Таблица прочности бетона в мпа: Прочность бетона в МПа, таблица, классы, марки |
Прочность бетона в МПа, таблица, классы, марки |
О бетоне уже написаны горы справочной литературы. Зарываться в нее обычному застройщику нет смысла, ему достаточно знать, что такое прочность бетона в МПа, таблицу конкретных значений этого показателя и как эти цифры можно использовать.
Итак, прочность бетона (ПБ) на сжатие — это самый главный показатель, которым характеризуется бетон.
Конкретное цифровое значение этого показателя называется Классом бетона (В). То есть под этим параметром понимают кубиковую прочность, которая способна выдержать прилагаемое давление в МПа с фиксированным процентом вероятности разрушение образца не более 5 экземпляров из сотни.
Это академическая формулировка.
Но на практике строитель обычно пользуется другими параметрами.
Существует также такой показатель ПБ, как марка (М). Этот предел прочности бетона измеряется в кгс/см2. Если свести все данные о прочности бетона в МПа и кгс/см2 в таблицу, то она будет иметь вот такой вид.
Как обычно проводятся испытания на прочность? Бетонный куб размерами 150x150x150 мм берется из заданной области бетонной смеси, крепится с металлической специальной форме и подвергается нагрузке. Отдельно следует сказать о том, что подобная операция производится, как правило, на 28-е сутки после укладки смеси.
Что дают застройщику числовые значения данных (выраженных в МПа или) этой таблицы прочности бетона?
Они помогают правильно определить область применения продукта.
Например, изделие В 15 идет на сооружение ж/б монолитных конструкций, рассчитанных под конкретную нагрузку. В 25 — на изготовление монолитных каркасов жилых зданий и т.д.
Какие факторы влияют на ПБ?
- Содержание цемента. Понятно, что ПБ будет тем выше (впрочем, только до известного предела), чем выше содержание цемента в смеси.
- Активность цемента. Здесь зависимость линейная и повышенная активность предпочтительней.
- Водоцементное отношение (В/Ц). С уменьшением В/Ц прочность увеличивается, с возрастанием, наоборот, уменьшается.
Как быть, если возникла необходимость перевести МПа в кгс/см2? Существует специальная формула.
0,098066 МПа = 1 кгс/см2.Или (если немного округлить) 10 МПа = 100 кгс/см2.
Далее следует воспользоваться данными таблицы прочности бетона и произвести нужные расчеты.
Egor11Соответствие класса бетона (В) и марки (М) и их определение
Прочность бетона на сжатие — это основной показатель, которым характеризуют бетон. В настоящее время, встречаются две системы выражения данного показателя, а именно:
Класс бетона, B — это так называемая кубиковая прочность (т.е. сжимаемый образец в форме куба) показывающая выдерживаемое давление в МПа, с долей вероятности разрушения не более 5 единиц из 100 испытуемых образцов. Обозначается латинской буквой B и числом показывающим прочность в МПа. Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции».
Марка бетона, M — это предел прочности бетона на сжатие, кгс/см
Соответствие марки бетона (М) классу (В) и прочности на сжатие | |||
---|---|---|---|
Марка бетона, М | Класс бетона, B | Прочность, МПа | Прочность, кг/см2 |
М50 | B3.5 | 4.5 | 45.8 |
М75 | B5 | 65.5 | |
М100 | B7,5 | 9.63 | 98.1 |
— | B10 | 12.84 | 130.9 |
М150 | В12,5 | 16.05 | 163.7 |
М200 | В15 | 19.26 | 196.4 |
М250 | В20 | 25.69 | 261.8 |
М300 | В22,5 | 28.9 | 294.6 |
— | В25 | 32.11 | 327.3 |
М350 | В27,5 | 35.32 | 360 |
М400 | В30 | 38.35 | 392.8 |
М450 | В35 | 44.95 | 458.2 |
М500 | В40 | 51.37 | 523.7 |
М600 | В45 | 57.8 | 589.2 |
М700 | В50 | 64.2 | 654.6 |
М750 | В55 | 71.64 | 720.1 |
М800 | В60 | 77.06 | 785.5 |
М900 | В65 / B70 | ||
М1000 | В75 / B80 |
Определение Марки и Класса бетона
Марка бетона и его класс, при нормальных условиях температуры и влажности определяются, как правило, спустя 28 дней со дня его заливки, или расчет ведется с учетом коэффициента.
Определение прочности бетона по Шору склерометром (молотком Шмидта)
Одним из наиболее распространенных и эффективных способов быстрого измерения прочности бетона на сжатие или его марки, является измерение склерометром, или как его еще называют, молоток Шмидта. Контроль прочности бетона таким методом определяется по ГОСТ 22690-88 «Бетоны: определение прочности механическими методами неразрушающего
Принцип действия молотка Шмидта основан на измерении прочности бетона методом упругого отскока. Боек бъется о поверхность бетона и отскакивает. Боек устанавлвает указатель на шкале склерометра на максимальную высоту отскока. Таким образом, сняв несколько проб, вычисляется средний показатель, определяющий марку бетона.
К сожалению, данный метод не дает абсолютно точных показаний так как на высоту отскока бойка влияют и прочие факторы такие как шероховатость поверхности, толщина испытуемого образца, методов уплотнения бетона при его заливке, и соответвенное его общая структура и прочие факторы. Так что погрешность в показаниях склероскопу (склерометру) практически неизбежна, но она и чрезвычайно мала.
Соответствие высоты упругого отскока по показаниям шкалы молотка Шмидта (склерометра) классу бетона (B) и его марке (M) приведены в следующей таблице:
Соответствие Марки и Класса бетона показаниям шкалы склерометра (молотка Шмидта) по направлению удара в соответствии с графиком тарировочной кривой | ||||
---|---|---|---|---|
Марка бетона, М | Класс бетона, B | Вертикально сверху, ед | Горизонтально, ед. | Вертикально снизу, ед |
М100 | B7,5 | 10 | 13 | 20 |
B10 | 12 | 18 | 23 | |
М150 | B12,5 | 20 | 24 | 28 |
М200 | В15 | 24 | 28 | 32 |
М250 | В20 | 30 | 34 | 38 |
М300 | В22,5 | 34 | 37 | 41 |
М350 | В27,5 | 38 | 41 | 45 |
М400 | В30 | 41 | 43 | 47 |
М450 | В35 | 44 | 47 | 50 |
М500 | В40 | 47 | 49 | 52 |
М600 | В45 | 49 | 52 | 55 |
таблица на сжатие по классам в МПа, от чего зависит
Прочность – это техническая характеристика, по которой определяется способность выдерживать механические или химические воздействия. Для каждого этапа строительства требуются материалы с разными свойствами. Для заливки фундамента здания и возведения стен применяется бетон разных классов. Если использовать материал с низким прочностным показателем для строительства конструкций, которые будут подвергаться значительным нагрузкам, то это может привести к растрескиванию и разрушению всего объекта.
