Бекман, 1991).

Общий коэффициент потерь через дно и боковые стороны коллектора-накопителя оценивается следующим образом:

Где,

c1 = коэффициент теплового излучения крышки коллектора 1 , (-)

c2 = коэффициент теплового излучения крышки коллектора 2 , (-)

F s = коэффициент обзора от коллектора до неба, (-)

F г = коэффициент обзора от коллектора до земли, (-)

T c1 = температура крышки коллектора 1 , (K)

T c2 = температура крышки коллектора 2 , (K)

T с = температура неба, (K)

T г = температура земли, (K)

k = теплопроводность воздуха, (Вт / м · K)

L = воздушный зазор между крышками, (м)

β = наклон пластин или крышек к горизонтали, (радиан)

V w = скорость ветра, (м / с)

U Lb = определяемая пользователем теплопроводность снизу, Вт / м 2 K

U Ls = боковая теплопроводность, определяемая пользователем, Вт / м 2 K

A b = площадь теплообмена дна коллектора, м 2

A s = площадь со стороны коллектора, м 2

ч гребешок = комбинированная проводимость от внешней крышки к окружающему воздуху, Вт / м 2 K

Произведение коэффициента пропускания-поглощения

Произведение коэффициента пропускания и поглощения солнечного коллектора определяется методом трассировки лучей для любого угла падения (Даффи и Бекман, 1991).Для этого требуются оптические свойства материалов покрытия и поглотителя, а произведение коэффициента пропускания-поглощения для любого угла падения определяется по формуле:

Коэффициент пропускания системы перекрытий для одинарных и двух крышек определяется по формуле:

Эффективные коэффициент пропускания, отражения и поглощения одиночного покрытия рассчитываются по формуле:

Коэффициент пропускания системы покрытия с учетом только поглощения a , определяется как:

Коэффициент отражения неполяризованного излучения при переходе от среды 1 с показателем отражения n 1 к среде 2 с показателем отражения n 2 определяется по формуле:

Средние эквивалентные углы падения рассеянного излучения, отраженного от неба и земли, аппроксимируются корреляцией Брандемюля и Бекмана (Duffie and Beckman, 1991) следующим образом:

где,

** = коэффициент пропускания системы покрытия, (-)

1 = коэффициент пропускания крышки 1, (-)

2 = коэффициент пропускания крышки 2, (-)

** = поглощающая способность пластины абсорбера, (-)

d = коэффициент диффузного отражения внутренней крышки, (-)

L = толщина материала покрытия, (м)

K = коэффициент ослабления покровного материала, (м -1 )

1 = угол падения, градус

2 = угол преломления, градус

= параллельная составляющая отраженного неполяризованного излучения, (-)

= перпендикулярная составляющая отраженного неполяризованного излучения, (-)

** = наклон коллектора, градус

sd = эквивалентный угол падения рассеянного солнечного излучения неба, градусы

gd = эквивалентный угол падения рассеянного солнечного излучения на землю, градус

Тепловые параметры интегрального коллектора-накопителя рассчитываются следующим образом:

Даффи, Дж.A. и W.A. Beckman. 1991. Солнечная инженерия тепловых процессов, 2-е изд. Нью-Йорк: Джон Вили и сыновья.

Кумар Р. и М.А. Розен. Тепловые характеристики встроенного коллектора-накопителя солнечного водонагревателя с гофрированной абсорбирующей поверхностью. Прикладная теплотехника: 30 (2010) 1764–1768.

Fujii, T. и H. Imura. Естественная конвекция теплопередачи от пластины с произвольным наклоном. Международный журнал тепломассообмена: 15 (4), (1972), 755-764.

Фотоэлектрические тепловые плоские солнечные коллекторы [ССЫЛКА]

Фотоэлектрические-тепловые солнечные коллекторы (PVT) объединяют солнечные электрические элементы и тепловую рабочую жидкость для сбора как электричества, так и тепла. Хотя в настоящее время существует сравнительно немного коммерческих продуктов, PVT-исследования проводились в течение последних 30 лет, и было изучено множество различных типов коллекторов. Zondag (2008) и Charalambous et. al (2007) предоставляют обзоры литературы по PVT.Поскольку PVT является гораздо менее зрелым с коммерческой точки зрения, не существует стандартов или рейтинговых систем, таких как для тепловых коллекторов горячей воды. В настоящее время EnergyPlus имеет одну простую модель, основанную на эффективности, определяемой пользователем, но более подробная модель, основанная на первых принципах, и подробное поэтапное описание находятся в стадии разработки.

Модели PVT повторно используют модели PV для производства электроэнергии. Они описаны в другом месте этого документа в разделе Фотоэлектрические массивы — Простая модель

.

Простая тепловая модель PVT [ССЫЛКА]

Входной объект SolarCollector: FlatPlate: PhotovoltaicThermal предоставляет простую модель PVT, которая предоставляется для быстрого использования во время разработки или изучения политики.Пользователь просто задает значения теплового КПД, и падающая солнечная энергия нагревает рабочее топливо. Модель также включает режим охлаждения для систем на основе воздуха, где указанная пользователем поверхностная излучательная способность используется для моделирования охлаждения рабочей жидкости в ночное небо (охлаждение на водной основе будет доступно, когда станет доступен резервуар для хранения охлажденной воды) . Никаких других деталей конструкции PVT коллектора в качестве исходных данных не требуется.

Простая модель может нагревать воздух или жидкость.Если он нагревает воздух, то PVT является частью контура воздушной системы HVAC с воздушными узлами, подключенными к воздушной системе. Если он нагревает жидкость, то PVT является частью контура установки с узлами, подключенными к контуру установки, и схема работы установки определяет потоки.

PVT-моделирование на основе воздушной системы включает в себя регулирующую байпасную заслонку. Логика управления определяет, должен ли воздух обходить коллектор, чтобы лучше соответствовать заданному значению. Модель требует, чтобы уставка температуры сухого термостата была размещена на выходном узле.Модель предполагает, что коллектор предназначен и доступен для нагрева, когда падающая солнечная энергия превышает 0,3 Вт / м 2 , а в противном случае он предназначен для охлаждения. Температура на входе сравнивается с уставкой на выпускном узле, чтобы определить, является ли охлаждение или нагрев выгодным. Если да, то для кондиционирования воздушного потока применяются тепловые модели PVT. Если они не приносят пользы, то PVT полностью обходится, и входной узел передается непосредственно к выходному узлу, чтобы смоделировать полностью обходное устройство заслонки.Переменная отчета доступна для состояния заслонки байпаса.

