Состав энергосберегающие лампы: Энергосберегающие лампы и лампы накаливания: за и против. Справка

Опубликовано в Разное
/
2 Фев 1972

Содержание

Энергосберегающие лампы и лампы накаливания: за и против. Справка

Энергосберегающими лампами принято называть люминесцентные лампы, которые входят в обширную категорию газоразрядных источников света. Газоразрядные лампы в отличие от ламп накаливания излучают свет благодаря электрическому разряду, проходящему через газ, заполняющий пространство лампы: ультрафиолетовое свечение газового разряда преобразуется в видимый нам свет.

Энергосберегающие лампы состоят из колбы, наполненной парами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет.

Преимущества энергосберегающих ламп

Главным преимуществом энергосберегающих ламп считается их высокая световая отдача, превышающая тот же показатель ламп накаливания в несколько раз. Энергосберегающая составляющая как раз и заключается в том, что максимум электроэнергии, запитанной на энергосберегающую лампу, превращается в свет, тогда как в лампах накаливания до 90% электроэнергии уходит просто на разогрев вольфрамовой проволоки.

Другим несомненным преимуществом энергосберегающих ламп является их срок службы, который определяется промежутком времени от 6 до 15 тысяч часов непрерывного горения. Эта цифра превышает срок службы обычных ламп накаливания приблизительно в 20 раз. Наиболее частая причина выхода из строя лампы накаливания – перегорание нити накала. Механизм работы энергосберегающей лампы позволяет избежать этой проблемы, благодаря чему они имеют более длительный срок службы.

Третьим достоинством энергосберегающих ламп можно назвать возможность выбора цвета свечения. Он может быть трех видов: дневным, естественным и теплым. Чем ниже цветовая температура, тем ближе цвет к красному, чем выше – тем ближе к синему.

Еще одним преимуществом энергосберегающих ламп является незначительное тепловыделение, которое позволяет использовать компактные люминесцентные лампы большой мощности в хрупких бра, светильниках и люстрах. Использовать в них лампы накаливания с высокой температурой нагрева нельзя, так как может оплавиться пластмассовая часть патрона, либо провод.

Следующее преимущество энергосберегающих ламп в том, что их свет распределяется мягче, равномернее, чем у ламп накаливания. Это объясняется тем, что в лампе накаливания свет идет только от вольфрамовой спирали, а энергосберегающая лампа светится по всей своей площади. Из-за более равномерного распределения света энергосберегающие лампы снижают утомляемость человеческого глаза.

Недостатки энергосберегающих ламп

Энергосберегающие лампы имеют также и недостатки: фаза разогрева у них длится до 2 минут, то есть, им понадобится некоторое время, чтобы развить свою максимальную яркость. Также у энергосберегающих ламп встречается мерцание.

Другим недостатком энергосберегающих ламп является то, что человек может находиться от них на расстоянии не ближе, чем 30 сантиметров. Из-за большого уровня ультрафиолетового излучения энергосберегающих ламп при близком расположении к ним может быть нанесен вред людям с чрезмерной чувствительностью кожи и тем, кто подвержен дерматологическим заболеваниям. Однако если человек находится на расстоянии не ближе, чем 30 сантиметров от ламп, вред ему не наносится.

Также не рекомендуется использовать в жилых помещениях энергосберегающие лампы мощностью более 22 ватт, т.к. это тоже может негативно отразиться на людях, чья кожа очень чувствительна.

Еще одним недостатком является то, что энергосберегающие лампы неприспособлены к функционированию в низком диапазоне температур (-15-20ºC), а при повышенной температуре снижается интенсивность их светового излучения.

Срок службы энергосберегающих ламп ощутимо зависит от режима эксплуатации, в частности, они «не любят» частого включения и выключения. Конструкция энергосберегающих ламп не позволяет использовать их в светильниках, где есть регуляторы уровня освещенности. При снижении напряжения в сети более чем на 10% энергосберегающие лампы просто не зажигаются.

К недостаткам можно также отнести содержание ртути и фосфора, которые, хоть и в очень малых количествах, присутствуют внутри энергосберегающих ламп. Это не имеет никакого значения при работе лампы, но может оказаться опасным, если ее разбить. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации (их нельзя выбрасывать в мусоропровод и уличные мусорные контейнеры).

Еще одним недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена. 

Материал подготовлен на основе информации открытых источников

Разбилась энергосберегающая лампа

Содержание статьи:

Когда только появились энергосберегающие лампочки, многих очень интересовал вопрос их утилизации. Ведь они содержат ртуть, которая очень опасна для здоровья человека и экологии. По этой причине запрещено выбрасывать их в мусорное ведро. В данной статье мы подробно рассмотрим, в чем особенность энергосберегающих ламп, почему их опасно разбивать, и что такое процесс демеркуризации.

Конструктивные особенности энергосберегающих ламп

Энергосберегающую лампу можно назвать разновидностью ламп низкого давления с газоразрядным устройством. По сути, это люминесцентная лампа, только компактная и имеющая разнообразные формы. Отличием энергосберегающей лампочки от люминесцентной является наличие электронного балласта (пускорегулирующего устройства). Конструкция лампочки также состоит из цоколя, колбы и корпуса. Подробнее об этом читайте тут.

Несомненно, экономка имеет множество преимуществ в сравнении с лампой накаливания как помощник в освещении дома и экономии электроэнергии, но у этого источника освещения имеются и негативные стороны.

Люминесцентные лампы содержат ртуть

Известно, что энергосберегающие лампочки содержат высокотоксичное химическое вещество, которое очень опасно – ртуть. Пары ртути могут вызвать отравление, ввиду того, что ядовиты. В состав ртути входят такие соединения, как цианид ртути, каломель, сулема – они могут нанести сильный вред нервной системе человека, почкам, печени, желудочно-кишечному тракту, а также дыхательным путям. Именно через дыхательные пути ртуть проникает в организм: вдыхание ее паров может происходить незаметно, так как ртуть не имеет запаха. Лампы такого типа кроме ртути содержат инертный газ аргон, а их внутренние стенки покрыты люминофором.

Энергосберегающая лампа содержит больше ртути, чем обыкновенный градусник. Для сравнения: градусник содержит 2 мг ртути, а энергосберегающая лампа 3-5 мг этого опасного вещества.

Но не все энергосберегающие лампы содержат в своей конструкции пары ртути. Некоторые производители изготавливают лампы немного по-другому. В саму колбу за место ртути вводится вещество – металлический сплав амальгама кальция. Сплав отличается тем, что в нем ртуть находится в связанном состоянии. Преимущество применения этого вещества в лампах заключается в том, что при комнатной температуре оно не способно испаряться, поэтому исключатся возможность попадания в воздух, которым мы дышим.

Почему опасно разбивать люминесцентные лампы

Опасность от разбития энергосберегающей лампочки все-таки существует – внутри одной такой лампы содержится 3-5 мг ртути. Нельзя сказать, что после разбития лампочки вред здоровью сразу же будет нанесен, так как известны случаи, что после утилизации разбитой лампы никаких признаков ухудшения здоровья замечено не было. Но опасность все же есть – ртуть пагубно влияет на организм человека. Признаками ухудшения здоровья после вдыхания паров ртути считается: утомляемость и слабость, отсутствие аппетита и боли головы, головокружение и рвота, заболевания дыхательной системы, а при вдыхании больших объемов ртути может наступить даже смерть. Избежать всего этого можно либо использованием дорогостоящих светодиодных ламп, либо своевременным реагированием на повреждение экономки.

Что такое для человека 3-5 мг, вряд ли кто-то знает, поэтому нужно разобраться, насколько опасна такая «доза».

Предельно допустимой среднесуточной величиной для человека ртути и других опасных ее соединений является 0, 0003 мг/куб.м.

Можно рассчитать несложную задачку, которая пояснит опасность разбитой энергосберегающей лапочки.

Если в комнате 23 квадратных метров с высотой потолков 3 метра разбилась энергосберегающая лампочка (объем комнаты равен 69 куб.м), и если в лампе содержится максимальное количество ртути 5 мг, то концентрация ртути в рассматриваемой комнате составит 0,072 мг/куб.м – это в 240 раз больше среднесуточной допустимой величины 0,0003 мг/куб.м. К примеру, чтобы не превысить число 0,0003 нужно, чтобы объем комнаты составлял 16666 куб.м. – это очень большая площадь.

Ртуть опасная для здоровья

Как уже говорилось, некоторые лампы содержат амальгаму, которая считается безвредной. Но амальгама – это химический сплав ртути и металла, который находится в связанном состоянии, и, по сути, не должен нести опасности человеку.

Но в энергосберегающих лампах нового поколения для генерирования света применяются амальгамы с высокими температурами. У таких амальгам имеется одна особенность: они становятся опасны, когда температура рабочей среды достигает величины 60 градусов, и из них начинается высвобождаться ртуть. Поэтому мощные энергосберегающие лампы, в которых применен сплав ртути и металла, называемый амальгамами, также опасны, если их разбить — они лишь снижают токсичность ртути.

Какие еще лампы содержат ртуть

Как уже стало понятно, ртуть в энергосберегающих лампах опасна при вдыхании ее паров, и в одной лампочке содержится приличное количество ртути.

Перечислим разновидности ртутных ламп и количество ртути, содержащееся в них в мг:

  • Люминесцентные трубчатые лампы – 40-65;
  • Энергосберегающие лампы (или компактные люминесцентные) – 3-5;
  • Лампы высокого давления с дросселем (ДРЛ) – 75-350;
  • Ламы высокого давления, уличные (ДРТ) – 50-600;
  • Натриевые лампы высокого давления – 30-50;
  • Металлогалогенные лампы – 40-60;
  • Неоновые трубки – 10.

Стоит уточнить, что данные в списке относятся к лампам российского производства. Европейские лампы имеют гораздо меньшее содержание ртути в своей конструкции, но к энергосберегающим лампам данное замечание не относится, они имеют равный показатель ртути – около 5 мг.

Процесс демеркуризации

Демеркуризацией называется трудоемкий процесс устранения паров ртути. Даная процедура является очень важной: помещение, где произошел выброс ртути, нужно вовремя и эффективно обработать. Как известно, ртуть попадает воздушно-капельным путем в организм, поэтому здоровье любого живого существа находится в этот момент под угрозой.

Если в квартире разбился градусник или была пролита ртуть, следует провести демеркуризацию. Если вы самостоятельно решили заняться данной процедурой, нужно строго придерживаться этапов в определенной последовательности:

  1. Перед проведением демеркуризации нужно открыть все форточки в помещении, где это произошло, а также закрыть все двери. Двери закрываются для того, чтобы пары ртути не проникли в коридор и другие комнаты. Следует строго изолировать место, где находятся ртутные капли: если наступить на небольшую каплю, то легко можно разнести опасное вещество по другим помещениям квартиры.
  2. Первым этапом демеркуризации является сбор ртути (он осуществляется механическим способом, то есть – руками). Перед тем как начать, нужно обезопасить себя: надеть бахилы из полиэтилена, резиновые перчатки и марлевую повязку, предварительно смоченную в растворе соды или в обычной воде.
  3. Если разбился градусник, то необходимо собрать все осколки и поместить их в банку с водой, стоит внимательно осмотреть помещение и собрать все осколки, до мельчайших деталей. Воду в банку обязательно нужно налить, благодаря ей ртуть не будет испаряться. К механическому сбору ртути нужно отнестись очень серьезно.
  4. Капли ртути, которые остались на полу, можно собрать при помощи шприца или резиновой груши, а потом поместить эти инструменты в банку с водой.
  5. Ртуть могла оказаться за плинтусом, под паркетом, поэтому стоит снять и проверить все досконально. Процесс демеркуризации помещения может быть очень долгим (в частности, механический сбор ртути), поэтому каждые 15 минут нужно выходить из помещения и менять повязки.
  6. Банку с водой, где собрана ртуть, ни в коем случае нельзя выкидывать. Нужно плотно закрыть банку крышкой и убрать подальше от источников тепла. Банка передается организации, занимающейся сбором ртути.

Не допускайте попадания ртути на кожу

После того, как ртуть тщательно собрана, нужно обработать место разлива ртути раствором марганцовки и хлорной извести (иногда специалисты выполняют химическую чистку при помощи горячего мыльно-содового раствора). Раствор выступает в роли окислителя, и ртуть теряет свои летучие свойства. Целью такой дезинфекции является предотвращение вредных последствий для здоровья. Можно сделать раствор исключительно из концентрированной хлорной извести, которая является наиболее химически активной по сравнению с марганцовкой, и будет эффективно реагировать с ртутью.

Химическую обработку раствором хлорной извести (обычная «Белизна») нужно проводить в два этапа:

  • В емкости из пластика к пяти литрам воды добавляем один литр «Белизны»: нам необходим 17 % раствор. В растворе смочить губку, тряпку или щетку и промыть загрязненную поверхность. Необходимо обработать все места, куда могла попасть ртуть, особое внимание уделить щелям плинтусов и паркета. Раствор после использования лучше не сливать в унитаз, так как он загрязняется ртутью, а сдать вместе с собранной ртутью. Нужно помнить и о соседях: при сливе загрязненного раствора может загрязниться вся канализация, и демеркуризация будет очень трудоемкой.
  • Повторное мытье пола таким же раствором нужно провести еще несколько раз в течение 2-3 недель. Обязательно нужно проветривать помещение. Но при этом нужно обратить внимание на такой момент: при низкой температуре, когда помещение вымораживается благодаря полностью распахнутому окну, ртуть испаряется очень медленно, поэтому лучше держать форточку чуть приоткрытой в течение продолжительного времени.