Оглавление:
- От чего зависит значение прочности?
- Способы проверки качества бетона
- График набора прочности
- Маркировка растворов
Как только в сухую смесь добавляется вода, в ней начинается химический процесс. Скорость его протекания может увеличиваться или уменьшаться из-за многих факторов, например, температуры или влажности.
Что влияет на прочность?
На показатель оказывают влияние следующие факторы:
- количество цемента;
- качество смешивания всех компонентов бетонного раствора;
- температура;
- активность цемента;
- влажность;
- пропорции цемента и воды;
- качество всех компонентов;
- плотность.
Также он зависит количества времени, которое прошло с момента заливки, и использовалось ли повторное вибрирование раствора. Наибольшее влияние оказывает активность цемента: чем она выше, тем больше получится прочность.
От количества цемента в смеси также зависит прочность. При повышенном содержании он позволяет увеличить ее. Если же использовать недостаточное количество цемента, то свойства конструкции заметно снижаются. Увеличивается этот показатель лишь до достижения определенного объема цемента. Если засыпать больше нормы, то бетон может стать слишком ползучим и дать сильную усадку.
В растворе не должно быть слишком много воды, так как это приводит к появлению в нем большого количества пор. От качества и свойств всех компонентов напрямую зависит прочность. Если для замешивания использовались мелкозернистые или глинистые наполнители, то она снизится. Поэтому рекомендуется подбирать компоненты с крупными фракциями, так как они значительно лучше скрепляются с цементом.
От однородности замешанной смеси и применения виброуплотнения зависит плотность бетона, а от нее – прочность. Чем он плотнее, тем лучше скрепились между собой частицы всех компонентов.
Способы определения прочности
По прочности на сжатие узнаются эксплуатационные характеристики сооружения и возможные на него нагрузки. Вычисляется этот показатель в лабораториях на специальном оборудовании. Используются контрольные образцы, сделанные из того же раствора, что и отстроенное сооружение.
Также вычисляют ее на территории строящегося объекта, узнать можно разрушаемым или неразрушаемым способами. В первом случае либо разрушается сделанная заранее контрольная проба в виде куба со сторонами 15 см, либо с помощью бура из конструкции берется образец в виде цилиндра. Бетон устанавливается в испытательный пресс, где на него оказывается постоянное и непрерывное давление. Его увеличивают до тех пор, пока проба не начнет разрушаться. Показатель, полученный во время критической нагрузки, применяется для определения прочности. Этот метод разрушения пробы является самым точным.
Для проверки бетона неразрушаемым способом используется специальное оборудование. В зависимости от типа приборов он делится на следующие:
- ультразвуковой;
- ударный;
- частичное разрушение.
При частичном разрушении на бетон оказывают механическое воздействие, из-за чего он частично повреждается. Провести проверку прочности в МПа этим методом можно несколькими способами:
- отрывом;
- скалыванием с отрывом;
- скалыванием.
В первом случае к бетону на клей крепится диск из металла, после чего его отрывают. То усилие, которое потребовалось для его отрыва, и используется для вычисления.
Метод скалывания – разрушение скользящим воздействием со стороны ребра всего сооружения. В момент разрушения регистрируется значение приложенного давления на конструкцию.
Второй способ – скалывание с отрывом – показывает наилучшую точность по сравнению с отрывом или скалыванием. Принцип действия: в бетоне закрепляются анкера, которые впоследствии отрываются от него.
Определение прочности бетона ударным методом возможно следующими путями:
- ударный импульс;
- отскок;
- пластическая деформация.
В первом случае фиксируется количество энергии, создаваемой в момент удара по плоскости. Во втором способе определяется величина отскока ударника. При вычислении методом пластической деформации используются приборы, на конце которых расположены штампы в виде шаров или дисков. Ими ударяют о бетон. По глубине вмятины вычисляются свойства поверхности.
Метод с помощью ультразвуковых волн не является точным, так как результат получается с большими погрешностями.
Набор прочности
Чем больше прошло времени после заливки раствора, тем выше стали его свойства. При оптимальных условиях бетон набирает прочность на 100 % на 28-ой день. На 7-ой день этот показатель составляет от 60 до 80 %, на 3-ий – 30 %.
Рассчитать приблизительное значение можно по формуле: Rb(n) = марочная прочность*(lg(n)/lg(28)), где:
- n – количество дней;
- Rb(n) – прочность на день n;
- число n не должно быть меньше трех.
Оптимальной температурой является +15-20°C. Если она значительно ниже, то для ускорения процесса затвердения необходимо использовать специальные добавки или дополнительный обогрев оборудованием. Нагревать выше +90°C нельзя.
Поверхность должна быть всегда влажной: если она высохнет, то перестает набираться прочность. Также нельзя допускать замерзания. После полива или нагрева бетон снова начнет повышать свои прочностные характеристики на сжатие.
График, показывающий, сколько времени требуется для достижения максимального значения при определенных условиях:
Марка по прочности на сжатие
Класс бетона показывает, какую максимальную нагрузку в МПа он выдерживает. Обозначается буквой В и цифрами, например, В 30 означает, что куб со сторонами 15 см в 95% случаев способен выдержать давление 25 МПа. Также прочностные свойства на сжатие разделяют по маркам – М и цифрами после нее (М100, М200 и так далее). Эта величина измеряется в кг/см2. Диапазон значений марки по прочности – от 50 до 800. Чаще всего в строительстве применяются растворы от 100 и до 500.
Таблица на сжатие по классам в МПа:
Класс (число после буквы – это прочность в МПа) | Марка | Средняя прочность, кг/см2 |
В 5 | М75 | 65 |
В 10 | М150 | 131 |
В 15 | М200 | 196 |
В 20 | М250 | 262 |
В 30 | М450 | 393 |
В 40 | М550 | 524 |
В 50 | М600 | 655 |
М50, М75, М100 подходят для строительства наименее нагружаемых конструкций. М150 обладает более высокими прочностными характеристиками на сжатие, поэтому может применяться для заливки бетонных стяжек пола и сооружения пешеходных дорог. М200 используется практически во всех типах строительных работ – фундаменты, площадки и так далее. М250 – то же самое, что и предыдущая марка, но еще выбирается для межэтажных перекрытий в зданиях с малым числом этажей.
М300 – для заливки монолитных оснований, изготовления плит перекрытий, лестниц и несущих стен. М350 – опорные балки, фундамент и плиты перекрытий для многоэтажных зданий. М400 – создание ЖБИ и зданий с повышенными нагрузками, М450 – плотины и метро. Марка меняется в зависимости от количества содержащегося в нем цемента: чем больше его, тем она выше.
Чтобы перевести марку в класс, используется следующая формула: В = М*0,787/10.
Перед сдачей в эксплуатацию любого здания или другого сооружения из бетона оно обязательно должно быть проверено на прочность.
