Стабилизатор переменного тока схема: Устройство стабилизации сетевого напряжения

Опубликовано в Разное
/
14 Июл 2021

Содержание

Симисторно-трансформаторный стабилизатор переменного напряжения — RadioRadar

В сельской местности, а иногда и в городах нередко случаются значительные понижения сетевого напряжения относительно номинального 230 В. Зачастую это приводит к отказам холодильников. Существенно падает эффективность работы с электроинструментом, тускнеет освещение. Для стабилизации напряжения сети при сохранении его формы автор в своё время применил релейно-трансформаторный стабилизатор [1], но от многолетней эксплуатации износились контакты установленных в нём реле. Было решено переработать стабилизатор, заменив электромагнитные реле симисторными ключами. Нагрузочная способность предлагаемого стабилизатора — 1840 В·А.

Прежде всего, рассмотрим возможные схемы стабилизаторов переменного напряжения на базе автотрансформатора. В устройстве по схеме, изображённой на рис. 1,а, компенсируют снижение сетевого напряжения (недопустимое превышение номинала наблюдается крайне редко), постепенно переводя вниз по схеме подвижный контакт переключателя SA1. При этом напряжение на каждой из обмоток автотрансформатора и на выходе стабилизатора приблизительно сохраняется, колеблясь в ограниченных пределах. В стабилизаторе, собранном по схеме рис. 1 ,б, сетевое напряжение постоянно подают на один из отводов обмотки автотрансформатора, а по мере снижения напряжения в сети подвижный контакт переключателя SA1 переводят вверх.

Рис. 1. Возможные схемы стабилизаторов переменного напряжения на базе автотрансформатора

 

Рассмотрим основные особенности приведённых вариантов.

В устройстве по схеме, изображённой на рис. 1,а, стабилизировано напряжение на каждой из секций обмотки, что позволяет использовать её секции II-IV в качестве стабильных источников сравнительно небольшого переменного напряжения, например, для питания низковольтных электроинструментов. Переключение отводов автотрансформатора (в реальной конструкции с помощью реле или симисторов) всегда, даже при работе стабилизатора на холостом ходу, происходит под индуктивной или активно-индуктивной нагрузкой, что неблагоприятно для коммутирующих устройств.

В устройстве по схеме рис. 1 ,б напряжение на секциях обмотки не стабилизировано. При отсутствии нагрузки, а это основная ситуация при работе на холодильник, переключение происходит в режиме холостого хода, износ контактов реле чисто механический.

Критерием выбора для автора послужило последнее различие между вариантами.

Отметим, что оба рассмотренных варианта станут пригодными и для компенсации повышения напряжения в сети, если выходной (на рис. 1,а) или входной (на рис. 1 ,б) провод перенести на другой отвод обмотки автотрансформатора. В своей практике автор столкнулся с вариантом стабилизатора, схема которого показана на рис. 1,в. При напряжении в сети меньше или равном номинальному он работает так же, как и в варианте на рис. 1 ,а. При превышении напряжением в сети номинального значения подвижный контакт переключателя SA1 фиксируют в верхнем по схеме положении, а переключатель SA2 переводят в положение 2.

Примем за основу схему, изображённую на рис. 1,б, и определим порядок расчёта коэффициентов трансформации для различных положений движка переключателя SA1. Зададим пределы изменения входного напряжения и допустимые колебания выходного. По результатам наблюдений на даче, для которой строился описываемый стабилизатор, напряжение в сети иногда опускалось до 150 В. Такому входному напряжению должно соответствовать выходное напряжение 200 В, при котором ещё работают все бытовые электроприборы. Поэтому коэффициент повышения напряжения при переключателе SA1 в положении 1 должен быть равен 200/150 = 1,33. Здесь и далее я умышленно не применяю термин «коэффициент трансформации», поскольку под ним понимают отношение числа витков первичной обмотки к числу витков вторичной. В данном случае логичнее использовать обратную величину — коэффициент повышения напряжения. 

Число отводов от обмотки автотрансформатора зависит от необходимой точности поддержания выходного напряжения. В результате нескольких пробных расчётов сделан вывод, что для сохранения его в пределах 210…240 В достаточно четырёх ступеней, в числе которых и прямое соединение нагрузки с сетью. Понижение напряжения в сети до 150 В при этом рассматривается, как аварийный случай, при котором напряжение на нагрузке падает до 200 В.

Можно показать, что для получения одинаковых пределов изменения выходного напряжения в каждом положении переключателя SA1 значения коэффициентов повышения в этих положениях должны представлять собой геометрическую прогрессию. Поэтому, если в положении 1 коэффициент повышения равен 1,33, он должен быть равным 1,1 в положении 3 и 1,21 — в положении 2. В положении 4 напряжение на выход поступает непосредственно из сети и коэффициент равен 1.

Построим график зависимости выходного напряжения от входного. Для этого на листе миллиметровки размерами не менее 250×250 мм начертим координатные оси в масштабе 1 мм/В и проведём из начала координат четыре прямые с тангенсами угла наклона 1; 1,1; 1,21 и 1,33. Выделим участки этих прямых, находящиеся между горизонталями, соответствующими выходному напряжению210 и 240 В. Из точек пересечения линий с наклоном 1,33, 1,21 и 1,1с горизонталью 240 В опустим вертикальные прямые до пересечения с ближайшими линиями с наклоном 1,21, 1,1 и 1. От точек пересечения этих наклонных линий с горизонталью 210 В проведём вверх аналогичные прямые.

На рис. 2 приведён фрагмент полученного рисунка. При входном напряжении более 220 В переключатель SA1 находится в положении 4, и выходное напряжение поступает на выход без изменения. При снижении напряжения сети до 210 В переключатель устанавливается в положение 3, коэффициент передачи возрастает до 1,1, а выходное напряжение скачком увеличивается до 231 В. При дальнейшем снижении напряжения сети примерно до 191 В выходное уменьшится до 210 В, переключатель будет установлен в положение 2, выходное напряжение вновь поднимется до 231 В. Аналогичный процесс произойдёт и при снижении входного напряжения до 173 В. При его снижении до 150 В выходное напряжение, как было сказано выше, опустится до 200 В.

Рис. 2. График зависимости выходного напряжения от входного

При повышении входного напряжения переключение происходит при достижении входным напряжением значений 180, 198 и 218 В, при этом выходное каждый раз снижается скачком от 240 до 218 В. Таким образом, при изменении сетевого напряжения от 158 до 240 В выходное поддерживается в пределах от 210 до 240 В.

Чтобы при колебаниях напряжения в сети около порогов переключения скачки не происходили слишком часто, необходим гистерезис. Описанный алгоритм переключения отводов обмотки обеспечивает его в достаточной мере. Нетрудно видеть, что при сохранении числа ступеней даже небольшое повышение точности поддержания выходного напряжения за счёт сужения петель гистерезиса приведёт к существенному уменьшению их ширины, что недопустимо. Поэтому для достижения большей точности необходимо увеличивать число ступеней изменения коэффициента. Отметим также, что рассуждения по выбору его значений справедливы и для устройств по схемам рис. 1,а и рис. 1 ,в.

Принципиальная схема стабилизатора изображена на рис. 3 , а схема его блока управления — на рис. 4. Автотрансформатор составлен из трёх одинаковых трансформаторов T1-T3 — ТПП319-127/220-50 [2], первичные обмотки которых соединены параллельно, а последовательное соединение вторичных обмоток обеспечивает требуемые коэффициенты повышения напряжения.

Рис. 3. Принципиальная схема стабилизатора

 

Рис. 4. Схема блока упраления стабилизатора

 

При установке переключателя SA1 (см. рис. 3) в положение «Обход» входное напряжение поступает прямо на выход, и никакие узлы устройства, кроме вольтметра PV1 и помехоподавляющей цепи R2C2, энергии от сети не потребляют. Этот режим соответствует отсутствию стабилизации выходного напряжения. В среднем положении переключателя SA1 все его контакты разомкнуты, поэтому напряжение на выход не поступает.

При установке переключателя SA1 в положение «Стаб.» начинает работать блок управления, получающий питание от трансформатора T4 — ТА1-127/220-50 [2]. Напряжение с двух его обмоток по 6 В, соединённых последовательно, выпрямляет мост VD2 и стабилизирует на уровне 5 В интегральный стабилизатор DA2. Из выходного напряжения стабилизатора резистивный делитель R7-R11 формирует образцовые напряжения для компараторов DA1.2-DA1.4, поступающие на их неинвертирующие входы. Для упрощения расчётов они приняты равными 1/100 напряжений, соответствующих серединам петель гистерезиса на рис. 2 — 2,14, 1,95 и 1,77 В.

Постоянное напряжение, пропорциональное входному, формирует из поступающего с обмотки 11-12 трансформатора T4 выпрямительный мост VD1. Его сглаживает конденсатор C3. На инвертирующие входы всех компараторов поступает часть этого напряжения, определяемая делителем R5R6R15.

Логику работы устройства в целом иллюстрирует таблица. При сетевом напряжении более 218 В значения напряжения на инвертирующих входах всех компараторов выше, чем на неинвертирующих, а на их выходах установлен низкий логический уровень напряжения. Сигнал с выхода компаратора DA1.2 инвертирует элемент DD1.1 и ещё раз инвертирует элемент DD2.1. Через эмиттерный повторитель на транзисторе VT1 он включает светодиод HL1 и одновременно поступает на излучающий диод оптрона U1. Открывается симистор VS1, напряжение сети поступает на выход стабилизатора.

Таблица

Uвx,B

Уровни (Н — высокий, L — низкий) на выходах элементов

Коэффициент повышения

Включён светодиод

Открыт симистор

DA1. 2

DA1.3

DA1.4

DD1.1

DD1.2

DD1.3

DD1.3

>218

L

L

L

Н

L

L

L

1

HL1

VS1

198…210

H

L

L

L

Н

L

L

1,1

HL2

VS2

180. ..191

H

Н

L

L

L

Н

L

1,21

HL3

VS3

<173

Н

Н

Н

L

L

L

Н

1,33

HL4

VS4

 

При снижении сетевого напряжения на выходах компараторов DA1.3 и DA1.4 один за другим устанавливаются высокие логические уровни. Выходные сигналы всех компараторов, превращённые простейшим логическим узлом на элементах «Исключающее ИЛИ» DD1.1-DD1.4 в позиционный код, через эмиттерные повторители на транзисторах VT2-VT4 включают излучающие диоды симисторных оптронов U2-U4. Оптроны, в свою очередь, включают соответственно симисторы VS2-VS4, и выходное напряжение остаётся в заданных пределах. С повышением напряжения в сети описанные процессы происходят в обратном порядке.