Сбор ртути осуществляется и специальными приборами для облегчения процесса самостоятельной демеркуризации, к которым относятся озонаторы. Озон вступает в химическую реакцию с ртутью. В результате реакции озон окисляет пары ртути и устраняет ее пары из воздуха.

Для выяснения остаточного количества ртути в воздухе специалисты применяют газо-ртутные анализаторы, которые оперативно показывают, какое количество ртути содержится в атмосферном воздухе.

Разбившийся градусник относится к категории незначительных ртутных загрязнений, но даже его последствия стоит оперативно и качественно устранить. Если произошел выброс ртути в большом количестве, то лучше сразу обратиться в соответствующую компанию, и демеркуризацию проведут специалисты.

Как утилизировать ртуть и разбившуюся энергосберегающую лампу

Утилизация собранной ртути:

  1. Собранную ртуть поместить в банку из стекла вместе с тем предметом, на котором имеются ее остатки: одежда, осколки и пр.;
  2. Банку отнести в центр утилизации по месту жительства (этим занимается специальная служба ЕДДС от МЧС, которая должна быть в каждом районе).

Правильный способ утилизации энергосберегающих ламп рассказывается в этой статье. Требования к утилизации отработавших люминесцентных ламп для обычных потребителей и предприятий отличаются в виду различия в количестве используемых источников света. В первом случае перегоревшие лампы можно отнести в районный ДЭЗ или РЭУ – там должны быть установлены специальные контейнеры. В таких отделениях лампы принимаются бесплатно. Предприятиям же нужно заключить договор с организациями, которые занимаются утилизацией ртутных ламп. Как это сделать, читайте тут.

Утилизация ламп дневного света

Если в квартире вдруг разбилась энергосберегающая лампа, то не нужно организовывать специальные мероприятия по демеркуризации, нужно просто проветрить помещение: ртуть в лампах содержится в виде паров и при проветривании устраняется.

Никто не отрицает, что использование энергосберегающих ламп – это практично, удобно и современно. Но стоит помнить, что перегоревшая энергосберегающая лампа относится к отходам первого класса опасности, потому что имеет в составе ртуть. В Европе утилизация таких ламп практикуется шире: к примеру, в Германии имеются специальные пункты сдачи ламп, где вам за принесенную лампочку спасибо скажут, еще и заплатят небольшую сумму. В России пока, конечно, такого нет, поэтому подавляющее число лам выкидывается на свалку. Нужно осознавать всю серьезность положения и утилизировать перегоревшие лампы по правилам.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Поделиться ссылкой:

Устройство энергосберегающей лампы. Как устроена энергосберегающая лампа

Сегодня люди все чаще стали использовать в быту энергосберегающие лампы. Популярность этих ламп вызвана, прежде всего, их экономичным потреблением энергии. Ведь энергосберегающая лампа позволяет сэкономить деньги. В отличие от лампы накаливания ЭСЛ дает больший световой поток при меньшей потребляемой мощности.

Устанавливается энергосберегающая лампа в такой же патрон, что и обычная лампа накаливания. Достоинства ЭСЛ очевидны, в то время как недостатков практически нет. Поэтому неудивительно, что многие люди уже давно перешли на использование так называемых экономок вместо обычных лампочек накаливания.

Компактная энергосберегающая лампа является разновидностью люминесцентных ламп, уже ставших нам привычными. Данные ЭСЛ легко устанавливаются в патрон вместо лампы накаливания. В нашу жизнь уже прочно вошли лампы такого типа. И вскоре их будут называть не «энергосберегающими лампами», а просто «лампами».

Многие видят в работе этой лампы какую-то загадку, несмотря на всю простоту устройства. Рассмотрим устройство энергосберегающей лампы и попробуем разобраться в принципе ее работы.

Как устроена энергосберегающая лампа

Устройство практически всех энергосберегающих ламп одинаковое. В состав лампы входит несколько деталей. Газоразрядная трубка – это видимая часть лампы, излучающая свет. Газоразрядная трубка соединяется с корпусом. В корпусе находится внутренняя часть лампы, представляющая собой электронную схему пуска и питания. По-другому эту схему называют электронным балластом. Электронная схема выполняет задачу зажигания лампы.

Цоколь имеет контакты для питания лампы и резьбу для вкручивания в патрон. Обычная лампа накаливания имеет практически такой же цоколь, что и ЭСЛ. Устанавливать компактную энергосберегающую лампу можно в небольшие светильники. Существует несколько типов цоколей, которые распространены в России: G4, GU10, E40, E27, E14, G5.3.

Энергосберегающие лампы с цоколем Е40, Е27 и Е14 можно устанавливать в патроны, предназначенные для обычной лампы накаливания. Е27 – патрон стандартный бытовой, имеет резьбу 27 мм, Е14 – уменьшенный патрон, резьба которого 14 мм, Е40 – патрон с резьбой 40 мм, относится к стандартным промышленным патронам.

Трубка, запаянная с двух сторон, называется колбой энергосберегающей лампы. Электроды находятся на противоположных концах этой колбы. ЭС лампа имеет изогнутую колбу, покрытую слоями люминофора. Эта колба содержит инертный газ и небольшое количество ртутных паров. Ионизация паров ртути является причиной свечения лампочки при подключении к ней питания.

Когда на электроды подается напряжение, через них течет ток прогрева. Он разогревает электроды, из-за чего протекает термоэлектронная эмиссия. Когда электроды достигают определенной температуры, они испускают поток электронов. Сталкиваясь с атомами ртути, электроны вызывают излучение ультрафиолета, после чего ультрафиолетовое излучение попадает на люминофор, который преобразовывает это излучение в видимый свет. Цветовая температура лампы зависит от типа люминофора, она может быть 2700-6500К.

Помните, что пары ртути опасны для организма человека, поэтому если энергосберегающая лампа разбилась очень важно правильно утилизировать осколки и обработать место.

Вы ни когда не задумывались почему в энергосберегающей лампе колба имеет причудливо изогнутую форму? Поверьте это сделано не с проста. Изогнутая форма колбы позволяет уменьшить длину всей лампы. За счет спиральной намотки длину самой газоразрядной трубки можно увеличить при этом длина лампы при такой форме будет уменьшена. Если бы этого не делали то не каждая такая лампа помещалась в обычный светильник или люстру.

Для изготовления корпуса лампы применяется негорючий пластик. Колба люминесцентной лампы крепится в верхней части. Пускорегулирующее устройство, соединительные провода и предохранитель находятся в корпусе. На поверхности лампы есть маркировка, в ней указана цветовая температура, мощность, напряжение питания.

Внутреннее устройство энергосберегающей лампы

Внутри корпуса ЭСЛ находится круглая печатная плата. На ней собран высокочастотный преобразователь. В результате использования довольно высокой частоты преобразования нет того «моргания», которое свойственно лампам с электромагнитным балластом (где используется дроссель), работающим на частоте 50 Гц. Современные лампы имеют пускорегулирующий аппарат, оснащенный помехозащитным фильтром. Фильтр защищает от появления помех в сети электропитания.

Добраться до электронной схемы легко. Внимательно рассмотрите лампу, лучше использовать перегоревшую. Кажется, что корпус лампы разобрать невозможно. Но это ошибочное мнение. Ближе к колбе в верхней части лампы есть неглубокая канавка. Возьмите небольшую отвертку или узкое лезвие и попытайтесь разделить корпус. После небольшого усилия у вас в руках будет уже две части. В первый раз могут возникнуть сложности, зато потом эта операция будет занимать считанные секунды.

После отделения цоколя от колбы, эти элементы соединяются между собой проводами которые необходимо аккуратно отделить от платы. Сделать это можно с помощью паяльника, нагрев место пайки, либо просто разрезав провода (но режьте так чтобы, потом можно было их восстановить).

В некоторых видах ламп провода, которые идут от электронной платы в газоразрядную трубку, просто намотаны на специальные штырьки. После того как провода будут откинуты только тогда вы сможете выполнить дальнейший осмотр и диагностику лампы. Далее отсоедините цоколь от электронного блока. Для удобства наращивания проводов, их нужно разрезать посередине.

Внутри вы увидите круглую плату. Это и есть внутреннее устройство энергосберегающей лампы благодаря которому она работает. От перегрева радиоэлементы платы, как правило, почерневшие (если у вас в руках нерабочая лампа).

Проводки от колбы примотаны к четырем штырькам, имеющим квадратное сечение. Они расположены попарно по краям платы. Никакой пайки проводов нет, они именно примотаны, на что стоит обратить внимание.

Предохранитель является основным элементом схемы. Он защищает от перегорания все компоненты электронной платы. Иногда вместо предохранителя используется входной ограничительный резистор. Когда в лампе возникает какая-либо неисправность, в цепи растет ток, что приводит к сгоранию резистора, тогда цепь питания разрывается.

Один вывод резистора соединен с платой, а второй – с резьбовым контактом цоколя. Усажен резистор в термоусадочной трубке. Пульсации выпрямленного напряжения сглаживает конденсатор. Дроссель или тороидальный трансформатор имеет кольцевой магнитопровод, на нем расположены как правило 3 обмотки.

Мигание лампы при частоте сети 50 Гц случается 100 раз в секунду. Поэтому энергосберегающая лампа может неблагоприятно сказываться на общем физическом состоянии человека, его работоспособности, особенно если он находится в условиях такой освещенности длительное время. Все эти вредные составляющие устранены в современных электронных балластах. Поэтому на здоровье окружающих не оказывается никакого негативного влияния.

Современный электронный балласт представляет собой небольшую электронную схему, в ней реализованы функции зажигания лампы без миганий, а также плавный разогрев спиралей катодов лампы. В современной энергосберегающей лампе происходит свечение газа с частотой 30-100 кГц. Шума при работе абсолютно нет, а электромагнитное поле практически отсутствует. На высокой частоте (30-100кГц) за счет близкого к единице коэффициента потребления электроэнергии формируется повышенная светоотдача.

Лампа может зажигаться с полным накалом практически сразу, либо яркость может нарастать постепенно. Это зависит от схемы балласта. В некоторых лампах процесс нарастания яркости может занимать пару минут. В таком случае сразу после включения наблюдается полумрак. К сожалению, на энергосберегающей лампе не указывают, какой используется алгоритм включения. Понять алгоритм можно только после того, как вы вкрутили лампочку в патрон.

Принцип работы энергосберегающей лампы

С вопросом как устроена энергосберегающая лампа, мы разобрались, теперь давайте в общих чертах разберемся, как работает лампа.

С обеих сторон внутри колбы находится два электрода анод и катод, в виде спиралей. Разряд между электродами возникает после того, как произошла подача питания. Ток протекает через смесь ртутных паров и инертного газа. Лампа зажигается, когда быстро движущиеся электроны сталкиваются с медлительными атомами ртути.

Однако, большая часть светового излучения (98%), производимого энергосберегающей лампой – это ультрафиолет. Для человеческого зрения он невиден. Видимый же человеку свет, который идет от лампы, возникает благодаря слоям люминофора.

Под воздействием ультрафиолетового излучения эти слои светятся. От химического состава люминофора зависит цветность освещения, которую вырабатывает люминесцентная лампа. Люминофор нанесен на внутреннюю поверхность стеклянной колбы.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Энергосберегающие лампы дневного света

 Вопрос рационального использования энергии, производимой с использованием углеводородов (нефти и газа), поднят в нашей стране на самом высоком уровне. Президент России Д.А.Медведев выдвинул программу модернизации страны, одним из пунктов которой является энергосбережение. В поддержку этого положения, Государственная Дума приняла Закон  № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности», в котором прописаны некоторые меры по повышению энергоэффективности. Одним из пунктов этого Закона, предписывается повсеместное применение энергосберегающих ламп. Без сомнения благое намерение, но пути его внедрения, как всегда, желают быть лучшими. 
 Нам не предлагается альтернатива, использовать лампы накаливания или энергосберегающие лампы. Нам в приказном порядке предписывается использовать энергосберегающие лампы, поскольку производство ламп накаливания прекращается, и через пару-тройку лет их невозможно будет найти в продаже. При этом в качестве замены ламп накаливания выбран далеко не самый безопасный вид энергосберегающих ламп, а именно лампы с использованием паров ртути. Другими словами, привычные нам лампы дневного света, но только в уменьшенном варианте. Поскольку закон есть закон, в этой статье мы расскажем об энергосберегающих лампах, их преимуществах и недостатках.

Состав энергосберегающей лампы

Как уже упоминалось, как в России, так и в странах Европы, основным конкурентом ламп накаливания выбраны компактные люминесцентные лампы (КЛЛ). Фактически КЛЛ состоит из трех частей. Это – цоколь, собственно люминесцентная лампа, и электронный пускорегулирующий аппарат (ЭПРА). Цоколь служит для подключения лампы к электрической сети. ЭПРА обеспечивает зажигание лампы и поддерживает ее горение без мерцания. Сама люминесцентная лампа наполнена парами ртути и инертным газом, чаще всего используется аргон. Стенки лампы покрыты люминофором, который начинает светиться под действием бомбандирующих его электронов.

Характеристики энергосберегающих ламп

Начнем с внешнего вида. КЛЛ могут быть выполнены не только в виде спирали или в виде дуги. Они могут быть выполнены и в привычной для нас форме груши, или шара, свечи, или цилиндра.  Основное отличие КЛЛ от ламп накаливания, это утолщение на цоколе, в котором расположен ЭПРА.

Мощность  лампы и световой поток.