Заводские PVT не включают байпас (хотя он может использоваться в заводском контуре). Коллектор запрашивает расчетный расход, но в остальном для управления он полагается на более крупный контур установки.

Когда PVT-тематический коллектор находится в состоянии «включен» в режиме нагрева, а рабочая жидкость течет, модель рассчитывает температуру на выходе на основе температуры на входе и собранной теплоты, используя следующие уравнения.

где,

— собранная тепловая энергия [Вт]

— чистая площадь поверхности [м 2 ]

— доля поверхностного воздуха с активным PV / T коллектором, а

— коэффициент теплового преобразования.

где,

— температура рабочей жидкости на выходе из PV / T

.

— температура рабочей жидкости на входе в PV / T

.

— полный массовый расход рабочего тела через PV / T

— удельная теплоемкость рабочего тела.

Для систем с воздушным охлаждением значение затем сравнивается с уставкой температуры на выходном узле. Если температура на выходе превышает желаемую, то доля байпаса рассчитывается для моделирования регулирующей заслонки байпаса с использованием:

Когда PVT-тематический коллектор находится в состоянии «включен» в режиме охлаждения, а рабочая жидкость течет, модель рассчитывает температуру на выходе на основе температуры на входе и тепла, излучаемого и конвектируемого в окружающую среду, с использованием теплового баланса на теплоносителе. внешняя грань коллектора:

Где,

— это чистая скорость обмена длинноволновым (тепловым) излучением с воздухом, ночным небом и землей.См. Раздел «Внешнее длинноволновое излучение» в Тепловом балансе внешней поверхности, где подробно обсуждается, как это моделируется в EnergyPlus с использованием линеаризованных коэффициентов излучения.

— чистая скорость конвективного обмена потоком с наружным воздухом. См. Раздел «Наружная / внешняя конвекция» в «Тепловом балансе внешней поверхности», где подробно обсуждается, как это моделируется в EnergyPlus. Шероховатость поверхности считается «очень гладкой».

Простая модель предполагает, что эффективная температура коллектора является средним значением температуры рабочей жидкости на входе и выходе, поэтому мы можем сделать следующую замену:

Подставляя и решая для, получаем следующую модель для температур коллектора во время (возможного) процесса охлаждения:

Затем можно рассчитать температуру на выходе и определить тепловые потери.Однако модель допускает только ощутимое охлаждение воздушного потока и ограничивает температуру на выходе, чтобы она не опускалась ниже температуры точки росы на входе.

Коллекторы

PVT имеют расчетный объемный расход рабочей жидкости с возможностью автоматического изменения размера. Для воздушных систем, используемых в качестве предварительных кондиционеров, объемный расход рассчитывается таким образом, чтобы соответствовать максимальному расходу наружного воздуха. Для систем на водной основе на стороне подачи контура установки, каждый из коллекторов PVT рассчитан на общую скорость потока контура.который был разработан путем анализа набора данных SRCC для обычных солнечных коллекторов (см. набор данных SolarCollectors.idf) и усреднения отношения для всех 171 различных коллекторов.

Источники [ССЫЛКА]

Хараламбус П.Г., Мейдмент Г.Г., Калагиру С.А., Якуметти К. Фотоэлектрические тепловые (PV / T) коллекторы: обзор. Прикладная теплотехника 27 (2007) 275-286.

Зондаг, Х.А. 2008. Плоские фотоэлектрические коллекторы и системы: обзор.Обзоры возобновляемой и устойчивой энергетики 12 (2008) 891-959.

Неглазурованные солнечные коллекторы [ССЫЛКА]

Входной объект SolarCollector: UnglazedTranspired предоставляет модель просвечиваемых коллекторов, которые, возможно, являются одним из наиболее эффективных способов сбора солнечной энергии с продемонстрированной мгновенной эффективностью более 90% и средней эффективностью более 70%. Они используются для предварительного нагрева наружного воздуха, необходимого для вентиляции и таких процессов, как сушка сельскохозяйственных культур.

В EnergyPlus неглазурованный прозрачный солнечный коллектор (UTSC) моделируется как специальный компонент, прикрепленный к внешней стороне поверхности теплопередачи, которая также связана с каналом наружного воздуха. UTSC влияет как на тепловую оболочку, так и на воздушную систему HVAC. С точки зрения воздушной системы, UTSC — это теплообменник, и при моделировании необходимо определить, насколько устройство повышает температуру наружного воздуха. С точки зрения тепловой оболочки, наличие коллектора на внешней стороне поверхности изменяет условия, в которых находятся нижележащие поверхности теплопередачи.EnergyPlus моделирует характеристики здания в течение года, и UTSC часто будет отключаться с точки зрения принудительного воздушного потока, но коллектор все еще присутствует. Когда UTSC включен, всасываемый воздушный поток считается равномерным по всей поверхности. Когда UTSC выключен, коллектор действует как радиационно-конвекционная перегородка, расположенная между внешней средой и внешней стороной лежащей ниже поверхности теплопередачи. Мы различаем эти два режима работы как активный или пассивный и моделируем компонент UTSC по-разному в зависимости от того, в каком из этих режимов он находится.

Эффективность теплообменника [ССЫЛКА]

Перфорированная пластина абсорбера рассматривается как теплообменник и моделируется с использованием традиционной формулы эффективности. Эффективность теплообменника определяется на основе корреляций, полученных в результате небольших экспериментов. В EnergyPlus реализованы две корреляции, доступные в литературе. Первый основан на исследовании Кучера из Национальной лаборатории возобновляемых источников энергии. Второй основан на исследовании Ван Декера, Холландса и Брюнгера из Университета Ватерлоо.Поскольку обе корреляции считаются действительными, выбор того, какую корреляцию использовать, остается за пользователем.

Корреляция Кутчера [ССЫЛКА]

Корреляция Кучера (1994) охватывает поверхностную конвекцию между коллектором и входящим потоком наружного воздуха, которая возникает на передней поверхности, в отверстиях и вдоль задней поверхности коллектора. Корреляция использует число Рейнольдса на основе диаметра отверстия в качестве шкалы длины и средней скорости воздуха, проходящего через отверстия, в качестве шкалы скорости:

где,

— скорость через отверстия [м / с]

— диаметр отверстия [м]

— кинематическая вязкость воздуха [м 2 / с]

Корреляция является функцией числа Рейнольдса, геометрии отверстия, скорости набегающего потока воздуха и скорости, проходящей через отверстия:

где,

— шаг или расстояние между отверстиями, [м],

— диаметр отверстия, [м],

— пористость или доля площади отверстий, [безразмерная],

— средняя скорость воздуха, проходящего через отверстия, [м / с],

— скорость набегающего потока (скорость местного ветра) [м / с].