Между выходами элементов микросхемы DD1 и входами триггеров Шмитта микросхемы DD2 установлены RC-цепи, обеспечивающие задержку открывания очередного симистора относительно момента прекращения сигнала, разрешавшего открывание предыдущего. Это необходимо для предотвращения состояний, в которых одновременно открыты два симистора. Диоды VD4-VD7, включённые параллельно резисторам этих цепей, обеспечивают быстрое снятие разрешающего сигнала с симисторного оптрона в выключаемом канале. Длительность задержки открывания фотодинисторов оптронов U1-U4, которая должна гарантировано превышать половину периода напряжения сети, можно рассчитать по формуле

t3 ≈ R·C·ln(Uпит/(Uпит — Uпор)) = 330·0,047·ln(5/(5 — 3,3)) = 16,7 мс,

где R — сопротивление резистора цепи задержки, кОм; С — ёмкость конденсатора этой цепи, мкФ; Uпит=5 В — напряжение питания; Uпор = 3,3 В — типовое пороговое напряжение триггера Шмитта микросхемы HCF4093B при повышении входного напряжения на объединённых входах. Согласно паспортным данным этой микросхемы, допускается его разброс на ±0,7 В, поэтому при указанных номиналах резисторов и конденсаторов задержка может находиться в пределах от 12 до 24 мс. Если предположить, что реальный разброс вдвое меньше, задержка будет находиться в пределах от 14 до 20 мс, что уже более приемлемо, но требует контроля при налаживании устройства.

Чтобы исключить одновременное включение нескольких симисторов при переходных процессах, следующих за моментом подачи напряжения сети, введён узел задержки на детекторе понижения напряжения DA3. В момент подачи сетевого напряжения конденсатор C10 разряжен, за счёт диода VD3 транзистор VT5 закрыт и напряжение на его эмиттере близко к нулю. Излучающие диоды оптронов U1-U4 выключены.

По достижении напряжением на конденсаторе C10 значения около 1 В начинает работать микросхема DA3, её выходной транзистор открывается, напряжение на выходе становится равным нулю. Оно сохраняется таким до достижения напряжением на конденсаторе C10 значения 4,2 В, на что уходит около 200 мс, которых достаточно для завершения переходных процессов. В этот момент выходной транзистор микросхемы DA3 будет закрыт, а напряжение на базе и эмиттере транзистора VT5 скачком увеличится до близкого к напряжению питания. Оптроны заработают, будет открыт нужный симистор.

Во время сварочных работ в сети возникают сильные колебания напряжения, которые приводят, если не принять специальных мер, к очень частым переключениям симисторов. Для борьбы с этим явлением постоянная времени разрядки конденсатора C3 выбрана довольно большой — около 8 с. В результате при резком снижении входного напряжения переход на следующую ступень происходит примерно через 1 с, а кратковременные провалы во входном напряжении переключений не вызывают. В то же время постоянная времени зарядки конденсатора C3 невелика, и с повышением напряжения сети переключение произойдёт практически мгновенно. Такой способ «борьбы со сваркой» значительно проще применённого в [3] и эффективнее его, поскольку стабилизатор не выключается полностью, а продолжает реагировать на повышение напряжения в сети.

На схеме стабилизатора (см. рис. 3) показано также подключение к обмоткам контактов разъёма XS1, что позволяет использовать его для питания различных низковольтных потребителей. Вторичные обмотки трансформаторов ТПП319-127/220-50 рассчитаны на ток 8 А, чем и определяется указанная во врезке к статье предельная мощность нагрузки стабилизатора. Однако следует отметить, что она зависит и от свойств переключателя SA1, который должен позволять коммутировать указанный ток.

Автотрансформатор для стабилизатора можно изготовить самостоятельно, взяв за основу один или несколько трансформаторов питания от ламповых телевизоров [4-6]. Такие трансформаторы имеют обозначения, состоящие из букв ТС, дефиса и числа, соответствующего его мощности в ваттах.

Такой трансформатор после перемотки вторичных обмоток сможет обеспечить выходной ток стабилизатора, равный частному от деления его мощности на суммарное напряжение всех необходимых вторичных обмоток (23 + 25,3 + 27,6 » 76 В). А по выходному току можно определить максимальную мощность нагрузки стабилизатора.

Например, при использовании двух трансформаторов ТС-200 суммарной мощностью 400 Вт допустим выходной ток до 400/76 = 5,26 А, а максимальная мощность нагрузки (при выходном напряжении, равном номинальному в сети) — 230×5,26 = 1210 Вт. Таким образом, предельная мощность нагрузки стабилизатора в три раза превысит суммарную мощность использованных трансформаторов.

Имеющиеся на трансформаторах вторичные обмотки следует аккуратно смотать (они обычно намотаны поверх половин первичной), подсчитав при этом число витков накальной обмотки Nm намотанной самым толстым проводом. Напряжение этой обмотки под нагрузкой — 6,3 В, поэтому для вторичной обмотки на напряжение U число витков Nu можнонайти по формуле 

NU = Nн·U/6,3.

Если магнитопровод трансформатора П-образный (как у трансформатора ТС-200-2), каждую секцию вторичной обмотки следует разделить на две равные части, намотать их на разных кернах магнитопровода трансформатора и соединить половины последовательно согласно. При противофазном соединении суммарное напряжение будет равно нулю, и нужно будет поменять местами выводы любой из половин.

При трёх трансформаторах можно для упрощения намотать на каждом по одной из вторичных обмоток. Если предполагается использовать трансформаторы разной мощности, на наименее мощном из них следует намотать обмотку с наименьшим напряжением, а на наиболее мощном — с наибольшим.

Половины первичных обмоток (на разных кернах) также следует соединить согласно. Обязательно первый раз включайте изготовленный трансформатор в сеть через плавкую вставку. При неправильном соединении половин первичной обмотки она спасёт от возможного пожара.

Диаметр провода вторичных обмоток d в миллиметрах (без изоляции) можно найти по формуле 

d = 0,7·√I,

где I — ток вторичной обмотки, А.

Наиболее прочная изоляция у обмоточного провода ПЭВ-2, удобен также провод в шёлковой изоляции ПЭЛШО. Наматывают обмотку аккуратно, виток к витку, слои изолируют между собой прокладками из писчей бумаги. После намотки нужно собрать магнитопровод так, как он был собран ранее, и тщательно его стянуть винтами или обоймой — это уменьшит гудение.

Большинство элементов стабилизатора смонтированы на печатной плате размерами 120×85 мм, чертёж которой и схема расположения элементов на ней приведены на рис. 5. Все отверстия в плате расположены по сетке 2,5×2,5 мм. Для подключения внешних по отношению к плате цепей в неё впаяны контактные штыри от разъёмов серии 2РМ. Диаметр штырей — 1,5 мм для цепей симисторов и 1 мм — для остальных. К присоединяемым к ним проводам припаяны гнёзда от таких же разъёмов. Цвет проводов соответствует указанному на схемах рис. 3 и рис. 4, а контактные штыри для них промаркированы надетыми отрезками термоусаживаемой трубки соответствующего цвета.

Рис. 5. Чертёж печатной платы и схема расположения элементов на ней

 

На плате установлены импортные оксидные конденсаторы — аналоги К50-35. Конденсаторы C15-C18 (а также C1 и C2 на рис. 3) — металлоплёночные К73-17. Конденсаторы C11 — C14 нежелательно применять керамические, особенно если предполагается пользоваться стабилизатором при минусовой температуре. Здесь также подойдут конденсаторы К73-17, которые значительно термостабильнее керамических конденсаторов равной ёмкости.

Микросхему HCF4093BEY можно заменить другой 4093, 4093B в корпусе DIP14 или микросхемой К561ТЛ1, а счетверённый ОУ LM324N — на К1446УД3 или К1401УД2. В последнем случае нужно иметь в виду, что выводы питания микросхемы К1401УД2 расположены зеркально по отношению к микросхеме LM324N. Поэтому при установке на плату микросхемы К1401УД2 следует развернуть на 180о, не меняя рисунка печатных проводников. При использовании микросхемы К1446УД3 сопротивление резисторов R12-R14 следует уменьшить приблизительно на 20 % для сохранения ширины петель гистерезиса. Дело в том, что ОУ микросхемы К1446УД3 относятся к классу rail-to-rail, где максимальный и минимальный уровни выходного напряжения равны потенциалам соответственно плюсового и минусового выводов питания. В результате размах выходного напряжения несколько больше, чем у ОУ микросхем LM324N и К1401УД2.

Детектор понижения напряжения КР1171СП42 можно заменить на МСР100-450, МСР100-460 или МСР100-475 [7]. Вместо транзистора КТ3102ГМ допустимо установить КТ3102ЕМ. Выпрямительные мосты VD1, VD2, диоды VD3-VD7 — любые кремниевые малогабаритные. Резисторы R12-R18 следует использовать с допуском не хуже ±5 %.

Интересно, что в рассматриваемой конструкции набор элементов «Исключающее ИЛИ» К561ЛП2 можно заменить дешифратором К561ИД1. Входы 1, 2, 4 дешифратора следует подключить к выходам компараторов, а выходы 0, 1, 3, 7 — к цепям задержки.

Симисторы BTA16-600BW заменять другими нежелательно. Индекс W в их обозначении означает, что эти симисто-ры допускают увеличенную скорость нарастания напряжения между основными электродами, не выходя из закрытого состояния. Кроме того, симисторы этой серии имеют полностью изолированный от всех электродов металлический теплоотводящий фланец, что позволяет устанавливать их на не изолированный от корпуса стабилизатора теплоотвод. Если же использовать симисторы, фланец которых соединён с электродом 2, следует изолировать их общий теплоотвод от корпуса стабилизатора.

Тринисторные оптроны МОС3043M заменяются аналогичными, имеющими встроенный узел, гарантирующий открывание симистора в момент перехода мгновенного значения приложенного к нему напряжения через ноль [8]. Если используемые оптроны открываются большим, чем 5 мА, током управления, необходимо обратно пропорционально требуемому току изменить сопротивление резисторов R29-R32.

Как показал опыт, установка демпфирующих RC-цепей (например, R41C15) требуется больше для оптронов, чем для симисторов. Рекомендации по выбору параметров этих цепей приведены в [8] и [9].

Цифровой вольтметр переменного напряжения PV1 — готовый импортный, приобретён в интернет-магазине. Измеряемое напряжение частотой 50 Гц — от 70 до 500 В, погрешность — ± 1 %, габариты — 48x22x29 мм.

Трансформатор Т4 можно исключить, если использовать вместо него, выпрямителя на диодном мосте VD2 и стабилизатора напряжения DA2 готовый стабилизированный преобразователь напряжения сети в постоянное 5 В. Здесь может подойти зарядное устройство для сотового телефона. Следует, однако, иметь в виду, что стабильность выходного напряжения зарядных устройств обычно невысока, а само оно незначительно превышает 5 В. Необходимо убедиться, что это напряжение практически не изменяется при подключении к выходу зарядного устройства резистора сопротивлением 50…100 Ом и при изменении напряжения в сети от 120 до 250 В. Если это не так, на выход зарядного устройства следует установить микросхемустабилизатор напряжения 5 В с низким падением напряжения между входом и выходом (так называемый low drop стабилизатор), например, LM2931Z-5.0 или КР1158ЕН5 с любым буквенным индексом.

При исключении трансформатора T4 вместо напряжения 28 В на мост VD1 нужно подать напряжение сети, а сопротивление резисторов R3, R5, R6 увеличить приблизительно в восемь раз. Конденсатор C3 установить ёмкостью 3,3 мкФ на напряжение 400 В. Следует иметь в виду, что в результате этих переделок все элементы стабилизатора будут находиться под напряжением сети.