Как правило, на упаковке КЛЛ указывается потребляемая мощность собственно КЛЛ, так и ее аналога лампы накаливания. Ниже привечены средние значения потребляемой мощности КЛЛ и соответствующей лампы накаливания, и создаваемый ими световой поток, измеряемый в люменах:
• 5W —   25W  — 250 Lm;
• 8W —   40W  — 400 Lm;
• 12W —  60W  — 630 Lm;
• 15W — 75W   — 900 Lm;
• 20W — 100W — 1200 Lm;
• 24W — 120W — 1500 Lm;
• 30W — 150W — 1900 Lm;

Температура света.

Этот параметр характеризует спектр излучения лампы. Будет ли это теплый, как у лампы накаливания, свет, или мертвящий бледно-голубой свет, который так не нравиться большинству людей. Измеряется параметр в градусах Кельвина (К). Для лампы накаливания этот параметр составляет 2700 К. Производители КЛЛ выделяют следующие группы ламп.
Теплый белый – 2700 К. Соответствует свету лампы накаливания.
Холодный белый – 4000-4200 К. Свет с голубым оттенком.
Дневной – 6000-6500 К.
Эта характеристика также указывается на упаковке КЛЛ.

Конечно, каждый человек индивидуален, поэтому подбор этого параметра необходимо производить «под себя». 

Коэффициент цветопередачи.

 Коэффициент цветопередачи, по-английски этот параметр обозначается CRI, показывает насколько цвета от данного источника света передаются хуже, чем от некоего идеального источника (Максимальный коэффициент R у Солнца равен 100). Фактически лампой подсвечиваются определенные цвета вначале солнечным светом, потом светом от лампы, отклонения в цветовой гамме и характеризуются цветовым коэффициентом. При низком коэффициенте предметы, освещаемые лампой, меняют свои цвета, выглядят не естественно. Коэффициент R должен быть не хуже, чем R=82. Чем больше, тем лучше. 

Срок службы энергосберегающей лампы дневного света

Зарекомендовавшие себя производители гарантируют, что КЛЛ проработает 12000-15000 часов. Это очень хороший показатель, но на практике не часто достижимый. Более длительный срок у ламп с плавным пуском. Кроме того, КЛЛ плохо переносят частые включения и выключения. Поэтому перерыв межу включением и выключением должен быть не менее 5 минут.

Достоинства и недостатки энергосберегающих ламп дневного света

О достоинствах. Главное и основное достоинство этой лампы, это то, ради чего она создавалась, а, именно, экономия электроэнергии. По разным источникам, экономия может составлять от 80% до 300%. Но, надо иметь в виду, что существенная экономия получается только в том случае, если вы используете энергосберегающие лампы по всему дому, во всех комнатах, во всех люстрах, торшерах, бра и т.п. 
 А теперь о недостатках. Мы выделим только два. Хотя кто-то может найти в них и больше недостатков. Недостатки – это цена, и второе – это сложность утилизации и опасность вдыхания паров ртути при поломке лампы.
 Цена КЛЛ, по сравнению с лампой накаливания, может быть на порядок больше и даже выше, если это КЛЛ от таких производителей как Philips или General Electric. Конкретные цены мы приводить не будем, в разных городах они разные.
Утилизация. В том  же законе об энергосбережении предписано построить заводы по переработке КЛЛ и выделить специальные контейнеры, в которые будут складываться вышедшие из строя КЛЛ. Но, увы. Заводы пока только строятся, а у коммунальных служб, как всегда, нет средств и возможностей для установки контейнеров. А ведь лампы уже очень активно используются. Так что покупать или нет энергосберегающие лампы, решайте сами.

мощность, таблица, характеристики, энергосберегательные лампочки, виды с цоколем, состав экономки

Использование ламп накаливания уже давно является неактуальным. На их замену пришло новое изобретение, которое стало очень популярным даже несмотря на более высокую стоимость. Эти лампы называются энергосберегающими или по-простому “экономки”.

Главной особенностью таких элементов является низкое потребление электрической энергии. Именно это свойство и привело к популяризации их во всех странах мира. В некоторых государствах с приходом “экономок” были введены запреты на использование лампочек накаливания.

Но если конструкция обычной лампочки проста и понятна, то энергосберегающие представляют загадку для многих. Данная статья поможет узнать действительно ли так полезны и экономичны энергосберегающие элементы.

Область применения

Когда появились энергосберегающие лампы, то чаще эксплуатировались в офисных помещениях. С течением времени они стали активно заполнять рынки и магазины электротоваров. Это приводило к тому, что стоимость на “экономки” снижалась и повышалась их доступность для всех категорий населения.

Энергосберегающие лампы отличный способ экономии электричества, которое ежегодно дорожает.

Испытав в действии энергосберегающие лампочки, люди убеждаются в их эффективности и стараются переходить только на такой вид освещения.

В основном такие лампы используются в жилых помещениях. Реже используются в погребах, прихожих и коридорах, а также для освещения территории частного дома в темное время суток.

Распространено использование таких ламп и в сфере ЖКХ. На лестничных клетках, где часто перегорают обычные лампы, очень удобны в использовании “экономки”. Срок эксплуатации позволяет использовать их длительное время. Даже если возникнет дефект в устройстве и лампа перегорит раньше указанного срока, то ее всегда можно заменить по гарантии. С каждым годом все больше квартирных секторов переходит на энергосберегающие виды освещения.

Как правильно выбрать

Производители выпускают “экономки” с различными параметрами и качеством изделия.

Во время выбора энергосберегающей лампы уделите внимание ее размеру, иначе она не поместится в люстру или светильник.

Сначала подберем оптимальную форму:

  • спиралевидные;
  • U-образные;
  • полуспиралевидные.

Освещение и режимы работы у всех видов ламп практически одинаковы, различия только в форме их изготовления и стоимости. Спиралевидная стоит дороже по причине сложности конструкции.

“Экономки” различаются по мощности потребления электроэнергии. Диапазон мощностей колеблется от 3-х до 120 Вт. Стоит на это обратить внимание, ведь от мощности зависит яркость ее свечения. Если необходимо осветить большое помещение, то используются лампы больших мощностей.

Производятся лампочки с разными диаметрами цоколей, которые имеют различное применение. Одни предназначены только для настенных ламп, другие для потолочных люстр и прожекторов.

Рекомендуем Вам более подробно ознакомиться с характеристиками прожектора.

Качество напрямую зависит и от фирмы производителя. Не рекомендуется приобретать китайские лампы по низкой стоимости.

Энергосберегающие лампы, различные по форме и цвету

Срок эксплуатации также играет важную роль при подборе. Если гарантия на лампу составляет 1 год, то “экономка” имеет невысокие показатели качества. Нормальные фирмы-производители дают гарантию на свою продукцию до трех лет.

Направившись в магазин электротоваров за энергосберегающей лампой, важно запомнить следующее:

  1. Форма;
  2. Тип цоколя;
  3. Мощность;
  4. Срок службы;
  5. Цветовая передача;
  6. Фирма изготовитель.

Рекомендуем Вам также более подробно ознакомиться с таблицей мощности энергосберегающей лампы.

Преимущества

Какие же плюсы имеют “экономки”? К ним относятся следующие важные показатели:

  1. Высокие свойства световой отдачи. “Экономки” позволяют излучать световой поток во много раз превышающий обычных ламп. Экономичность и заключается в том, что максимальное потребление электроэнергии превращается в световой поток.
  2. Длительный срок службы. Лампочки среднего качества могут гореть непрерывно до 15 000 часов.
  3. Разнообразие цветовых потоков. У ламп накаливания возможность регулирования цвета свечения отсутствует. “Экономки” бывают трех видов свечения: теплый, холодный и дневной.
  4. Незначительные выделения тепловой энергии. Это свойство говорит о том, что потребляемая энергия идет именно на образование светового потока. Слабое нагревание устройства позволяет использовать ее в торшерах из тканей и пластмассы. Обычные лампочки приводят к нагреванию ткани и могут привести к возгоранию.
  5. Мягкое и равномерное распределение световых лучей. Свет распространяется по комнате с одинаковым свечением.
  6. Малое потребление электроэнергии при высоких показателях освещения. Экономия может составить до 75%, по сравнению со стандартными лампочками накаливания

“Экономки” сохраняют финансовые средства пользователей

Недостатки

Наряду с такими качественными показателями энергосберегающие лампы имеют и свои недостатки. Они заключаются в следующем:

  1. Продолжительное время возникновения максимального светового потока при включении лампы. Это время колеблется от 3 секунд и порой до 2 минут. Особенно такое явление часто замечается, когда “экономка” эксплуатируется в холодном помещении.
  2. Энергосберегающие лампы выделяют ультрафиолетовые лучи, которые вредны для людей, страдающих заболеваниями кожи. Эксплуатация источника света для таких людей не разрешена на расстоянии ближе 30 см. Чем выше мощность лампы, тем больше ультрафиолета они излучают.
  3. Чувствительность к перепадам напряжения. При снижении напряжения сети 220 В на 10% способны самостоятельно выключаться. Не включаются при пониженном напряжении 195 В. Нельзя эксплуатировать лампы в светильниках с регуляторами освещения.
  4. Низкая морозостойкость. Включение и эксплуатация энергосберегающей лампы на морозе при минусовой температуре (-15 и ниже) невозможно.
  5. Содержание в составе конструкции вредных веществ: ртути и фосфора. Эти вещества не являются опасными во время свечения, но представляют угрозу, если лампа разбивается. После непригодности требуют специальной утилизации.
  6. Периодическое появление мерцания. Это не является нормальным явлением и свидетельствует о возможном выходе из строя в ближайшее время.
  7. Высокая стоимость. Чтобы перевести весь дом на такой вид освещения, потребуются немалые финансовые затраты.

Не рекомендуется использовать “экономки” в быту свыше 22 Вт, особенно если расстояние между человеком и лампой менее 30 см.

Опасность паров ртути

Ртуть – это химический реагент, являющийся одним из самых опасных для человека. Практически все энергосберегающие лампы имеют в конструкции, а точнее, внутри стеклянной колбы, пары ртути. Их содержание равняется 3-5 мг, что является смертельной дозой для человека. Во время эксплуатации лампы эта ртуть абсолютна безвредна, она не выделяется из нее и никак не влияет на человеческий организм.

Если же лампа разбивается, то опасность отравления человека парами ртути повышается.

Если разбилась энергосберегающая лампа, то стоит немедленно проветрить помещение и утилизировать ее.

Вовремя предпринятые меры не повлекут никаких опасных последствий. Необходимо правильно осуществлять утилизацию. Ведь промышленность выпускает миллионы энергосберегающих ламп в день, а пунктов приема существует очень мало. Люди в связи с этим выбрасывают лампы совместно с бытовыми отходами, что недопустимо и наносит колоссальный ущерб окружающей среде!

Если в населенном пункте нет возможности сдать энергосберегающие лампочки компании-переработчику, то лучше выбрать светодиодные лампы, не содержащие опасных веществ.

Несколько слов о производителях

С момента появления энергосберегающих ламп, количество производителей этого источника света растет с каждым днем. Самыми востребованными (по ценовым показателям) являются изделия, произведенные в КНР. Стоимость качественных элементов на порядок выше китайских, но длительный срок службы и высокие технические параметры окупают расходы.

Среди наиболее популярных и качественных фирм-производителей выделяют следующие:

  • OSRAM;
  • Philips;
  • GE;
  • Фотон;
  • Maxus.

Эти марки имеют действительно отличные технические показатели. Фирмы производители дают гарантию на свою продукцию до 3-х лет. Базы производства находятся в Германии, Италии и других странах.

Фирмы, выпускающие энергосберегающие лампы среднего качества:

  • Космос;
  • Навигатор;
  • Wolta;
  • Nakai.

Производители продукции эконом-класса (уровень качества – удовлетворительный):

  • Electrum;
  • Volta;
  • DeLuxe;
  • SunLuxe.

Производители энергосберегающих ламп высокого качества применяют не жидкую ртуть в изготовлении колб, а специальный вид сплава “амальгам”. В этом сплаве ртуть находится в связанном состоянии. Это позволяет ей, при разбитии колбы, не растворяться в воздухе, а оставаться в связанном состоянии.

Основные технические параметры

Энергосберегающие лампы состоят из цоколя, колбы и пускового устройства. Колбы ламп наполняются парами ртути или инертного газа аргона. Белое вещество на стекле колбы является люминофором. Он же используется и в люминесцентных видах ламп.

Принцип работы таких ламп основывается на подаче высокого напряжения в колбу с парами. Напряжение повышается посредством установленного пускового устройства внутри пластиковой оболочки лампы.

Высокое напряжение обуславливает непрерывное движение электронов. Эти электроны сталкиваются с атомами ртути и способствуют появлению ультрафиолетового свечения внутри колбы. Ультрафиолет проходит через люминофор и вызывает свечение, которое воспринимается человеческим зрением.

Устройство энергосберегающей лампочки

Принцип образования видимого света в лампочках энергосберегающего типа

К основным техническим параметрам “экономок” относятся:

  • мощность;
  • цветовая температура;
  • светоотдача;
  • виды цоколей.

Мощность

Это важный показатель при выборе энергосберегающей лампы для освещения комнаты. “Экономки”, при потреблении малой мощности, способны выделять световой поток на 80% выше, чем у ламп-накаливания. Лампу накаливания 60 Вт можно заменить энергосберегающей, с мощностью 10 Вт.

Ниже представлена таблица соотношения мощностей ламп накаливания и “экономок” с количеством люмен, которые они производят.

Сравнение мощностей ламп с испускаемым ими световым потоком
Мощность “экономки”, Вт Мощность лампы накаливания, Вт Световой поток, Lm
5 25 220
8 40 420
12 60 720
20 100 1360
30 150 1900
45 225 2600
65 325 3590
85 425 4875
105 525 5985
120 600 7125

Из таблицы видно, насколько можно сэкономить на электроэнергии, если пользоваться энергосберегающими элементами.