Число Нуссельта формулируется как:

где,

— это общий коэффициент теплопередачи, основанный на средней логарифмической разнице температур, [Вт / м 2 · K], и

— теплопроводность воздуха [Вт / м · К].

КПД теплообменника:

Соотношение Кучера было сформулировано для треугольного расположения отверстий, но на основе Ван Декера и др.(2001) мы допускаем использование корреляции для расположения и масштаба квадратных отверстий в 1,6 раза.

Корреляция Ван Декера, Холландса и Брюнгера [ССЫЛКА]

Van Decker et. al. расширил измерения Кучера, включив в него более широкий диапазон параметров коллектора, включая толщину пластины, шаг, скорость всасывания и структуру квадратных отверстий. Их формулировка модели отличается от формулировки Кучера тем, что модель была построена на основе отдельных моделей эффективности для передней, задней и отверстий коллектора.Их опубликованное соотношение:

где,

— средняя скорость всасывания через переднюю поверхность коллектора [м / с]

— толщина коллекторной пластины

Температура на выходе теплообменника [ССЫЛКА]

Использование любого из приведенных выше соотношений позволяет определить эффективность теплообменника по известным значениям.По определению эффективность теплообменника также составляет:

где,

— температура воздуха, выходящего из коллектора и поступающего в камеру [ºC]

— температура пластины поглотителя коллектора, [ºC], а

— это температура окружающего наружного воздуха [ºC].

Переписав уравнение для решения для, мы видим, что температура нагретого наружного воздуха, поступающего в камеру статического давления, может быть определена, если известна температура поверхности коллектора,

Тепловой баланс коллектора [ССЫЛКА]

Предполагается, что коллектор достаточно тонкий и обладает высокой проводимостью, чтобы его можно было смоделировать с использованием одной температуры (для обеих сторон и по его площади).Эта температура определяется путем определения теплового баланса в контрольном объеме, который просто закрывает поверхность коллектора. Тепловые балансы сформулированы отдельно для активного и пассивного режимов и показаны на следующем рисунке.

Обратите внимание, что для пассивного случая мы не используем отношения теплообменника для прямого моделирования взаимодействия вентилируемого воздуха с коллектором. Это потому, что эти отношения считаются неприменимыми, когда UTSC находится в пассивном режиме.Они были разработаны для однонаправленного потока (а не для уравновешенного потока на входе и выходе, ожидаемого от естественных сил) и для определенных диапазонов скорости на всасывающей стороне. Таким образом, этот механизм теплопередачи обрабатывается с использованием классических моделей поверхностной конвекции (как если бы коллектор не был перфорирован). (Воздухообмен моделируется как вентиляция в тепловом балансе приточного воздуха, но не взаимодействует с краями отверстий на поверхности коллектора.)

Тепловой баланс коллектора Transpired

Когда UTSC активен, тепловой баланс на контрольном объеме поверхности коллектора составляет:

где:

~~ поглощается прямым и рассеянным солнечным (коротковолновым) тепловым потоком излучения.

— это чистый обмен потоком длинноволнового (теплового) излучения с воздухом и окружающей средой.

— это поверхностный конвективный поток обмена с наружным воздухом в условиях сильного ветра и дождя. Обратите внимание, что этот член обычно принимается равным нулю при разработке модели UTSC, но мы добавляем термин, чтобы учесть ухудшение характеристик UTSC в плохих условиях.

~~ — поток теплообменника от коллектора к входящему наружному воздуху.

~~ — чистый обмен потоком длинноволнового (теплового) излучения с внешней поверхностью подстилающей поверхности (поверхностей).

— это термин «источник / поглотитель», который учитывает энергию, экспортируемую из контрольного объема, когда пластина поглотителя коллектора представляет собой гибридное устройство, такое как фотоэлектрическая панель.

При тепловом балансе на контрольном объеме пассивной поверхности коллектора:

где:

~~ = теплообмен поверхностной конвекции с наружным воздухом.

~~ = теплообмен поверхностной конвекции с приточным воздухом.

Все члены положительны для чистого потока к коллектору, за исключением члена теплообменника, который считается положительным в направлении от коллектора к входящему воздушному потоку. Каждый из этих компонентов теплового баланса кратко представлен ниже.

Внешнее излучение ПО [ССЫЛКА]

~~ рассчитывается с использованием процедур, представленных в другом месте данного руководства, и включает как прямое, так и диффузное падающее солнечное излучение, поглощаемое поверхностью поверхности.Это зависит от местоположения, угла и наклона поверхности, затенения поверхностей, свойств материала поверхности, погодных условий и т. Д.

Внешнее LW-излучение [ССЫЛКА]

— это стандартная формулировка радиационного обмена между поверхностью, небом, землей и атмосферой. Радиационный тепловой поток рассчитывается на основе коэффициента поглощения поверхности, температуры поверхности, температуры неба, воздуха и земли, а также факторов обзора неба и земли. Излучение моделируется с использованием линеаризованных коэффициентов.

Внешняя конвекция [ССЫЛКА]

~~ моделируется с использованием классической формулировки: ~~ = h co (T air — T o ), где h co , — коэффициент конвекции. Этот коэффициент будет отличаться в зависимости от того, является ли UTSC активным или пассивным. Когда UTSC пассивен, h co обрабатывается так же, как и внешняя поверхность с условиями ExteriorEnvironment. Когда UTSC активен, особая ситуация с потоком всасываемого воздуха в проходимом коллекторе во время работы означает, что h co часто равно нулю, поскольку ситуация всасывания может исключить массовый перенос от коллектора.Однако при сильном ветре сильная турбулентность и колебания давления могут привести к нарушению всасывающего потока. Поэтому мы включаем этот член в тепловой баланс и используем специальный коэффициент для моделирования этой потерянной теплопередачи. Кроме того, когда на улице идет дождь, мы предполагаем, что коллектор намокает, и моделируем улучшенную поверхностную теплопередачу, используя большое значение для.

Теплообменник [ССЫЛКА]

~~ моделируется с использованием классической формулировки ~~, где определяется с использованием корреляций, описанных выше.Когда UTSC активен, массовый расход воздуха определяется по работе компонента смесителя наружного воздуха. Когда UTSC выключен, этот член равен нулю.