маркировка, таблица на сжатие по классам в мпа, уход зимой и летом
Бетон — недорогой и универсальный материал, который подойдет для строительства загородного дома, бани или гаража. Его не нужно дополнительно обрабатывать в отличие от дерева или железа. Грунтовые воды, высокая влажность и агрессивная среда не страшны ему, если выбрать подходящую марку.
Оглавление:
- От чего зависит прочность?
- Классы и марки бетона
- Уход летом и зимой
- Исследование готовых конструкций
Важнейшая характеристика этого материала — прочность. Она определяет сферу его применения. Если выбрать низкую марку, сооружение разрушится раньше срока. При несоблюдении технологии работ даже высокий показатель не станет гарантией надежности. Прочность на сжатие — это давление, которое он способен выдержать, не разрушаясь. Его измеряют в мегапаскалях (мПа). Класс (B) — это результаты таких испытаний. Бетон отличается от марки только тем, что выражает значение гарантированной прочности на сжатие. Это значит, что в 95 % случаев он выдерживает максимальное давление.
Что влияет на показатель?
1. Соотношение воды и цемента.
Цемент способен впитывать определенное количество жидкости. Поэтому, если воды слишком много, то во время застывания она высыхает, создавая свободное пространство между наполнителями, что ухудшает прочность материала. Если жидкости добавить мало, то клеящие свойства цемента не активируются полностью.
2. Качество и марка цемента.
Этот ингредиент служит клеем для песка и щебня. Чтобы изготовить самые используемые в строительстве классы, применяют портландцемент М300-М500. Пропорции зависят от марки. Кроме того, если его хранить неправильно и долго, то качество упадет. Например, М500 за 2 месяца станет М400 даже на складе с хорошими условиями.
3. Транспортировка и бетонирование.
После приготовления смесь необходимо постоянно перемешивать, иначе она быстро потеряет свои свойства. Работать с бетоном без пластификаторов сложно уже через 2-3 часа, а добавки способны продлить этот период еще на несколько часов. Процесс твердения медленно начинается сразу после того, как раствор развели, поэтому обязательно использовать специальный транспорт и бетоносмеситель для его заливки в фундамент и другие крупные конструкции.
4. Условия набора прочности.
Необходимо создать все условия, чтобы добиться заявленной марки. Дальше в тексте будет раздел, посвященный этому вопросу.
5. Щебень.
Некоторые строители творчески подходят к выбору наполнителей для бетонной смеси, применяя все подручные материалы. Такой прием приведет к значительному снижению прочности на сжатие, а в результате ваша постройка не будет надежной. Для фундамента подойдет мелкий щебень 5-20 мм, для крыльца или других конструкций с небольшими нагрузками его размеры могут доходить до 35-40 мм. Иногда два вида щебня смешивают, чтобы они равномерно заполняли все пространство.
Щебень бывает гравийным и гранитным. Второй прочнее, поэтому его используют для изготовления высоких классов, предназначенных для больших нагрузок. Бетон на гравии применяют для строительства небольших домов.
6. Песок.
Качественный раствор делают на основе песка с фракциями 1,3-3,5 мм. В песке из карьера много глины и мелких камней, а частицы имеют неоднородный размер. Этот наполнитель должен быть вымыт и просеян. Речной песок намного лучше, так как он чистый и более однородный.
Маркировка
Эта характеристика обозначает усредненный предел прочности на сжатие бетона. Ее выражают в кгс/кв.см. Для строителя марка и класс — это одно и то же. Но в проектах домов и нормативной документации используют классы, а продают бетон по маркам.
Таблица соответствия популярных классов и марок:
Марка | Класс (число после буквы «B» — прочность в мПа) |
М150 | B10 |
М200 | B15 |
М250 | B20 |
М300 | B22,5 |
М350 | B25 |
Приступать к дальнейшим строительным работам после заливки можно только через неделю. Бетон набирает прочность на сжатие в течение всего срока службы, чем старше здание, тем оно прочнее. Он достигает марочной прочности через 28 дней. Чтобы ваш дом простоял долго, важно создать материалу наилучшие условия.
Многие думают, что бетонный раствор начинает твердеть через какое-то время после разведения. Это не так, процесс затвердевания начинается сразу же: цемент постепенно склеивает все составные элементы. Поэтому важно постоянно перемешивать смесь во время бетонирования. Работы должны быть закончены максимально быстро.
Особенности ухода в разное время года
1. Летом.
Портландцементу необходима влажная среда для качественного склеивания наполнителей, поэтому в сухую погоду поверхность нужно ежедневно поливать небольшим количеством воды. Прямое солнце вредно для только что залитой бетонной смеси, лучше создать над ним тень.
2. Зимой.
Если температура воздуха падает ниже нуля, набор прочности останавливается, так как вода замерзает, но есть методы, решающие эту проблему. Важно, чтобы бетон набрал хотя бы часть заявленного параметра. Например марки М200-М300 могут подвергаться охлаждению, когда достигнут 40 % своей прочности, то есть как минимум 10 мПа. Противоморозные добавки. Использование специальных солей популярно в частном строительстве, но их нельзя добавлять слишком много, так как прочность бетона при этом понижается.
- Электрический обогрев. Самый надежный способ, но в России даже крупные застройщики редко используют его, так как это очень дорого.
- Укрытие утеплителями и ПВХ пленкой. Бетон выделяет много тепла, когда твердеет. При нулевой температуре такой метод не даст воде замерзнуть, но от сильных морозов он не спасет.
Главный враг прочности бетона — резкие колебания температур. Если он оттаивает и замерзает несколько раз в первые дни после заливки, его прочность может снизиться в разы.
3. Бетон и дождь.
Через несколько часов после заливки дождь не причинит особого вреда. Но если перед бетонированием стоит пасмурная погода и есть вероятность осадков, рекомендуется соорудить навес или подготовить пленку. Второй вариант замедлит процесс твердения, так как цементу необходим воздух. Небольшая морось не причинит бетону сильного вреда, хотя его поверхность уже не будет гладкой. Но ливень может стать серьезной проблемой.
4. График набора прочности в зависимости от температуры.
Числа в таблице — процент от заявленной прочности на день, указанный в первом столбике. Это средние показатели для марок М300-М400, сделанных на основе портландцемента М400-М500. Наиболее подходящая температура для затвердевания варьируется от +15 до +20 градусов.