Цветовая температура

Как упоминалось выше, энергосберегающие лампы могут выделять три разных вида свечения, зависящего от температуры излучения:

  1. Теплое излучение имеет температуру свечения 2700 градусов по Кельвину. Теплый свет подходит для помещений, где нет необходимости зрительного напряжения. Лучше всего подойдет для спальни и кухни.
  2. Дневной свет – 4200К. Будет отличным решением для освещения детских комнат и гостиных. Это свечение более близко к естественному свету.
  3. Холодный – 6400 градусов по Кельвину. Для офисных помещений, где требуется длительное зрительное напряжение, подойдут лампы с излучением холодного света.

Визуализация характеристики “цветовая температура”

Сравнение яркости и цвета светового потока, излучаемого лампами разного типа

Если глаза устают от света, который излучает устройство. Это свидетельство того, что была неверно выбрана цветовая температура лампы для данного помещения.

Светоотдача

Светоотдача – это способность распространения светового потока, измеряемая в люменах Lm, и напрямую зависящая от мощности лампы. Чем мощнее энергосберегающая лампа, тем быстрее и интенсивнее двигаются электроны внутри колбы, взаимодействуя с атомами. Таблица, характеризующая количество светового потока от мощности, представлена выше.

Практически на всех упаковках указывается мощность и световой поток лампы, который она излучает.

Что такое световой поток? Рекомендуем Вам более подробно ознакомиться с данным понятием.

Виды цоколей

Для того чтобы не было необходимости заменять патроны многих светильников и люстр, “экономки” производятся с типами стандартного цоколя Е27. Цифра 27 обозначает диаметр цоколя в мм.

Существует также и маленький цоколь, маркируемый как Е14, предназначенный для маленьких патронов светильников или торшеров.
Производители не забыли и об прожекторных патронах, в которые необходимо вкручивать лампы с цоколем Е40.

Энергосберегающие лампы охарактеризовали себя с положительной стороны и стали очень популярными. Наряду с отрицательными свойствами, они все-таки имеют больше положительных.

Уже после первого месяца эксплуатации будет заметна экономия потребленной электроэнергии. Остается только синхронизировать утилизацию энергосберегающих ламп с производством, и экономия финансов в семье будет гарантирована.

Видео об устройстве энергосберегающих лампочек

Чтобы окончательно развеять сомнения относительно данного типа элементов, смотрите подробный видеоматериал. В нем подробно рассказывается и показывается принцип работы, а также производится «вскрытие» источников света и их подробный анализ.

С уверенностью можно сказать, что эксплуатация качественных энергосберегающих ламп не несет никакого вреда ни здоровью человека, ни окружающей среде, особенно если была правильно проведена утилизация.

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Разбилась энергосберегающая лампа: что делать? 

Чем отличается ртуть в люминесцентных лампах от ртути в градусниках? Чем грозит разбитая энергосберегающая лампочка и что с ней делать? И чем можно заменить компактные люминесцентные лампы?

Насколько опасно?

Те энергосберегающие лампы, которые массово используются нами в быту — это компактные люминесцентные лампы (ещё известны как КЛЛ). Они различаются формой, объёмом цоколя и мощностью, но все в своём составе содержат ртуть. В статье о термометрах мы уже рассказывали, чем она опасна для человека: её ядовитые пары поступают в лёгкие и приводят к отправлению организма. Среди симптомов – головная боль, тошнота, сухость и металлический привкус во рту, боли в животе, диарея. Но надо понимать, что ртуть в градуснике и лампочке разная. Если из разбитого термометра она высыпается блестящими шариками, то среди осколков лампочки вы их не обнаружите, потому что ртуть в ней содержится в виде паров, которых очень мало, около 5 мг (для сравнения — в градуснике это 2-3 грамма). Поэтому вреда от разбившейся лампочки, по мнению специалистов, немного.

 Photo: Bruce Guenter

Кроме того, не всё та энергосберегающая лампа, что с ртутью. Эколог-консультант Вадим Рукавицын обращает внимание, что такие лампы бывают разных типов, и часть из них не содержит ртути в принципе, как, например, лампы на светодиодах: «По сути, опасность могут представлять только люминисцентные лампы — здесь риск заключается в парах ртути, которые содержатся в колбе, хоть и в небольших количествах. Если разбилась одна маленькая лампочка, проблем, скорее всего, не возникнет, но есть ряд мер, которые необходимо принять, чтобы обезопасить себя на 100%».

 

Как убрать? 

СМИ нагнетают обстановку вокруг опасности энергосберегающих ламп. Например, журналисты «НТВ» пугают зрителей тем, что разбитая лампа грозит тяжёлым отравлением «вплоть до поражения печени, почек и нервной системы человека», а также  угрозой болезни Минамата, «характеризующейся нарушением моторики, слабостью в руках и ногах, ослаблением зрения слуха, а в тяжелых случаях — параличом и вплоть до летального исхода».

На самом деле — нет. Ничем подобным разбитая лампочка не грозит. Чтобы развеять сложившиеся мифы, «Гринпис России» даже выпустил специальный буклет. В нём экологи ответили особое место процедуре уборки разбитой лампы. «Если лампа разбилась, достаточно собрать аккуратно осколки и тщательно проветрить помещение», — рекомендует «Гринпис».

 Photo: Anton Fomkin

Для тревожных граждан, которым этот алгоритм действий кажется недостаточно убедительным, можно посоветовать проделать манипуляции, схожие с уборкой разбитого термометра, но заметим, что психологической пользы от этого заметно больше, чем практической. В любом случае, проделайте следующее:

  • откройте окна и проветрите помещение;
  • закройте все двери в соседние помещения, уберите домашних животных и детей;
  • наденте резиновые перчатки, бахилы и марлевую повязку;
  • соберите осколки лампы, используя липкую ленту, влажную губку или тряпку;
  • использованные при уборке материалы и вещи, на которые попали осколки, поместите в полиэтиленовый пакет и сдайте в специализированное предприятие на переработку.

 

Если разбитая лампа не опасна, почему для утилизации перегоревших ламп используется отдельный, а не общий контейнер?

Действительно, лампочки вместе с бытовым мусором выбрасывать нельзя. Но это совсем не значит, что разбитые они смертельно опасны для человека. Причина в другом: в общий контейнер также нельзя выкидывать, скажем, батарейки, аккумуляторы, некоторые виды химических очистителей. То есть требования к специальной утилизации ламп связаны с необходимостью раздельного сбора мусора, правильной его переработки и, наконец, сохранением экологии.

 Photo: Wilson Hui

 

Что может заменить КЛЛ?

Технологии не стоят на месте, и уже сейчас, кроме энергосберегающих светодиодных, можно купить энергосберегающие лампы, вообще не содержащие опасный металл в составе. «Не все энергосберегающие лампы содержат в своей конструкции пары ртути, — поясняет специалист-эколог компании EcoStandard group Илья Каторгин, — некоторые производители изготавливают лампы несколько иначе. В саму колбу вместо ртути вводится металлический сплав амальгама кальция. Сплав отличается тем, что в нём ртуть находится в связанном состоянии. Преимущество применения этого вещества в том, что при комнатной температуре оно не способно испаряться, поэтому исключается возможность его попадания в воздух, которым мы дышим».

О том, что лампочка сделана по особой технологии, можно узнать по пометке на упаковке «Не содержит ртути» или «Amalgam technology».

 

А что с лампами накаливания?

В 2011 году правительство ввело запрет на продажу лампочек накаливания в 100 ватт и более. Первоначально власти хотели перейти на полный запрет таких ламп к 2014 году, но потом передумали. Нет, это не связано с тем, что лампочке Ильича позволили освещать столетие русской революции, причины иные. Во-первых, цена энергосберегающих ламп слишком высока для многих россиян. Во-вторых, за три года в стране так и не были массово организованы пункты утилизации. В-третьих, эксперты в области энергетики заговорили о том, что трансформаторы просто не выдерживают такое большое количество энергосберегающих ламп. Так что пока экологи продолжают агитировать за экономию электроэнергии в быту, в России у лампочки Ильича, похоже, своя миссия — светить всегда, светить везде, до дней последних донца.

Мария Соловьёва 

14.04.2017

Энергосберегающие лампы и здоровье

Языки: Deutsch [de] English [en] Español [es] Français [fr]

Энергосберегающие лампы » Уровень 1

Контекст — В настоящее время обычные лампы накаливания заменяются более энергоэффективными лампами, в основном компактными люминесцентными лампами (КЛЛ). Флуоресцентный свет уже много лет используется в накладных люминесцентных лампах, не вызывая каких-либо проблем. Тем не менее, некоторые ассоциации «светочувствительных» граждан выразили озабоченность по поводу компактных люминесцентных ламп.

Эти энергосберегающие лампы усугубляют симптомы у пациентов с определенными заболеваниями?

Оценка Научного комитета Европейской комиссии по возникающим и недавно выявленным рискам для здоровья (SCENIHR)

Ответы на эти вопросы являются точным обобщением научного заключения
, подготовленного в 2008 г. Научным комитетом по новым и вновь идентифицированным Риски для здоровья (SCENIHR):
«Светочувствительность» Подробнее…

2. Как свет, инфракрасное и УФ-излучение взаимодействует с кожей и глазами?

Взаимодействие с кожей и глазами зависит от длины волны радиация
Источник: GreenFacts

Свет необходим для жизни на Земле и влияет на людей и других людей. живые организмы по-разному.Например, взаимодействие света с нашей кожей и глазами влияет на наше восприятие тепла и холода. Это также помогает организму регулировать процессы, которые приводят к бодрствованию и отдыху в течение дня и ночи и в разные времена года.

Когда излучение достигает кожи или глаз, оно может отражаться или может проникать в ткани и быть поглощены или рассеяны в различных направления.Это взаимодействие зависит от длины волны излучения.

  • Мост ультрафиолетовое излучение не проникает дальше верхних слоев кожи. Хотя он имеет некоторые положительные эффекты, такие как помощь в производстве витамина D, в целом это считается вредным, так как может повредить белки и ДНК в коже и глазах, особенно ультрафиолетовое излучение с короткими длинами волн (УФС).Некоторые люди особенно восприимчивы к УФ-излучению и становятся загорелые даже после очень низких выдержек или показывают ненормальные кожные реакции, похожие на аллергические.
  • Излучение более длинных волн, в том числе видимый свет и инфракрасное излучение , обычно безвреден, хотя может нагреться салфетка.Взаимодействие видимый свет со светочувствительным клетки в глазу позволяет нам видеть цвета.

Подробнее …

3. Как работают люминесцентные лампы?

Компактная люминесцентная лампа с одним конвертом
Источник: Armin Кюбельбек

Люминесцентные лампы изготавливаются из стеклянная трубка, содержащая смесь газов низкого давления, включая Меркурий.Трубки покрыты флуоресцентные химические вещества. При включении тока пусковой механизмы на каждом конце лампы производят электроны, возбуждающие газы внутри трубки и заставить их испускать ультрафиолетовое (УФ) излучение. Этот УФ-излучение попадает на флуоресцентное покрытие, которое производит свет. В цвет излучаемого света зависит от химического состава покрытие.Некоторые люминесцентные лампы излучают больше синего света, чем обычные. лампы накаливания и, следовательно, лучше имитировать дневной свет.

Люминесцентные лампы имеют стекло конверт, который отфильтровывает ультрафиолетовое излучение, но в некоторых В некоторых случаях УФ-излучение может пройти.Использование двойных стеклянных конвертов резко снижает количество испускаемого УФ-излучения.

Компактные люминесцентные лампы (КЛЛ) излучают свет и немного ультрафиолета. излучения, но их электронная схема — как и любая электронная или электрическое устройство — также генерирует некоторые электромагнитные поля.В величина этих полей на типичных рабочих расстояниях остается хорошей. ниже допустимого и типичного для бытовой техники.

В отличие от обычных лампы накаливания, которые только генерировать низкую частоту электрические и магнитные поля, компактные люминесцентные лампы генерируют поля как низкой, так и средней частоты.Точный частотный диапазон зависит от типа лампы.

Интенсивность любой лампы может колебаться или «мерцать» при питании от переменный ток. В то время как старше технология люминесцентных ламп показали значительное мерцание из-за необходимой электронной схемы для эксплуатации, эта проблема была значительно уменьшена с текущим технологии, до такой степени, что КЛЛ называются «немерцающими».Подробнее …

4. Могут ли люминесцентные лампы ухудшить состояние здоровья, не связанное с кожей?

Мерцание может вызвать мигрень
Источник: Боб Смит

Некоторые люди, страдающие различными заболеваниями, не связанными с кожа утверждает, что использование люминесцентные лампы усугубляют их симптомы.Такая связь не подтверждается научными данными. Есть необходимость дополнительных исследований, прежде чем можно будет сделать окончательные выводы относительно нескольких условий. Опасения были приписаны различные характеристики энергосбережения компактные люминесцентные лампы (КЛЛ), а именно мерцание, ультрафиолетовое излучение и синий свет они производят, и электромагнитные поля.

Мерцание в целом может вызвать мигрень и даже приступы у примерно эпилептических пациентов, но таких сообщалось об эффектах при правильной работе КЛЛ.

Есть некоторые свидетельства того, что синий свет в целом может усугубить заболеваний сетчатки у восприимчивых пациентов.

Не исключено, что светобоязнь , ан ненормальная чувствительность к свету, вызванная или усугубляемая различными световые условия.

Нет никаких доказательств того, что флуоресцентный свет отрицательно влияет на люди с аутизм , но влияние нельзя исключать.