Plenum LW Radation [ССЫЛКА]

— это стандартная формула радиационного обмена между поверхностью коллектора и лежащей ниже поверхностью теплопередачи, расположенной поперек камеры повышенного давления. Излучение моделируется с использованием линеаризованных коэффициентов.

Пленум-конвекция

[ССЫЛКА]

~~ моделируется с использованием классической формулировки: ~~ = h cp (T air — T o ), где h cp , — коэффициент конвекции.Этот коэффициент принимается равным нулю, когда UTSC работает из-за ситуации с потоком всасываемого воздуха. Когда UTSC выключен, значение h cp получается из корреляций, используемых для оконных промежутков из стандарта ISO (2003) 15099.

Подстановка моделей и решение для дает следующее уравнение, когда UTSC активен («включен»):

и замена в дает следующее уравнение, когда UTSC пассивен («выключен»):

где,

— падающее солнечное излучение всех типов [Вт / м 2 ],

— коэффициент поглощения солнечной энергии коллектора [безразмерный],

— линеаризованный коэффициент излучения для окружающей атмосферы [Вт / м 2 · K],

— это сухая луковица на открытом воздухе из погодных данных, также принятая для поверхности земли [ºC],

— линеаризованный коэффициент излучения неба [Вт / м 2 · K],

— эффективная температура неба [ºC],

— линеаризованный коэффициент излучения для земли [Вт / м 2 · K],

— линеаризованный коэффициент излучения для подстилающей поверхности [Вт / м 2 · K],

— коэффициент конвекции для наружной среды, когда UTSC активен и сильный ветер или идет дождь [Вт / м 2 · K],

— температура наружной поверхности лежащей ниже поверхности теплопередачи [ºC],

— массовый расход воздуха в активном режиме [кг / с],

— удельная теплоемкость воздуха при постоянном давлении [Дж / кг · К],

— площадь коллектора [м 2 ],

— коэффициент конвекции для внешней среды [Вт / м 2 · K],

— коэффициент конвекции для поверхностей, обращенных к камере статического давления [Вт / м 2 · K], а

— это сухая камера для воздуха, поступающего в камеру статического давления и поступающего в систему наружного воздуха [ºC].

Plenum Heat Balance [ССЫЛКА]

Камера статического давления — это объем воздуха, расположенный между коллектором и лежащей под ним поверхностью теплопередачи. Приточный воздух моделируется как хорошо перемешанный. Равномерная температура приточного воздуха определяется путем расчета теплового баланса контрольного объема воздуха, как показано на диаграмме ниже.

Обратите внимание, что мы сформулировали контрольные объемы с небольшими различиями для активного и пассивного случаев.Для активного корпуса формулировки условий всасываемого воздуха и эффективности теплообменника требуют, чтобы контрольный объем поверхности коллектора охватывал часть воздуха, прилегающую как к передней, так и к задней поверхностям коллектора. Однако для пассивного случая в контрольном объеме поверхности коллектора нет воздуха, а контрольный объем приточного воздуха простирается до поверхности коллектора.

Воздушно-тепловой баланс пленочной камеры коллектора

Когда UTSC активен, тепловой баланс в регулирующем объеме приточного воздуха составляет:

где,

— это чистая величина энергии, добавляемой за счет конвекции всасываемого воздуха через контрольный объем.

~~ — это чистая скорость, добавляемая за счет поверхностной конвективной теплопередачи с подстилающей поверхностью.

Когда UTSC пассивен, тепловой баланс в регулирующем объеме приточного воздуха составляет:

где,

— это чистая норма энергии, добавляемой в результате инфильтрации, когда наружный окружающий воздух обменивается с приточным воздухом.

— чистый коэффициент энергии, добавленной за счет поверхностной конвективной теплопередачи с коллектором.

Подстановка и решение для дает следующее уравнение, когда UTSC активен:

И подстановка в дает следующее уравнение, когда UTSC пассивен:

где,

— массовый расход воздуха от естественных сил [кг / с]

В литературе по UTSC, по-видимому, не рассматривается пассивный режим работы, и модели для него не определены.Тем не менее ожидается, что естественная плавучесть и силы ветра будут стимулировать воздухообмен между камерой статического давления и окружающей средой, и необходим некоторый метод моделирования. Поскольку конфигурация аналогична односторонней естественной вентиляции, мы решили использовать корреляции для естественной вентиляции, представленные в главе 26 ASHRAE HOF (2001).

где,

— плотность воздуха [кг / м 3 ], а

— это общий объемный расход воздуха, поступающего в камеру статического давления и выходящего из нее.

(если)

(если и UTSC вертикальный)

— это эффективность проемов, которая зависит от геометрии проема и ориентации по отношению к ветру. ASHRAE HoF (2001) указывает значения в диапазоне от 0,25 до 0,6. В модели UTSC это значение доступно для ввода пользователем и по умолчанию равно 0,25.

— коэффициент расхода для проема, зависит от геометрии проема.В модели UTSC это значение доступно для ввода пользователем и по умолчанию равно 0,65.

Аргументы о непрерывности массы приводят к моделированию площади отверстий как половину общей площади отверстий, поэтому мы имеем:

— гравитационная постоянная, принятая равной 9,81 [м / с 2 ].

— высота от середины нижнего отверстия до уровня нейтрального давления. Это составляет одну четвертую общей высоты UTSC, если он установлен вертикально.Для наклонных коллекторов номинальная высота изменяется на синус наклона. Если UTSC установлен горизонтально (например, на крыше), то принимается толщина зазора камеры статического давления.

Если UTSC горизонтальный, то потому, что это стабильная ситуация.

Нижняя поверхность теплопередачи [ССЫЛКА]

UTSC наносится снаружи на поверхность теплопередачи. Эта поверхность моделируется с использованием обычных методов EnergyPlus для обработки теплоемкости и переходных процессов — обычно метод CTF.Эти встроенные программы EnergyPlus Heat Balance используются для расчета. Модель UTSC соединяется с нижней поверхностью с помощью механизма OtherSideConditionsModel. Модель UTSC предоставляет значения для,, и для использования с расчетами модели теплового баланса для внешней стороны подстилающей поверхности (описанной в другом месте в этом руководстве).

Расчеты солнечного света и затенения [ССЫЛКА]

Просвечиваемый объект-коллектор использует стандартную поверхность EnergyPlus, чтобы воспользоваться преимуществами подробных расчетов солнечного излучения и затенения.Солнечное излучение, падающее на поверхность, включает пучковое и диффузное излучение, а также излучение, отраженное от земли и прилегающих поверхностей. Также учитывается затенение коллектора другими поверхностями, например, близлежащими зданиями или деревьями.