Сутки | Температура воздуха | ||||
0 | +5 | +10 | +20 | +30 | |
1 | 5 | 9 | 12 | 23 | 35 |
2 | 12 | 19 | 25 | 40 | 55 |
3 | 18 | 27 | 37 | 50 | 65 |
5 | 28 | 38 | 50 | 65 | 80 |
7 | 35 | 48 | 58 | 75 | 90 |
14 | 50 | 62 | 72 | 90 | 100 |
28 | 65 | 77 | 85 | 100 |
По правилам специалисты проводят процедуру определения прочности на нескольких образцах с каждой партии. Бетон заливают в квадратную форму с размером ребра 100-300 мм, оставляют эту конструкцию на 28 дней при температуре +20, в стопроцентной влажности. Как уже было сказано, в течение этого времени происходит набор прочности бетона. Затем инженеры ставят куб под гидравлический пресс и давят на него, пока бетон не начнет разрушаться. После они вычисляют прочность в мПа. Если вы интересуетесь подробностями процедуры, посмотрите ГОСТ 10180-2012, где перечислены все необходимые условия.
Способы определения прочности
В современных лабораториях используют и другие методы, но для точного определения прочности на сжатие их применяют в комплексе. Некоторые приборы позволяют проводить исследования уже готовых конструкций.
Наиболее популярные из них:
1. Метод скалывания ребра. Измеряется сила усилия, необходимая для его скола.
2. Ударный импульс. Регистрируется энергия удара.
3. Пластическая деформация. Замеряется отпечаток воздействия на бетон.
4. Ультразвуковой способ. Единственный, который позволяет приблизительно определить прочность, не повреждая материал. Но его применяют только для бетона не более 40 мПа. Впрочем, такие высокие марки почти не используются в строительстве домов.
Точно определить марку самостоятельно невозможно, хотя при сильном нарушении технологии производства цвет становится почти белым, а поверхность легко царапается. Чтобы узнать прочность бетона на сжатие, вы можете принести образец в независимую лабораторию. Для этого сколотите деревянную форму, тщательно утрамбуйте смесь и храните в максимально приближенных к идеальным условиях.
Прочность бетона на сжатие, класс, таблица в мпа
Прочность бетона на сжатие традиционно считается одним из основных показателей, характеризующих свойства бетона. Данный параметр выражается в двух понятиях – классе и марке бетона, которые учитываются при выборе смеси для реализации тех или иных работ, выступают главными из технических характеристик, чрезвычайно важны для гарантии способности застывшего монолита выдерживать определенные нагрузки, что сказывается на прочности, надежности, долговечности.
Определенный класс бетона по прочности на сжатие маркируется буквой В и определенной цифрой, демонстрирует так называемую кубиковую прочность (когда образец в форме куба сжимают под прессом и фиксируют отметку, на которой он разрушается). Считается давление в МПа, предполагает вероятность разрушения при указанном показателе максимум 5 единиц из 100 испытуемых. Регламентируется СНиП 2.03.01-84.
Прочность бетона (МПа) может быть разной – классы дифференцируются в пределах 3.5-80 (всего существует 21 вид). Самыми популярными стали около десятка смесей с классами В15 и В20, В25 и В39, В40. Любой класс приравнивается к соответствующей ему марке (аналогичным образом правило работает наоборот). Значение прочности бетона в МПа (класс) чаще всего указывается в проектной документации, а вот поставщики реализуют смеси с указанием марки.
Марка бетона обозначается буквой М и цифровым индексом в диапазоне 50-1000. Регламентируется ГОСТом 26633-91, соответствует определенным классам, допустимым считается отклонение прочности максимум на 13.5%. Для марки бетона основными требованиями являются объем/качество цемента в составе. В свою очередь, марка обозначается в кгс/см2, определение марки возможно после полного застывания и затвердевания смеси (то есть, минимум через 28 суток после заливки).
Чем выше цифра в индексах класса и марки, тем более прочным будет бетон и тем выше его стоимость (как при покупке уже готового раствора, так и при самостоятельном замесе за счет большего объема цемента и более высокой его марки).
С учетом вышеизложенных фактов основная задача мастера – определить идеальные характеристики для раствора с учетом сферы использования и предполагаемых нагрузок. Ведь приготовление слишком прочного бетона приведет к неоправданным расходам, недостаточно прочного – к разрушению конструкции. Обычно средняя прочность бетона для тех или иных работ, конструкций указывается в ГОСТах, СНиПах – эти значения и берут за ориентир.
Виды материала по прочности на сжатие:- Теплоизоляционные смеси – от В0.5 до В2.
- Конструкционно-теплоизоляционный раствор – от В2.5 до В10.
- Смеси конструкционные – от В12.5 до В40.
- Особые бетоны для усиленных конструкций – выше В45.
Методы и испытания бетона на прочность
Для определения марки и класса бетона используют разнообразные методы – все они относятся к категориям разрушающих и неразрушающих. Первая группа предполагает проведение испытаний в условиях лаборатории посредством механического воздействия на образцы, которые были залиты из контрольной смеси и полностью выстояны в указанные сроки.
Для проведения исследований используют специальный пресс, который сжимает опытные образцы и демонстрирует предел прочности при сжатии. Разрушение – наиболее верный и точный метод исследования бетона на прочность таких видов, как сжатие, изгиб, растяжение и т.д.
Основные неразрушающие методы исследований:- Воздействие ударом.
- Разрушение частичное.
- Исследование с использованием ультразвука.
Ударное воздействие может быть разным – самым примитивным считается ударный импульс, который фиксирует динамическое воздействие в энергетическом эквиваленте. Упругий отскок определяет параметры твердости монолита в момент отскока бойка ударной установки.
Также используется метод пластической деформации, который предполагает обработку исследуемого участка особой аппаратурой, которая оставляет на монолите отпечатки определенной глубины (по ним и определяют степень прочности).
Частичное разрушение также может быть разным – скол, отрыв и комбинация данных способов. Если для испытаний используется метод скола, то ребро изделия подвергают особому скользящему воздействию для откалывания части и определения прочности. Отрыв предполагает использование специального клеящего состава, которым на поверхности крепят металлический диск и потом отрывают. При комбинировании данных способов анкерное устройство крепят на монолит, а потом отрывают.
Когда используется ультразвуковое исследование, применяют специальный прибор, способный измерить скорость прохождения ультразвуковых волн, проникающих в монолит. Основное преимущество данной технологии – она позволяет изучать не только поверхность, но и внутреннюю структуру бетона. Правда, в процессе исследований велика вероятность погрешности.
Контроль прочности бетона
Для того, чтобы бетонный раствор точно соответствовал указанным параметрам и выдерживал нагрузки, за его качеством следят еще на этапе приготовления. Прежде, чем готовить смесь, обязательно изучают рецепт, требования к компонентам и их пропорциям.
Основные критерии для контроля и проверки бетона:- Соответствие используемого цемента указанным в рецепте маркам – так, для приготовления бетона М300 точно не подойдет цемент М100, даже при условии его большого объема. Чем выше число рядом с буквой М в маркировке цемента, тем более прочным получится раствор.
- Объем жидкости в растворе – чем больше воды в смеси, тем активнее влага испаряется в процессе высыхания и может провоцировать появление пустот, когда идет затвердевание.