Имеется достаточно доказательств того, что использование компактные люминесцентные лампы не усугублять дислексия и Ирлен Мерес — нарушения обучаемости, которые приводят к трудностям с чтением и написание.

О каких-либо эффектах отравления не сообщалось. компактные люминесцентные лампы на лица с синдром хронической усталости, фибромиалгия, диспраксия , г. или ВИЧ .

Крайне маловероятно, что люминесцентные лампы, используемые для комнаты освещение может вызвать снежная слепота или катаракты .

Кажется, нет никакой связи между электромагнитные поля, создаваемые компактные или другие люминесцентные лампы и Электромагнитная гиперчувствительность . Подробнее …

5.Могут ли люминесцентные лампы влиять на людей с кожными заболеваниями?

Лампы, расположенные близко к коже, могут вызвать проблемы у людей, которые чрезвычайно светочувствительны
Источник: Саймон Катодо

Воздействие определенных типов компактные люминесцентные лампы (КЛЛ) с одинарным стеклом конверт может вызвать проблемы у пациентов, которые чрезвычайно чувствительны к солнечный свет, в частности его UVA и компоненты UVB.Это особенно в случае, когда источник находится близко к коже (т.е. 20 см или менее). К крайне чувствительным пациентам относятся люди с наследственным кожные заболевания, вызванные светом, а также люди с некоторыми кожными покровами болезни, причины которых неизвестны. Нефильтрованный УФ-свет от таких компактные люминесцентные лампы могли также вызывают кожные реакции у людей с волчанка.

Некоторые препараты вызывают проблемы с кожей при использовании в сочетании с воздействие света. Компактные люминесцентные лампы бывают вряд ли будет проблемой. В лечении некоторых раковые заболевания, используются несколько препаратов которые активируются под воздействием света и могут вызвать проблемы с кожей у некоторых пациентов.Пациенты, получающие такое лечение, потенциально могут показывают немного большую реакцию при воздействии света от компактного люминесцентные лампы по сравнению с свет от ламп накаливания. Ожидается, что эти побочные реакции повлияют только на относительно небольшие количество людей, и этого можно избежать, используя двойной конверт КЛЛ, которые лучше фильтруют из ультрафиолета.

Для этих заболеваний необходимы дополнительные исследования, чтобы установить, компактные люминесцентные лампы представляют собой более высокий риск, чем лампы накаливания.

Дозы УФ от компактные люминесцентные лампы по оценкам, слишком мал, чтобы вносить вклад в рак кожи.Подробнее …

6. Представляют ли энергосберегающие лампы риск для некоторых групп пациентов в ЕС?

Некоторые группы пациентов обеспокоены тем, что использование компактные люминесцентные лампы вместо обычных ламп накаливания усугубит некоторые заболевания.Основными причинами для беспокойства являются: мерцание и ультрафиолетовое излучение, электромагнитные поля и синий свет, который производят эти лампы.

Мерцающий свет может усугубить симптомы некоторые заболевания, такие как эпилепсия и мигрени.Однако нет никаких доказательств того, что использование традиционные люминесцентные лампы или компактные люминесцентные лампы имеют те же эффекты.

Нет никаких доказательств того, что электромагнитные поля от компактных люминесцентных ламп вызывают или усугубляют существующие симптомы у пациентов с определенными болезни.

УФС и излучение синего света потенциально может усугубить симптомы у некоторых пациентов с заболеваниями что делает их ненормально чувствительными к свету. В худшем случае Согласно сценарию, это коснется примерно 250 000 человек в ЕС. Риск от компактные люминесцентные лампы незначительный для широкой публики.Однако при использовании одинарного конверта компактные люминесцентные лампы на длительный время, проведенное рядом с телом (на расстоянии менее 20 см), может привести к ультрафиолетовое облучение приближается к текущему пределу рабочего места, установленному на защитить рабочих от повреждений кожи и сетчатки. Использование двойного конверта энергосберегающие лампы в значительной степени или полностью снизят риски как население в целом, так и светочувствительные люди.Подробнее …

7. Выводы

Лампы с двойной оболочкой снизят риски для светочувствительных пациенты и другие
Источник: GreenFacts

В ГЦНИПЧ изучены характеристики энергосбережения. компактные люминесцентные лампы (КЛЛ) для оценки здоровья риски, связанные с их использованием.На основании этого анализа Комитет пришли к выводу, что:

  • Нет никаких доказательств того, что мерцание и электромагнитные поля от компактные люминесцентные лампы ставят риск для чувствительных людей.
  • Единственное свойство компактных люминесцентных ламп, которое могло дополнительный риск — ультрафиолетовое и синее излучение света, излучаемое такие устройства.В худшем случае это излучение могло усугубить симптомы у примерно 250 000 человек в ЕС, которые редко страдают кожные заболевания, которые делают их особенно чувствительными к свету.
  • Население в целом могло получить значительные суммы ультрафиолетовое излучение, если они подвергаются воздействию света, производимого некоторыми компактными одиночными конвертами. люминесцентные лампы на длительное время на расстоянии менее 20 см.
  • Использование энергосберегающих ламп с двойной оболочкой или аналогичных технология снизит риски как для населения в целом, так и для для светочувствительных пациентов.

Подробнее …

3. Как работают люминесцентные лампы?

3. Как работают люминесцентные лампы?

Люминесцентные лампы бывают из стеклянной трубки, заполненной смесью низкого давления газы, в частности ртуть и благородные газы, такие как аргон, неон, ксенон и криптон.Трубки покрыты внутри флуоресцентным материалом, обычно составом содержащие фосфор. Когда ток включен, пусковые механизмы на каждом конце лампы производят электроны, которые возбуждают газы внутри трубки и заставить их высвободиться ультрафиолетовое излучение.В ультрафиолетовое излучение попадает на флуоресцентное покрытие, и это производит свет.

Различные химические покрытия используются для получения света разные цвета. Например, лампы могут быть сконструированы так, чтобы производить свет, который содержит больше синего света, чем обычный лампы накаливания, а значит лучше имитируют дневной свет.Люминесцентные лампы могут иметь одинарное или двойное стекло. конверт, который резко снижает количество УФ-излучения испускается, поскольку стекло является эффективным УФ-фильтром.

Старые лампы имели пусковые механизмы, которые раньше часто выходили из строя. лампа сделала, что потребовало частой замены ламп.У них были и другие недостатки: издавали гудение, мерцали и были недостаточно энергоэффективными. Все эти недостатки устранены в компактные люминесцентные лампы (КЛЛ) через улучшенный конструкция пускового механизма.

Ионизация, возбуждающая газы внутри люминесцентные лампы не забота о здоровье, так как это происходит только внутри лампы.Однако некоторые ультрафиолетовое излучение произведенное может диффундировать через защитную стеклянную оболочку. В покрытие лампы и стеклянная крышка влияют на количество и тип ультрафиолетового излучения, но в целом, КЛЛ могут излучать больше ультрафиолетовое излучение и более высокая доля синего света, чем лампы накаливания.Например, кто-то сидит на расстоянии 20 см от некоторых КЛЛ с одним стеклянным конвертом можно получить десять раз больше UVB, чем если бы лампа накаливания.

Большинство электроприборов производить электричество и магнитные поля слабой частота.КЛЛ излучают электромагнитные поля как низкие, так и промежуточные частоты, хотя точный диапазон зависит от типа лампы. Мало что известно о сильных сторонах этих полей.

Поскольку электроэнергия через электросеть находится в виде переменный ток, интенсивность света, излучаемого любой подключенной к нему лампой изменяется циклически, в зависимости от частота мощности сетка.Если это изменение интенсивности света воспринимается человеческий глаз, то это определяется как мерцание. Мерцание практически незаметен в лампах накаливания, но может быть довольно выраженным в люминесцентных лампах, особенно старые или неисправные. Современные люминесцентные лампы включая КЛЛ были предназначены для значительного уменьшения этого эффекта и поэтому называется «без мерцания».Подробнее …

Энергоэффективное освещение | WBDG

Введение

Помимо воздействия на физическое и эмоциональное благополучие жителей здания, система внутреннего освещения здания является одновременно основным потребителем электроэнергии и основным источником внутреннего тепла. В Соединенных Штатах около четверти бюджета на электроэнергию тратится на освещение, или более 37 миллиардов долларов в год.В коммерческих зданиях он обычно составляет более 30% от общей потребляемой электроэнергии. Однако значительной части этих расходов можно избежать.

Указание высококачественной энергоэффективной системы освещения, в которой используются как природные, так и электрические источники, а также средства управления освещением, может обеспечить комфортную, но визуально интересную среду для обитателей помещения. Недавно разработанное энергоэффективное осветительное оборудование, такое как компактные люминесцентные лампы и электронные балласты с плавным пуском, можно использовать для сокращения эксплуатационных расходов на освещение от 30% до 60% при одновременном повышении качества освещения, уменьшении воздействия на окружающую среду и повышении производительности труда и здоровья.

Описание

Чтобы добиться качественного освещения, тщательно выбирайте оборудование, удовлетворяющее как эксплуатационным, так и эстетическим требованиям. Выбор осветительного оборудования должен основываться на балансе между требованиями к конструкции и попытками ограничить количество типов светильников и типов ламп, чтобы иметь разумные запасы технического обслуживания. Выбор лампы основан на эффективности (люмен на ватт), цветовой температуре, индексе цветопередачи, сроке службы и сохранении светового потока, доступности, переключении, возможности диммирования и стоимости.Например, многие линейные люминесцентные и компактные люминесцентные лампы T8 и T5 являются отличным выбором для современных зданий, поскольку они энергоэффективны, обладают прекрасными свойствами цветопередачи, долгим сроком службы, легко доступны, легко управляемы и очень доступны. Высокочастотные электронные балласты также важны для зрения, поскольку они снижают утомляемость глаз и утомляемость. Частоты в диапазоне 20 кГц и выше обеспечивают плавную работу лампы без мерцания. Электронные балласты также отвечают за улучшение характеристик лампы, продление срока службы и улучшение цветовых характеристик.Светильники выбираются по их световой эффективности. Сюда входят характеристики распределения, эффективность, качество строительства, эстетика и экономика.

A. Энергоэффективные лампы, широко используемые сегодня

Энергоэффективные люминесцентные лампы

Люминесцентные лампы
Люминесцентные лампы

примерно в 3-5 раз эффективнее стандартных ламп накаливания и могут прослужить в 10-20 раз дольше. Чтобы добиться максимальной эффективности, используйте современные и проверенные технологии оборудования и устанавливайте люминесцентные светильники в местах, где они могут быть интегрированы с архитектурой, доступным дневным светом и элементами управления переключением или затемнением.

  • Линейные люминесцентные лампы Лампы T5HO теперь используются во многих высотных установках вместо H.I.D. лампы. Эти лампы меньшего диаметра заменили лампы T12, которые доминировали на рынке последние 30 лет. Эти новые лампы хорошо работают в светильниках, которые обеспечивают общее окружающее освещение в помещении. Длинная и рассеянная природа этих ламп обеспечивает отличное поверхностное освещение, а меньшие диаметры ламп улучшают оптические характеристики многих светильников.Типичные области применения этих источников — линейные люминесцентные подвесные светильники непрямого / прямого действия и настенные светильники верхнего света. Необходимо соблюдать осторожность, чтобы свести к минимуму прямой вид на очень яркие лампы малого диаметра, такие как T5 и T5HO.

  • Компактные люминесцентные лампы (КЛЛ) часто используются как простые заменители ламп накаливания из-за их значительно более длительного срока службы и лучшей энергоэффективности. Модернизированные лампы CFL со встроенным балластом, «ввинчиваемые» иногда используются на рынке модернизации энергосберегающих ламп.Кроме того, модифицированные лампы не могут быть затемнены. Однако характеристики ввинчиваемых ламп обычно не так хороши, как у комбинации лампы и балласта отдельно. Из-за своего небольшого размера лампы CFL используются в встраиваемых светильниках, настенных и потолочных светильниках и даже в дорожном освещении и рабочем освещении. Рассеянная природа люминесцентной лампы делает лампу CFL хорошим выбором для освещения вниз и настенного освещения (также называемого «мытьем стен»).

  • Люминесцентные лампы с низким содержанием ртути в некоторых штатах можно утилизировать на свалках.В этих состояниях лампы с достаточно низким уровнем содержания должны пройти процедуру тестирования, известную как испытание на определение токсичных характеристик выщелачивания (TCLP) (см. EPA SW-846, «Методы испытаний для оценки твердых отходов (физические / химические методы)», глава 7 , «Процедура выщелачивания, характеризующая токсичность», раздел 7.4). Однако во многих штатах еще не принято законодательство, которое не разрешает утилизацию любого продукта, содержащего ртуть, на свалке. Выбор продукта с низким содержанием ртути и последующая переработка этой лампы по окончании ее срока службы предлагает наилучшее экологическое решение для утилизации ртутьсодержащих ламп.В стандартной люминесцентной лампе есть много деталей, которые можно переработать, в том числе стекло, металл, ртуть и люминофор.

  • Индуктивные люминесцентные лампы — это источники белого света с очень хорошей цветопередачей и характеристиками цветовой температуры. Эти лампы энергоэффективны и обладают чрезвычайно долгим сроком службы (более 100 000 часов), хорошими характеристиками сохранения светового потока и возможностью мгновенного включения. Кожух лампы называется «сосуд» и (форма может быть разным) покрыт изнутри люминофором.Диммирование уже доступно в Европе и в ближайшем будущем будет доступно в США. Они питаются от небольшого генератора (размером с люминесцентный балласт), подключенного к лампе с помощью короткого кабеля фиксированной длины. Генератор индуцирует ток в лампе, который заставляет ее светиться — электроды не изнашиваются. Более крупная и рассеянная природа этих источников делает их идеальными для освещения больших объемов и поверхностей. Они часто используются вместо источников разряда высокой интенсивности малой и средней мощности из-за возможности мгновенного включения и меньшего объема обслуживания, связанного с более длительным сроком службы лампы.Этот источник лампы имеет многообещающее применение для внутреннего и наружного освещения.

