Стабилизаторы тока схемы: Электронная нагрузка на базе стабилизатора тока на LM317 и PNP транзисторах

Опубликовано в Разное
/
6 Ноя 2021

Содержание

Электронная нагрузка на базе стабилизатора тока на LM317 и PNP транзисторах

Всем привет!
Сегодня речь пойдет об ещё одной моей самоделке – электронной нагрузке. Собрана она в корпусе от старого советского электросчетчика, выглядит примерно следующим образом:

Внутри всё закреплено на родной стойке электросчетчика, радиодетали соединены навесным монтажом:

Схема построена вокруг стабилизатора тока на LM317.

Видео по теме:

Характеристики получилось весьма спорные, но для моих текущих задач хватает.

Основные характеристики:
• Стабилизация тока при изменении входного напряжения
• Нагрузка не требует отдельного питания
• Диапазон регулировки тока 1,8 — 10 А при входном напряжении 16,5В (максимальный ток ограничен в моем случае возможностями амперметра и характеристиками токового шунта, транзисторы позволяют рассеять до 200 Ватт мощности)

• Диапазон входного напряжения 5 – 20В (в принципе можно и больше до 30В, важно понимать какая мощность будет рассеиваться и следить за током, т.е. при 30В ток не должен превышать 6,5А )
• Стабилизация адекватно работает при напряжении от 13В (но об этом позже)
• Защита от переполюсовки


Перед выбором схемы я рассматривал 2 варианта:
1. Стабилизатор тока на операционном усилителе LM358.
Обладает неплохим качеством стабилизации и регулировкой почти от нуля. Но данная схема требует независимого источника питания операционного усилителя.
2. Простой регулятор мощности только на транзисторах, без стабилизации. При изменении входного напряжения нагрузка будет себя вести как обычный резистор, т.е. при увеличении напряжения, ток тоже будет увеличиваться.
В обоих случаях стоит вопрос внешнего дополнительного питания для прибора и вентиляторов.
В итоге я решил поэкспериментировать и собрать электронную нагрузку на базе стабилизатора тока на микросхеме LM317, усиленной PNP транзисторами. С одной стороны LM317 не требует независимого стабильного источника питания ( в отличие от операционного усилителя). С другой это хоть и средненький, но вся таки стабилизатор тока. Все остальные потребители (вентиляторы и прибор) подключены напрямую к входу нагрузки через стабилизатор напряжения 7812.

Полностью схема выглядит следующим образом:

LM317 усилена двумя мощными PNP транзисторами VT1 и VT2 в корпусе TO-3 — MJ2955. Каждый из таких транзисторов способен пропускать ток до 15 А и рассеивать до 100 Ватт мощности. Транзисторы имеют выравнивающие резисторы. На каждый транзистор приходится по два 5 Ваттных резистора номиналом 0,1 Ом, соединённых последовательно. Резистор R1 на 10 Ом, служит, чтобы до определённого момента ток шел через LM317, а при превышении порога, открывались транзисторы. Это стандартное решение для схем, где LM317 усиливается PNP транзисторами. Чем больше номинал резистора R1, тем раньше откроются транзисторы. В схемах встречал разные варианты номиналов от 0,1 Ома до 2,2к. Самый распространенный номинал 10-30 Ом. Мощность резистора взята с большим запасом на 10 Ватт, т.к. у меня было много таких резисторов. Резистор R2 – это по сути нихромовый токовый шунт. Сопротивление в холодном состоянии 1,2 Ом. Особенность стабилизатора тока на LM317 состоит в том, что чем больше сопротивление шунта, тем меньше ток стабилизации. Шунт дает нам некий ограниченный диапазон, в котором мы можем регулировать ток, подключив параллельно шунту потенциометр R3 номиналом 5к Ом. Можно снизить минимальный ток, увеличив сопротивление шунта, но при этом и максимальный ток уменьшится. Аналогично в обратную сторону. Также максимальный ток зависит от входного напряжения. Если при 12В – максимальный ток будет в районе 6-7А, то при 20В перевалит за 12А. Я подобрал шунт, чтобы диапазон был 1,8 — 10 А при 16,5В. Плюсом данного решения является то, что шунт физически может пропустить только ограниченный ток, что спасет наши транзисторы от перегрузки. Резистор R4 нужен для корректировки диапазона регулировки. Без него если вращать ручку потенциометра в сторону уменьшения, после прохождения минимального значения тока, ток опять начнет постепенно увеличиваться. Добавление резистора устраняет этот недостаток.

Вентиляторы для охлаждения и цифровой вольтамперметр подключены на вход через линейный стабилизатор напряжения 7812. Это решение тоже довольно спорное. Пока линейный стабилизатор не начнет ограничивать напряжение (а ограничивать он его начнет при входном напряжении примерно 12В-13В, все зависит от потерь на проводах.), качество стабилизации тока в электронной нагрузки в целом будет не высокое. При изменении входного напряжения, например в диапазоне от 5 до 12В, вентиляторы будут крутиться с разной скоростью и потребляемый ток будет меняться. Изменения эти будут в районе 500 мА, что не смертельно, но радости не добавляет. И да цифровой вольтамперметр включается от напряжения — 6В и более. При более низких напряжениях, нормально пользоваться нагрузкой не получится.
Защиту от переполюсовки я реализовал по довольно топорной схеме (топорнее только диодный мост на входе). Принцип простейший: сдвоенный диод Шоттки пропускает ток, только в одном направлении. Если перепутать полярность и подать плюс на минусовую клемму, то ток через диод не пойдет, а пойдет он по пути через резистор R9 и светодиод D5, который засветится, сигнализировав о неправильном подключении источника питания. На диоде Шоттки естественно будет падение напряжения и он будет греться . Учитывая, что электронная нагрузка – это по сути преобразователь электрической энергии в тепловую, то пусть греется.

Процесс сборки:
После того, как разобрался со схемой, я собрал все компоненты и провел тесты.

Далее я приступил к оформлению устройства в корпус. В конструкции полно греющихся элементов (особенно сильно греется нихромовый шунт), поэтому про пластиковый корпус можно было забыть. Плюс ко всему т.к. транзисторы установлены на радиатор без изолирующих прокладок, на радиаторе будет находиться выходное напряжение. В качестве корпуса отлично подошел корпус от старого советского электросчетчика.

Материал диэлектрический и теплоустойчивый, внутри есть стойка, которая тоже в какой-то мере служит радиатором.

Начал я с того, что пропилил окошко под вольамперметр. Пилил мини дрелью. Материал поддается плохо, очень много пыли и дыма. Без респиратора и очков работать противопоказано.

После того как установил прибор, просверлили отверстия под клеммы, потенциометр и выключатель.

Стекло изъял и на его место поставил решетку с вентилятором, который будет выдувать горячий воздух из корпуса.

Транзисторы я закрепил на радиатор и снизу радиатора установил 2 вентилятора.

Крышка будет крепиться на латунных стойках, чтобы корпус не закрывался вплотную и снизу были щели, куда будет поступать свежий воздух.
Также внизу есть отверстия, где раньше были контакты счетчика.

Получается сквозной продув греющихся частей: воздух поступает снизу, маленькие вентиляторы прогоняют его вверх через радиатор, нагретый воздух выбрасывается наружу вентилятором побольше.

Дальнейшие тесты показали, что после 30 минут работы на 16,5В и токе 10А (165 Ватт), температура внутренних частей не превысила 50 градусов.