- Качество и фракция наполнителей – шероховатые частицы неправильной формы обеспечивают наиболее крепкое сцепление ингредиентов в составе бетона, что в процессе твердения дает требуемый результат в виде высокой прочности. Грязный наполнитель может понизить характеристики бетона по прочности на растяжение и сжатие.
- Тщательность смешивания компонентов на всех стадиях приготовления раствора – по технологии раствор замешивается в исправной бетономешалке или на производстве в течение длительного времени.
- Квалификация работников – также играет важную роль, так как даже при условии применения качественной смеси В20, к примеру, прочность может быть снижена из-за неправильной укладки, отсутствия уплотнения (вибрация обеспечивает повышение прочности бетона на 30%).
- Условия застывания и эксплуатации – лучше всего, когда бетон застывает и приобретает твердость при температуре воздуха +15-25 градусов и высокой влажности. В таком случае можно говорить о точном соответствии монолита его марке – если был залит бетон В15, то и демонстрировать будет его технические характеристики.
Прочность бетона: таблица
Бетон по прочности на растяжение, при изгибе, воздействии других нагрузок демонстрирует определенные значения. Далеко не всегда они соответствуют указанным в ГОСТе и проектной документации, часто есть погрешность, которая может быть губительной для монолита и всей конструкции или же не оказывать никакого воздействия.
Виды прочности бетона (на сжатие, изгиб, растяжение и т.д.):- Проектная – та, что указывается в документах и предполагает значения при полной нагрузке на бетонную конструкцию. Считается в затвердевшем монолите, по истечении 28 дней после заливки.
- Нормированная – значение, которое определяется по техническим условиям или ГОСТу (идеальное).
- Фактическая – это среднее значение, полученное в результате выполненных испытаний.
- Требуемая – минимально подходящий показатель для эксплуатации, который устанавливается в лаборатории производств и предприятий.
- Отпускная – когда изделие уже можно отгружать потребителю.
- Распалубочная – наблюдается в момент, когда бетонное изделие можно доставать из форм.
Виды прочности, касающиеся марки бетона и его качества: на сжатие и изгиб, осевое растяжение, а также передаточная прочность. Бетон напоминает камень – прочность на сжатие бетона обычно намного выше, чем на растяжение. Поэтому основной критерий прочности монолита – его способность выдерживать определенную нагрузку при сжатии. Это самый значимый и важный показатель.
Так, к примеру, показатели бетона В25 (класс прочности) и марки М350: средняя стойкость к сжатию до 350 кгс/м2 или до 25 МПа. Реальные значения обычно чуть ниже, так как на прочность оказывают влияние множество факторов. У бетона В30 будут соответствующие показатели и т.д.
Чтобы определить данные показатели, создают специальные кубы-образцы, дают им застыть, а затем отправляют под лабораторный пресс специальной конструкции. Давление постепенно увеличивают и фиксируют в момент, когда образец треснул или рассыпался.
Определяющее условие для присвоения марки и класса бетону – расчетная прочность на сжатие, которая определяется после полного схватывания и застывания монолита (28 суток занимает процесс).
Именно по прошествии 28 суток бетон достигает показателя расчетной/проектной прочности по марке. Прочность на сжатие – самый точный показатель механических свойств монолита, его стойкости к нагрузкам. Это своеобразная граница уже затвердевшего бетона к воздействующему на него механическому усилию в кгс/м2. Самая большая прочность у бетона М800/М900, самая низкая – у М15.
Прочность на изгиб повышается при увеличении индекса марки. Обычно показатели изгиба/растяжения ниже, чем нагрузочная способность. Молодой бетон демонстрирует значение в районе 1/20, старый – 1/8. Данный параметр учитывается на проектном этапе строительства. Способ определения: из бетона заливают брус 120х15х15 сантиметров, дают затвердеть, потом устанавливают на подпорки (расстояние между ними 1 метр), в центре помещают нагрузку, увеличивая ее постепенно, пока образец на разрушится.
Прочность высчитывается по формуле Rизг = 0,1PL/bh3, тут:- L – расстояние между подпорками;
- Р – маса нагрузки и образца;
- Н, b, h – ширина/высота сечения бруса.
Прочность считается в Btb и обозначается цифрой в диапазоне 0.4-8.
Осевое растяжение в процессе проектирования учитывают редко. Этот параметр важен для определения способности монолита не покрываться трещинами при ощутимых перепадах влажности воздуха, температуры. Растяжение представляет собой некоторую составляющую, взятую от прочности на изгиб. Определяется сложно, часто образцы балок растягивают на специальном оборудовании. Актуально значение для бетона, который используется в сферах, исключающих возможность появления трещин.
Передаточная прочность – это нормируемое значение прочности бетонного монолита напряженных элементов при передаче на него силы натяжения армирующих элементов. Данный показатель предусматривается нормативными документами, ТУ для разных видов изделий. Обычно назначают минимум 70% проектной марки, многое зависит от свойств арматуры.
Прочность бетона на 7 и 28 сутки: ГОСТ, таблица
Бетоны бывают разными. Как правило, все виды по маркам и классам делят на легкие, обычные и тяжелые (часто последние две группы объединяют, так как все обычные бетоны считаются тяжелыми).
Основные группы бетонов по прочности:- Легкие – марки от М5 до М35 подходят для заливки ненесущих конструкций, от М50 до М75 идут на подготовительные работы до заливки, М100 и М150 актуальны для перемычек, конструктива, малоэтажного строительства.
- Обычные бетоны – самые распространенные и часто применяемые в ремонтно-строительных работах: М200/М300 используют для выполнения фундаментов, отмосток, полов, стяжек, бордюров, подпорок, лестниц и т.д. М250 В20 демонстрирует прочность 262 кгс/м2 и давление 20 МПа. М350 и М400 применяют для монолитных, несущих конструкций многоэтажных зданий, чаш бассейнов.
- М450 и выше – тяжелые бетоны, обладающие высокой прочностью и плотностью, используют для особых конструкций, разного типа военных объектов.
Таблица в МПа
Прочность бетона – самый важный показатель, который напрямую влияет на все остальные технические характеристики материала, сферу применения, способность выдерживать предполагаемые нагрузки. Поэтому в процессе выбора марки и класса стоит учитывать СНиП и ГОСТы, а при проверке материала на соответствие уделять внимание результатам исследования и соответствующим документам.
Прочность бетона — таблица определения класса
Дата публикации: 17.02.2021
Согласно действующему техническому регламенту — ГОСТ 26633-2015 тяжелые бетоны классифицируются по следующим показателям:
- прочности, от В7,5 до В120;
- морозостойкости, от F50 до F1000;
- водонепроницаемости от W2 до W20;
- истираемости: G1, G2, G3.
Основной характеристикой тяжелого бетона является показатель прочности бетонных кубиков в МПа, принятый с коэффициентом 0,95, учитывающим возможную неоднородность образцов одной партии — класс прочности бетона на сжатие В.