Ссылки на люминесцентные лампы, дополнительные учебные материалы
  • Информация о линейных и компактных люминесцентных лампах:
  • Информация о люминесцентных лампах с низким содержанием ртути:
  • Информация об индукционной лампе:
  • Дополнительные учебные материалы:
    • Публикации Исследовательского центра освещения:
      • Люминесцентные лампы T8 и Ответы по освещению: Лампы и балласты T5FT , Ответы по освещению NLPIP.
      • Компактные люминесцентные лампы с винтовым цоколем , Отчеты спецификаций NLPIP, Vol. 7, No. 1, June 1999.
      • потолочные светильники CFL , Отчеты спецификаций NLPIP, Vol. 3, No. 2, August 1995.
Газоразрядные лампы высокой интенсивности (HID)

Газоразрядные лампы высокой интенсивности (HID) по-прежнему являются одними из самых эффективных и эффективных ламп для освещения больших площадей или больших расстояний. Металлогалогенные (белый свет) лампы заменяют натриевые лампы высокого давления во многих наружных применениях, поскольку источники белого света могут быть в 2-30 раз более эффективными при периферийном визуальном обнаружении, чем желто-оранжевые источники, такие как натриевые источники высокого давления.Металлогалогенные лампы с импульсным запуском или с «импульсным запуском» обеспечивают лучшую стабильность цвета и более длительный срок службы, чем предыдущие технологии. Металлогалогенные лампы PAR с керамическими кожухами из дуговых трубок обычно используются для акцентного освещения и подсветки в больших помещениях, а в настоящее время широко используются в розничной торговле. Небольшой размер металлогалогенной дуговой трубки обеспечивает превосходный оптический контроль. Однако чрезвычайная яркость металлогалогенной лампы требует тщательного экранирования и дизайна.

Различные металлогалогенные лампы HID.
Фото любезно предоставлено sea-of-green.com

Обычно HID-лампы плохо работают с датчиками присутствия, потому что большинству HID-ламп требуется много времени для запуска при каждом выключении. Некоторые лампы HID (называемые «горячим перезапуском») отличаются тем, что их можно перезапустить сразу после выключения, но если им дать остыть, им потребуется около 15 минут, чтобы прогреться, как и обычным лампам. Доступны специальные балласты, которые позволяют ступенчато приглушать свет до 50% (или другого уровня) — эти балласты можно использовать с датчиками присутствия (свет будет автоматически приглушен до установленного уровня, когда в комнате нет людей).

HID звенья лампы
  • Информация о HID лампе:
  • Дополнительные учебные материалы:
Лампы накаливания

Лампы накаливания по-прежнему используются для акцентного и специального освещения, где необходимы теплый цвет, контролируемая яркость, мгновенное включение и возможности затемнения этих источников. Лампы накаливания могут давать «искрение», не характерное для более рассеянных люминесцентных источников. Лампы PAR и низковольтные лампы могут обеспечить хорошее управление лучом, а при затемнении также могут обеспечить разумный срок службы лампы.Также доступны лампы накаливания на 130 В, которые прослужат дольше, чем их аналоги на 120 В при работе от 120 В (с незначительным снижением светоотдачи при той же мощности). Однако из-за их более низкой энергоэффективности и более короткого срока службы лампы накаливания следует осторожно использовать для освещения определенных элементов. Некоторые из наиболее эффективных световых решений сочетают в себе небольшое количество акцентного освещения лампами накаливания с системой дневного (общего) освещения.

Светодиодные лампы
Светодиодные лампы

— это новейшее дополнение к списку энергоэффективных источников света. Хотя светодиодные лампы излучают видимый свет в очень узком спектральном диапазоне, они могут излучать «белый свет». Это достигается с помощью либо красно-сине-зеленой матрицы, либо синей светодиодной лампы с люминофорным покрытием. Срок службы светодиодных ламп составляет от 40 000 до 100 000 часов в зависимости от цвета. Текущие проблемы светодиодных источников — это низкий индекс цветопередачи (CRI) 65 или ниже и низкая эффективность, часто менее 30 люмен на ватт.Светодиодные лампы нашли свое применение во многих областях освещения, включая знаки выхода, светофоры, освещение под шкафами и различные декоративные элементы. Хотя технологии светодиодных ламп все еще находятся в зачаточном состоянии, они быстро развиваются и обещают будущее. Для получения дополнительной информации о светодиодном освещении и других технологиях твердотельного освещения посетите Департамент энергетики твердотельного освещения.

Светодиодные ленты для освещения под шкафами, для освещения бухт, для внутреннего освещения полок и шкафов, а также для бокового освещения.
Фото любезно предоставлено LEDLight.com

Ссылки для светодиодных ламп

B. Энергоэффективные балласты

Люминесцентные балласты
  • ПРА для быстрого пуска — наиболее распространенный тип люминесцентного пускорегулирующего устройства. Эти балласты обеспечивают длительный срок службы лампы по разумной цене. В течение многих лет они использовались для управления освещением, чтобы обеспечить экономию энергии.

  • ПРА с мгновенным запуском — обычно самые дешевые ПРА на рынке.Эффективность балластов мгновенного запуска выше, чем балластов быстрого запуска, но срок службы лампы короче, особенно когда частота запусков увеличивается из-за использования элементов управления. Они часто используются там, где основной целью является энергосбережение, а свет горит непрерывно в течение очень долгого времени. Одним из преимуществ пускового балласта с мгновенным запуском является то, что лампы подключены параллельно, так что, когда одна лампа в многоламповом балласте перегорает, остальные продолжают гореть.

  • Программируемые балласты быстрого запуска — одни из лучших в использовании для повышения энергоэффективности и длительного срока службы ламп.Эти пускорегулирующие аппараты немного дороже стандартных пускорегулирующих аппаратов для быстрого пуска, но в них используется «более щадящий» метод пуска, так что частый пуск уменьшает сокращение номинального срока службы лампы. Эти балласты рекомендуются для люминесцентных ламп меньшего диаметра и компактных люминесцентных ламп. При правильной схеме управления освещением пусковые балласты программы могут обеспечить значительную экономию энергии.

  • Диммирующие электронные балласты для линейных люминесцентных ламп обычно делятся на две категории.Первый тип имеет диапазон затемнения от 5% или 10% до 100% светоотдачи и, как правило, является наименее дорогим. Этот балласт обычно используется, когда не требуется самый низкий уровень освещенности, или для достижения экономии энергии за счет затемнения света при обильном дневном свете. Второй тип балласта, часто называемый «балластом для архитектурного затемнения», является более дорогим и имеет диапазон регулировки яркости от 1% до 100% светоотдачи. Этот балласт используется в ситуациях, когда требуется более низкий уровень освещенности.

Электронные балласты разряда высокой интенсивности

Электронные балласты с разрядом высокой интенсивности (HID) для металлогалогенных ламп теперь доступны для большинства ламп мощностью до 150 Вт.Эти балласты должны улучшить характеристики лампы и предложить ограниченный диапазон диммирования для достижения некоторой экономии энергии.

Дополнительная информация о балласте
  • Производители балласта:
  • Дополнительные учебные материалы:
    • Публикации Исследовательского центра освещения
      • Электронные балласты , Отчеты спецификаций NLPIP, Vol. 8, No. 1, May 2000.
      • Диммирующие электронные балласты , Отчеты спецификаций NLPIP, Vol. 7, No. 3, октябрь 1999 г.

C. Светильники

Энергоэффективные светильники с регулировкой дневного света и датчиками присутствия в офисных помещениях в центральном офисе GSA.

Светильник или осветительная арматура — это устройство, состоящее из одного или нескольких из следующих компонентов:

  • Лампа (-и) и патрон (-ы) для лампы
  • балласт (ов)
  • светоотражающий материал
  • Линзы, рефракторы, жалюзи, лезвия или другое экранирование.

Эффективный светильник оптимизирует работу системы каждого из ее компонентов.Есть несколько типов светильников, которые предлагают возможности для экономии энергии при проектировании систем освещения. Многие из них обеспечивают непрямой свет, чтобы сделать потолок ярче, или предназначены для осветления стен или рабочих поверхностей. Большинство из них люминесцентные, и ими легко управлять для дальнейшей экономии энергии. Некоторые примеры показаны в таблице ниже.

Тип люминесцентного светильника Описание Льготы Предупреждения Приложения
Линейный светильник непрямого / прямого света В основном непрямой, подвесной или настенный, светильник T8, T5 или T5HO Мягкое равномерное освещение, хороший визуальный комфорт, легко затемняется Выберите интервал для обеспечения равномерной яркости потолка Высокие и низкие отсеки и классы
Декоративный светильник отраженного / прямого света Обычно компактные люминесцентные или индукционные лампы Значительная экономия энергии, производительность сопоставима с лампами накаливания Выберите рассеиватель для равномерной яркости светящихся элементов Малые офисы, вестибюли, зоны ожидания, атриумы и коридоры
Линейный светильник Накладной или подвесной монтаж с или без боковых отражателей, обычно с лампой T8 Энергоэффективный, компактный, недорогой, легко затемняемый Лучше всего, когда скрыто В нишах или в прорезях в стенах, поверх шкафов, стеллажей или шкафчиков, а также в механических помещениях
Светильник рабочий Линейный настенный монтаж «под полку» или «на кронштейне» Рабочее освещение позволяет снизить уровень внешнего освещения Обеспечьте соответствующий коэффициент контрастности задачи / окружающей среды Любая рабочая поверхность (столы, прилавки, верстаки и т. Д.)
Встраиваемый светильник скрытого монтажа Утопленный (свет направляется вверх к верхней части корпуса и отражается обратно вниз), обычно 2 x 2 или 2 x 4 дюйма, двухосное освещение T8 или CFL Оптимизирован для меньшего количества ламп, чем обычные светильники с встраиваемыми линзами, хороший визуальный комфорт Не осветляет потолок, учитывает незначительное дополнительное освещение (например, бра) Коридоры, открытые / частные офисы (во многих приложениях может заменить стандартный трофер)
Шайба для утопленных стен Линейные или круглые лампы, линейные или CFL лампы Значительная экономия энергии, производительность лучше, чем у лампы накаливания Лучше всего в паре или в группах, тщательно выбирайте расстояние Выбор поверхностей стен во многих типах комнат
Встраиваемый светильник направленного света Тубус круглый, лампа КЛЛ Значительная экономия энергии, производительность сопоставима с лампами накаливания Не осветляет потолок, создает на стенах светлый «гребешок» Локальное заполняющее освещение, часто в сочетании с другими типами светильников
Бра Настенный декоративный светильник КЛЛ Значительная экономия энергии, производительность сопоставима с лампами накаливания Выберите рассеиватель для равномерной яркости светящихся элементов Вестибюли, коридоры, конференц-залы и т. Д.

Приложение

Энергоэффективное освещение может быть установлено в проектах нового строительства, модернизации, ремонта и замены. Он применим ко всем типам зданий и помещений, особенно к учебным заведениям, офисным зданиям, медицинским учреждениям, исследовательским центрам, складам, библиотекам и зданиям судов.

Существует несколько программ по разработке рекомендаций по проектированию и признанию энергоэффективных зданий. Многие из них поддерживаются государством.

  • Программа

    Energy Star®: эта программа, поддерживаемая Агентством по охране окружающей среды США (EPA), способствует повышению энергоэффективности в новых и существующих коммерческих зданиях. Участникам, в число которых в прошлом входили школы, предприятия розничной торговли и гостеприимства, а также промышленные и государственные учреждения, были предоставлены рекомендации и поддержка.

  • Федеральная программа энергоменеджмента (FEMP): FEMP способствует экономии энергии и воды, а также использованию возобновляемых источников энергии государственными учреждениями.Частично FEMP мотивируется Указом 13423 от 24 января 2007 г. «Усиление федерального управления окружающей средой, энергетикой и транспортом», который призывает к значительному количественному сокращению энергопотребления государством и выбросов парниковых газов. FEMP установила и поощряла отраслевые партнерства, программы стимулирования и возможности получения образования, которые также приносят пользу частному сектору.

  • Совет по экологическому строительству США «Лидерство в энергетическом и экологическом проектировании» (LEED®) Система рейтингов зданий: LEED® предоставляет разработчикам и дизайнерам рекомендации и метод контрольного списка для достижения высоких стандартов в проектировании экологически безопасных зданий.Систему также можно использовать для расчета или повышения рейтинга существующего здания.

Дополнительные ресурсы

WBDG

Типы зданий / Типы помещений

Применимо и актуально для всех типов зданий и типов помещений.

Задачи проектирования

Эстетика, рентабельность, функциональность / эксплуатация, сохранение исторических памятников — надлежащее обновление строительных систем, продуктивность — обеспечение комфортной среды, безопасность / безопасность, устойчивость — оптимизация энергопотребления, устойчивость — повышение качества окружающей среды в помещении (IEQ), устойчивость — оптимизация эксплуатации и Практика обслуживания

Управление проектами

Планирование, реализация и контроль проекта

Ввод здания в эксплуатацию

Ввод здания в эксплуатацию

Федеральные программы и службы

Организации / ассоциации

Производители и поставщики продукции

Публикации

Инструменты

прочие

Преимущества, сбережения и выбор лучшего

Лампы накаливания и неэффективные галогенные лампы постепенно выводятся с рынка, а энергосберегающие лампы постепенно выходят на рынок.Лампочки нового поколения светят ярче, служат дольше и сокращают количество энергии, необходимой для их питания. Это эффективное повседневное решение, позволяющее снизить ваши счета за электроэнергию и помочь вам получить больше от обычных предметов домашнего обихода.