Дело осталось за малым: закрепить все элементы внутри корпуса и соединить всё проводами.
Диод Шоттки я закрепил через изолирующие прокладку и втулку. Фланец стабилизатора 7812 покрыт пластиком, поэтому дополнительная изоляция не требуется. Выход LM317 по схеме соединен с коллекторами транзисторов, поэтому можно смело крепить LM317 с ними на один радиатор без дополнительной изоляции.

Нихромовый шунт я закрепил на кусках из макетки, чтобы изолировать его от основного корпуса.


Далее протестировал нагрузку с разными блоками питания. То, как ведет себя нагрузка при разных условиях было описано выше.

В заключении хотелось бы сказать, что это был для меня интересный опыт. С одной стороны я понимаю, что до электронной нагрузки мечты, моему изделию далеко. С другой стороны она закрывает 80% моих текущих потребностей (т.к. большинство тестов я провожу в диапазоне напряжений 12-20В и токов 2-7А) и имеет потенциал для доработки. Также интересно было понять, на что способен стабилизатор тока на LM317.

Нагрузкой данной пользуюсь уже пол года сказать могу следующее: в целом штука рабочая, но есть недостатки:
• Регулировка тока не от нуля
• Иногда не хватает тока (пару раз нужно было больше 10А)
• Стабилизации на напряжении до 13В слабенькая

Сначала хотел её доработать, но потом сделал новый «лабораторник» (правильнее наверное будет сказать регулируемый блок со стабилизацией тока и напряжения) на 400 Ватт и понял, что нужна новая нагрузка на такую же мощность, как и у блока питания, и в текущий корпус от счетчика она не поместится. Поэтому собрал новую нагрузку.

При ее проектировании использовал ряд решений, которые могут пригодится тем, кто захочет доработать эту версию нагрузки или сделать свою:

• Нужно использовать операционный усилитель, я использовал LM358. Дает нормальный диапазон регулировки и приемлемую стабилизацию.
• Есть способ запитать операционный усилитель и вольтамперметр от входа нагрузки. На вход ставим повышающий преобразователь МТ3608, настраиваем на 27В, на его выход ставим 7812 + фильтры из конденсаторов. Получаем стабильное питание операционного усилителя при напряжениях от 2 до 24В. Мне этого более чем достаточно.

• Вентиляторы снабжаем ещё одним 7812, подключаем через 6 контактный выключатель: питание либо со входа нагрузки, либо со входа для отдельного источника питания для вентиляторов. Логика следующая: если на входе нагрузки больше 13В переключаем вентиляторы на питание от входа. При этом напряжении потребление тока стабильно и 12Ватт пойдут, не на нагрев, а наоборот на охлаждение. Если меньше, то переключаем на отдельный источник питания, чтобы не портить стабилизацию.
• И не стоит использовать шунты с большим сопротивлением (больше 0,1 Ома), особенно при больших токах.

В общем вот такие вот идеи. Всем спасибо за внимание! Надеюсь, мой опыт и идеи будут кому-то интересны. И как всегда жду с нетерпением вопросов, комментариев и конструктивной критики от старожил данного сайта).

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

8 376

      Бурыкин Валерий Иванович

      Генератор тока и генератор напряжения. В чём разница? Что такое Генератор тока и каковы области его применения.

      ***

      По работе нужно было найти какое либо внятное описание того, что собой представляет генератор тока (стабилизатор тока, источник тока), его области применения и примеры расчёта. Ничего приемлемого найти не удалось.

      Пришлось самому приступить к написанию статьи отвечающей на эти вопросы.

      И ещё, пришлось заменить общепринятые обозначения «дельта» и «бесконечность» на слова. К сожалению, вместо них при попытке считать текст отображаются вопросительные знаки.

      28.02.2012г.

      

      ***

      

      Первое, что нам необходимо понять — это то в чём различия генератора тока и стабилизатора напряжения.

Стабилизатор напряжения.

       Другие названия:

       — источник напряжения;

       — генератор напряжения;

       — источник опорного напряжения (в схемах его обычно обозначают как ИОН).

      Основное требование:

      Uвых. = const.

      Ток в нагрузке подключенной к выходу стабилизатора напряжения изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора напряжения соответствует Rнагр. = бесконечности.

      Идеальный генератор напряжения создаёт на сопротивлении нагрузки напряжение стабильной величины. При этом его внутреннее сопротивление равно нулю (Ru = 0). Ток в нагрузке определяется по формуле:

      Iнагр. = U / Rнагр.

      Из этого можно сделать вывод:

      — так как напряжение стабильно, то при изменении Rнагр. будет изменяться ток, протекающий через нагрузку, Рис. 1.


Рис. 1 Схема идеального источника напряжения.

      Идеальный источник напряжения при уменьшении Rнагр. до нуля способен создавать ток бесконечно большой величины.

      Но в жизни ничего идеального не существует, все источники напряжения имеют некоторое внутреннее сопротивление — Ru.

      Это приводит к тому, что напряжение источника делится между внутренним сопротивлением Ru и сопротивлением нагрузки Rнагр, Рис. 2



Рис. 2 Функциональная схема реального источника напряжения.

      Поэтому ток в нагрузке вычисляется по формуле:

      Iнагр. = U / (Ru + Rнагр.)

      Максимальный ток возникает при Rнагр. = 0.

      Из формулы видно — ток в нагрузке зависит от напряжения развиваемого источником, а также от величины суммы сопротивлений Rнагр. и Ru.

      Как правило, внутреннее сопротивление источника напряжения (Ru) выбирается как минимум в 100 раз меньше минимально возможного значения сопротивления нагрузки (Rнагр. min). В этом случае напряжение на выходе источника при изменении сопротивления нагрузки от бесконечности до Rнагр. min будет изменяться не более чем на 1%.

      Т.е. желательно, чтобы соблюдалось условие:

      Rнагр. min => 100*Ru

      В данном случае мы не рассматриваем вопрос о мощности источника напряжения. Мощность зависит от принципа построения источника, реализуемой схемы и применяемых компонентов.

      Теперь посмотрим, что собой представляет генератор тока

Генератор тока.

      Другие названия:

       — источник тока;

       — стабилизатор тока.

      Основное требование:

      Iвых. = const.

      При этом напряжение на нагрузке изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора тока возникает при Rнагр. = 0

      Идеальный источник тока создаёт в нагрузке стабильный ток, то есть — ток, величина которого не зависит от сопротивления нагрузки, Рис. 3.



Рис. 3 Функциональная схема идеального источника тока.

      Так как ток источника не зависит от величины сопротивления нагрузки то при изменении Rнагр. пропорционально будет изменяться и Uнагр.

      Uнагр. = Rнагр. * Iист.

      Идеальным генератором тока считается такой источник, через который протекает ток неизменной величины и не зависящий от Rнагр.

      В таком случае если Rнагр стремится к бесконечности, то Uнагр. так же стремится к бесконечности. Такая ситуация на практике неосуществима. Реальные генераторы тока поддерживают стабильный ток в нагрузке только в пределах от Rнагр. = 0 до некоторой величины Rнагр. max.

      Эквивалентные схемы генераторов тока, приводимые в академической литературе малопонятны, а формулы, описывающие их работу, вряд ли когда-либо понадобятся в практических расчетах.

      Поэтому я начну сразу с практических схем.

      Наиболее доступная и простая как в понимании, так и в расчётах схема выглядит так:



Рис. 4 Практические схемы простых генераторов тока на биполярных транзисторах.

      На рисунке изображены две одинаковые схемы простых генераторов тока. Разница состоит только в том, что применены транзисторы разной проводимости. Другое отличие это то, к какому полюсу источника питания подключена нагрузка.