Трансформаторы T1 -T3 закреплены между двумя металлическими поддонами размерами 387x177x20 мм от разобранных устройств ЕС ЭВМ. На переднем, согласно рис. 6, поддоне смонтированы переключатель SA1, вольтметр PV1, держатель предохранителя FU1, светодиоды HL1-HL4, две пары выходных гнёзд XS2, XS3 и 12-контактный разъём XS1 ШР32П12НГ3 для подключения низковольтных потребителей. На заднем поддоне закреплён трансформатор T4.

Рис. 6. Монтаж устойства

 

В качестве теплоотвода для симисторов использован алюминиевый брусок сечением 10×25 мм, служащий распоркой, соединяющей поддоны. По нему тепло от симисторов отводится на корпус. К этой же стойке и другой аналогичной прикреплена печатная плата. Выводы симисторов следует припаивать к контактным площадкам на печатной плате лишь после установки симис-торов на теплоотвод, к которому прикреплена и печатная плата.

При налаживании стабилизатора сначала следует подключить к сети только трансформатор T4 и установить на движках подстроечных резисторов R8-R10 напряжения соответственно 2,14; 1,95 и 1,77 В относительно общего провода, а на резисторе R15 — 1/100 текущего значения напряжения в сети. Используя лабораторный автотрансформатор (ЛАТР), проверить порядок включения светодиодов HL1-HL4 в соответствии с приведённой ранее таблицей. Пороги переключения коэффициентов повышения напряжения должны соответствовать указанным при описании рис. 2. При необходимости можно поточнее отрегулировать подстроечными резисторами R8-R10 пороги переключения, а для изменения ширины петли гистерезиса какого-либо компаратора подобрать его входной резистор (R12-R14). Ширина этой петли прямо пропорциональна сопротивлению соответствующего резистора.

Целесообразно проверить исправность цепей задержки открывания симисторов (элементы R20-R23, C11 — C14, VD4-VD7), отключив мост VD1 от трансформатора T4 и подключив к точке соединения резисторов R6 и R15 цепь, схема которой приведена на рис. 7. При замкнутом выключателе SA2 напряжение на конденсаторе C19 плавно нарастает от нуля до 2,5 В, при разомкнутом — спадает до нуля. Следует проверить осциллографом со ждущей развёрткой наличие задержки спадающего перепада импульса на выходе каждого триггера Шмитта (DD2. 1 — DD2.4) относительно нарастающего перепада импульса на выходе соответствующего элемента «Исключающее ИЛИ» (DD1.1-DD1.4). На осциллограмме рис. 8, где скорость развёртки 2 мс/дел., эта задержка равна 15,5 мс при допустимых пределах 14…20 мс.

Рис. 7. Схема цепи

 

Рис. 8. Осциллограмма

 

После этого можно восстановить подключение симисторов к трансформаторам (перед первым включением установив в цепь электрода 2 каждого симистора плавкую вставку на 5 А), подключить нагрузку мощностью 100…200 Вт и проверить показанную на рис. 2 зависимость выходного напряжения от входного. При эксплуатации стабилизатора можно оперативно регулировать подстроечным резистором R6 интервал изменения выходного напряжения, например, установить его 200…230 В.

Полезные советы по конструктивному оформлению стабилизатора, обеспечивающему его пожарную безопасность, можно найти в [3].

Как при налаживании, так и во время эксплуатации стабилизатора следует помнить, что при резком уменьшении напряжения в сети переключение стабилизатора происходит с весьма заметной задержкой — около секунды на каждую ступень.

Литература

1. Бирюко

Как выбрать стабилизатор напряжения?

Как выбрать стабилизатор напряжения?

Прежде чем выбрать стабилизатор напряжения переменного тока, нужно понять, что это за электротехнический аппарат, для чего он нужен. Принцип действия устройства основан на работе автотрансформатора. В зависимости от того, повышенное или пониженное напряжение в линии электропередач, автотрансформатор при помощи платы управления понижает или повышает выходное напряжение до 220 В в однофазном аппарате и до 380 В в трёхфазном, с точностью от 0,5 % до 7 %.

Повышение или понижение параметров напряжения происходит благодаря включению определенной обмотки у трансформатора с помощью коммутационных ключей у электронных стабилизаторов или установки обмотки трансформатора токосъёмного контактора у электромеханического стабилизатора.

Аппарат приводит к стандартному значению напряжение (220 В или 380 В) только от стационарной линии электропередач, с определённой погрешностью.

В сетевом проводе частота тока равна 50 Гц, а форма напряжения представлена в виде волны (чистая синусоида). Стабилизатор переменного тока защищает технику от короткого замыкания, а некоторые модели — и от последствий грозы. Стабилизатор напряжения нельзя устанавливать в цепи после бытового электрогенератора.

На выходе у бензинового или дизельного генератора форма напряжения только приближена к синусоиде, но она имеет пилообразные всплески, частота может отличаться от 50 Гц (от 48 до 52 Гц), напряжение — варьировать в определённом диапазоне. Ток от генератора можно подавать практически на все электроприборы напрямую, за исключением котлов отопления, циркуляционных насосов системы отопления, дорогой аудио- и видеотехники и другой аппаратуры, у которой высокие требования к качеству напряжения. Перед такими приборами можно поставить ИБП оn-line типа, который за счёт двойного преобразования формирует на выходе чистую синусоиду. Если установить стабилизатор напряжения после генератора, то он рано или поздно сломается и перестанет исправлять напряжение, поступающее от электрогенератора.

Ток от генератора нужно заводить в дом в обход или после стабилизатора, либо через байпас.

Исключение — инверторные генераторы, с их помощью получают переменный ток, который сравним по качеству с током от стационарной сети. После него не нужны стабилизация или исправление формы напряжения.

Существует только одна модель стабилизатора, который может менять форму напряжения от генератора и стабилизировать напряжение после электрогенератора, — аппарат серии СДП-1/1-3-220. Он сделан на основе ИБП оn-line типа и идеально стабилизирует ток как от генератора, так и от стационарной сети, кроме стабилизации напряжения, он не пропускает высокочастотные импульсы.

К стабилизатору нельзя подключать сварочный аппарат. Если в вашей электрической сети напряжение отличается от 220 В, но нужно работать со сварочным аппаратом, то можно применить ЛАТР — электромеханический автотрансформатор. Следует вручную установить необходимое значение напряжения, но при этом следить, чтобы в сети оно не менялось, иначе будет изменяться и на выходе после ЛАТР, что может привести к поломке техники, подключённой к автотрансформатору.

Первым шагом при выборе стабилизатора является определение количества фаз. Если к дому подходит 2 провода (фаза, нейтраль) — это признак однофазной сети, если 4 провода (три фазы, одна нейтраль) — трёхфазной сети. Соответственно, на однофазную сеть нужно устанавливать однофазный прибор, на трёхфазную — трёхфазный стабилизатор переменного тока.

Если вы хотите защитить все электрические приборы в доме, то стабилизаторы устанавливают сразу после счётчика электроэнергии и автоматов защиты по току. Если нет потребности в стабилизации напряжения во всём помещении, то можно приобрести аппараты небольшой мощности перед телевизором, котлом отопления, насосом, холодильником или микроволновой печи. Очень часто в частные дома заведена трёхфазная сеть с напряжением 380 В, а по дому разведены три фазы по 220 В, тогда рационально установить 3 однофазных стабилизатора. Если нужно защитить трёхфазный электроприбор (котёл, двигатель, станок), то лучше использовать 1 трёхфазный прибор или 3 однофазных стабилизатора на коммутационной стойке с БКС (блоком контроля сети).

Качественные трёхфазные стабилизаторы в одном корпусе изготавливают итальянская фирма Ortea под ТМ Orion и Orion Plus, российская компания «Штиль» выпускает приборы, рассчитанные на небольшую мощность (3600, 6000 и 9000 ВА, серия R-3). Трёхфазный стабилизатор в одном блоке содержит три однофазных, по сути, это 3 однофазных аппарата. Российские производители Progress, Lider, «Штиль» выпускают трёхфазную технику по следующей схеме: три однофазных стабилизатора, объединённых общим блоком или стойкой.

После того, как определено количество фаз, нужно выбрать необходимую мощность. Оптимальный вариант: покупатель знает, какая мощность должна быть у прибора, например, известна общая разрешённая мощность подключения дома к магистральной линии электропередач.

Второй вариант определения мощности: исходя из силы тока входных автоматов. Силу тока в амперах нужно умножить на 220 В, и получим мощность в Вт. В трёхфазной сети мощность следует умножить на 3, получится суммарная трёхфазная мощность.

Третий способ: вычислить суммарную мощность всей бытовой техники в помещении. При подсчёте учитывается фактор пусковых токов. Пусковые токи дает техника, в составе которой есть электрический двигатель, насос или компрессор. Двигатель при запуске потребляет мощность в 2-6 раз больше номинальной, следовательно, мощность этих электроприборов нужно считать с учетом пусковых токов. Пусковые токи длятся не более секунды, но они существенно влияют на нагрузку, и пренебрегать ими при выборе стабилизатора ни в коем случае нельзя.

Краткий перечень электроприборов, у которых есть пусковые токи:

  • холодильник (примерно 1 кВт при запуске, номинальная мощность — 200–300 Вт) — рекомендуются стабилизаторы Штиль R1200, Progress 1500T;
  • микроволновая печь (1,6 — 2 кВт) — можно установить Progress 2000T, Штиль R2000;
  • стиральная, посудомоечная машины (2,5 кВт) — стабилизатор мощностью 3000 ВА;
  • глубинные насосы, насосные станции (2,5 — 3 кВт) — подойдет стабилизатор мощностью 5000 ВА;
  • телевизор, кинескопный тип (300 Вт) — Штиль R600;
  • телевизор ЖК (250 — 300 Вт) — Штиль R400 или R600;
  • аудио- и видеотехника — высокоточные стабилизаторы «Штиль» серии SPT, Progress серии L, SL;
  • котлы отопления (150-200 Вт) — быстродействующие стабилизаторы на симисторах Штиль R400ST, R600ST и R1200SPT.

Следующий шаг при выборе стабилизатора — уточнение проблемы с напряжением в магистральной сети.

Если отклонение параметров от нормы небольшое (входящее напряжение находится в границах 155 — 260 В), то устанавливают базовые стабилизаторы «Штиль» R серии, Progress T серии, Lider W-30, Volter — Ш серии. Когда напряжение слишком низкое или высокое, то следует рассмотреть аппараты специализированных серий: Progress TR (Псков), Lider W-50, Volter ШН или Ш.

Если наблюдается мерцание света, или в помещении много дорогой и требовательной к качеству напряжения техники, то нужно рассматривать стабилизаторы напряжения с высокой точностью работы и небольшой погрешностью: Progress серий L или SL, Lider серий SQ или SQ-I, Volter серий ПТ или ПТТ.

Если в доме установлено большое количество техники с пусковыми токами: глубинные насосы, холодильники, мойка Kohler и т.д., то рекомендуем рассмотреть стабилизаторы, выдерживающие большие перегрузки по пусковым токам. К таким аппаратам относят устройства Progress серий L, SL и SL-20, в которых установлено 2 трансформатора, благодаря чему они могут выдерживать перегрузку в размере 400 %.