Давайте рассмотрим различные преимущества энергосберегающих лампочек и узнаем, как выбрать подходящую для любого места или обстановки в вашем доме.

Что такое энергосберегающие лампочки?

Энергосберегающие лампочки (или энергоэффективные лампочки) служат до 12 раз дольше, чем традиционные лампочки, при этом потребляется меньше электроэнергии для излучения того же количества света, что и у традиционных лампочек.Это энергоэффективный вариант, помогающий сократить углеродный след вашего дома. Наиболее распространенными энергосберегающими лампами являются светодиодные (LED), компактные люминесцентные лампы (CFL) и галогенные лампы накаливания.

Долгое время самым большим недостатком энергосберегающих ламп был тип света, который они производили. Холодные, резкие и сверхяркие энергосберегающие лампочки поставлялись только в стерильных светодиодах, которые забирали тепло из комнаты. Однако с тех пор, как светодиоды впервые появились на рынке, все значительно изменилось, и теперь есть огромный ассортимент теплых, мягких белых лампочек на выбор.

Кроме того, одна из основных претензий к энергосберегающим лампочкам касается времени, которое требуется, чтобы они стали достаточно яркими, чтобы осветить комнату. Это больше не проблема, поскольку светодиоды и галогены загораются мгновенно, хотя некоторым КЛЛ требуется несколько минут для достижения максимальной яркости. В любом случае есть множество причин для перехода с традиционных лампочек на энергосберегающие.

Как правильно выбрать энергосберегающую лампочку

Выбор правильной энергосберегающей лампы зависит от трех факторов: типа, светового потока и цвета.

  • Тип: Тип используемой энергосберегающей лампочки во многом определяется тем, где и как вы ее будете использовать. Для общего и наружного освещения используйте светодиодные или компактные люминесцентные лампы. В точечных светильниках и хрустальных люстрах используются светодиоды, а в регулируемых светильниках используются светодиодные или галогенные лампы класса B.
  • Значение люмена: Традиционно мы всегда использовали ватты для определения яркости и мощности, генерируемой традиционными лампочками.Однако из-за того, что лампочки с низким энергопотреблением потребляют значительно меньше мощности для работы, ватт больше не является практичным способом измерения яркости. Вместо этого световой поток лампочки дает точное представление о том, насколько яркой будет ваша энергосберегающая лампочка.

Используйте следующую таблицу, чтобы определить необходимую яркость (в люменах), сравнив ее с традиционной лампочкой.

LED / Энергосберегающая лампочка Традиционная лампочка
220 люмен 25 Вт
400 люмен 40 Вт
700 люмен 60 Вт
900 люмен 75 Вт
1300 Вт 100 Вт

Цвет: цвет вашей лампочки зависит от ваших личных предпочтений.Для более естественного освещения рассмотрите возможность использования энергосберегающих ламп, которые описываются как мягкие или теплые белые. Для точечных светильников, гаражей или мест, где требуется больше света, чем обычно, используйте холодные или чисто белые низкоэнергетические лампочки.

Сколько денег можно сэкономить с энергосберегающей лампочкой?

Для среднего дома энергосберегающие лампочки могут сэкономить около 35 фунтов стерлингов в год, а также 120 кг. диоксида углерода.Семьи могут ожидать увеличения экономии, поскольку электричество становится дороже, а энергосберегающие лампочки становятся более доступными и долговечными. Хотя это не влияет на фактическую стоимость покупки и замены отдельных ламп накаливания, вы можете быть уверены, что в долгосрочной перспективе энергосберегающие лампочки помогут вам сэкономить деньги.

Кроме того, энергосберегающие лампочки невероятно долговечны. Если оставить на 12 часов в день, большинство из них может прослужить целых 11 лет без необходимости замены.Это резко контрастирует с традиционными луковицами, которые редко служат дольше года.

Стоит ли выключать энергосберегающие лампочки?

Бесспорно. Хотя они по-прежнему стоят немного дороже, чем традиционные галогенные лампы и лампы накаливания, они служат намного дольше, прохладны на ощупь и выделяют значительно меньше углекислого газа. Дом, в котором в основном используются энергосберегающие лампы, в конечном итоге сэкономит деньги. В сочетании с другими методами управления энергопотреблением, такими как интеллектуальные счетчики и изоляция дома, вы можете снизить потребление энергии и резко сократить счета за коммунальные услуги, используя энергосберегающие лампочки.

КПД лампочки | Center for Nanoscale Science

Выбор эффективных лампочек — простой способ сэкономить электроэнергию. В этом упражнении используйте свои чувства, чтобы сравнить эффективность различных лампочек. Почувствуйте тепло от ламп накаливания, компактных люминесцентных и светодиодных ламп. Посмотрите на компоненты, излучающие свет в лампах каждого типа. Затем послушайте звуки макромасштабных моделей, которые представляют тепловые и световые столкновения электронов в каждом типе лампочек — какая из них самая тихая и эффективная?

ЦЕЛЬ:

Посетители поймут, почему лампы накаливания, люминесцентные лампы и светодиоды работают с разной эффективностью.

МАТЕРИАЛЫ:

  • Планка лампочек с цилиндрическими плафонами.
  • Поднос лампы накаливания с металлическим шариком
  • Поднос люминесцентной лампы с металлическим шариком •
  • Поднос светодиода (LED) с металлическим шариком

ПРОЦЕДУРА:

Создание:

  1. Вставьте ленту лампочек и разложите модели подносов. Держите выключатель выключенным, пока не подойдут посетители.

Делаем демонстрацию:

  1. Включите лампу и попросите посетителей подержать руки над каждым цилиндром, чтобы почувствовать разницу в тепле, выделяемом каждым цилиндром.(Не позволяйте посетителям прикасаться к лампочкам.) Лампа накаливания нагревается, люминесцентная лампа нагревается, а светодиод остается холодным на ощупь. Объясните, что энергия, выделяемая в виде тепла, является пустой тратой энергии. Выключите ленту лампочки.
  2. Снимите цилиндры. (Опять же, предупредите посетителей не прикасаться к лампочкам, так как лампа накаливания может быть горячей.) Попросите посетителей понаблюдать за разными лампами и спросить их, узнают ли они каждый тип ламп.
  3. Объясните, что «эффективность» лампочки — это мера того, сколько световой энергии выходит из лампочки по сравнению с количеством электричества (электрической энергии), которое было вложено.Лампа со 100% -ным КПД преобразует все электричество в свет и вообще не выделяет тепла. Попросите посетителей расположить лампочки от наиболее эффективных до наименее эффективных. Объясните: эффективность светодиода составляет 90%, эффективность компактной люминесцентной лампы — 85%, а эффективность лампы накаливания — только 10%.
  4. Вынесите модели лотков, чтобы продемонстрировать, почему эффективность каждого из них разная. Металлический шар представляет собой электроны в лампах каждого типа. Объясните: электроны сталкиваются с другими частицами, и каждое столкновение производит свет или тепло.Колышки в модели представляют эти другие частицы. Столкновения, производящие звук, представляют собой потерянную тепловую энергию, в то время как бесшумные столкновения представляют собой производство света.
  5. Предложите посетителям понаблюдать за типами бусинок в каждом лотке, затем встряхнуть и послушать, какой лоток производит наибольшее количество звуков. Попросите их расположить лотки от самых громких до самых тихих, а затем спросите, какой лоток соответствует типу лампочки. Самый громкий лоток представляет собой самую неэффективную лампу накаливания, а тихий лоток представляет собой наиболее эффективный светодиод.

Уборка:

  1. Убедитесь, что в каждом лотке есть металлический шарик. Верните припасы на склад.

ПОЯСНЕНИЕ:

Каждая из трех лампочек на дисплее имеет световой поток 400 люмен, но для них требуется разное количество энергии. Лампа накаливания потребляет 60 Вт, люминесцентная лампа — 7 Вт, а светодиодная лампа — 6,5 Вт.

Когда лампа накаливания подключена к источнику питания, электрический ток проходит через металлическую нить накала (обычно вольфрамовую), нагревая ее до тех пор, пока нить не станет настолько горячей, что начнет светиться.По мере движения электроны сталкиваются с атомами металла нити. Энергия каждого столкновения вызывает вибрацию атомов и нагревает их, в конечном итоге производя свет. Только 10% энергии, используемой лампой накаливания, преобразуется в свет; остальные 90% теряются в виде тепла. Модель лотка представляет столкновения между электронами и атомами нити.

В люминесцентной лампе электрический ток протекает не через нить накала, а через стеклянную трубку, заполненную газообразной ртутью и покрытую изнутри люминофорным покрытием.Когда электроны сталкиваются с атомами ртути, атомы ртути возбуждаются и излучают невидимый ультрафиолетовый свет. Затем люминофорное покрытие поглощает энергию ультрафиолетового света и флуоресцирует или превращает невидимый свет в видимый свет. В люминесцентных лампах свет создается высокоэнергетическими вытесненными электронами, которые образуются при приложении электрического тока к газообразной ртути; тепло создается как побочный продукт этих энергичных электронов. Около 85% энергии, используемой люминесцентной лампой, преобразуется в свет.Модель лотка представляет столкновения между электронами и атомами ртути.

Светодиодная лампа содержит несколько различных светоизлучающих диодов, каждый из которых излучает свет от полупроводникового кристалла с отрицательно заряженным выводом и положительно заряженным выводом. Когда электроны движутся от отрицательного к положительному положению, они сталкиваются с положительно заряженными частицами («дырками») и падают с высокого энергетического уровня на более низкий энергетический уровень. Капля высвобождает энергию в виде света.

Поскольку светодиоды используют электроэнергию более эффективно, чем два других типа ламп (они преобразуют около 90% ее в свет), им требуется гораздо меньше энергии для производства того же количества света, что и лампы накаливания или люминесцентные лампы.Модель лотка представляет столкновения между электронами и дырками. Поскольку тип столкновения различается для каждого типа лампочки, попытка их сравнения может показаться сравнением яблок и апельсинов. Самый простой способ подумать о сравнении — это учесть, что независимо от того, какой тип лампы, есть электроны, участвующие в столкновениях, которые производят свет или тепло. Грубо говоря, соотношение световых столкновений и тепловых столкновений в каждой лампочке объясняет ее эффективность.

ЧТО МОЖЕТ СДЕЛАТЬ НЕПРАВИЛЬНО?

Посетители могли прикоснуться к горячим лампочкам и обжечь кожу.Лампы также могут быть сломаны, чтобы образовались острые фрагменты и возможные опасные отходы (для компактных люминесцентных ламп).

ОБЩЕЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ:

Лампочки (особенно лампы накаливания) могут нуждаться в замене.

Что такое энергоэффективное освещение и методы его реализации

Энергоэффективное освещение и способы его реализации

По оценкам, на освещение приходится около 20% от общего производства электроэнергии в мире.Качество и количество света не только влияют на наше здоровье, комфорт, безопасность и производительность, но также влияют на экономику. Многие страны тратят огромные средства из своего бюджета на электроэнергию на освещение.

Для достижения эффективного использования электроэнергии страны постоянно переходят на энергоэффективное освещение, которое является наиболее экономичным и надежным методом энергосбережения. В области освещения используются хорошо известные технологии для оптимизации существующих средств управления и осветительного оборудования для снижения потребления энергии при более высоком качестве освещения.Давайте подробно обсудим эту концепцию.

Что такое энергоэффективное освещение?

Когда потребление энергии продуктом снижается, не влияя на его производительность, конечную реакцию или уровень комфорта пользователя, это называется энергоэффективностью. Энергоэффективный продукт потребляет меньше энергии для выполнения той же функции по сравнению с тем же продуктом с большим потреблением энергии.

Энергоэффективность в секторе освещения обеспечивает необходимый уровень освещенности схемы освещения для приложения, для которого она была разработана, при минимальном потреблении энергии.Проще говоря, энергоэффективное освещение может сэкономить электроэнергию, сохраняя при этом хорошее качество и количество света.

Энергоэффективное освещение предполагает замену (или замену) традиционных ламп (таких как лампы накаливания) на энергоэффективные, такие как люминесцентные лампы, лампы CFL и светодиодные лампы. Он также включает в себя надлежащие средства управления освещением, такие как таймеры, средства управления на основе инфракрасных и ультразвуковых датчиков и т. Д.

Он включает автоматическое выключение света, когда он не используется, особенно в дневное время.В нем используются электронные дроссели вместо балластов при обычном освещении, а также с использованием электронных схем; при необходимости можно добиться затемнения света.

Эти энергоэффективные схемы могут применяться для внешнего освещения, внутреннего освещения жилых домов и внутреннего освещения коммерческих зданий. Эти схемы не только снижают потребление энергии, но и улучшают качество освещения, повышают безопасность и благополучие персонала, а также уменьшают воздействие на окружающую среду.

Зачем нужно энергоэффективное освещение?

Освещение является основным требованием любого объекта и влияет на повседневную деятельность людей. Это составляет значительную часть общего потребления энергии в бытовых, коммерческих и промышленных установках.

В промышленности потребление энергии для освещения составляет лишь небольшую часть от общего объема потребляемой энергии, что составляет около 2-5 процентов от общего объема потребления энергии. На его долю приходится от 50 до 90 процентов в домашнем секторе, и она может возрасти до 20-40 процентов в случае коммерческого / строительного секторов, комплексов информационных технологий и гостиниц.