      В обоих случаях применена схема включения транзистора с общим коллектором (эмиттерный повторитель). Эмиттерным повторителем она названа за то, что изменение напряжения на эмиттере (Uэ) повторяет изменение напряжения на базе, в нашем случае это Uстаб.

      Повторяет именно изменение напряжения, а не само напряжение так как существует падение напряжения на эмиттерном переходе транзистора. Поэтому в случае усилителя постоянного тока напряжение Uэ будет определяться по формуле:

      Uэ = Uстаб. — Uбэ

      где Uбэ — падение напряжения на переходе база — эмиттер транзистора.

      Поскольку Uэ зависит только от напряжения стабилизации стабилитрона и от напряжения Uбэ, а значения этих напряжений можно считать константами, то в идеальном случае Uэ не будет зависеть от изменения Uпит. и Rн.

      Ток протекающий через Rэ является одновременно и током протекающим через нагрузку, то есть IRэ = Iист.

      Соответственно Iист. вычисляется по формуле:

      Iист. = Uэ / Rэ

      где: Uэ и Rэ константы, следовательно и Iист. — так же константа.

      На самом деле стабильность напряжения Uэ зависит от того насколько стабилитрон VD чувствителен к изменению протекающего через него тока и к воздействию окружающей температуры.

      То же самое относится и к переходу база — эмиттер транзистора.

      Пока будем считать, что эти факторы нас не касаются.

      В этом случае мы будем находиться в счастливом заблуждении, что наши расчёты абсолютно точны.

       Основные параметры источника (генератора) тока:

      1. Величина требуемого СТАБИЛЬНОГО тока — (Iист.).

       Т. е. тока, который питает нагрузку и не изменяется под воздействием внешних факторов.

      2. Максимальное сопротивление нагрузки — (Rнагр. max).

      3. Минимально возможное напряжение источника питания для нашей схемы — (Uпит. min).

Что нужно для расчёта источника тока.

      Самый тяжёлый вариант входных условий.

      Здесь вас пытаются уложить в Прокрустово ложе тем, что лишают манёвра.

      Требования заказчика:

      а. Ток источника тока (генератора тока) = Iист.

      б. Сопротивление нагрузки, которое меняется от Rнагр. min до Rнагр. max.

      Замечу — нижний предел сопротивления нагрузки (Rнагр. min) для генератора тока всегда можете смело принимать за ноль.

      Rнагр. max. — определяется из характеристик питаемого оборудования и важен для расчёта.

      в. Напряжение питания = Uпит.

      Методика расчёта генератора тока.

      Первое, что нужно определить это то какое максимальное напряжение необходимо развить на Rнагр.

      Uнагр. max = Iист. * Rнагр. max

      Далее определить то, каким запасом по напряжению мы располагаем.

      Uзап. = Uпит. — Uнагр. max

      Нужно понимать, что напряжение запаса должно поделиться между Uкэ. и Uэ.

      Значение напряжения Uкэ. которое снижается до минимального значения при максимальном значении Rнагр. желательно принять не менее 3 Вольт. Конечно чем больше, тем лучше

      Далее можем вычислить с каким максимальным напряжением стабилизации при заданных условиях можно выбрать стабилитрон.

      Uстаб. max = Uзап. — Uкэ + Uбэ

      Сопротивление Rэ рассчитываем по формуле:

      Rэ = (Uстаб. — Uбэ) / Iист.

      

      Из этой формулы видно, что током генератора тока мы можем управлять двумя способами:

      — изменяя Uстаб.;

      — изменяя Rэ.

      Uбэ — константа и изменению не подлежит.

      Есть ещё один подводный камень, это соотношение напряжений Uбэ и Uстаб.

      Из последней формулы видно, что если Uстаб. окажется меньше или равно Uбэ, то в этом случае Rэ должно быть либо равным нулю, либо отрицательным. И то, и другое невозможно.

      Таким образом, если Uстаб. получится меньше или равно Uбэ то схема окажется неработоспособной, так как в этом случае мы не сможем открыть транзистор и создать хоть какое либо падение напряжения на Rэ.

      Желательно получить Uстаб. в шесть — семь раз превышающее Uбэ.

      Если Uстаб. получается близким по значению к Uбэ то необходимо изменять входные условия. Если вы не можете повлиять на параметры нагрузки: (уменьшить Rнагр. max) или согласовать уменьшение тока от генератора тока, остается только один вариант — увеличить напряжение питания. Если и это невозможно согласовать…. Тогда пошлите заказчика к чёрту, а расчёты выкиньте в корзину.

      

Пример расчета простого генератора тока на биполярном транзисторе

      Тяжёлый вариант.

      Требования заказчика:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Это и есть то самое Прокрустово ложе.

      Простейшая для понимания схема будет такова:



Рис. 5

Пример расчета:

      Первое что нужно сделать, это проверить возможность создания такого генератора тока.

      Попробуем произвести расчёт.

      Uнагр. max = Iист. * Rнагр. max. = 0.02 * 3 000 = 60В

      Видим неприятную картину.

      Заданное Uпит. меньше требуемого Uнагр. max. Следовательно мы не сможем обеспечить требуемый ток в нагрузке при максимальном сопротивлении Rнагр.

      Что делать?

      Самое удобное для нас это уменьшить ток генератора тока. Как было сказано ранее этого можно добиться либо уменьшая Uстаб., либо увеличивая Rэ.

      Ток при этом определяется по формуле:

      Iист. = (Uстаб. — Uбэ) / Rэ

      Допустим, нам удалось согласовать изменение величины тока.

      Посмотрим, какая величина Iист. нас устроит.

      Как уже говорилось Uстаб. желательно выбрать не менее 6* Uбэ. Среднее значение Uбэ для кремниевых транзисторов составляет 0,65 В. Оно может изменяться в зависимости от выбранного транзистора, но ненамного (если конечно вы не выберете составной транзистор). Рассчитаем величину Uстаб.

      Uстаб. = Uбэ * 6 = 0,65 * 6 = 3,9В

      Обращаемся к справочнику по диодам, находим там раздел «Стабилитроны». И о чудо! Есть такой стабилитрон! И зовут его 2С139А.

      Он обладает следующими параметрами:


      Uст — напряжение стабилизации стабилитрона

      Uст ном — номинальное напряжение стабилизации стабилитрона

      Iст — ток стабилизации стабилитрона

      Iст ном — номинальный ток стабилизации стабилитрона

      Рmax — максимально-допустимая рассеиваемая мощность на стабилитроне

      rст — дифференциальное сопротивление стабилитрона

      aст — температурный коэффициент стабилизации стабилитрона

      Тк max — максимально-допустимая температура корпуса стабилитрона

      Далее определим необходимый запас по напряжению.

      Uзап. = Uстаб. — Uбэ + Uкэ = 3,9 — 0,65 + 3 = 6,25 В

      Вычитаем из величины питающего напряжения напряжение запаса и получаем максимально возможное напряжение на нагрузке.

      Uнагр. = Uпит. — Uзап. = 50 — 6,25 = 43,75 В

      Полученную величину Uнагр. делим на Rнагр. max. и получаем то значение тока, которое нас устроит.

      Iист. = Uнагр / Rнагр. max = 43.25 / 3000 = 0.0144 А

      Итак, нам удалось изменить требования заказчика, теперь они выглядят так:

      а. Iист. = 14,4мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Значит, мы можем приступить к окончательному расчёту элементов схемы.

      Rбал. = (Uпит. — Uстаб.) / Iст ном = (50 — 3,9) / 0,01 = 4610 Ом

          Где: Iст ном — взято из справочника.