Все серии украинских стабилизаторов Volter имеют возможность выдерживать перегрузку до 300 %. Стабилизаторы, изготовленные на заводе Varcon (Москва), могут кратковременно работать с перегрузкой, превышающей номинальную мощность в 7 раз.

После того, как были описаны алгоритмы подбора мощности стабилизатора напряжения, приведены примеры подбора моделей аппаратов, нужно определиться, где он будет установлен: в отапливаемом, неотапливаемом помещении или на улице. При температуре ниже нуля могут работать украинские стабилизаторы Volter (до −40 ˚С), итальянские однофазные стабилизаторы Vega (до −25 ˚С), трёхфазные итальянские аппараты Orion и Orion Plus (до −25 ˚С).

Если требуется установить аппарат на улице, то лучше приобрести металлический шкаф с вентиляционными отверстиями.

Однако внутрь не должны попасть пыль и вода. Лучше всего установить в шкафу стабилизаторы Volter, они лучше других работают в сложных климатических условиях. Остальные производители качественной техники изготавливают стабилизаторы для работы при температуре выше нуля, но их можно устанавливать в неотапливаемом помещении.

Если вы уезжаете зимой с дачи, то стабилизатор лучше отключить и утеплить непыльным теплоизоляционным материалом, чтобы вентиляторы не забились пылью. Когда вы будете приезжать на дачу в зимний период, то сначала нужно просушить и прогреть помещение, а затем включить аппарат. Если вы включаете обогревательные приборы, то лучше включать электропитание через байпас, а после прогрева переключить байпас на работу через стабилизатор напряжения.

Есть второй способ эксплуатации стабилизаторов при температуре ниже нуля, не приспособленных для этого: аппарат должен всегда находиться под нагрузкой и в помещении с минимальной циркуляцией воздуха. Элементная база и трансформатор будут прогревать воздух внутри стабилизатора напряжения, также рядом со стабилизатором можно разместить небольшой нагревательный элемент или мощную лампу накаливания.

Какой тип стабилизатора напряжения выбрать? Есть два типа аппаратов: электромеханические и электронные, у каждого типа есть свои плюсы и минусы.

Принцип работы электромеханических аппаратов заключается в перемещении токосъёмного контактора по обмотке автотрансформатора. Достоинства данного типа агрегатов:

  • высокая точность работы (+/- 0,5 %),
  • плавность стабилизации,
  • надёжность,
  • работа при температуре ниже 0 ˚С,
  • выдерживают перегрузку до 200 % от номинальной мощности.

Их недостатки:

  • меньшая скорость срабатывания по сравнению с электронными стабилизаторами,
  • износ токосъёмных контакторов (периодически их нужно будет менять, но замену можно произвести быстро и недорого).

Также «слабым звеном» электромеханического стабилизатора является сервопривод (электромотор). Его замена не затруднительна, и ломается он крайне редко. Надёжные электромеханические стабилизаторы выпускает итальянская компания Ortea под торговыми марками Vega, Orion и Orion Plus.

Электронные стабилизаторы напряжения переменного тока

Обмотки автотрансформатора включаются и выключаются с помощью полупроводниковых элементов симисторов или тиристоров, у более дешёвых моделей — с помощью электронных реле. Их достоинства: высокая скорость срабатывания за счет работы полупроводниковых ключей, долговечность ключей, в конструкции нет механических узлов, испытывающих износ. Недостатки: ступенчатая стабилизация, чувствительность к условиям работы полупроводниковых элементов.

По принципу установки можно выделить три типа стабилизаторов: напольные; напольные с возможностью крепления на стену; напольные с возможностью установки на коммутационную стойку или на стену.

К стабилизаторам можно приобрести дополнительные аксессуары: байпас, коммутационную стойку и БКС. Байпас — это устройство, с помощью которого можно переключать переменный ток: он идёт через стабилизатор напряжения или в обход, ток переключается с помощью ручного тумблера на байпасе. Данное устройство нужно применять, когда требуется пустить ток в обход стабилизатора при электроснабжении от генератора.

Второй пример: работа со сварочным аппаратом. В этом случае байпас даёт возможность проводить какие-либо работы с стабилизатором, профилактический ТО, ремонт или замену проводки без коммутации. Коммутационные стойки применяют для трёхфазной сети, они обеспечивают удобство монтажа 3 стабилизаторов (каждый на свою фазу, у стойки общая клеммная колодка). Есть 4 вида стоек:

  • пустая — для монтажа и коммутации;
  • с байпасом;
  • с байпасом и БКС;
  • с БКС без байпаса. БКС — блок контроля сети, который отключает все стабилизаторы, если прекращается электроснабжение на одной фазе, или если параметры напряжения выходят за границы стабилизации. БКС нужен, когда к трёхфазному стабилизатору подключают трёхфазную нагрузку в 380 В: станок, насос, печку. Для этого вида аппаратуры требуется постоянное питания по всем трём фазам, прерывание снабжения хотя бы на одной из фаз исключено. Для частных домов, к которым подводятся три фазы, но внутри дома разводка выполнена по однофазной схеме, установка БКС не требуется. Залогом долгой работы стабилизатора напряжения являются следующие условия:
  • соответствие температурного режима окружающей среды,
  • работа без перегрузок по мощности,
  • правильно подобранный тип стабилизатора (соответствует условиям параметров напряжения в стационарной электросети).

Главный показатель качества и надёжности — оптимальная цена стабилизатора напряжения. Если показатели работы аппарата указаны высокие, но при этом он отличается низкой стоимостью, то значит произведен в Китае, даже если в графе «Производитель» указана другая страна. Китайские стабилизаторы заказывают российские компании, и их поставляют исключительно в СНГ, требований по качеству нет, кроме одного: минимально возможная цена. Качественную технику для стабилизации напряжения выпускают в России, Италии и Украине, дешёвую — в Китае. В других странах нет заводов по производству стабилизаторов, есть лишь торговые марки, которые там зарегистрированы. Качественный стабилизатор напряжения переменного тока — это основной элемент безопасности вашего дома, электрической техники, залог спокойной и комфортной жизни. Не экономьте на безопасности!


Типы стабилизаторов напряжения

 

Стабилизаторы со ступенчатым регулированием

Принцип работы

Основные детали стабилизаторов этого типа — автотрансформатор состоящий из нескольких обмоток и устройство коммутации, которое переключает эти обмотки. 

На входе устройства находится электронная плата, которая анализирует сетевое напряжение и управляет переключателями, которые подают напряжение на выход от соответствующего вывода обмотки автотрансформатора.

Количество обмоток и , соответственно, ступеней может варьироваться от 4 до 9. Чем больше ступеней, тем точнее регулируется напряжение.

Быстродействие ступенчатых СН достигает 5-7 мсек. 

Переключателями могут служить:

  • электромеханические реле
  • тиристоры, симисторы

 Преимущество реле — отсутствие искажения формы напряжения, недостаток — ограниченная долговечность

Преимущества электронных  переключателей — долговечность, недостатки — искажение формы напряжения, чувствительность к помехам в сети.

Недостатки 

Так как СН этого типа регулируют напряжение ступенями, то на его выходе напряжение колеблется в определённых пределах, например, для стабилизатора с напряжение 220 В+/- 8% на выходе получим 203-237 В.

Это хорошо видно на графике:

 

Это основной недостаток ступенчатых ступенчатых преобразователей.

Основные преимущества:

  • небольшой размер
  • невысокая стоимость
  • возможность работы с перегрузкой
  • широкий диапазон входного напряжения 
  • практически бесшумная работа

Все эти достоинства оценили потребители, и сейчас большинство пользуется именно этими ПН.

Схема ступенчатого стабилизатора

Схема релейного стабилизатора:

Схема тиристорного (симисторного) стабилизатора

 

Для увеличения точности регулирования напряжения применяют двухкаскадные схемы — первая грубая регулировка и второй каскад — для увеличения точности.

 Вот как выглядит такой стабилизатор внутри:

Электромеханические стабилизаторы напряжения (сервоприводные)

Принцип работы

Главные детали в данных стабилизаторах — автотрансформатор и электромеханический переключатель, сервопривод.

Сервопривод представляет из себя бегунок, который движется по по виткам трансформатора и снимает с них нужное напряжение.

Недостатки

  • низкая надёжность
  • небольшой срок службы
  • низкая скорость реакции на изменение напряжения
  • шум при переключении

В качестве съёмного бегунка используют угольные щётки, поэтому срок службы и надёжность оставляют желать лучшего.

Во время работы слышен характерны звук искрения в щёточном механизме.

Скорость реакции примерно, 1 с на 10% изменения напряжения от номинала, поэтому при больших и резких скачках, например, работе сварочного аппарата, данный тип СН не сможет корректно стабилизировать напряж

Регуляторы напряжения генератора переменного тока — Инструментальные средства

Поскольку напряжение от генератора переменного тока меняется при изменении выходной нагрузки и коэффициента мощности, необходима схема регулятора напряжения, чтобы обеспечить непрерывность желаемого выходного напряжения.

Назначение

Назначение регулятора напряжения — поддерживать выходное напряжение генератора на желаемом уровне. При изменении нагрузки на генератор переменного тока напряжение также будет меняться. Основная причина такого изменения напряжения — изменение падения напряжения на обмотке якоря, вызванное изменением тока нагрузки.В генераторе переменного тока есть падение IR и падение IX L , вызванное переменным током, протекающим через сопротивление и индуктивность обмоток.

Падение IR зависит только от величины изменения нагрузки. Падение IX L зависит не только от изменения нагрузки, но и от коэффициента мощности схемы. Следовательно, выходное напряжение генератора переменного тока изменяется как при изменении нагрузки (т. Е. Тока), так и при изменении коэффициента мощности. Из-за изменений напряжения, из-за изменений нагрузки и изменения коэффициента мощности генераторы переменного тока требуют некоторых вспомогательных средств регулирования выходного напряжения.

Описание блок-схемы

На рисунке ниже показана типичная блок-схема регулятора напряжения генератора переменного тока. Этот регулятор состоит из шести основных схем, которые вместе регулируют выходное напряжение генератора переменного тока от холостого хода до полной нагрузки.

Рисунок: Блок-схема регулятора напряжения

Цепь датчика

Чувствительная цепь определяет выходное напряжение генератора переменного тока. Когда генератор нагружен или разгружен, выходное напряжение изменяется, и чувствительная схема выдает сигнал об этих изменениях напряжения. Этот сигнал пропорционален выходному напряжению и отправляется в схему сравнения.

Ссылочная схема

Контрольная схема поддерживает постоянный выходной сигнал для справки. Это задание является желаемым выходным напряжением генератора переменного тока.

Схема сравнения

схема сравнения сравнивает электрический опорное напряжение к измеренному напряжению и обеспечивает сигнал ошибки. Этот сигнал ошибки представляет собой увеличение или уменьшение выходного напряжения.Сигнал отправляется в схему усиления.

Схема усиления

Схема усиления, которая может быть магнитным усилителем или транзисторным усилителем, принимает сигнал из схемы сравнения и усиливает входной миллиампер на выходе усилителя, который затем отправляется на выход сигнала или схему поля.

Цепь выходного сигнала

Схема вывода сигнала, которая управляет возбуждением поля генератора переменного тока, увеличивает или уменьшает возбуждение поля для повышения или понижения выходного напряжения переменного тока.