Расчет локальной скорости ветра [LINK]

Скорость наружного ветра влияет на термины, используемые при моделировании компонентов UTSC. Предполагается, что скорость ветра в файле погоды измеряется на метеорологической станции, расположенной в открытом поле на высоте 10 м.Чтобы приспособиться к разному рельефу на строительной площадке и разнице в высоте поверхностей зданий, для каждой поверхности рассчитывается местная скорость ветра.

Скорость ветра модифицируется на основе измеренной метеорологической скорости ветра по уравнению (ASHRAE 2001):

, где z — высота центроида UTSC, z соответствует — высота стандартного метереологического измерения скорости ветра, а a и  — коэффициенты, зависящие от местности. — толщина пограничного слоя для данного типа местности. Значения a и  показаны в следующих таблицах:

Коэффициенты зависимости от местности (ASHRAE 2001).
1 Плоский, местность 0,14 270
2 Грубая, лесистая местность 0,22 370
3 Города и города 0.33 460
4 Океан 0,10 210
5 Городской, промышленный, лесной 0,22 370

UTSC может быть определен таким образом, чтобы он имел несколько нижележащих поверхностей теплопередачи. Высоты центроидов для каждой поверхности взвешиваются по площади, чтобы определить среднюю высоту для использования в расчетах местного ветра.

Коэффициенты конвекции [ССЫЛКА]

UTSC-моделирование требует вычисления до трех различных коэффициентов поверхностной конвективной теплопередачи. Эти коэффициенты определяются классическим способом:

Во-первых, это коэффициент конвекции для поверхности коллектора, обращенной наружу, когда UTSC пассивен. Он моделируется точно так же, как и где-либо еще в EnergyPlus, и будет зависеть от настроек пользователя для алгоритма внешней конвекции — тепловой баланс внешней поверхности в другом месте в этом документе.

Во-вторых, это коэффициент конвекции для поверхностей, обращенных к камере статического давления. Этот коэффициент применяется только к конвекции подстилающей поверхности, когда UTSC активен, и как к коллектору, так и к подстилающей поверхности, когда UTSC пассивен. Когда UTSC активен, мы используем корреляцию конвекции для нагнетаемого воздуха, разработанную McAdams (1954), как опубликовано ASHRAE HoF (2001):

где,

— это средняя скорость в камере статического давления, определяемая исходя из того, где — эффективная площадь поперечного сечения камеры, перпендикулярная направлению основного потока.Когда UTSC пассивен, мы моделируем конвекцию так же, как в EnergyPlus для моделирования воздушных зазоров в окнах. Эти корреляции зависят от числа Рэлея и наклона поверхности и основаны на работе различных исследований, включая Hollands et. др., Эльшербины и др. др., Райт и Арнольд. Формулировки задокументированы в стандарте ISO (2003) 15099. Для реализации UTSC подпрограммы были адаптированы из подпрограммы NusseltNumber в WindowManager.f90 (Ф. Винкельманн), которая сама была получена из подпрограммы Window5 «nusselt».

В-третьих, это коэффициент конвекции, используемый для ухудшения характеристик UTSC в условиях окружающей среды с сильным ветром или дождем. Если в файле погоды указано, что идет дождь, то мы устанавливаем = 1000.0, в результате чего температура коллектора будет равна температуре окружающего воздуха. Описанные выше корреляции эффективности теплообменника учитывают умеренное количество ветра, но корреляции, по-видимому, ограничены диапазоном от 0 до 5,0 м / с. Поэтому мы устанавливаем равным нулю, если <= 5.0 м / с. Если> 5,0 м / с, мы используем корреляцию МакАдамса, но с уменьшенной величиной скорости:

Коэффициенты излучения [ССЫЛКА]

Моделирование

UTSC требует расчета до четырех различных линеаризованных коэффициентов радиационной теплопередачи. В то время как при расчетах излучения обычно используется температура, возведенная в четвертую степень, это значительно усложняет решение уравнений теплового баланса для одной температуры. Коэффициенты линеаризованного излучения имеют те же единицы измерения и используются таким же образом, что и коэффициенты поверхностной конвекции, и вносят очень небольшую ошибку для соответствующих уровней температуры.

Коэффициент излучения, используется для моделирования теплового излучения между поверхностью коллектора и внешней поверхностью подстилающей поверхности теплопередачи. Мы исходим из единства мнений. Рассчитывается с использованием:

где,

все температуры переведены в градусы Кельвина,

— постоянная Стефана-Больцмана,

— длинноволновое тепловое излучение коллектора, а

— длинноволновое тепловое излучение подстилающей поверхности теплопередачи.

Три других коэффициента,, и используются в другом месте EnergyPlus для теплового баланса внешней поверхности и рассчитываются таким же образом, как уравнение для коллекторов UTSC. [Это достигается путем вызова подпрограммы InitExteriorConvectionCoeffs в файле HeatBalanceConvectionCoeffs.f90. ]

Bypass Control [ССЫЛКА]

Предполагается, что UTSC устроен так, что байпасная заслонка контролирует, забирается ли воздух непосредственно снаружи или через UTSC.Решение о регулировании основывается на том, будет ли полезно нагревать наружный воздух. Существует несколько уровней управления, включая график доступности, независимо от того, холоднее ли наружный воздух, чем уставка смешанного воздуха, или ниже ли температура воздуха в зоне, чем так называемая уставка свободного нагрева.

Предупреждения об изменении размеров [ССЫЛКА]

Хотя конструкция извлеченного коллектора остается на усмотрение пользователя, программа выдает предупреждения, когда скорость всасываемого воздушного потока выходит за пределы диапазона 0.003 до 0,08 м / с.

Общая эффективность [ССЫЛКА]

Общий тепловой КПД UTSC представляет собой полезный выходной отчет и определяется как отношение полезного тепловыделения всей системы к общему солнечному излучению, падающему на общую площадь поверхности коллектора.

где

— полезный приток тепла

— суммарное падающее солнечное излучение

Обратите внимание, что КПД определен только для.Этот КПД включает тепло, рекуперированное от подстилающей стены, и может превышать 1,0.

Эффективность коллектора

[ССЫЛКА]

Тепловой КПД коллектора представляет собой полезный выходной отчет и определяется как отношение полезного притока тепла жидкостью коллектора к общему солнечному излучению, падающему на общую площадь поверхности коллектора.