      Выбираем ближайшее значение Rбал. (желательно в меньшую сторону):

      Rбал. = 4,3кОм.

      

      Определим величину сопротивления Rэ.

      Rэ = (Uстаб. — Uбэ) / Iист. = (3,9 — 0,65) / 0.0144 = 225,694444444444…….Ом.

      Опять же принимаем ближайшее значение и снова в меньшую сторону.

      Rэ = 220 Ом.

      В итоге получаем окончательную схему.



Рис. 6 Результат расчёта.

      Какой выбрать транзистор VT1?

      Да любой биполярный npn транзистор.

      Нужно помнить только, что у нас задано Uпит = 50 В. А это говорит о том, что допустимое напряжение Uкэ должно быть не менее этого значения (лучше раза в полтора больше). Максимальную мощность, рассеиваемую на корпусе транзистора можно рассчитать исходя из предельного режима, когда Rнагр. = 0.

      В этом случае Uкэ будет равно Uпит.-Uэ.

      Значит, мощность рассеяния можно определить из формулы:

      Pк max = (Uпит. — (Uстаб. — Uбэ)) * Iист. = (50 — (3,9 — 0,65)) * 0,0144 = 0,673 W

      где Pк — мощность рассеиваемая на коллекторе транзистора и выбирается она из справочника. (Надеюсь нет смысла объяснять почему нужно выбрать транзистор с несколько большим Pк?).

      В этом расчёте мы исходим из условия короткого замыкания в нагрузке.

      Можно конечно произвести расчёт из условия Rнагр = Rнагр. min, т.е. то минимальное сопротивление которое задано заказчиком. В этом случае Pк max. получится меньше, но в тоже время источник может оказаться слишком чувствительным к короткому замыканию в нагрузке.

      Может случиться так, что заказчик не пойдет на то чтобы изменить входные параметры.

      В этом случае нужно понять: какую сумму он готов заплатить за готовое изделие.

      Физика есть физика и против её законов не попрёшь.

      Если заказчик готов раскошелиться, то в схему можно ввести дополнительный источник питания, позволяющий входное напряжение 50В преобразовать в то напряжение, которое позволит нам вписаться в исходные условия.

      Рассчитаем какое минимальное Uпит. нам необходимо для удовлетворения первоначальных условий. Вот эти условия:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Uэ и Uкэ можно оставить прежними, к ним у нас претензий быть не должно.

      То, какое максимальное напряжение на нагрузке при данных условиях мы должны развить уже было рассчитано (Uнагр. max = 60 В).

      В этом случае (если мы снова возьмём стабилитрон 2С139А) минимальное значение напряжения питания можно определить из формулы:

      Uпит. min = Uнагр. max + Uэ + Uкэ = 60 + 3,25 + 3 = 66,25 В

      где Uэ = Uстаб. — Uбэ.

      Для ровного счёта примем Uпит. min = 67 В.

      В этом случае схема примет следующий вид:



Рис. 7 Генератор тока с внутренним источником напряжения.

      Есть одно НО! Добавление этого квадратика может увеличить стоимость схемы в сотню раз. Хотя желание заказчика мы при этом удовлетворим.

      Иногда в схему генератора тока вводят операционный усилитель (другое название — дифференциальный усилитель). Это позволяет создать большой коэффициент усиления в цепи отрицательной обратной связи и исключить влияние Uбэ транзистора на стабильность выходного тока.

      Пример такой схемы приведён на Рис. 8.

      Расчёт такой схемы отличается только тем, что нужно забыть об Uбэ.



Рис. 8 Генератор тока с дифференциальным усилителем.

      Можно пойти дальше и создать стабилизатор тока с регулируемым значением Iист.

      В этом случае желательно заменить стабилитрон на маломощный линейный стабилизатор напряжения. Обычно такие стабилизаторы напряжения в схемах обозначаются как ИОН (источник опорного напряжения).

      Вот пример такой схемы:



Рис. 9 Регулируемый генератор тока.

      Ну вот, кажется всё основное, то что касается построения и расчёта генераторов тока я изложил.

      Теперь встаёт вопрос…. А на кой чёрт нам всё это нужно?

      Ну, стабилизаторы напряжения… — тут всё понятно!

      Широко применяются в бытовой и промышленной электронике. Ни одно современное электронное устройство не обходится без них.

      А зачем нужно устройство, которое не может поддерживать стабильное напряжение на нагрузке, и это напряжение постоянно «гуляет», а величина этого напряжения будто привязана к величине Rнагр.?

      Рассмотрим некоторые области применения генераторов тока (стабилизаторов тока, источников тока).

      Первая и наверное самая распространённая область — это источники стабильного напряжения, как раз то без чего не обходится практически ни одно современное электронное устройство.

      В простейшем случае общая схема стабилизатора напряжения выглядит так:



Рис. 10 Функциональная схема стабилизатора напряжения.

      Обозначения в схеме:

      

      ИОН — источник опорного напряжения;

      Уош. — усилитель ошибки;

      Uоп. — опорное напряжение;

      Uдел. — напряжение снимаемое с делителя подключенного к выходному напряжению стабилизатора напряжения.

      Uош. — напряжение ошибки, оно вычисляется как Uоп. — Uдел.

      

      Напряжение на выходе стабилизатора зависит от величины Uоп. и коэффициента деления делителя.

      Uстаб. = Uоп * (Rдв + Rдн) / Rдн

      Усилитель ошибки сравнивает два напряжения Uоп. и Uдел., его главная задача поддерживать Uош. близким к нулю, а следовательно следить за тем, чтобы Uстаб. оставалось неизменным.

      Допустим мы имеем почти идеальный Уош., способный удерживать Uош. в десятки тысяч раз меньшим чем Uоп. (такие дифференциальные каскады сейчас существуют)

      В этом случае мы можем пренебречь влиянием элементов схемы Уош. на величину Uстаб. и главным виновником в нестабильности выходного напряжения при изменении Uпит. будет ИОН.

      

      Простейший источник опорного напряжения выглядит так:



Рис. 11 Простой источник опорного напряжения.

      Допустим, в процессе эксплуатации, Uпит. может изменяться от 18 до 36 Вольт.

      Мы располагаем всё тем же стабилитроном 2С139А (учтите, буквы русские).

      Первое что нужно сделать это рассчитать Rбал. Оно рассчитывается исходя из минимальной величины Uпит, при этом следует задаться минимальным током стабилитрона Iстаб. min.

      Из справочных данных следует что рабочий диапазон токов стабилитрона лежит в пределах 3 — 70 mA. Номинальный ток — 10 mA. Подбираться слишком близко к нижнему пределу не стоит, так как при этом слишком сильно возрастает Rст. Определимся с минимальным током стабилитрона равным 7mA.

      Тогда:

      Rбал. = (Uпит. min — Uстаб.) / Iстаб. min = (18 — 3.9) / 7 = 2.014 кОм.

      Ближайшее значение 2 кОм.

      При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,54 В.

     Динамическое сопротивление стабилитрона:

     rст = 60 Ом (См. табдицу выше).

     dI = dU/2кОм = 9мА

     dUоп. = dI*rст. = 0.009*60 = 0.54 В

      Разделив дельту на номинальное напряжение стабилитрона, определим величину нестабильности напряжения такого ИОН:

      0,54 / 3,9 = 0,135

      Т.е. нестабильность ИОН будет равна 13,5%.Понятно, что напряжение на выходе стабилизатора напряжения будет изменяться по такому же закону. И его нестабильность так же составит 13,5%.