Класс прочности бетона на сжатие В — средняя величина, полученная в результате испытания партии кубических образцов из одной партии. На сжатие испытываются от 2 до 6 бетонных кубиков со стороной 10, 15 (базовый размер), 20, 25 и 30 см (ГОСТ 10180-2012). Подготовленные к испытаниям образцы должны укладываться в поверенные формы и твердеть при стандартных величинах температуры 20°С ±3°С и относительной влажности — 95% ±5% в течение 28 суток.
Прочность каждого образца при испытаниях на сжатие рассчитывается с точностью до 0,1 МПа с учетом величины разрушающей нагрузки, опорной площади образца и масштабного коэффициента, приводящего фактический размер образца к базовому. Фактическую прочность бетона всей партии определяют, как среднюю прочность серии единичных образцов одной партии с учетом коэффициента вариации показателя прочности.
Показатели наиболее употребительных классов прочности тяжелых бетонов:
Класс бетона по прочности на сжатие | Средняя прочность бетона, кг/см2 с учетом коэффициента вариации 13,5%, |
В7,5 | 98,2 |
В10 | 131,0 |
В12,5 | 163,7 |
В15 | 196,5 |
В20 | 261,9 |
В22,5 | 294,4 |
В25 | 327,4 |
В30 | 392,9 |
В35 | 458,4 |
В40 | 523,9 |
В45 | 589,4 |
В50 | 654,8 |
В55 | 720,3 |
В60 | 785,8 |
На сферу использования тяжелого бетона в первую очередь влияет его прочность, например:
- B7,5 используется в качестве подготовок автомобильных дорог, для устройства фундаментов с малой нагрузкой, отмосток зданий, парковых дорожек, стяжек пола;
- B10 — B12,5 применяется для бетонирования несущих конструкций объектов малоэтажной застройки;
- B15 — B22,5 предназначены для устройства монолитных фундаментов и перекрытий, зданий нормальной этажности, бетонирования подпорных стенок;
- B25 — B30 — предназначены для устройства ответственных конструкций, в т.ч. ростверков и фундаментов, несущих конструкций монолитного каркаса, ванн бассейнов, емкостных сооружений;
- B35 — B60 — предназначены объектов транспортного и гидротехнического строительства оборонного назначения, сооружений башенного типа, атомных электростанций и др.
Прочностные показателя тяжелого бетона зависят преимущественно от соотношения в его составе ингредиентов:
- цемента;
- крупного заполнителя — известкового, гравийного или гранитного щебня;
- мелкого заполнителя — речного или карьерного песка, очищенных от ильных и глинистых примесей.
Так в бетоне класса В7,5 соотношение цемента, песка и щебня 1:4,6:7,0 трансформируется в 1:0,8:2,0 для бетона класса В60, причем если в малопрочном бетоне можно использовать известковый щебень и стандартный песок, то для изготовления бетона высокой прочности необходим только гранитный щебень и обогащенный песок.
Другие статьи по теме:
Прочность бетона — главный качественный показатель.
Важнейший показатель для бетона – прочность бетона при сжатии. В сравнении с природными материалами(например, щебень) бетон лучше сопротивляется именно сжатию, чем растяжению, поэтому мерой прочности служит предел прочности при сжатии.
Именно из-за этих свойств бетона здания и другие сооружения проектируют учитывая, что бетон принимает нагрузки на сжатие. Но в некоторых случаях берут во внимание прочность на растяжение либо на растяжение при изгибе.
Как определить прочность бетона?
Чтобы определить прочность бетона и соответственно марку/класс проводят испытания – бетонный куб (размеры 15x15x15 см), проба берется из бетонной смеси на объекте/заводе, переносится в специальную металлическую форму. Испытания проводятся на 28е сутки ОБЯЗАТЕЛЬНО после твердения в так называемых нормальных условиях (t- 15-20°С и влажность воздуха 90-100%)
Прочность бетона также определяют и в другом возрасте от трех до ста восьмидесяти суток.
К примеру, бетон в25 м350 – прочность на сжатие 32,7 МПА
Контроль прочности бетона в конструкциях
Этот стандарт применяется для бетонов, на которые действуют нормы прочности и определяет правила контроля и оценки прочности готовой к применению бетонной смеси. Выполняя требования ГОСТа вы гарантируете качественные показатели бетона на вашем объекте. Продажа бетона от производителя также добавит вам уверенности в заказываемых материалах.
Оценка прочности бетона
Не всегда есть возможность воспользоваться услугами лаборатории. В настоящее время для оценки прочности бетона есть возможность использовать спецприборы, действие которых относят к неразрушающим методам контроля прочности. Самый доступный из них – молоток Кашкарова или Физделя.
Многие из приборов достаточно мобильны и имеют цифровое табло. Сейчас разделяют приборы на разные способы работы:
– ультразвук
– ударный отскок( определяется величина отскока инструмента)
– отрыв со скалыванием(определяем величину усилия, которое нужно приложить для того, чтобы сколоть какой-либо участок, который находится на ребре бетонного изделия)
– ударный импульс(фиксируется энергия удара в момент удара бойка прибора о поверхность бетонной конструкции)
Чтобы определить результат с максимальной точностью необходимо учесть следующие параметры – время изготовления, наполнитель бетона, условия хранения. Для минимизации погрешностей все приборы подлежат обязательной проверке в метрологической организации.
РазъяснениеMPA | Готовая смесь Vancouver
Прочность бетона
Бетон измеряется по его прочности. МПа (мегапаскали) — это метрическая единица измерения фунтов на квадратный дюйм или фунтов на квадратный дюйм. Строительные нормы Британской Колумбии требуют минимального МПа для конкретных конкретных проектов. Пожалуйста, обратитесь к таблице, чтобы выбрать подходящее МПа при расчете объема и цены.
Бетон Расположение | BCBC Минимум Прочность (МПа) | BCBC Максимум Вт / Ц * Коэффициент | BCBC Воздух Содержимое | Рекомендуемая Прочность (МПа) | Максимум Вт / C Соотношение | Optimum Air Содержание Диапазон |
Фундамент, стены, фундамент | 15 | 0.70 | н / д | 20–25 | 0,55 — 0,60 | 3-5% |
Внутренние плоские конструкции | 20 | 0,65 | н / д | 25–28 | 0,50 — 0,55 | 3-5% |
Гаражи, навесы | 32 | 0,45 | 5–8% | 32 | 0,45 | 5–6% |
Фасадная кладка | 32 | 0,45 | 5–8% | 32 | 0.45 | 5–7% |
Банкноты
- Бетон смешан с правильным «воздухововлечением» (оптимальным содержанием воздуха). Ниже приведены некоторые общие рекомендации.
- В гаражах, навесах для автомобилей и любых наружных плоских поверхностях, которые будут затираться, удерживайте воздух в низком диапазоне — около 5%. Это поможет уменьшить «корку» на поверхности и образование пузырей.