Цепь обратной связи

Цепь обратной связи принимает часть выходного сигнала схемы вывода сигнала и подает ее обратно в схему усиления. Это делается для предотвращения превышения или занижения желаемого напряжения за счет замедления отклика схемы.

Изменение выходного напряжения

Рассмотрим увеличение нагрузки генератора и, как следствие, падение выходного напряжения. Во-первых, чувствительная схема определяет уменьшение выходного напряжения по сравнению с опорным и снижает его входной сигнал в схему сравнения.Поскольку опорная схема всегда постоянна, схема сравнения вырабатывает сигнал ошибки из-за разницы между измеренным напряжением и опорным напряжением.

Возникающий сигнал ошибки будет иметь положительное значение, величина которого зависит от разницы между измеренным и опорным напряжением. Этот выходной сигнал схемы сравнения будет затем усилен схемой усилителя и отправлен в схему вывода сигнала. Затем схема вывода сигнала увеличивает возбуждение поля в генераторе переменного тока. Это увеличение возбуждения поля приводит к увеличению генерируемого напряжения до желаемого уровня.

Если нагрузка на генератор будет уменьшена, выходное напряжение машины увеличится. Тогда действия регулятора напряжения будут противоположны действию при понижении выходного напряжения. В этом случае схема сравнения вырабатывает отрицательный сигнал ошибки, величина которого снова зависит от разницы между измеренным напряжением и опорным напряжением. В результате схема вывода сигнала будет уменьшать возбуждение поля в генераторе переменного тока, вызывая снижение генерируемого напряжения до желаемого значения.

Введение, Генерация переменного тока, переменного и постоянного тока и трансформаторы

Введение

Электрическая цепь — это полный проводящий путь, по которому электроны текут от источника к нагрузке и обратно к источнику. Однако направление и величина потока электронов зависят от типа источника. В «Электротехника» в основном есть два типа источника напряжения или тока (электрическая энергия), которые определяют вид цепи, и они есть; Переменный ток (или напряжение) и постоянный ток .

В следующих двух статьях мы сосредоточимся на переменном токе и рассмотрим темы от , что такое переменный ток до , формы сигналов переменного тока и так далее.

Цепи переменного тока

Цепи переменного тока, как следует из названия («Переменный ток»), — это просто цепи, питаемые от переменного источника напряжения или тока. переменного тока или напряжения — это тот, в котором значение либо напряжения, либо тока изменяется около определенного среднего значения и периодически меняет направление.

Большинство современных бытовых и промышленных устройств и систем питаются от переменного тока. Все подключаемые к сети электроприборы на базе постоянного тока и устройства на базе аккумуляторных батарей технически работают от переменного тока, поскольку все они используют некоторую форму постоянного тока, полученную от переменного тока, для зарядки своих батарей или питания системы. Таким образом, переменный ток — это форма, по которой мощность передается в сеть.

Схема переменного тока возникла в 1980-х годах, когда Тесла решил решить проблему неспособности генераторов постоянного тока Томаса Эдисона на больших расстояниях.Он искал способ передачи электроэнергии с высоким напряжением, а затем использовал трансформаторы для повышения или понижения его, что может потребоваться для распределения, и, таким образом, смог минимизировать потери мощности на большом расстоянии, что было основной проблемой Direct Текущий в то время.

Переменный ток и постоянный ток (переменный и постоянный)

AC и DC различаются по-разному от поколения к передаче и распределения, но для простоты мы сохраним сравнение их характеристик в этом посте.

Основное различие между переменным током и постоянным током, которое также является причиной их различных характеристик, заключается в направлении потока электрической энергии. В постоянном токе электроны движутся в одном направлении или вперед, в то время как в переменном токе электроны периодически меняют направление потока. Это также приводит к изменению уровня напряжения, когда он переключается с положительного на отрицательный в соответствии с током.

Ниже приведена сравнительная таблица, чтобы выделить некоторые различия между переменным и постоянным током .Другие различия будут выделены, когда мы углубимся в изучение цепей переменного тока.

Основание для сравнения

переменного тока

постоянного тока

Мощность передачи энергии

Путешествует на большие расстояния с минимальными потерями энергии

Большое количество энергии теряется при передаче на большие расстояния

Основы поколения

Вращение магнита по проволоке.

Устойчивый магнетизм вдоль проволоки

Частота

Обычно 50 Гц или 60 Гц в зависимости от страны

Частота равна нулю

Направление

Периодически меняет направление на противоположное при прохождении через контур

Это устойчивый постоянный поток в одном направлении.

Текущий

Его величина меняется со временем

Постоянная звездная величина

Источник

Все виды генераторов переменного тока и сети

Элементы, батареи, преобразование из переменного тока

Пассивные параметры

Импеданс (RC, RLC и т. Д.)

Только сопротивление

Коэффициент мощности

Лежит между 0 и 1

Всегда 1

Форма сигнала

Синусоидальная, трапецеидальная, треугольная и квадратная

Прямая линия, иногда пульсирующая.

Базовый источник переменного тока (генератор переменного тока с одной катушкой)

Принцип для генерации переменного тока прост. Если магнитное поле или магнит вращается вдоль стационарного набора катушек (проводов) или вращается катушка вокруг стационарного магнитного поля, переменный ток генерируется с помощью генератора переменного тока (генератора переменного тока).

Самая простая форма генератора переменного тока состоит из проволочной петли, которая механически вращается вокруг оси, находясь между северным и южным полюсами магнита.

Обратите внимание на изображение ниже.

Когда катушка якоря вращается в магнитном поле, создаваемом магнитами северного и южного полюсов, магнитный поток через катушку изменяется, и заряды, таким образом, проталкиваются через провод, создавая эффективное напряжение или индуцированное напряжение. Магнитный поток через петлю зависит от угла петли по отношению к направлению магнитного поля. Рассмотрим изображения ниже;

Из изображений, показанных выше, мы можем сделать вывод, что определенное количество линий магнитного поля будет обрезано при вращении якоря, количество «обрезанных линий» определяет выходное напряжение .С каждым изменением угла поворота и результирующим круговым движением якоря относительно магнитных линий также изменяется величина «перерезания магнитных линий», следовательно, изменяется и выходное напряжение. Например, линии магнитного поля, обрезанные под нулевым градусом, равны нулю, что делает результирующее напряжение равным нулю, но при 90 градусах почти все линии магнитного поля обрезаются, таким образом, максимальное напряжение в одном направлении генерируется в одном направлении. То же самое относится к 270 градусам, но только в обратном направлении.Таким образом, возникает результирующее изменение напряжения при вращении якоря в магнитном поле, что приводит к формированию синусоидальной формы волны . Результирующее индуцированное напряжение, таким образом, имеет синусоидальную форму с угловой частотой ω, измеряемой в радианах в секунду.

Наведенный ток в приведенной выше схеме определяется уравнением:

I = V / R

Где V = NABwsin (вес)

Где N = Скорость

A = Площадь

B = Магнитное поле

w = Угловая частота.

Настоящие генераторы переменного тока, очевидно, сложнее этого, но они работают на тех же принципах и законах электромагнитной индукции, которые описаны выше. Переменный ток также генерируется с помощью определенных типов преобразователей и схем генераторов, которые можно найти в инверторах.

Трансформаторы

Принципы индукции, на которых основан переменный ток, не ограничиваются только его производством, но также и его передачей и распределением .Как и в то время, когда переменный ток приходил в расчет, одной из основных проблем было то, что постоянный ток не мог передаваться на большие расстояния, поэтому одной из основных проблем, которую необходимо было решить, чтобы переменный ток стал жизнеспособным, была возможность для безопасной передачи генерируемых высоких напряжений (KV) потребителям, которые используют напряжения в диапазоне V, а не KV. Это одна из причин, по которой трансформатор описывается как один из основных компонентов переменного тока, и о нем важно говорить.

В трансформаторе две катушки соединены таким образом, что, когда к одной подается переменный ток, он индуцирует напряжение в другой.Трансформаторы — это устройства, которые используются для понижения или повышения напряжения, подаваемого на одном конце (первичная обмотка), для создания более низкого или более высокого напряжения соответственно на другом конце (вторичная обмотка) трансформатора. Наведенное напряжение во вторичной обмотке всегда равно напряжению, приложенному к первичной обмотке, умноженному на отношение количества витков вторичной обмотки к первичной обмотке.

Трансформатор, являющийся понижающим или повышающим трансформатором, таким образом, зависит от отношения числа витков вторичной катушки к числу витков проводника первичной обмотки.Если на первичной обмотке на больше витков по сравнению с вторичной, трансформатор понижает напряжение , но если первичная обмотка имеет меньшее количество витков по сравнению с вторичной обмоткой, трансформатор увеличивает напряжение применяется на первичной.

Трансформаторы сделали распределение электроэнергии на большие расстояния очень возможным, рентабельным и практичным. Чтобы уменьшить потери при передаче, электроэнергия передается от генерирующих станций с высоким напряжением и низким током, а затем распределяется по домам и офисам с низким напряжением и большим током с помощью трансформаторов.

Так что на этом мы остановимся, чтобы не перегружать статью слишком большим количеством информации. Во второй части этой статьи мы обсудим формы сигналов переменного тока и рассмотрим некоторые уравнения и расчеты. Следите за обновлениями.

Схема преобразователя постоянного тока

В современную эпоху почти каждая бытовая электроника работает на постоянном токе (DC), но мы получаем переменный ток (AC) от электростанций по линиям передачи, потому что переменный ток может передаваться более эффективно, чем постоянный ток в более низкая стоимость.Таким образом, каждое устройство, которое работает от постоянного тока, имеет схему преобразователя переменного тока в постоянный ток . Ранее мы создали зарядное устройство для сотового телефона на 5 В, которое также имеет схему преобразователя переменного тока в постоянный.

Существует два типа преобразователей, широко используемых для разговора переменного тока в постоянный.

One — это традиционный линейный преобразователь на основе трансформатора , в котором используются простой диодный мост, конденсатор и регулятор напряжения. Простой диодный мост может быть построен либо с одним полупроводниковым устройством, таким как DB107, либо с 4 независимыми диодами, например 1N4007.Другой тип преобразователя — это SMPS или импульсный источник питания , в котором используется высокочастотный небольшой трансформатор и импульсный стабилизатор для обеспечения выхода постоянного тока.

В этом проекте мы обсудим конструкцию на основе традиционного трансформатора , в которой используются простые диоды и конденсатор для преобразования переменного тока в постоянный ток и дополнительный регулятор напряжения для регулирования выходного постоянного напряжения. Проектом будет преобразователь AC-DC с использованием трансформатора с входным напряжением 230 В и выходом 12 В 1A .

Необходимые компоненты

1. Трансформатор с номиналом 1 А 13 В

2,4 шт 1N4007 Диоды

3.A 1000 мкФ Электролитический конденсатор с номиналом 25 В.

4. несколько одножильных проводов

5. Макетная плата

6.LDO или линейный регулятор напряжения в соответствии со спецификацией (здесь используется LM2940).

7. Мультиметр для измерения напряжения.

Принципиальная схема и пояснения

Схема преобразователя AC-DC проста.Трансформатор используется для понижения напряжения с 230 В переменного тока до 13 В переменного тока.