      Посмотрим на сколько при таком изменении напряжения питания изменится ток протекающий через стабилитрон.

      Изменение тока протекающего через стабилитрон можно вычислить по следующей формуле:

      дельта Iстаб. = (Uпит. max — Uпит. min) / Rбал. = (36 — 18) / 2000 = 9 mA.

      Изменение тока составило 129% так как:

      дельта Iстаб. / Iстаб. min = 9 / 7 = 1,29

      Но нестабильность по напряжению в 13,5% нас не устраивает. Что делать?

      Вот здесь нам и придёт на помощь его величество Генератор Тока.

      Давайте запитаем стабилитрон, с которого будем снимать опорное напряжение, через это самое величество:



Рис. 12 Схема ИОН с повышенной стабильностью Uоп.

      Допустим VD1 иVD2 будут всё те же 2С139А. В этом случае Rбал. так же будет равно 2 кОм.

      Зададимся током через VD2. По справочнику номинальный ток этого стабилитрона 10 mA. Не мудрствуя лукаво примем это за истину.

      Вычислим величину Rэ.

      Rэ = (UVD1 — Uбэ.) / IVD2 = (3.9 — 0.65) / 10 = 0.325 кОм.

      Принимаем ближайшее значение 330 Ом.

      Изменение тока протекающего через Rэ, а значит и через VD2 при изменении Uпит. на 18 Вольт будет таким же как и изменение напряжения на VD1 рассчитанное ранее, т.е. 13,5%.

      Абсолютная величина изменения тока VD2 составит: 10mA * 13.5% = 1,35mA, в отличии от 9 mA в VD1. Это приведёт к изменению напряжения на стабилитроне VD2 на 0,081V. Нестабильность опорного напряжения снизится до 2,1%.

      Вместо 13,5% на VD1!

      И это притом, что я выбрал довольно паршивый стабилитрон. Хотите получить меньшую нестабильность выбирайте стабилитрон с меньшим Rст.

      

      Ну вот, с одной областью применения генераторов тока кажется разобрались.

      Что же ещё? Где ещё нам может понадобиться источник стабильного тока?

      Да там где используются резистивные датчики.

      Фоторезисторы, термосопротивления, резистивные тензодатчики и т.д. и т.п.



Рис. 13 Один из вариантов подключения датчиков к генератору тока.

      Сопротивление таких датчиков является функцией какого либо внешнего параметра — температуры, освещённости, давления. Обозначим зависимость Rдат. от величины параметра (P) как f(P).

      Как правило, сопротивление связано с измеряемым параметром определённой математической формулой. Ток протекающий через датчик в случае использования идеального источника тока не зависит от Uпит.

      Падение напряжения на Rдат будет определяться по формуле:

       Uдат. = Iист. * f(P).

      Так как Iист. = const, то Uдат. будет изменяться по тому же закону что и Rдат. Вот здесь нам и пригодилось то, что напряжение на выходе генератора тока «привязано» к Rнагр.

      А дальше всё просто: берём контроллер на основе микропроцессора, закладываем в него софт состоящий из многих программ предназначенных для расчёта различных f(P), программу опроса множества датчиков, величины критических значений измеряемых параметров и подключаем всё это к центральному компьютеру межзвёздного корабля.

      Теперь дежурная вахта в любой момент может получить информацию о величине температуры, освещения и давления в сотнях, а может и тысячах отсеках корабля, и даже о том, с каким ускорением летит корабль.

      Лифт сможет сообщить о том, каков вес груза находящегося в кабине.

      Вот кажется и всё то основное, что я хотел рассказать о генераторе тока.

      Теперь вернёмся к началу статьи. В чём всё-таки сходства и различия генераторов (стабилизаторов, источников) тока от устройств поддерживающих на своём выходе стабильное напряжение (стабилизаторов напряжения)?

      Составим таблицу сравнительных характеристик.


      Отсюда видно, что генератор тока и стабилизатор напряжения представляют собой зеркальное отражение друг друга.

      Я описал лишь некоторые области применения источников тока. На самом деле их намного больше.

      Дерзайте.

      Если вы заметили в статье я постоянно «путал» названия: генератор, источник, стабилизатор.

      Это сделано специально. Т.к. в различной литературе по электронике и электротехнике вы можете столкнуться с любым из них.

      

       И ещё.

      Часто производители в описании своей продукции делают большую ошибку.

      Вот пример:

      

       С сайта «FG Wilson (Engineering) Ltd» :

      

       Схема стабилизатора напряжения R438 обеспечивает управление по замкнутому циклу для выходного напряжения генератора переменного тока регулированием тока поля возбудителя. R438 может получать питание от поля системы с бесщеточным самовозбуждением или ПМГ и, как вариант, устанавливается на следующих генераторах переменного тока:

      Генераторы переменного тока серии 1000*

      Генераторы переменного тока серии 2000

      Генераторы переменного тока серии 3000

      

      В стабилизаторе напряжения R438 предусмотрена возможность проведения следующих регулировок (перед проведением регулировок необходимо внимательно ознакомиться с руководством по установке и техническому обслуживанию генератора переменного тока)

      

      Я не буду воспроизводить всю статью, но и из этой выдержки видно, что для того, кто писал описание этого устройства нет разницы между генератором напряжения и генератором тока.

       На самом деле это совершенно разные устройства.

      Если мы говорим о генераторе тока, то это означает, что нормирован ток.

      Если мы говорим о генераторе напряжения, то это означает, что нормировано напряжение.

      Дополнительно о стабилизаторах тока и напряжения читайте в статье «Стабилизатор тока и стабилизатор напряжения» этого раздела.


Стабилитроны в стабилизаторах напряжения — РАДИОСХЕМЫ

Позвольте уважаемые предложить ещё немного полезной теории, так как практических конструкций на сайте Радиосхемы более чем достаточно. Рассмотрим стабилитроны в стабилизаторах напряжения. При смещении в прямом направлении стабилитрон ведет себя как обычный кремниевый диод с PN переходом, позволяя току течь от анода к катоду. Но в отличие от обычного диода, который блокирует ток при обратном смещении, при достижении определенного порога обратного напряжения стабилитрон начинает проводить ток в противоположном направлении. Пороговое напряжение для этого явления и называется напряжением стабилитрона. Давайте проанализируем несколько аспектов моделирования этих типов схем, которые используются в качестве стабилизаторов напряжения.

Когда напряжение приложенное к стабилитрону превышает пороговое значение, характерное для данного элемента, возникает в области обеднения полупроводников процесс, известный как лавинный пробой. В результате через него протекает большой ток, который ограничивает дальнейшее повышение напряжения. Во время этого процесса создаются электрические заряды в результате столкновения свободных электронов с атомами полупроводника, что, в свою очередь, приводит к выделению тепла и возможности необратимого повреждения устройства.

Но если диод изготовлен с очень тонкой и сильно легированной обедненной областью, можно генерировать обратный ток, создавая достаточно сильное электрическое поле в переходе. Этот процесс полностью обратимый и не повредит его. Точка на горизонтальной оси, от которой начинается стабилизация напряжения на стабилитроне, соответствует так называемому напряжению стабилитрона (VZ), значение которого может быть от единиц до нескольких сотен вольт. Наклон кривой проводимости и минимальное значение обратного тока, с которого запускается процесс, можно точно контролировать во время производственного процесса с допуском менее 1%, изменяя параметры легирования и изготовления.