- Для наружных плоских поверхностей, которые не будут подвергаться затирке (бровки, открытые участки и т. Д.).), сохраняйте воздух около 6% для обеспечения устойчивости к замораживанию-оттаиванию.
- Для внутренней плоской поверхности, которая будет затерта, сохраняйте воздух около 4%. Это поможет остановить кровотечение и не вызовет образование волдырей.
Другие ресурсы
Таблица проектных свойств бетона (fcd, fctm, Ecm, fctd)
Расчетные значения свойств бетонного материала согласно EN 1992-1-1
Масса устройства
γУдельный вес бетона γ указан в EN1991-1-1, приложение A.Для простого неармированного бетона γ = 24 кН / м 3 . Для бетона с нормальным процентным содержанием арматуры или предварительно напряженной стали γ = 25 кН / м 3 .
Характеристическая прочность на сжатие
f ckХарактеристическая прочность на сжатие f ck является первым значением в обозначении класса бетона, например 30 МПа для бетона C30 / 37. Значение соответствует характеристической прочности цилиндра (5% фрактильной прочности) согласно EN 206-1.Классы прочности согласно EN 1992-1-1 основаны на характеристических классах прочности, определенных для 28 дней. Изменение характеристической прочности на сжатие f ck ( t ) со временем t указано в EN1992-1-1 §3.1.2 (5).
Характеристическая прочность на сжатие куба
f ck, кубХарактеристическая кубическая прочность на сжатие f ck, cube является вторым значением в обозначении класса бетона, e.г. 37 МПа для бетона C30 / 37. Значение соответствует характеристической прочности куба (5% хрупкости) согласно EN 206-1.
Средняя прочность на сжатие
f смСредняя прочность на сжатие f см связана с характеристической прочностью на сжатие f ck следующим образом:
f см = f ck + 8 МПа
Изменение средней прочности на сжатие f см ( t ) со временем t указано в EN1992-1-1 §3.1.2 (6).
Расчетная прочность на сжатие
f cdРасчетная прочность на сжатие f cd определяется в соответствии с EN1992-1-1 §3.1.6 (1) P:
f cd = α cc ⋅ f ck / γ C
где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN1992-1-1 §2.4.2.4 и Национальное приложение.
Коэффициент α cc учитывает долгосрочное влияние на прочность на сжатие и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Он указан в EN1992-1-1 §3.1.6 (1) P и в национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (101) P и национальное приложение).
Нормативная прочность на разрыв
Прочность на растяжение при концентрической осевой нагрузке указана в таблице 3 стандарта EN 1992-1-1.1. Вариабельность прочности бетона на растяжение определяется следующими формулами:
Формула для средней прочности на разрыв
f ctmf ctm [МПа] = 0,30⋅ f ck 2/3 для класса бетона ≤ C50 / 60
f ctm [МПа] = 2,12⋅ln [1+ ( f cm / 10MPa)] для класса бетона> C50 / 60
Формула для 5% прочности на разрыв
f ctk, 0.05f ctk, 0,05 = 0,7 f ctm
Формула для 95% прочности на разрыв
f ctk, 0,95f ctk, 0,95 = 1,3 f ctm
Расчетная прочность на разрыв
f ctdРасчетная прочность на разрыв f ctd определяется в соответствии с EN1992-1-1 §3.1.6 (2) P:
f ctd = α ct ⋅ f ctk, 0.05 / γ С
где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN1992-1-1 §2.4.2.4 и Национальном приложении.
Коэффициент α ct учитывает долгосрочное влияние на предел прочности при растяжении и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Это указано в EN1992-1-1 §3.1.6 (2) P и в Национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (102) P и Национальное приложение).
Модуль упругости
E смУпруго-деформационные свойства железобетона зависят от его состава и особенно от заполнителей. Приблизительные значения модуля упругости E см (значение секущей между σ c = 0 и 0,4 f см ) для бетонов с кварцитовыми заполнителями, приведены в EN1992-1-1, таблица 3 .1 по следующей формуле:
E см [МПа] = 22000 ⋅ ( f см /10 МПа) 0,3
Согласно EN1992-1-1 §3.1.3 (2) для заполнителей известняка и песчаника значение E см должно быть уменьшено на 10% и 30% соответственно. Для базальтовых заполнителей значение E см следует увеличить на 20%. Значения E см , приведенные в EN1992-1-1, следует рассматривать как ориентировочные для общих применений, и их следует специально оценивать, если конструкция может быть чувствительна к отклонениям от этих общих значений.
Изменение модуля упругости E см ( t ) со временем t указано в EN1992-1-1 §3.1.3 (3).
Коэффициент Пуассона
νСогласно EN1992-1-1 §3.1.3 (4) значение коэффициента Пуассона ν можно принять равным ν = 0,2 для бетона без трещин и ν = 0 для бетона с трещинами.
Коэффициент теплового расширения
αСогласно EN1992-1-1 §3.1.3 (5) значение линейного коэффициента теплового расширения α можно принять равным α = 10⋅10 -6 ° K -1 , если нет более точной информации.
Минимальная продольная арматура
ρ мин. для балок и перекрытийМинимальное продольное растяжение арматуры для балок и основное направление плит указано в EN1992-1-1 §9.2.1.1 (1).
A с, мин = 0.26 ⋅ ( f ctm / f yk ) ⋅ b t ⋅ d
где b t — средняя ширина зоны растяжения, а d — эффективная глубина поперечного сечения, f ctm — средняя прочность бетона на растяжение, а f yk — характерный предел текучести стали.
Минимальное усиление требуется, чтобы избежать хрупкого разрушения.Обычно требуется большее количество минимальной продольной арматуры для контроля трещин в соответствии с EN1992-1-1 §7.3.2. Секции с меньшим армированием следует рассматривать как неармированные.
В соответствии с EN1992-1-1 §9.2.1.1 (1) Примечание 2 для балок, для которых возможен риск хрупкого разрушения, A с, мин. можно принять как 1,2-кратную площадь, требуемую в ULS. проверка.
Арматура минимального сдвига
ρ w, min для балок и перекрытийМинимальная поперечная арматура для балок и плит указана в EN1992-1-1 §9.2.2 (5).
ρ w, min = 0,08 ⋅ ( f ck 0,5 ) / f yk
где f ck — характеристическая прочность бетона на сжатие, а f yk — характеристический предел текучести стали.
Коэффициент усиления сдвига определен в EN1992-1-1 §3.1.3 (5) как:
ρ w = A sw / [ s ⋅ b w ⋅sin ( α )]
где b w — ширина перемычки, а s — расстояние между поперечной арматурой по длине элемента.Угол α соответствует углу между поперечной арматурой и продольной осью. Для типичной поперечной арматуры с перпендикулярными ветвями α = 90 ° и sin ( α ) = 1.