Обратите внимание, что КПД определен только для

Источники [ССЫЛКА]

Кучер, К.F. 1994. Эффективность теплообмена и падение давления для воздушного потока через перфорированные пластины с боковым ветром и без него. Журнал теплопередачи . Май 1994, т. 116, стр. 391. Американское общество инженеров-механиков.

Ван Декер, G.W.E., K.G.T. Холландс и А.П.Брюнгер. 2001. Теплообменные соотношения для неостекленных прозрачных солнечных коллекторов с круглыми отверстиями на квадрате с треугольным шагом. Солнечная энергия . Vol. 71, No. 1. С. 33-45, 2001.

ISO.2003. ISO 15099: 2003. Тепловые характеристики окон, дверей и затеняющих устройств — Детальные расчеты. Международная Организация Стандартизации.

КПД солнечного коллектора тепла | phcppros

В сантехнической и отопительной промышленности водяные водогрейные котельные системы можно легко комбинировать с гелиотермогидронными технологиями. Обычно мы обнаруживаем, что, добавляя солнечные тепловые коллекторы к хорошо спроектированной теплогидронной системе, мы можем легко сократить, по крайней мере, половину (а обычно и больше) годового расхода топлива для отопления (в зависимости от здания и климата).Это не только представляет собой существенную долгосрочную экономию затрат на топливо, но также приводит к еще более значительному сокращению выбросов углекислого газа и других загрязнений, столь распространенных в существующих зданиях.


Два наиболее распространенных типа солнечных тепловых коллекторов — это плоская пластина и вакуумная трубка. Решение об использовании того или другого должно включать справедливое сравнение тепловых характеристик, часто характеризуемых показателями эффективности. Вот два разных способа сравнения производительности коллектора, во-первых, по эффективности, а во-вторых, по тепловой мощности.


Эффективность определена


Эффективность на самом деле представляет собой простую взаимосвязь между общей доступной энергией («топливо» для обогрева) и ее полезной частью, которая используется с пользой. Вы просто делите «доставленную полезную энергию» на «доступную энергию», и вы получаете КПД, выраженный в долях или процентах. Часто его сокращают с помощью греческой буквы Ню (Nv).


Тепловой КПД солнечного коллектора тепла не статичен.Он меняется по мере изменения условий эксплуатации. Это может затруднить справедливое сравнение одного коллектора с другим, поскольку панели бывают разных размеров, изготовлены из разных материалов и могут использоваться в бесчисленных различных климатических и температурных условиях. Очевидно, что существует потребность в стандартном способе тестирования и сравнения солнечных коллекторов, и в Соединенных Штатах этот стандарт поддерживается Корпорацией по оценке и сертификации солнечной энергии (SRCC).


SRCC


SRCC предоставляет наши наиболее широко используемые национальные стандарты испытаний солнечного отопления.Он был основан в 1980 году как некоммерческая организация, основной целью которой является разработка и внедрение программ сертификации и национальных рейтинговых стандартов для оборудования солнечной энергии. Они администрируют программу сертификации, рейтинга и маркировки солнечных коллекторов и аналогичную программу для полных солнечных водонагревательных систем. В последние годы рейтинг и маркировка стали более важными для установщиков и владельцев, поскольку они необходимы для того, чтобы солнечное оборудование могло претендовать на получение государственных кредитов на солнечную энергию в США.S. Вот почему почти на каждый солнечный коллектор, продаваемый в США в наши дни, прикреплен ярлык сертификации производительности SRCC.


Этикетки сами по себе могут быть полезны при сравнении энергоэффективности, поскольку они показывают стандартный рейтинг энергоэффективности, аналогичный по концепции тем, которые используются на холодильниках и автомобилях. База данных SRCC — это единственное место, где все эти рейтинги можно найти рядом для легкого и полезного сравнения. Эта информация доступна бесплатно на веб-сайте SRCC www.solar-rating.org.


КПД солнечного коллектора


Эффективность, как указано выше, рассчитывается путем деления «полезной энергии» на «доступную энергию». В случае солнечного коллектора тепла доступная энергия — это солнечное излучение, которое достигает поверхности отверстия коллектора. Время от времени это может меняться в зависимости от проходящих облаков и других местных условий. Полезная энергия на выходе — это чистая тепловая энергия, заключенная в горячей текучей среде (жидкий хладагент), покидающей выпускную трубу коллектора.Более холодная температура наружного воздуха, окружающего коллектор, как правило, вызывает более немедленную потерю тепла, поэтому низкие температуры окружающей среды могут снизить полезную передаваемую энергию.
Когда эта ситуация описывается математически, оказывается, что есть только три вещи, которые вам нужно знать, чтобы оценить эффективность коллектора для любого отопительного применения:

  • Насколько горячая жидкость (Ti) вы хотите нагреть?
  • Насколько холодно на улице (Ta)?
  • Насколько солнечно (I)?
  • Таким образом, эффективность коллектора (η) напрямую связана с этими тремя значениями, которые можно объединить следующим образом.
  • (Ti — Ta) / I [Это также называется «Параметр входной жидкости» (p)], где
  • Ti — температура жидкости на входе,
  • Ta — температура окружающей среды, а
  • I — солнечное излучение на поверхности коллектора. [I означает солнечную инсоляцию.]

SRCC предоставляет результаты тестирования коллектора, которые включают в себя наклон и данные пересечения для каждого проверенного коллектора. Наклон и точка пересечения позволяют провести прямую линию на графике, определяющую КПД коллектора для любых условий (Ti — Ta) / I.Я сделал это на рис. 90-1 для трех коллекторов, перечисленных в рейтингах SRCC; Плоская застекленная пластина, плоская неглазурованная пластина и коллектор из стеклянных вакуумных трубок. (Пересечение — это точка, в которой данные пересекают вертикальную ось, а наклон является отрицательным, «Rise over Run» линии, когда она наклоняется вниз вправо.)


Обратите внимание, что это описывает только тепловой КПД коллектора, который сам по себе является солнечным коллектором. Это не следует путать с термической эффективностью системы, которая усложняется «паразитным» потреблением энергии насосами и регуляторами, потерями тепла в трубопроводах, эффективностью теплообменника, потерями в накоплении тепла и т. Д.Пока мы сосредоточены только на сравнении коллекционеров.


Данные SRCC включают не только наклон и пересечение графика КПД коллектора, но также тепловую мощность коллектора при пяти различных стандартных температурных условиях. Эти рейтинги представляют работы по солнечному обогреву, которые варьируются от очень простых (низкотемпературные бассейны) до очень сложных (высокотемпературное технологическое тепло) и представлены как категории A, B, C, D и E соответственно.