Таким образом, это становится важной областью, в которой необходимо экономить энергию, особенно в бытовом секторе. Поэтому решения по повышению эффективности освещения играют ключевую роль в возможностях энергосбережения.

Из-за высокого энергопотребления традиционные лампы накаливания и лампы высокого разряда необходимо заменить энергосберегающими лампами. Традиционные лампы не только потребляют большое количество электроэнергии, но и используют большую часть потребляемой энергии для производства тепла, а не света (например, 90% потребляемой энергии в случае ламп накаливания).

С установкой энергоэффективного освещения количество потребляемой энергии в конечном итоге будет снижено, что приведет к снижению счетов за электроэнергию.

Следовательно, необходимо энергоэффективное освещение

  • Чтобы снизить потребление электроэнергии, тем самым уменьшив счета за электроэнергию
  • Чтобы сэкономить электроэнергию, а не тратить ее впустую с точки зрения потерь
  • Чтобы снизить выбросы парниковых газов, поскольку обычные лампы вызывают выбросы CO 2
  • Для снижения пиковой нагрузки

Вы также можете прочитать: Сколько ватт солнечных батарей нам нужно для наших бытовых электроприборов?

Советы, приемы и методы по внедрению энергоэффективного освещения

Лучшим и эффективным решением для энергосбережения является внедрение энергоэффективных технологий освещения в секторе освещения, что облегчает всестороннюю модернизацию систем освещения и управления.

Были внесены значительные улучшения и инновации в технологии освещения, которые могут предложить большой потенциал для экономии энергии во многих осветительных приложениях, таких как домашнее освещение, уличное освещение, гостиничные и розничные прожекторы, офисное и промышленное освещение и т. Д.

Ниже перечислены методы или типы энергоэффективного освещения , которые обычно используются как возможности энергосбережения.

  1. Замена ламп на энергоэффективные лампы

Энергоэффективные лампы могут обеспечить такое же количество освещения с большей экономией энергии при низких затратах по сравнению с обычными лампами.Традиционные лампы накаливания потребляют много энергии для получения света, при этом 90 процентов потребляемой энергии выделяется в виде тепла, а также они потребляют больше энергии, обычно в 3-5 раз больше, чем фактическое количество для производства света.

Энергоэффективные лампы решают эти проблемы, предлагая гораздо больше преимуществ, чем лампы накаливания. Два самых популярных варианта энергоэффективных ламп — это CFL (компактные люминесцентные лампы) и LED (светоизлучающие диоды) лампы.

Компактные люминесцентные лампы (КЛЛ)

КЛЛ лампы представляют собой миниатюрные или фигурные версии люминесцентных ламп большого размера.Эти лампы сочетают в себе эффективность люминесцентного освещения с популярностью и удобством ламп накаливания.

Вкручиваются в светильники, подходящие для всех стандартных ламп накаливания, но не в стандартные люминесцентные светильники с длинными трубками. В зависимости от марки и области применения они бывают разных стилей, цветов и размеров.

КЛЛ потребляют на 75 процентов меньше энергии и производят на 75 процентов меньше тепла для получения того же количества света по сравнению с лампами накаливания.Они служат в 10-15 раз дольше и стоят в 10-20 раз дороже, чем лампы накаливания.

Эти лампы изготовлены с трубкой из фосфорного стекла, состоящей из инертного газа (аргона) и паров ртути. Они используют электронный балласт для создания высокого напряжения во время запуска, и это может быть отдельный блок или постоянно встроенная лампа. Некоторые специальные и старые модели КЛЛ поставляются с отдельным балластом, а некоторые КЛЛ — со встроенным балластом.

Когда через электроды пропускают электрический ток, возбуждаются электроны, связанные с атомами ртути, которые, в свою очередь, излучают ультрафиолетовый свет.Когда ультрафиолетовый свет попадает на флуоресцентное покрытие, он превращается в видимый свет.

Сравнительная таблица ламп накаливания, КЛЛ и светодиодных ламп.

На сегодняшнем рынке доступны различные типы ламп CFL. Некоторые из них — спиральные лампы, трехтрубные лампы, торшеры, шаровые лампы, прожекторы и канделябры. В случае замены ламп накаливания КЛЛ выбираются в соответствии с люменами, которые указывают количество генерируемого света, как показано на рисунке ниже.

Они доступны в различных цветах света, таких как теплый белый и мягкий белый, холодный белый и ярко-белый и т. Д., В зависимости от типа применения. В таблице ниже показан диапазон светлых цветов КЛЛ для конкретного применения.

Светоизлучающие диоды (светодиоды)

Светодиоды представляют собой твердотельные полупроводниковые устройства и более энергоэффективны, чем даже КЛЛ. Они производят мало тепла и более качественное освещение, чем любые другие лампы. На момент создания использование светодиодов было ограничено в качестве индикаторов с одной лампочкой в ​​электронных схемах.

Позже несколько светодиодов объединены в группы для разработки небольших ламп для устройств с батарейным питанием, таких как зарядные фонари, фонарики и т. Д. Сегодня светодиодные лампы доступны во многих новых стилях ламп, которые достаточно ярки, чтобы заменить традиционные лампы накаливания.

Светодиодные лампы потребляют на 75 процентов меньше энергии, чем традиционные лампы накаливания, и на 50 процентов меньше энергии, чем у КЛЛ. Они могут служить в 8-25 раз дольше, чем лампы накаливания, и до четырех раз дольше, чем CFL.В отличие от ламп накаливания и КЛЛ, светодиодные лампы не выделяют тепла и, следовательно, достаточно холодны, чтобы их можно было прикоснуться. Но это дороже; однако они доступны в долгосрочной перспективе.

Светодиоды состоят из полупроводниковых материалов и образуют PN переходы. Когда ток течет через эти соединения, он высвобождает энергию в виде света. Длина волны и, следовательно, цвет света зависят от состава материалов. Светодиоды могут излучать желтый, красный, синий, зеленый и белый свет.Для освещения несколько белых светодиодов сгруппированы в кластеры, чтобы обеспечить необходимое освещение для приложения.

Светодиодные лампы доступны в различных формах, размерах и стилях в зависимости от типа применения, для которого они предназначены. Некоторые из этих типов включают в себя рассеянные лампы, светодиодные лампы с регулируемой яркостью, лампы со штыревым цоколем для трекового освещения, лампы с ввинчиваемым цоколем для отражателя, светодиоды с пламенным наконечником и ламповые светодиодные лампы.

Сравнение ламп накаливания, КЛЛ, светодиодных и галогенных ламп и ламп.

  1. Улучшение управления освещением

Освещением можно управлять с помощью различных датчиков, чтобы лампы могли работать всякий раз, когда они необходимы. Эти датчики обнаруживают присутствие людей, движение, время или присутствие и на основе выходного сигнала датчика включают и выключают лампы. Типы этих элементов управления включают инфракрасные датчики, автоматические таймеры, датчики движения (инфракрасные и ультразвуковые датчики) и диммеры.

Фотодатчики контролируют дневные условия и, соответственно, посылают сигналы на главный контроллер для автоматического выключения ламп на рассвете и включения в сумерках.Этот тип управления освещением обычно используется для уличного и наружного освещения.

Уличное освещение — еще одна важная область энергосбережения, поскольку оно способствует значительному энергопотреблению, особенно на автомагистралях. Централизованные системы управления чаще всего используются при управлении уличным освещением.

Популярным централизованным управлением является система SCADA (диспетчерский контроль и сбор данных), которая обеспечивает удаленное управление работой уличных фонарей из центра.Системы на основе GSM / GPRS также используются для дистанционного управления уличным освещением.

  1. Замена существующих приспособлений и балластов

Замена энергоэффективных принадлежностей на новые энергоэффективные приспособления и балласт обеспечивает превосходную экономию энергии, долговечность и надежность. Основная функция светильника или осветительной арматуры — распределять, направлять и рассеивать свет.

Некоторые светильники могут поглощать более половины света, излучаемого лампой, что снижает эффективность освещения.Светильники с более высокой эффективностью могут излучать больше света, и, следовательно, можно сэкономить энергию и деньги. Такие светильники состоят из отражателей, которые направляют свет в нужном направлении.

Все газоразрядные лампы требуют пускорегулирующего устройства для достижения требуемой работы. Обычные балласты магнитного типа вызывают потери мощности, которые обычно составляют 15 процентов от мощности лампы. Это также может повысить температуру прибора во время работы. Таким образом, необходимо выбрать правильный балласт, чтобы снизить потери балласта, температуру арматуры и мощность системы.На современном рынке доступно много электронных или твердотельных балластов, которые могут сэкономить от 20 до 30 процентов энергии по сравнению со стандартными балластами.

Также читайте:

Ртутные и компактные люминесцентные лампы

Компактные люминесцентные лампы (также известные как КЛЛ или энергосберегающие световые глобусы) являются обычным выбором для освещения в Австралии с тех пор, как правительство Австралии начало поэтапно отказываться от использования ламп накаливания в 2008 году.

Как работают компактные люминесцентные лампы

Белое порошковое покрытие внутри стеклянной трубки КЛЛ содержит флуоресцентное покрытие. Когда электричество попадает в КЛЛ, пары ртути и аргона внутри колбы производят невидимый ультрафиолетовый (УФ) свет. Этот ультрафиолетовый свет реагирует с флуоресцентным покрытием, создавая белый видимый свет, который вы видите, когда включаете КЛЛ. Поскольку в передаче УФ-энергии происходит небольшая задержка, свет, производимый КЛЛ, начинает тускнеть и со временем становится ярче.

Компактные люминесцентные лампы содержат небольшое количество ртути. При использовании КЛЛ до 60% ртути внутри колбы может быть связано с флуоресцентным покрытием на стекле.

Опасно ли использование компактных люминесцентных ламп для здоровья?

В целом риски для здоровья очень низкие из-за присутствия небольшого количества ртути. Большинство ХЛ содержат менее 5 мг ртути. Для сравнения, это количество примерно равно количеству чернил на кончике шариковой ручки.

Лишь очень небольшое количество ртути содержится в виде паров в КЛЛ, и риск для здоровых людей любого возраста очень невелик.

При поломке компактной люминесцентной лампы

При разрыве КЛЛ пары ртути выделяются и быстро рассеиваются. Это дополнительно снижает вероятность любого значительного воздействия ртути.

Исследования показали, что при выходе из строя КЛЛ уровни ртути быстро рассеиваются при вентиляции помещения. К тому времени, как комната будет очищена и материалы для очистки будут собраны, небольшое количество ртути в парах будет достаточно разбавлено, чтобы больше не представлять опасности для здоровья.

Рекомендации по очистке от сломанных компактных люминесцентных ламп

Убедитесь, что маленькие дети быстро и безопасно покинули непосредственную зону сломанной КЛЛ.

Не делать:

  • Очищайте разбитое стекло голыми руками — используйте одноразовые пластиковые перчатки, чтобы избежать прямого контакта с порошковым покрытием на осколках стекла
  • используйте пылесос, который может улавливать и распространять ртуть.

Do:

  • Зачерпните обломки (используя плотную бумагу или картон) или используйте одноразовую щетку, чтобы аккуратно подметать куски.
  • Осторожно поместите кусочки стекла в контейнер, который можно запечатать, или обернуть бумагой, чтобы защитить кого-либо от возможных порезов битым стеклом.
  • Используйте липкую ленту и / или влажную ткань, чтобы стереть оставшиеся осколки стекла и / или порошки. Для ковров или тканей аккуратно удалите как можно больше стекла и / или порошкового материала, используя совок и липкую ленту. Если для удаления отходов требуется очистка поверхности пылесосом, убедитесь, что вакуумный мешок выброшен или канистру тщательно вытерли.
  • Утилизируйте оборудование для очистки (например, перчатки, кисть или бумагу) в запечатанных контейнерах. Всегда кладите сломанные КЛЛ в обычную мусорную корзину с зеленым верхом, а не в мусорную корзину.

Порядок сбора опасных грузов местным советом или округом

В отдельных столичных предприятиях и местных советах есть пункты приема вторичной переработки опасных грузов (внешние объекты).

Некоторые советы местного самоуправления открыли специальные центры сбора для утилизации КЛЛ.Эти специализированные станции сбора позволяют легко утилизировать:

  • старые мобильные
  • Лампы и лампы компактных люминесцентных ламп
  • картриджи для принтеров
  • бытовые сухие аккумуляторные батареи.

Свяжитесь с местным органом власти (внешний сайт), чтобы узнать, действует ли программа в вашем районе.

Когда специализированная коллекция недоступна

Большинство городских мусорных баков теперь отправляют предметы в зеленых контейнерах на свалку, а в мусорных баках с желтым верхом — в центры переработки.

Не помещайте КЛЛ в мусорное ведро домашнего хозяйства для сбора (обычно это контейнеры с желтым верхом). Поскольку КЛЛ могут сломаться во время транспортировки и загрязнить другие предметы, подлежащие вторичной переработке, они не считаются подходящими для мусорных баков, которые поставляются для отдельных домашних хозяйств.

Поместите сломанных КЛЛ в обычные домашние урны (обычно с зелеными крышками). Оберните использованные КЛЛ во избежание поломки и поместите их в обычную корзину для бытового мусора, когда специализированная станция сбора недоступна.

Дополнительная информация

Напишите по электронной почте в Управление гигиены окружающей среды или позвоните по телефону 9222 2000.

Помните

  • Компактные люминесцентные лампы содержат лишь небольшое количество ртути.
  • При очистке сломанной КЛЛ по-прежнему рекомендуется следовать инструкциям по безопасной очистке.

Благодарности

Общественное здравоохранение


Эта публикация предназначена только для образовательных и информационных целей.Это не замена профессиональной медицинской помощи.

Оставить комментарий