Здесь используются четыре выпрямительных диода общего назначения 1N4007 для защиты входа переменного тока. 1N4007 имеет пиковое повторяющееся обратное напряжение 1000 В со средним выпрямленным прямым током 1 А. Эти четыре диода используются для преобразования выходного напряжения 13 В переменного тока через трансформатор. Диоды используются для изготовления мостового преобразователя, который является важной частью схемы преобразования переменного тока в постоянный. Чтобы узнать больше о схеме мостового выпрямителя, перейдите по ссылке.

Конденсатор фильтра C1 добавлен после мостового преобразователя для сглаживания выходного напряжения.

LDO , IC1 также подключается для регулирования выходного напряжения.

Работа цепи преобразователя переменного тока в постоянный

Понижающий трансформатор используется для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения. Трансформатор установлен на печатной плате и представляет собой трансформатор на 1 ампер и 13 вольт. Однако во время нагрузки напряжение трансформатора падает примерно на 12.5-12,7 вольт.

Неотъемлемой частью схемы является диодный мост , состоящий из четырех диодов. Диод — это электронное полупроводниковое устройство, которое преобразует переменный ток в постоянный.

Поток тока внутри диодного моста можно увидеть на изображении ниже.

Здесь два диода D2 и D4 блокируют отрицательный пик переменного тока и заставляют ток течь в одном направлении.Это полный мостовой выпрямитель, который означает, что диодный мост выпрямляет как положительный, так и отрицательный пик сигнала переменного тока.

Большой конденсатор C1 заряжается во время преобразования и сглаживает выходное напряжение. Но в конечном итоге это не регулируемое выходное напряжение. Здесь регулировка напряжения выполняется LDO, LM2940, , который на схеме обозначен IC1.

LDO, LM2940 — это 3-выводное устройство в корпусе TO220.LDO означает низкое падение напряжения. Схема контактов может быть показана на изображении ниже.

Некоторые регуляторы напряжения имеют ограничения на входное напряжение, необходимое для обеспечения гарантированного регулирования напряжения на выходе регулятора. В некоторых линейных регуляторах это означает, что требуется минимум 2 вольта разницы между входным и выходным напряжением, это означает, что для регулируемого выходного напряжения 12 вольт регулятору требуется входное напряжение не менее 14 вольт для гарантированного стабилизированного выходного напряжения 12 вольт.Как правило, стабилизаторы с малым падением напряжения (LDO) требуют минимальной разницы напряжений между входом и выходом. Для таблицы данных LM2940 требуется минимальная разница в 0,5 вольта между входом и выходом. Мы использовали стабилизатор LDO серии фиксированного напряжения от Texas Instruments. LM2940 с номинальным выходным напряжением 12 В.

Результат хорошо виден на изображении ниже.

Проверьте работу на видео , приведенном в конце.

Трансформаторный преобразователь переменного тока в постоянный очень часто используется там, где требуется преобразование переменного тока в постоянное высокое напряжение. Чаще всего используется в усилителях, различных адаптерах питания, паяльных станциях, испытательном оборудовании. и т. Д.

Ограничения схемы преобразователя переменного тока в постоянный на основе трансформатора

Преобразование переменного тока в постоянный на основе трансформатора — это распространенный выбор, когда требуется постоянный ток, но он имеет определенные недостатки.

1.В любых ситуациях, когда входное переменное напряжение может колебаться или если переменное напряжение значительно падает, выходное переменное напряжение на трансформаторе также падает. Таким образом, преобразователь 230 В переменного тока в 12 В постоянного тока не может питаться от сети 110 В. Для решения этой проблемы предусмотрена дополнительная настройка для различных уровней входного напряжения.

2. Несмотря на отсутствие универсального диапазона входных напряжений, это дорогостоящий выбор, так как стоимость самого трансформатора превышает 60% от общей стоимости изготовления схемы преобразователя.

3. Еще одним ограничением является низкая эффективность преобразования. Трансформатор нагревается и расходует ненужную энергию.

4. Трансформатор — тяжелый предмет, который излишне увеличивает вес продукта.

5. Из-за трансформатора внутри изделия требуется больше места для размещения схемы преобразователя или, по крайней мере, трансформатора.

Для преодоления этих ограничений предпочтительным выбором является импульсный источник питания или импульсный источник питания.

LM317 Принципиальная схема регулятора переменного напряжения

Когда нам требуется постоянное и определенное значение напряжения без колебаний, мы используем регулятор напряжения IC.Они обеспечивают фиксированное регулируемое питание. У нас есть регуляторы напряжения серии 78XX (7805, 7806, 7812 и т. Д.) Для положительного источника питания и 79XX для отрицательного источника питания. Но что, если нужно изменить напряжение источника питания, так что здесь у нас есть микросхема регулятора переменного напряжения LM317. В этом руководстве мы покажем вам, как получить регулируемое напряжение от микросхемы LM317. С помощью небольшой схемы, присоединенной к LM317, мы можем получить переменное напряжение до 37 В с максимальным током 1,5 А. Выходное напряжение изменяется путем изменения резистора, подключенного к регулируемому выводу LM317.

Необходимые компоненты

  • LM317 регулятор напряжения IC
  • Резистор (240 Ом)
  • Конденсатор (1 мкФ и 0,1 мкФ)
  • Потенциометр (10к)
  • Аккумулятор (9 В)

Принципиальная схема

LM317 Регулятор напряжения IC

Это регулируемый трехконтактный стабилизатор напряжения IC с высоким значением выходного тока, равным 1.5А. Микросхема LM317 помогает в ограничении тока, защите от тепловой перегрузки и безопасной рабочей зоне. Он также может обеспечивать плавающий режим для приложений высокого напряжения. Если мы отключим регулируемую клемму, LM317 все равно будет полезен в защите от перегрузки. У него типичная линия и регулировка нагрузки 0,1%. Это также бессвинцовый прибор.

Его рабочая температура и температура хранения находится в диапазоне от -55 до 150 ° C, а максимальный выходной ток составляет 2,2 А. Мы можем обеспечить входное напряжение в диапазоне от 3 до 40 В постоянного тока, а i т может дать выходное напряжение 1.От 25 В до 37 В , которые мы можем изменять в зависимости от потребности, используя два внешних резистора на регулируемом контакте LM317. Эти два резистора работают как схема делителя напряжения, используемая для увеличения или уменьшения выходного напряжения. Проверьте здесь схему зарядного устройства 12 В с помощью LM317

Схема контактов LM317

Конфигурация контактов

ПИН.

Имя PIN

ПИН Описание

1

Настроить

Мы можем отрегулировать Vout через этот вывод, подключившись к цепи резисторного делителя.

2

Выход

Вывод выходного напряжения (Vout)

3

Вход

Вывод входного напряжения (Vin)

Расчет напряжения для LM317

Во-первых, вы должны решить, какой результат вы хотите. Как LM317, имеющий выходное напряжение , диапазон 1.От 25 В до 37 В постоянного тока. Мы можем регулировать выходное напряжение с помощью двух внешних резисторов, подключенных через регулируемый вывод IC. Если мы говорим о входном напряжении , оно может быть в диапазоне от 3 до 40 В постоянного тока.

«Выходной сигнал будет зависеть только от внешнего резистора, но входное напряжение всегда должно быть больше (минимум 3 В) необходимого выходного напряжения». Обычно рекомендуемое значение резистора R1 составляет 240 Ом (но не фиксированное, вы также можете изменить его в соответствии с вашими требованиями), мы можем изменить резистор R2.

Вы можете напрямую найти значение выходного напряжения или резистора R2, используя формулу ниже:

  Vout = 1,25 {1 + ( 2 / 1 )} 
   2  =  1  {(Vout / 1,25) - 1} 
 

Вы можете напрямую использовать калькулятор LM317 для быстрого расчета резистора R2 и выходного напряжения.

Давайте возьмем пример, значение R1 будет рекомендованным значением 240 Ом, а R2, которое мы принимаем, равным 300 Ом, поэтому какое будет выходное напряжение:

Vout = 1.25 * {1+ (300/240)} = 2,8125v 

Вы можете посмотреть живое демонстрационное видео ниже.

Работа цепи регулятора напряжения LM317

Схема регулятора напряжения очень проста. Конденсатор C1 используется для фильтрации входного постоянного напряжения и подается на вывод Vin микросхемы стабилизатора напряжения LM317. Регулируемый вывод соединен с двумя внешними резисторами и соединен с выводом Vout микросхемы. Конденсатор C2 используется для фильтрации выходного напряжения, полученного с вывода Vout.А затем выходное напряжение поступает на конденсатор C2. Посмотрите полное рабочее видео ниже.

ОДНОФАЗНЫЙ КОНТРОЛЛЕР НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА ПОЛНОЙ ВОЛНЫ (РЕГУЛЯТОР переменного тока)

1 Deceber 9, INGE PHAE FU WAE AC OTAGE CONTROER (AC REGUATOR Однофазный двухполупериодный контроллер переменного напряжения, использующий два CR или один симистор, как правило, используется в большинстве приложений управления переменным током.Поток мощности переменного тока к нагрузке можно контролировать в обоих полупериодах путем изменения угла срабатывания ». Значение RM напряжения нагрузки можно изменять, изменяя угол срабатывания триггера ». Входной ток питания является переменным в случае двухполупериодного контроллера переменного напряжения, а также из-за системного характера волны входного тока питания, поскольку отсутствует постоянная составляющая входного тока питания, то есть среднее значение входного тока питания равно нулю. Однофазный двухполупериодный контроллер переменного напряжения с резистивной нагрузкой показан на рисунке ниже.Можно контролировать поток переменного тока к нагрузке в обоих полупериодах, регулируя угол срабатывания триггера ». Следовательно, двухполупериодный контроллер переменного напряжения также называют двунаправленным контроллером. Рис .: Однофазный двухполупериодный контроллер переменного напряжения (двунаправленный контроллер с использованием CR Тиристор T смещен в прямом направлении в течение положительного полупериода входного напряжения питания. Тиристор T запускается с углом задержки » (радиан. При включенном тиристоре T как идеальном замкнутом переключателе входное напряжение питания появляется на нагрузочном резисторе R, а выходное напряжение v O v в течение ωt в радианах.Ток нагрузки протекает через тиристор включения T и резистор нагрузки R в направлении вниз во время связи проводимости T от ωt до радиан. При ωt, когда входное напряжение падает до нуля, ток тиристора (который протекает через нагрузочный резистор R падает до нуля и, следовательно, T естественным образом отключается. В течение ωt + ток в цепи не течет. Deceber 9, тиристор T смещен в прямом направлении во время отрицательного цикла входного питания, и когда тиристор T срабатывает с углом задержки (+, выходное напряжение следует за отрицательным полупериодом входного сигнала от ωt (+ до.Когда T включен, ток нагрузки течет в обратном направлении (направление вверх через T в течение ωt (+ к радианам. Интервал связи (интервал между импульсами запуска затвора T и T сохраняется в радианах или 8. При ωt вход напряжение питания падает до нуля, и, следовательно, ток нагрузки также падает до нуля, и тиристор T отключается естественным образом. Вместо использования двух CR, подключенных параллельно, можно использовать симистор для управления двухполупериодным переменным напряжением. Рис .: Однофазный двухполупериодный переменный ток контроллер напряжения (двунаправленный контроллер с использованием TRIAC Рис. Волновые форы однофазного двухполупериодного контроллера переменного напряжения КОНТРОЛЕР ПЕРЕМЕННОГО ТОКА Page