  • Обогрев бассейна категории A (теплый климат) Ti-Ta = (- 9) ° F
  • Категория B — обогрев бассейна (прохладный климат) Ti-Ta = 9 ° F
  • Категория C — водяное отопление (теплый климат) Ti-Ta = 36 ° F
  • Категория D — водяное отопление (холодный климат) Ti-Ta = 90 ° F
  • Категория E-Очень горячая вода (холодный климат) Ti-Ta = 144 ° F

На рис. 90-1 вы заметите, что я добавил прямоугольные серые прямоугольники на графике, которые показывают, где расположены четыре различных солнечно-температурных категорий.SRCC перечисляет доступность солнечной энергии в более чем 50 крупных городах США, и все они помещаются в каждую из серых рамок на Рисунке 90-1. Например, если у вас есть задание по отоплению категории C, коллекторы на этом графике будут работать с левой стороны поля категории C в Альбукерке или Лос-Анджелесе и с правой стороны от поля в Сиэтле или Бостоне.


Примеры, показанные на рис. 90-1, показывают интересный результат. Для многих распространенных категорий солнечного отопления коллектор с плоской пластиной работает лучше, чем коллектор со стеклянной вакуумной трубкой, с более высокой эффективностью коллектора для этих моделей.(Оба этих коллектора от одного производителя.) Таким образом, если цена вакуумного трубчатого коллектора намного выше, чем плоская пластина того же размера, более высокая стоимость может не окупиться, если вы не находитесь в правой части категории. D или в зону категории E, где явно доминирует вакуумный трубчатый коллектор.


Температура, КПД и выходная энергия


Солнечные тепловые коллекторы эффективны только в том случае, если они могут производить полезную температуру для удовлетворения потребностей любого подключенного отопительного оборудования в любой момент в светлое время суток.При работе при более высоких температурах эффективность солнечного коллектора имеет тенденцию падать.


На практике это означает, что тепловая мощность (БТЕ / час) коллекторов может упасть, и вместе с этим снизится и экономия энергии, даже если доставляемая солнечная температура может быть очень высокой. При проектировании систем солнечного отопления важно соблюдать баланс между температурой и мощностью. Это правда, что «счастливый коллекционер — классный коллекционер».


Поэтому всегда предпочтительнее проектировать солнечные / водяные системы отопления так, чтобы они могли эффективно работать при более низких температурах, когда это возможно.Обычно это включает выбор теплообменников и методов распределения тепла, совместимых с более низкими температурами подаваемой жидкости.


Тепловая мощность солнечного коллектора


Солнечные коллекторы тепла предназначены для повышения температуры поступающей жидкости при наличии солнечного излучения. Или, как я люблю говорить: «При дневном свете коллекционер собирает». Коллектор будет реагировать на повышение температуры жидкости на входе повышением температуры на выходе.Конечно, у этого явления есть свои пределы, которые можно увидеть на рис. 90-2, где тепловая мощность (в килобитовых единицах) сравнивается с температурой (F).


Графики КПД (например, на рис. 90-1) часто используются для иллюстрации работы коллекторов, но на этом графике я использую тестовые данные SRCC, чтобы показать выход тепловой энергии в БТЕ от двух разных коллекторов, а не КПД. Это прямое измерение потенциальной экономии топлива от коллектора. А главное в коллекторных установках — это экономия топлива.


Графики на Рисунке 90-2 показывают тепловую мощность, доступную от двух разных типов коллекторов, на основании результатов стандартного теста SRCC OG-100. Коллекторы, взятые для этого примера, — это коллекторы Viessmann Vitosol, одна плоская пластина и одна вакуумная трубка с аналогичной площадью поверхности отверстия (~ 40 футов2). Для простоты график на Рисунке 90-2 показывает один коллектор с использованием данных Clear Day и примеров температурных характеристик в течение дня, когда средняя температура наружного воздуха чуть ниже точки замерзания (30 ° F).Используя данные рейтинга коллектора SRCC, любой может взять интересующие солнечные условия и нанести их на такой график, используя всего пять точек данных (по одной из каждой категории).


График на Рисунке 90-2 показывает, как тепловая мощность коллектора изменяется в зависимости от температурных условий. Интересующая температура на самом деле представляет собой разность температур, вычисляемую путем вычитания температуры наружного окружающего воздуха из температуры на входе в коллектор. Чем холоднее на улице, тем больше тепла теряется от горячего коллектора.Очевидно, что чем больше разница температур, тем меньше тепла выделяет панель. Большая разница температур может быть вызвана попаданием в панель очень горячей жидкости или очень холодного наружного воздуха, либо того и другого.


Выводы


Графики производительности коллектора, представленные здесь, демонстрируют, что было бы ошибкой полагать, что один тип коллектора принципиально лучше другого. При сравнении тепловых характеристик правильный выбор солнечного коллектора зависит от требуемой рабочей температуры, интенсивности солнечного излучения и суровости температуры наружного воздуха.После того, как это будет оценено, окончательный выбор может зависеть от других факторов, помимо тепловых характеристик. Вопросы стоимости, надежности, совместимости, эксплуатации и обслуживания часто оказываются одинаково важными.


Заключительные записи


Эти статьи предназначены для жилых и небольших коммерческих зданий площадью менее десяти тысяч квадратных футов. Основное внимание уделяется гликоль / гидронным системам под давлением, поскольку эти системы могут применяться в зданиях различной геометрии и ориентации с небольшими ограничениями.Торговые марки, организации, поставщики и производители упоминаются в этих статьях только в качестве примеров для иллюстрации и обсуждения и не представляют собой каких-либо рекомендаций или одобрения.

Bristol Stickney занимается проектированием, производством, ремонтом и установкой солнечных систем водяного отопления более 30 лет. Он имеет степень бакалавра наук в области машиностроения и является лицензированным подрядчиком-механиком в Нью-Мексико. Он является техническим директором SolarLogic LLC в Санта-Фе, штат Нью-Йорк.М., где он занимается разработкой систем управления солнечным отоплением и инструментов проектирования для профессионалов солнечного отопления. Посетите www.solarlogicllc.com.

Для получения более эксклюзивного контента прочтите эту статью в цифровом издании!

3.1 Обзор плоских коллекторов

Плоские солнечные коллекторы, вероятно, являются наиболее фундаментальной и наиболее изученной технологией для систем горячего водоснабжения на солнечной энергии. Общая идея этой технологии довольно проста.Солнце нагревает темные плоские поверхности, которые собирают как можно больше энергии, а затем энергия передается воде, воздуху или другой жидкости для дальнейшего использования.