Стабилизатор напряжения на стабилитроне

Стабилитрон обеспечивает гораздо более высокий уровень стабильности питания, чем может быть достигнут, например, с помощью одной только схемы выпрямителя и фильтрующего конденсатора. В частности, за счет соответствующего легирования полупроводников можно получить практически вертикальный наклон кривой, получая стабилизированное напряжение с незначительной и постоянной пульсацией, которая не изменяется при изменении входного напряжения.

Далее показана схема простейшего стабилизатора напряжения, основанного на стабилитроне. Использовался стабилитрон с VZ = 12 В, а значение последовательного резистора R можно определить по формуле, как показано на рисунке, где Vi — входное напряжение, Vo — стабилизированное выходное напряжение (в данном случае 12 В), а IL — ток, потребляемый нагрузкой.

Без нагрузки (IL = 0) весь ток из схемы будет проходить через стабилитрон, который, в свою очередь, рассеивает его до максимальной своей мощности. Следовательно необходимо тщательно выбирать значение последовательного сопротивления, чтобы не превышать максимальную мощность, которую стабилитрон может рассеять когда к нему не подключена нагрузка. Эта схема способна генерировать ток не более десятков миллиампер, она часто используется для смещения базы транзистора или в качестве входа в операционный усилитель, тем самым получая более высокий выходной ток от стабилизатора.

На схеме показан стабилизатор на шунтирующем транзисторе, способный увеличивать мощность, подаваемую на нагрузку. Выходное напряжение VO определяется формулой: VO = VZ + VBE.

Стандартные напряжения стабилитронов

В продаже представлены стабилитроны с характеристическим напряжением от чуть более 1 В до нескольких сотен вольт. Для каждого значения напряжения обычно доступно одно или несколько значений мощности в диапазоне от чуть менее 0,5 Вт до более 5 Вт. Среди наиболее распространенных семейств стабилитронов — серия маломощных BZX55 с напряжением VZ от 2,4 В до 75 В и максимальной рассеиваемой мощностью до 500 мВт. Семейство силовых стабилитронов BZX85 также широко используется с напряжением VZ от 2,7 до 100 В и максимальной рассеиваемой мощностью до 1300 мВт. Про отечественные Д814 и Д815 говорить смысла нет, так как они уже сошли с радиолюбительской сцены.

Регулятор напряжения со стабилитроном

А это показан простейший пример стабилизатора со стабилитроном. Транзистор подключен как повторитель напряжения, а выходное напряжение примерно на 0,7 В ниже напряжения стабилитрона. Резистор R должен быть выбран таким образом, чтобы стабилитрон всегда был правильно смещен, а базовый ток Q1 был достаточным для перевода его в проводящее состояние. Чтобы ток на стабилитроне не упал до значения, не позволяющего проявиться свойствам стабилитрона, маломощный транзистор 2N2222 можно заменить транзистором Дарлингтона.

Что такое стабилизатор напряжения? Это усилитель постоянного тока с низким выходным сопротивлением, усиливающий опорное напряжение.

Стабилитрон это опорное напряжение, а эмиттерный повторитель является усилителем постоянного тока с коэффициентом усиления меньше 1. Обычно тут применяют транзисторы, но можем добиться большего используя операционный усилитель в качестве усилителя постоянного тока. Так получим намного лучшие параметры стабилизатора.

Это схема — повторитель — с очень точным коэффициентом усиления 1. Вход неинвертирующий не потребляет ток, поэтому он не влияет на значение тока стабилитрона.

Можно конечно при необходимости сделать усилитель с коэффициентом усиления больше 1. Далее показана схема с коэффициентом усиления 3. Коэффициент
усиления определяется по формуле:

ku = R1 + R2 / R2

Тут Ku = 3. Таким образом, выходное напряжение равно + Uz x 3. Изменяя номиналы резисторов, можем изменить коэффициент усиления и можем установить желаемое выходное напряжение. Номиналы резисторов не являются критичными, они могут быть в диапазоне от 1k до 100k, потому что инвертирующий вход тоже не потребляет ток.

Стабилизатор тока на двух транзисторах (схема, плата, сборка, испытание) — Схемка: Электронные Радиосхемы

  • Статьи
    • Программирование микроконтроллеров
    • Обзоры
      • Ноутбуки
      • Наушники
      • Часы электронные
      • Переходники-преобразователи
      • Китайские модули
        • Беспроводные

Различные типы стабилизаторов напряжения — для защиты вашей бытовой техники

Колебания напряжения вызывают временный или постоянный отказ нагрузки. Эти колебания напряжения также сокращают срок службы бытовой техники из-за нерегулируемого низкого или более высокого напряжения, чем предполагаемое напряжение, необходимое для нагрузки. Эти колебания напряжения возникают из-за внезапных изменений нагрузки или из-за неисправностей в энергосистеме. Значит, необходимо подавать на нагрузку стабильное напряжение, учитывая важность бытовой техники и необходимость ее защиты.Стабилизаторы напряжения используются для поддержания стабильного напряжения питания нагрузки, так что бытовая техника может быть защищена от повышенного и пониженного напряжения.

Что такое стабилизатор?

Стабилизатор — это вещь или устройство, используемое для поддержания чего-либо или количества в постоянном или стабильном состоянии. Существуют разные типы стабилизаторов в зависимости от количества, которое они используются для поддержания стабильности. Например, стабилизатор, используемый для поддержания стабильной величины напряжения в энергосистеме, называется стабилизатором напряжения.


Что такое стабилизатор?
Стабилизатор напряжения

Стабилизатор напряжения предназначен для поддержания стабильного уровня напряжения, чтобы обеспечить постоянную подачу напряжения, несмотря на любые колебания или изменения в подаче, с целью защиты бытовой техники. Обычно регуляторы напряжения используются для поддержания постоянного напряжения, и эти регуляторы напряжения, которые используются для обеспечения постоянного напряжения бытовой технике, называются стабилизаторами напряжения.

Стабилизатор напряжения

Существуют различные типы регуляторов напряжения, такие как электронные регуляторы напряжения, электромеханические регуляторы напряжения, автоматические регуляторы напряжения и активные регуляторы.Точно так же существуют различные типы стабилизаторов напряжения, такие как сервостабилизаторы напряжения, автоматические стабилизаторы напряжения, стабилизаторы напряжения переменного тока и стабилизаторы напряжения постоянного тока.

Работа стабилизатора напряжения

Работа стабилизатора напряжения может быть изучена путем рассмотрения различных типов стабилизаторов напряжения, таких как:

Стабилизаторы напряжения переменного тока

Эти стабилизаторы напряжения переменного тока подразделяются на различные типы, такие как напряжение переменного тока вращения катушки регуляторы, электромеханические регуляторы и трансформаторы постоянного напряжения.


1. Регуляторы переменного напряжения с вращением катушки

Это старый тип регулятора напряжения, который использовался в 1920-х годах. Работает по принципу аналогично вариопаре. Он состоит из двух катушек возбуждения: одна катушка неподвижна, а другая может вращаться вокруг оси, параллельной неподвижной катушке.

Регуляторы переменного напряжения с вращением катушки

Постоянное напряжение может быть получено путем уравновешивания магнитных сил, действующих на подвижную катушку, что достигается путем размещения подвижной катушки перпендикулярно неподвижной катушке.Напряжение во вторичной катушке можно увеличивать или уменьшать, вращая катушку в одном или другом направлении от центрального положения.

Сервоуправление может использоваться для продвижения положения подвижной катушки для увеличения или уменьшения напряжения; при таком вращении катушки регуляторы переменного напряжения могут использоваться как автоматические стабилизаторы напряжения.