3 Deceber 9, EQUATION Входное напряжение питания v sinωt sinωt; Выходное напряжение на нагрузочном резисторе R; vo v sinωt; для ωt to и ωt (+ к выходному току нагрузки vo sinωt io Isinωt; RR для ωt to и ωt (+ к ВЫРАЖЕНИЮ ВЫРАЖЕНИЯ RM AUE ВЫХОДА (OAD OTAGE) Значение RM выходного напряжения (можно найти напряжение нагрузки используя выражение ORM v d t; (ω RM Для двухполупериодного регулятора переменного напряжения мы можем видеть, что два полупериода выходных волн напряжения являются симметричными, а период привязки выходных импульсов (или привязкой повторений выходных импульсов — радианами.Следовательно, мы также можем рассчитать выходное напряжение RM, используя приведенное ниже выражение. RM sin ωtd. ωt RM. (ω vdt; vv sinωt; Для ωt к O и к ωt + Следовательно, (sin td (t (sin t RM ω ω ω d (ωt + + sin ωtd. (ωt sin ωtd. (ωt + + cosωt cosωt d ( ωt d (ωt + + AC OTAGE CONTROER Page 3

4 декабря 9, d (ωt cos ωtd. (ωt + d (ωt cos ωtd. (ωt + + sinωt sinωt + 4 (ωt (ωt (((sin sin ( sin 4 sin (sin sin 4 + ((((sin sin (+ ((+ sin sin (sin sin.cos cos.sin sin & cos Следовательно, (((4 sin sin + + RM sin 4 + (sin RM 4 +) Взяв квадратный корень, мы получаем (sin RM + (sin RM + AC OTAGE CONTROER Page 4

5 Deceber 9, (sin RM + sin + (RM sin + (RM sin + i (RM (RM sin + (RM Maxiu RM напряжение будет приложено к нагрузке, когда в этом случае на нагрузке появится полная синусоида. Напряжение будет равно напряжению питания РМ, при увеличении напряжение нагрузки РМ уменьшается.sin + RM (RM + (RM i (RM) Характеристики управления выходом для однофазного двухполупериодного контроллера переменного тока с резистивной нагрузкой можно получить, построив уравнение для ORM CONTRO ХАРАКТЕРИСТИКИ КОНТРОЛЯ ПЕРЕМЕННОГО ТОКА INGE PHAE FU-WAE С REITIE OAD Управляющая характеристика представляет собой график зависимости выходного напряжения RM ORM от угла триггера; который может быть получен с помощью выражения для выходного напряжения RM двухполупериодного контроллера переменного тока с резистивной нагрузкой. Sin + (ORM; AC OTAGE CONTROER Страница 5

6 декабря 9, где RM значение входного напряжения питания Угол срабатывания в градусах Угол срабатывания в радианах; (; (; (3 6; (; (; (ORM%% 98.54% 89.69% 7.7% 44.% 6.98% O (Угол срабатывания RM в градусах. Из рисунка видно, что мы получаем намного лучшую характеристику управления выходом, используя однофазный двухполупериодный контроллер переменного напряжения. Выходное напряжение RM может можно варьировать от% при начальном значении до 8. Таким образом, мы получаем полный диапазон регулирования выходного напряжения с помощью однофазного полноволнового контроллера переменного напряжения. Необходимость в изоляции CR или тиристоры T и T, включенные параллельно, схемы стробирования (схемы генерации импульсов запуска затвора тиристоров T и T должны быть изолированы.На рисунке показан импульсный преобразователь с двумя отдельными обмотками для обеспечения изоляции между стробирующими сигналами T и T. КОНТРОЛЬ ПЕРЕХОДА ПЕРЕМЕННОГО ТОКА Page 6

7 Deceber 9, Генератор запускающих импульсов GKGK Рис .: Импульсный преобразователь INGE PHAE FU-WAE AC OTAGE CONTROER С ОБЩИМ КАТОДОМ Можно спроектировать однофазный двухполупериодный контроллер переменного тока с конфигурацией катода с куном, имея точку катода с куном для T и T &, добавив два диода в схему двухполупериодного контроллера переменного тока, как показано на рисунке ниже рис.: однофазный двухполупериодный контроллер переменного тока с енотовым катодом (Двунаправленный контроллер в конфигурации енотовидного катода Тиристор T и диод D смещены вперед во время положительного полупериода входного питания. Когда тиристор T срабатывает с определенным углом задержки, тиристор T и диод D проводят вместе от ωt до в течение положительного полупериода.Тиристор T и диод D смещены в прямом направлении во время отрицательного полупериода входного питания, при срабатывании под углом задержки тиристор T и диод D проводят вместе в течение отрицательного полупериода от ωt ( + к.В этой схеме, поскольку имеется одна единственная катодная точка coon, маршрутизация импульсов запуска затвора на тиристорные затворы T и T является зиплеровской, и требуется только одна цепь изоляции. Но из-за необходимости двух силовых диодов стоимость устройств возрастает. Поскольку два силовых устройства проводят в соединительной линии, падение напряжения на включенных устройствах увеличивается, а проводящие потери устройств в состоянии включения увеличиваются, и, следовательно, эффективность снижается. КОНТРОЛЕР ПЕРЕМЕННОГО ТОКА Page 7

8 Deceber 9, INGE PHAE FU WAE КОНТРОЛЬ ПЕРЕМЕННОГО ТОКА С ПОМОЩЬЮ INGE THYRITOR DD 3 + T AC ПИТАНИЕ D 4 DR — Однофазный двухполупериодный контроллер переменного тока также может быть использован с одним тиристором и четырьмя подключенными диодами в конфигурации двухполупериодного моста, как показано на рисунке выше.Четыре диода действуют как двухполупериодный мостовой выпрямитель. Напряжение на тиристоре Т и ток через тиристор Т всегда однонаправлены. Когда T срабатывает при ωt, в течение положительного полупериода (ток нагрузки протекает через D, T, диод D и через нагрузку. При резистивной нагрузке ток тиристора (протекающий через тиристор T во включенном состоянии, ток нагрузки падает до нуля при ωt, когда входное напряжение питания уменьшается до нуля при ωt, тиристор естественным образом выключается.В отрицательном полупериоде диоды D3 и D 4 смещены вперед в течение ωt до радиан.Когда T запускается при ωt (+, ток нагрузки течет в противоположном направлении (восходящее направление через нагрузку, через D 3, T и D 4. Таким образом, D 3, D4 и T проводят вместе в течение отрицательного полупериода, чтобы обеспечить мощность нагрузки. Когда входное напряжение питания становится равным нулю при ωt, ток тиристора (ток нагрузки падает до нуля при ωt, и тиристор T естественным образом отключается. Волновые форсунки и выражение для выходного напряжения RM являются такими, как обсуждалось ранее для однофазный двухполупериодный контроллер переменного тока.Но, однако, если в цепи нагрузки имеется большая индуктивность, тиристор T не может быть выключен в точках пересечения нуля, в каждом полупериоде входного напряжения, и это может привести к потере управления выходом. Это потребовало бы обнаружения перехода через нуль волны тока нагрузки, чтобы гарантировать гарантированное отключение проводящего тиристора перед запуском тиристора в следующем полупериоде, чтобы мы получили контроль над выходным напряжением. В этой двухполупериодной схеме контроллера переменного тока, использующей один тиристор, поскольку три силовых устройства проводят вместе в этой связи, возникает падение напряжения проводимости и увеличение потерь проводимости во включенном состоянии, и, следовательно, эффективность также снижается.Выпрямитель на диодном мосту и тиристор (или силовой транзистор действуют вместе как двунаправленный переключатель, который доступен принудительно как единый модуль устройства и имеет относительно низкие потери проводимости в открытом состоянии. используется для двунаправленного управления током нагрузки и для управления выходным напряжением RM INGE PHAE FU WAE AC OTAGE CONTROER (BIDIRECTIONA CONTROER WITH R OAD В этом разделе мы обсудим работу и характеристики однофазного двухполупериодного контроллера переменного напряжения с R-нагрузкой.На практике большинство нагрузок относятся к типу R. Например, если мы рассмотрим однофазный двухполупериодный контроллер переменного напряжения, управляющий скоростью однофазного индуктора переменного тока, нагрузка, которая является индукционной или торной обмоткой, является нагрузкой R-типа, где R представляет собой сопротивление обмотки или торс. индуктивность обмотки. Схема однофазного двухполупериодного контроллера переменного напряжения (двунаправленный контроллер с нагрузкой R, использующий два тиристора T и T (T и T — это два CR, соединенных параллельно), показана на рисунке ниже.Вместо двух тиристоров можно использовать один симистор для подключения двухполупериодного контроллера переменного тока, если имеется подходящий Traic для желаемого тока нагрузки RM и номинальных значений выходного напряжения RM. Рис. Однофазный двухполупериодный контроллер переменного напряжения с нагрузкой R Тиристор T смещен в прямом направлении в течение положительного полупериода входного питания. Мы предполагаем, что T запускается при ωt, применяя подходящий импульс запуска затвора к T во время положительного полупериода входного питания. Выходное напряжение на нагрузке следует за входным напряжением питания, когда T.Ток нагрузки i O протекает через тиристор Т и через нагрузку в нисходящем направлении. Этот импульс тока нагрузки, протекающий через T, можно рассматривать как положительный импульс тока. Из-за индуктивности AC OTAGE CONTROER в нагрузке ток нагрузки i O, протекающий через T, не упадет до нуля, когда входное напряжение питания начнет становиться отрицательным. ωt, когда тиристор T будет продолжать проводить ток нагрузки до тех пор, пока вся индуктивная энергия, накопленная в индукторе нагрузки, не будет полностью использована и ток нагрузки через T упадет до нуля при ωt β, где β называется углом затухания, ( значение ω t, при котором ток нагрузки падает до нуля.Угол затухания β измеряется от точки начала положительного полупериода входного питания до точки, где ток нагрузки падает до нуля. Тиристор Т проводит от ω до β. Угол проводимости T равен δ (β, который зависит от угла задержки и угла сопротивления нагрузки φ. Волны входного напряжения питания, импульсы запуска затвора T и T, ток тиристора, ток нагрузки и нагрузка Волны напряжения выглядят так, как показано на рисунке ниже. Рис .: Входное напряжение питания и волны тока тиристора, β — это угол затухания, который зависит от значения индуктивности нагрузки.КОНТРОЛЬ ПЕРЕМЕННОГО ТОКА Page

11 Декабрь 9, Рис .: Стробирующие сигналы Wavefors однофазного двухполупериодного контроллера переменного напряжения с нагрузкой R для> φ. Работа с прерывистым током нагрузки происходит при φ β <+; т. е. (β <, угол проводимости <.> и КОНТРОЛЬ НАГРУЗКИ ПЕРЕМЕННОГО ТОКА Page