Это основные компоненты типичного плоского солнечного коллектора:

  • Черная поверхность — поглотитель падающей солнечной энергии
  • Покрытие остекления — прозрачный слой, пропускающий излучение к поглотителю, но предотвращающий радиационные и конвективные потери тепла с поверхности
  • Трубки с теплоносителем для передачи тепла от коллектора
  • Опорная конструкция для защиты компонентов и удержания их на месте
  • Изоляция боковых сторон и дна коллектора для снижения тепловых потерь

Рисунок 3.1: Схема плоского солнечного коллектора с жидкой транспортной средой. Солнечное излучение поглощается черной пластиной и передает тепло жидкости в трубках. Теплоизоляция предотвращает потерю тепла при передаче жидкости; экраны уменьшают потери тепла за счет конвекции и излучения в атмосферу

Кредит: Марк Федкин (с изменениями по Даффи и Бекман, 2013 г.)

Плоские системы обычно работают и достигают максимальной эффективности в диапазоне температур от 30 до 80 o ° C (Kalogirou, 2009), однако некоторые новые типы коллекторов, в которых используется вакуумная изоляция, могут достигать более высоких температур (до 100 ° C). o ° C).Благодаря введению селективных покрытий, температура застойной жидкости в плоских коллекторах достигает 200 o C.

Контрольный вопрос

— Какие типичные материалы используются для изготовления пластин-поглотителей и крышек остекления?

Мы частично обсудили выбор материалов и их свойства в Уроке 2. Тем не менее, мы рекомендуем вам взглянуть шире и ознакомиться с текущими нововведениями в конструкциях с плоскими пластинами. Для обсуждения в этом уроке вас попросят поделиться тем, что вы нашли во время поиска, и описать современные материалы, которые помогают повысить производительность коллекционеров.

Некоторые преимущества плоских коллекторов заключаются в том, что они:

  • Простота изготовления
  • Низкая стоимость
  • Улавливание пучка и рассеянного излучения
  • На постоянной основе (не требуется сложного оборудования для позиционирования или слежения)
  • Незначительное обслуживание

Плоские коллекторы устанавливаются лицом к экватору (т. Е. На юг в северном полушарии и на север в южном полушарии).Оптимальный наклон коллекторной пластины близок к широте места (+/- 15 o ). Если применяется солнечное охлаждение, оптимальный угол установки составляет Широта — 10 o , чтобы солнечный луч был перпендикулярен коллектору в летнее время. Если используется солнечное отопление, оптимальный угол установки составляет Широта + 10 o . Однако было обнаружено, что для круглогодичного применения горячей воды оптимальным углом является широта + 5 o , что обеспечивает несколько лучшую производительность зимой, когда горячая вода более необходима (Kalogirou, 2009)

Опции транспортной жидкости

Плоские пластинчатые коллекторы могут использовать перенос тепла жидкостью или воздухом.

Вода — один из распространенных вариантов жидкой жидкости из-за ее доступности и хороших тепловых свойств:

  • Обладает относительно высокой объемной теплоемкостью
  • Несжимаемая (или почти несжимаемая)
  • Имеет высокую массовую плотность (что позволяет использовать для транспортировки небольшие трубы и трубки).

Одним из недостатков воды является то, что она замерзает зимой, что может повредить коллектор или систему трубопроводов. Этого можно избежать, опустив воду из коллектора при низком потреблении солнечной энергии (ниже критического порога инсоляции).Датчики слива часто используются для контроля системы и обеспечения полного слива, поскольку замерзание воды в кармане может вызвать повреждение. Наполнение системы водой на следующее утро тоже не идеально. Возможные воздушные карманы в коллекторе могут быть проблемой, блокируя поток воды и снижая эффективность системы (Vanek and Albright, 2008).

Смеси антифризов можно использовать вместо чистой воды для решения вышеупомянутых проблем. Обычными компонентами антифриза являются этиленгликоль или пропиленгликоль.Эти химические вещества, смешанные с водой, требуют систем замкнутого цикла и надлежащей утилизации из-за токсичности. Номинальный срок службы антифриза вроде составляет около 5 лет, после чего его необходимо заменить.

Воздух может использоваться в качестве транспортной жидкости в некоторых конструкциях плоских коллекторов. Этот вариант лучше подходит для обогрева помещений или сушки сельскохозяйственных культур. Вентилятор обычно требуется для облегчения потока воздуха в системе и эффективного отвода тепла. Некоторые конструкции могут обеспечивать пассивное (без вентилятора) движение воздуха за счет тепловой плавучести.

Жидкости с фазовым переходом также можно использовать с плоскими коллекторами. Некоторые хладагенты входят в эту группу жидкостей. Они не замерзают, что устраняет проблемы, описанные выше для воды, и из-за их низкой точки кипения могут переходить от жидкости к газу при повышении температуры. Эти жидкости могут быть полезны в условиях, когда требуется быстрое реагирование на быстрые колебания температуры.

Коллекторное строительство

Ключевыми соображениями при проектировании плоского коллектора являются максимальное поглощение, минимизация потерь на отражение и излучение, а также эффективная теплопередача от пластины коллектора к жидкостям.Одним из важных вопросов является получение хорошей тепловой связи между пластиной абсорбера и заменами (трубами или каналами, содержащими теплоносители). Различные конструкции конструкции (показанные ниже) пытаются решить эту проблему.

Рисунок 3.2: Различные конструкции плоского коллектора в сборе. Цветовые коды: голубой — стеклянная крышка, синий — каналы для жидкости, черный — материал абсорбера, серый — изоляция. Некоторые конструкции (b, c) включают в себя каналы для жидкости в структуре пластины абсорбера, чтобы максимизировать теплопроводность между компонентами.Другие модификации (а, г) включают трубки и каналы, припаянные или приклеенные к пластине.

Кредит: Марк Федкин (с изменениями по Калогиру, 2009 г.)

В сборке пластина-канал могут использоваться различные методы крепления компонентов — термоцемент, припой, зажимы, зажимы, пайка, аппликаторы механического давления. Одним из факторов, влияющих на выбор метода сборки, является стоимость рабочей силы и материалов.

Далее мы рассмотрим передачу и баланс энергии внутри плоского коллектора.

Артикулы:
  • Kalogirou, S.A., Solar Energy Engineering , Elsevier, 2009
  • Ванек, Ф.

Оставить комментарий