2. Электромеханические регуляторы

Электромеханические регуляторы напряжения, которые используются для регулирования напряжения в распределительных линиях переменного тока, также называемые стабилизаторами напряжения или переключателями ответвлений.Для выбора подходящего ответвления из нескольких ответвлений автотрансформатора в этих стабилизаторах напряжения используется работа сервомеханизма.

Электромеханические регуляторы

Если выходное напряжение выходит за рамки заданного значения, то для переключения ответвления используется сервомеханизм. Таким образом, изменяя коэффициент трансформации трансформатора, можно изменять вторичное напряжение для получения приемлемых значений выходного напряжения. Охота, которая может быть определена как отказ контроллера постоянно регулировать напряжение; это можно наблюдать в зоне нечувствительности, в которой контроллер не работает.

3. Трансформатор постоянного напряжения

Это тип насыщающего трансформатора, который используется в качестве стабилизатора напряжения; его также называют феррорезонансным трансформатором или феррорезонансным регулятором. В этих стабилизаторах напряжения используется бак-схема, состоящая из конденсатора для генерации почти постоянного среднего выходного напряжения с изменяющимся входным током и высоковольтной резонансной обмотки. Благодаря магнитному насыщению участок вокруг вторичной обмотки используется для регулирования напряжения.

Трансформатор постоянного напряжения

Для стабилизации источника переменного тока используется простой и надежный метод, который может быть обеспечен с помощью насыщающих трансформаторов.Из-за отсутствия активных компонентов подход с феррорезонансом является привлекательным методом, который полагается на характеристики насыщения прямоугольной петли цепи резервуара для поглощения изменений входного напряжения.

Стабилизаторы напряжения постоянного тока серии

или шунтирующие регуляторы часто используются для регулирования напряжения источников постоянного тока. Опорное напряжение подается с помощью регулятора шунта, как стабилитрон или регулятор напряжения трубки. Эти устройства стабилизации напряжения начинают проводить при заданном напряжении и проводят максимальный ток, чтобы удерживать заданное напряжение на клеммах.Избыточный ток отводится на землю, часто с помощью резистора малого номинала для рассеивания энергии. На рисунке показан стабилизатор постоянного напряжения с регулируемым напряжением на микросхеме LM317.

постоянного напряжения Стабилизаторы

Шунт выход регулятора используется только для обеспечения стандартного опорного напряжения к электронному устройству, называемому в качестве стабилизатора напряжения, который способен обеспечить гораздо большие токи, основанные на спросе.

Автоматические стабилизаторы напряжения

Эти стабилизаторы напряжения используются в генераторных установках, аварийном электроснабжении, нефтяных вышках и т. Д.Это электронное силовое устройство, используемое для обеспечения переменного напряжения, и это можно сделать без изменения коэффициента мощности или фазового сдвига. Стабилизаторы напряжения больших размеров стационарно закреплены на распределенных линиях, а малые стабилизаторы напряжения используются для защиты бытовой техники от колебаний напряжения. Если напряжение источника питания меньше требуемого диапазона, то для повышения уровней напряжения используется повышающий трансформатор, и аналогично, если напряжение выше требуемого диапазона, оно понижается с помощью понижающего трансформатор.

Автоматические стабилизаторы напряжения

Практический пример автоматического стабилизатора напряжения можно увидеть в цепях питания, используемых для подачи питания на электронные и электронные схемы. Регулятор 7805 часто используется для обеспечения питания проектных комплектов на основе микроконтроллеров, поскольку микроконтроллеры работают от 5 В. В этом стабилизаторе напряжения 7805 первые две цифры представляют собой положительный ряд, а последние две цифры представляют значение выходного напряжения регулятора напряжения.

Регулятор 7805

Развитие технологий привело к появлению множества новых трендовых стабилизаторов напряжения, которые автоматически регулируют уровни напряжения в требуемом диапазоне. В случае невозможности достижения этого требуемого диапазона напряжения источник питания будет автоматически отключен от нагрузки, чтобы защитить бытовую технику от нежелательных колебаний напряжения. Для получения дополнительной технической информации о стабилизаторах напряжения вы можете связаться с нами, разместив свои комментарии в разделе комментариев ниже.

Фото:

  • Регуляторы переменного напряжения вращения катушки, авторские работы
  • Электромеханические регуляторы, авторские права на wikimedia
  • Автоматические стабилизаторы напряжения одним щелчком мыши

Стабилизаторы напряжения могут увеличить мощность и крутящий момент — факт или вымысел

Тестирование Скоттом Цунейши

Уважаемый Import Tuner ,
Я пишу, чтобы предложить вам продукт для проверки фактами или вымыслом: стабилизаторы напряжения.Кажется, что каждая компания JDM делает их, но они никогда толком не объясняют, как они работают, просто их установка сделает вашу машину лучше во всех отношениях. Но все в сети говорят о них дерьмо. Они работают? Как они работают? Стоят ли они своей цены?
Спасибо,
— Джереми Панза,

через [email protected]

Фото 2/13 | Стабилизаторы напряжения могут увеличить мощность и крутящий момент — факт или вымысел

Если когда-либо и существовала загадочная область функциональности автомобиля, то это электрическая система автомобиля.Динамику двигателя, настройку подвески, размер тормозов и даже настройку легко понять, потому что мы можем чувствовать, наблюдать и визуализировать, что происходит. Больший рабочий объем означает сжигание большего количества воздуха и топлива для большей мощности. Меньший крен кузова и более низкий центр тяжести улучшают управляемость. Более крупные тормоза означают большую площадь поверхности для распределения тепла и меньший износ тормозов. Предварительное зажигание и повышенная температура выхлопных газов? Добавьте еще топлива. Просто.

Но это не тот случай в мире электроники, где все происходит со скоростью света субатомными частицами, которые сообщают о своем присутствии только при замыкании или поджигании предметов.Следом идут сомнительные продукты, которые обещают сделать отличные вещи для электрической системы автомобиля. В конце концов, если вы не можете сказать, насколько хорошо что-то работает, вы не можете с уверенностью сказать, действительно ли продукт компании X не делает его лучше. Но вот почему мы здесь.

Претензия:
Стабилизаторы напряжения позволяют увеличить мощность и крутящий момент.

В этом месяце мы протестировали четыре самых популярных стабилизатора напряжения на рынке. Не путать с системами заземления, которые дополняют заземление оригинального аккумулятора и шасси автомобиля, стабилизаторы напряжения, иногда называемые «конденсаторами», подключаются непосредственно к аккумулятору автомобиля на положительной и отрицательной клеммах и предназначены для регулирования потока электричества, идущего от аккумулятор автомобиля к его электрическим компонентам, сглаживание холостого хода, улучшение выходной мощности фар и аудиооборудования, увеличение срока службы аккумулятора и повышение эффективности сгорания для увеличения мощности / крутящего момента и снижения выбросов.

Фото 3/13 | Стабилизаторы напряжения могут увеличить мощность и крутящий момент — факт или вымысел

Первое, что нужно помнить, это то, что автомобильный аккумулятор уже действует как большой стабилизатор напряжения. Электроэнергия, вырабатываемая генератором, отправляется по мере необходимости на аккумулятор и электрические устройства. В периоды низкого потребления электроэнергии (например, фары, аудиосистема, кондиционер выключен) избыточное электричество, вырабатываемое генератором, заряжает аккумулятор, а не проходит через систему.Но когда потребность в электрической системе автомобиля превышает то, что может генерировать генератор переменного тока (например, во время низкого холостого хода и / или высокого потребления электроэнергии), электричество разряжается от батареи в количествах, необходимых для компенсации провисания. Проблема в том, что традиционный свинцово-кислотный аккумулятор не может переключаться с заряда на разряд достаточно быстро, чтобы подавить мелкомасштабные колебания напряжения или электрический «шум», который может отрицательно повлиять на электрические компоненты автомобиля. Более продвинутые (дорогие) аккумуляторы и электрические системы новых автомобилей могут почти идеально стабилизировать ток ржавчины, но в любом случае, как говорят производители комплектов стабилизаторов напряжения, можно многого добиться, добавив систему вторичного рынка. конденсаторы к смеси.