12 Декабрь 9, Рис .: Волны входного напряжения питания, тока нагрузки, напряжения нагрузки и напряжения тиристора на T Примечание. Значение RM выходного напряжения и ток нагрузки можно изменять, изменяя угол срабатывания триггера.Эта схема, контроллер напряжения переменного тока RM, может использоваться для регулирования напряжения RM на клеммах переменного тока (индукционный или индукционный). Его можно использовать для управления температурой печи путем изменения выходного напряжения RM. Для очень большой индуктивности нагрузки CR может не сработать после срабатывания триггера и напряжение нагрузки будет представлять собой полную синусоидальную волну (подобно приложенному входному напряжению питания, и выходное управление будет потеряно до тех пор, пока на тиристоры T и T. подаются стробирующие сигналы. Волна тока нагрузки for будет выглядеть как полная непрерывная синусоида, а волна тока нагрузки for отстает от выходной синусоидальной волны на угол коэффициента мощности нагрузки φ.ЧТОБЫ ПОЛУЧИТЬ ВЫРАЖЕНИЕ ДЛЯ ВЫХОДА (ИНДУКТИВНЫЙ ТОК НАГРУЗКИ, ВО ВРЕМЯ от ωt до β КОГДА ТИРИТОР T ПРОВОДИТСЯ С учетом синусоидального входного напряжения питания мы можем записать выражение для напряжения питания как v sin ωt мгновенное значение входного напряжения питания. тиристор T запускается подачей стробирующего сигнала на T при ωt. Ток нагрузки, протекающий через тиристор T во время ωt до β, можно найти из уравнения dio + RiO sinωt dt; Решение приведенного выше дифференциального уравнения дает общее выражение для выходного тока нагрузки, которое имеет значение для AC OTAGE CONTROER, +; t τ io sin (ωt φ Ae Где axiu или пиковое значение входного напряжения питания.(ω R + нагрузка. ω φ tg угол наклона нагрузки (коэффициент мощности, угол нагрузки. τ константа связи цепи нагрузки. R Таким образом, общее выражение для выходного тока нагрузки дается уравнением R t io sin (ωt φ + Ae; Значение константы A может быть определено из начального условия, т. Е. Начального значения тока нагрузки i O, при ωt. Следовательно, из уравнения для i O, приравнивающего i O к нулю и заменяющего ωt, мы получаем i O sin ( φ + Ae R t sin Следовательно, Ae (φ A sin R te A + R t (φ e sin (φ AR (ωt ω e sin (φ R t)) Подставляя ωt, мы получаем значение константы A как R (ω e sin (φ A AC OTAGE CONTROER Page 3

14 Deceber 9, ub подставляя значение константы A из приведенного выше уравнения в выражение для i O, мы получаем RR (t ω io sin (ωt φ + ee sin (φ; R (ωt R (io tee + ω ω sin (ω φ sin (φ + R io te ω t ω sin (ω φ sin (φ)) Таким образом, мы получаем окончательное выражение для индуктивного тока нагрузки однофазного полноволнового переменного тока v Контроллер напряжения с нагрузкой R как io sin (ωt φ sin (φ e R (ω t ω; Где ωt β.Вышеприведенное выражение также представляет ток тиристора i T в течение интервала проводимости тиристора T от ωt до β. Для вычисления угла затухания β Угол затухания β, который представляет собой значение ω t, при котором ток нагрузки i O падает до нуля и T выключается, можно оценить, используя условие, что i O, при ωt β. Выражение для выходного тока нагрузки можно записать как As i O sin sin (β φ (φ e R (β ω, мы можем записать) (β φ (φ) Таким образом, получаем выражение R (β ω sin e sin (β φ sin (φ e R (β ω Угол затухания β может быть определен из этого трансцендентного уравнения, используя итерационный метод решения (метод проб и ошибок.После вычисления β мы можем определить угол проводимости тиристора δ β. β — угол затухания, который зависит от значения индуктивности нагрузки. Угол проводимости δ увеличивается по мере уменьшения для известного значения β. КОНТРОЛЬ ПЕРЕМЕННОГО ТОКА Page 4

15 Декабрь 9, Для δ β +> β волна тока нагрузкиfor выглядит как прерывистая волна тока, как показано на рисунке. Выходной ток нагрузки остается равным нулю в течение ωt β +. Это обозначается как <радианы, т.е.е., для (<радиан, для прерывистой работы по току нагрузки, которая происходит при β <(+. Когда угол срабатывания уменьшается и становится равным углу сопротивления нагрузки φ, т. е. когда φ sin β φ, мы получаем из выражения для (β φ; Следовательно, sin β φ радиан. Угол затухания β (+ φ (+; для случая, когда φ) угол проводимости δ β радиан 8; для случая, когда φ Каждый тиристор проводит на 8 (радиан. T проводит от ωt φ до (+ φ и обеспечивает положительный ток нагрузки. T проводит от (+ φ до (+ φ) и обеспечивает отрицательный ток нагрузки.Следовательно, мы получаем непрерывный ток нагрузки, и волна выходного напряжения for выглядит как непрерывная синусоидальная волна, идентичная волне входного напряжения питания для угла запуска φ, и управление на выходе теряется. v O v Ov φ 3 ωt φ φ φ i OI φ ωt Рис .: Выходное напряжение и волны выходного тока для однофазного полноволнового контроллера переменного напряжения с нагрузкой R для φ Таким образом, мы видим, что для угла срабатывания φ ток нагрузки имеет тенденцию для непрерывного потока, и у нас есть непрерывная работа тока нагрузки, без какого-либо перерыва в волне тока нагрузки, и мы получаем волну выходного напряжения, которая является непрерывной синусоидальной волной для идентичной волне входного напряжения питанияМы теряем контроль над выходным напряжением для φ, поскольку выходное напряжение становится равным входному напряжению питания, и, таким образом, мы получаем AC OTAGE CONTROER 9, Следовательно, ORM; для φ RM выходное напряжение RM входное напряжение питания для φ TO DERIE ВЫРАЖЕНИЕ ДЛЯ ВЫВОДА RM КОНТРОЛЯ ПЕРЕМЕННОГО ТОКА INGE PHAE FU-WAE С R OAD. Когда> 0, ток нагрузки и напряжение нагрузки становятся прерывистыми, как показано на рисунке выше. β sin td.ORM ω (ωt Вывод vo sinωt, для ωt до β, когда T включен. (Ωt β cos ORM d (ωt β β dt td t ORM (ω cos ω. (Ω β sin ωt (ωt ORM (β ORM β sinβ sin + sin sin β + (β ORM КОНТРОЛЬ ПЕРЕМЕННОГО ТОКА Page 6

17 Deceber 9, sin sin β + (β ORM Выходное напряжение RM на нагрузке может быть изменено путем изменения угла срабатывания. Поэтому для чисто резистивной нагрузки угол коэффициента мощности нагрузки φ. ω φ tan; R Угол затухания β радиан 8 ХАРАКТЕРИСТИКИ КОНТРОЛЯ ПЕРЕМЕННОГО ТОКА INGE PHAE FU WAE С REITIE OAD sin + RM Выходное напряжение (входное напряжение питания.ORM; RM IORM ORM RM значение тока нагрузки. R I IORM RM значение входного тока питания. Выходная мощность нагрузки Коэффициент мощности на входе PIRO ORM IRIR PO ORM ORM PF II ORM Средний ток тиристора, ORM sin PF (+ i TI (+ 3 ωt AC OTAGE CONTROER Page 7

18 Deceber 9, Рис .: Волна тока тиристора для I idt I td t T Avg T (ω sin ω. (ω III sin ωtd. (ωt cosωt T Avg IIIT Avg Maxiu Средний ток тиристора, для, I IT) (Avg RM Thyristor Current [cos + cos] [+ cos] II sin td.T RM ω (ωt II sin + (T RM Maxiu RM Ток тиристора, для, IIT (RM В случае однофазной схемы регулятора двухполупериодного переменного напряжения с использованием симистора с резистивной нагрузкой, средний ток тиристора I. проводит в T Avg как полупериоды, так и ток тиристора является переменным, и мы получаем синусоидальную волну тока тиристора, для которой среднее значение при интегрировании равно нулю. Выход (ток нагрузки Выражение для выхода (ток нагрузки, протекающий через тиристор, во время от ωt до β, выражается как R (ω t ω io it sin (ωt φ sin (φ e; для ωt β; где, Maxiu или пик значение входного переменного напряжения питания.(ω R + нагрузка. КОНТРОЛЬ ПЕРЕМЕННОГО ТОКА Page 8

19 Декабрь 9, ω φ tan Угол поворота (угол коэффициента мощности нагрузки. Угол срабатывания тиристора. Угол задержки. β Угол затухания тиристора, (значение тока падает до нуля) . β рассчитывается путем решения уравнения sin (β φ sin (φ e R (β ω ω t), при котором тиристор (нагружает угол проводимости тиристора δ (β Максимальный угол проводимости тиристора δ (β радиан 8 для φ). sin β + (β ORM Средний ток тиристора β IT Avg it d (ωt β R (ω t ω I sin (t sin T Avg ω φ (φ ed (ωt β β R (ω t ω I sin (t.d (t sin T Avg ω φ ω (φ ed (ωt Максимальное значение IT (Avg происходит при.) Тиристоры должны быть рассчитаны на I axiu IT (Avg, где I. RM Ток тиристора IT (RM β IT RM it d ( ωt Максимальное значение IT (RM происходит при. Тиристоры должны быть рассчитаны на I axiu IT (RM AC OTAGE CONTROER Page 9

20 Deceber 9, Когда симистор используется в однофазном двухполупериодном контроллере переменного напряжения с типом нагрузки RI) , затем I и axiu IT Avg T (RM PROBEM. Однофазный двухполупериодный контроллер переменного напряжения питает нагрузку R.Входное напряжение питания 3, РМ при 5 Гц. Нагрузка имеет H, R Ω, ​​углы запаздывания тиристоров Т и Т равны, где. Детерин 3 а. Угол проводимости тиристора Т. б. Выходное напряжение РМ. c. Коэффициент входной мощности. Определите тип работы. Однофазный двухполупериодный контроллер имеет входное напряжение (RM и сопротивление нагрузки 6 Ом. Угол включения тиристора равен. Найдите a. Выходное напряжение RM b. Выходная мощность c. Входная мощность Фактор D. Средний ток и ток тиристора RM 3. Однофазный полуволновой стабилизатор переменного тока, использующий один CR в антипараллельном диоде, питает кВт, 3 нагревателя.Найдите мощность нагрузки для угла зажигания. Найдите RM и средний ток, протекающий через нагреватель, показанный на рисунке. Угол задержки обоих CR составляет 45. CR + i o -φ AC CR кВт, нагреватель AC OTAGE CONTROER Страница

Лучшая схема регулятора переменного тока — Отличные предложения на схему регулятора переменного тока от глобальных продавцов схем регулятора переменного тока

Отличные новости !!! Вы находитесь в нужном месте для цепи регулятора переменного тока.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая схема стабилизатора переменного тока вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему стабилизатора переменного тока на AliExpress.С самыми низкими ценами в Интернете, дешевыми тарифами на доставку и возможностью получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в схеме стабилизатора переменного тока и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите ac Regulator circuit по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.

Оставить комментарий