Фото 4/13 | Стабилизаторы напряжения могут увеличить мощность и крутящий момент — факт или вымысел

Наши испытания начались с того, что мы привязали новый (для него) KA24DE ’95 240SX с двигателем KA24DE ’95 240SX Эллиотта «Mr. дроссельная заслонка тянет, сначала в качестве базовой линии без установленной системы напряжения, затем снова с каждым из четырех претендентов на место.

Первым был Raizin Pivot, японский производитель которого может похвастаться уверенностью в изготовлении продукта с прозрачным корпусом. Его конструкция проста: четыре конденсатора для зарядки и разрядки постороннего электрического тока быстрее, чем автомобильный аккумулятор, небольшая положительная и отрицательная проводка, два сменных предохранителя и светодиод, указывающий на правильность установки.

Следующим был конденсатор Racing Spec Condenser от Buddy Club. Судя по тому, что мы могли видеть через окно в его корпусе, он построен так же, как Raizin, но с большими конденсаторами и добавлением дополнительных заземляющих лент.

Нашим третьим и последним японским претендентом была почтенная система Hyper Voltage от Sun Auto, одна из первых таких комплектов на рынке. В ней использовалась медная проводка, покрытая нержавеющей сталью, большего размера, чем в любой другой системе, и полностью герметичный модуль — отличный вариант для защиты от загрязнений, но не такой хороший для удобства обслуживания или наблюдения за его работой.Тем не менее, он показал лучшие пиковые показатели из всей группы.

Наш «загадочный стабилизатор» (названный так, потому что он был подарен для тестирования без какой-либо маркировки), был последним, кто попал под микроскоп.Его алюминиевый корпус радиатора является общим для нескольких брендов, как и его черно-красная проводка в стиле Home Depot. Мы не будем спекулировать на том, какой бренд мы думаем.

Вердикт:
Каждый стабилизатор слегка увеличивал мощность и крутящий момент во всем диапазоне оборотов, и, за исключением Raizin, который потерял долю лошадиных сил, каждая система увеличила пиковую мощность и крутящий момент. Но величина увеличения мощности и крутящего момента (в среднем 0,5 л.с.и 1,5 фунт-фут крутящего момента) достаточно мала, чтобы считаться стандартным отклонением при параллельных тестах 15-летнего автомобиля с впечатляющей историей испытаний. чек-двигатель фары.Тем не менее, основываясь на универсальных характеристиках устройства Sun Auto и низких характеристиках модели Buddy Club, а также на том факте, что Эллиот клянется, что устройство Sun Auto на самом деле делает его поцарапанные желтые фары ярче, мы должны признать, что в конце концов, эти вещи могут принести пользу.

Фото 13/13 | Стабилизаторы напряжения могут увеличить мощность и крутящий момент — факт или вымысел

Смотреть фото галерею (13) Фото

Решатель цепей

Попробуйте веб-приложение здесь: Circuit Solver

Заинтересованы в автоматизации веб-приложения? Попробуйте интерфейс java или python: Библиотека

По мере приближения к старшему классу бакалавриата Б.В области электротехники я хотел создать что-то, чего большинство людей раньше не создавало, — симулятор схем! Речь шла об опыте, обучении и самом путешествии. Я собрал это приложение, чтобы упаковать свои знания в области электротехники, чтобы когда-нибудь помочь другому студенту легче выполнять свои учебные занятия и, в свою очередь, научить его схемам. Circuit Solver далек от совершенства, и есть много вещей, которые можно оптимизировать. Тем не менее, он будет моделировать большинство линейных цепей и приличное количество нелинейных цепей меньшего масштаба.Если это приложение поможет вам каким-либо образом, я буду признателен, если вы расскажете о моих усилиях. Спасибо!

Думайте о Circuit Solver как об электронной плате, вы перетаскиваете свои электрические компоненты и размещаете их по одному. Вы подключаете несколько источников и устанавливаете несколько счетчиков для считывания значений. Если вам нужно проанализировать форму сигнала, возьмите несколько электрических проводов и просмотрите их с помощью осциллографа. Есть много инструментов SPICE для ПК, таких как Multisim, LTSpice и PSpice.Circuit Solver не сравнится с их чистой мощностью, но он оптимизирован для работы на мобильных устройствах, что делает его портативным и легко доступным для всех, кто нуждается в схемных решениях. Circuit Solver стремится проверить закон Ома, законы тока и напряжения Кирхгофа, создавая модели, которые являются одновременно стабильными и эффективными.


Моделирование постоянного тока: Для решения схем определяется матрица на основе всех компонентов внутри схемы.Приложение решает схему, используя манипуляции с матрицами, такие как LU-декомпозиция и инверсия матриц. Анализ постоянного тока завершается написанием серии узловых уравнений. Уравнения решаются одновременно, чтобы получить единственное решение.

Моделирование переходных процессов: При моделировании переходных процессов мы используем численное интегрирование для определения отклика цепей RLC. Численное интегрирование позволяет решать дискретные моменты времени и фактически интегрировать их отклик.Это приложение поддерживает только обратный метод Эйлера.

Нелинейное моделирование: Нелинейный анализ используется для таких компонентов, как диоды и светодиоды. Решатель сначала угадывает приблизительное значение решения и уточняет его с помощью процесса Ньютона-Рафсона. Он использует линейное приближение для предсказания ответа через последовательные итерации.

Встроенный осциллограф: Визуализируйте формы сигналов с помощью встроенного осциллографа.Чтобы использовать эту функцию, просто привяжите к графику вольтметр или амперметр, нажав на них и нажав на глаз, чтобы увидеть волну.

Схема / схемы сохранения: Сохраните свои схемы на своем устройстве, чтобы использовать их в любом месте и в любое время. Вы также можете делать снимки экрана построенных вами схем. Эти снимки экрана сохраняются локально на вашем устройстве.

Список компонентов:
+ Резистор
+ Конденсатор
+ Индуктор
+ Источник переменного напряжения
+ Источник переменного тока
+ Источник постоянного напряжения
+ Источник постоянного тока
+ Источник прямоугольной волны
+ Амперметр
+ Ом метр
+ Вольтметр
+ Диод
+ Красный светодиод
+ Зеленый светодиод
+ Синий светодиод
+ Желтый светодиод
+ Оранжевый светодиод
+ Провод
+ Источник напряжения с управляемым напряжением (VCVS)
+ Источник тока, управляемый напряжением (VCCS)
+ Текущий управляемый источник тока (CCCS)
+ Источник контролируемого напряжения (CCVS)
+ Переключатель (SPST)
+ Переключатель (SPDT)
+ Земля
+ Трансформатор
+ И ворота
+ ИЛИ Ворота
+ NOR ворота
+ NAND Gate
+ Инвертор
+ Потенциометр
+ XOR ворота
+ XNOR ворота
+ NPN BJT
+ PNP BJT
+ NMOSFET
+ PMOSFET
+ OPAMP
+ Стабилитрон


Примеры









.

Оставить комментарий