Средняя прочность на сжатие — обзор
Прочность на сжатие
Свойства сжатия для всех смесей, как показано в таблице 6.2, были оценены с использованием стандартного метода испытаний ASTM D 695M-91 (1998). Значения прочности на сжатие в этом случае могут использоваться только как показатель устойчивости исследуемого материала.
ТАБЛИЦА 6.2. Механические свойства приготовленных смесей (Abou Khatwa et al., 2005)
Номер смеси. | Прочность на сжатие (МПа) | Прочность на изгиб (МПа) | Твердость по Шору D No. | |||
---|---|---|---|---|---|---|
Mix 1 | 10,154 | 12,241 | 58,28 | |||
Mix 2 | 11,897 | 11,184 | 63.37 | |||
Смесь 3 | 15,622 | 10,447 | 66,20 | |||
Смесь 4 | 12,821 | 15.191 | 59,43 | |||
Смесь 5 | 15.502 | 11.307 | 64.178 Смесь 6 | 16,478 | 10,725 | 68,53 |
Смесь 7 | 10,992 | 16,463 | 60,40 | |||
Смесь 8 | 13.125 | 21,239 | 67,73 | |||
Микс 9 | 20,250 | 11,260 | 68,80 | |||
Микс 10 | 13,122 | 13,550 | 61,88 | |||
Микс 11 | 17,9 | 69,12 | ||||
Mix 12 | 22,247 | 13,936 | 69,87 |
Средние значения прочности на сжатие находились в пределах 10.2 и 22,2 МПа при деформации 0,1. Смесь 3 (60% песок, сито 1 и температура 185 ° C), смесь 6 (60% песок, сито 2 и температура 185 ° C), смесь 9 (60% песок, сито 1 и температура 240 ° C) , и смесь 12 (60% песка, сито 2 и температура 240 ° C) показала самые высокие значения прочности на сжатие в диапазоне от 15,6 до 22,2 МПа, в то время как смесь 1 (20% песок, сито 1 и температура 185 ° C), смесь 4 (20% песок, сито 2, температура 185 ° C), смесь 7 (20% песок, сито 1, температура 240 ° C) и смесь 10 (20% песок, сито 2, температура 240 ° C) выявили самые низкие значения прочности на сжатие от 10.От 2 до 13,1 МПа. С другой стороны, смесь 2 (40% песка, сито 1 и температура 185 ° C), смесь 5 (40% песка, сито 2 и температура 185 ° C), смесь 8 (40% песок, сито 1 и температура 240 ° C), и смесь 11 (40% песок, сито 2 и температура 240 ° C) имела значения прочности на сжатие в диапазоне от 11,9 до 18 МПа.
Можно заметить, что существует прямая пропорциональность между значением прочности на сжатие и содержанием песка, как показано на Рисунке 6.6. Это согласуется с поведением, наблюдаемым с наполненными эластомерными системами, где частицы наполнителя укрепляют матрицу, отклоняя путь разрыва и, следовательно, увеличивая энергию, необходимую для распространения трещины (Holliday, 1966).
РИСУНОК 6.6. Изменение прочности на сжатие в зависимости от содержания песка, размера сита и температуры перемешивания (Abou Khatwa et al., 2005)
Еще одним наблюдением является увеличение значений прочности на сжатие, связанное с увеличением размера частиц песка, как показано на рисунке 6.6. Это говорит о лучших характеристиках диспергирования и смачивания, связанных с большими частицами наполнителя, что приводит к более прочным межфазным связям. Более того, известно, что для композитов с наполнителем из частиц по мере уменьшения размера наполнителя их площадь поверхности увеличивается, вызывая усиление взаимодействия между частицами, что приводит к образованию кластеров наполнителя (Nielson and Landel, 1994).Кластеры представляют собой слабые места в материале, поскольку они легко отделяются при приложении нагрузки, создавая пустоты и полости. Более того, кластеры частиц обычно содержат захваченный воздух, и установлено, что прочность и модуль упругости уменьшаются с увеличением количества захваченного воздуха (Nielson and Landel, 1994).
Рисунок 6.6 также показывает увеличение значений прочности на сжатие с увеличением температуры смешивания. Это стало результатом лучшей однородности смеси, связанной с высокой температурой перемешивания.Меньшее количество полимерных сегрегатов наблюдалось для смесей, приготовленных при 240 ° C, по сравнению с температурой смешивания 185 ° C, как показывают оптические микрофотографии. Полимерные сегрегации будут отделяться от матрицы при приложении нагрузки, образуя микротрещины на границе раздела, следовательно, вызывая преждевременный выход из строя.
В соответствии со спецификацией ASTM C 936-96 (1998k), средняя прочность на сжатие для монолитных бетонных блоков дорожного покрытия не должна быть менее 55 МПа для всех испытательных образцов, при этом ни один из образцов не должен быть меньше 50 МПа.Однако во время испытаний по транспортировке грузов в Южной Африке было показано, что на поведение блочных покрытий не повлияли изменения прочности на сжатие в диапазоне от 25 до 55 МПа (Shackel, 1990). Следовательно, смесь 12, приготовленная при температуре 240 ° C с крупными частицами песка (сито 2) при 60% -ном содержании песка, потенциально может использоваться в качестве блоков для перекрытия мощения. Кроме того, та же смесь также удовлетворяет требованиям стандарта ASTM C 902-95 (1998j) для тротуарной плитки для пешеходов и пешеходов, что дает минимальное значение прочности на сжатие 20.7 МПа.
Механические свойства высокопрочных и высокоэффективных железобетонных конструкций футеровки стволов в скважинах глубокого промерзания
Поскольку ресурсы угля должны добываться из все более глубоких пластов, необходимы высокопрочные и высокоэффективные бетонные футеровки стволов, чтобы выдерживать нагрузку почва, окружающая морозильный колодец. Чтобы определить оптимальную бетонную смесь для уникальных условий, в которых работают такие высокопрочные и высокоэффективные конструкции железобетонной футеровки ствола (HSHPRCSL) в скважинах глубокой заморозки, была проведена экспериментальная оценка масштабированных моделей HSHPRCSL с использованием испытаний под гидравлическим давлением.Было замечено, что при разрыве образцов, пластический изгиб периферийной арматуры произошел вдоль поверхности разрушения, вызванный разрушением при сжатии и сдвиге. Эти испытания определили, что способность HSHPRCSL больше всего зависела от предельной прочности бетона на одноосное сжатие и отношения толщины к диаметру и меньше всего влияла на коэффициент армирования. Затем экспериментальные результаты были использованы для получения подгоночных уравнений, которые были сопоставлены с результатами теоретических выражений, полученных с использованием трехпараметрического критерия прочности для предельной несущей способности, напряжения, радиуса и нагрузки в упругих и пластических зонах.Предложенные теоретические уравнения дали результаты в пределах 8% от экспериментально подобранных результатов. Наконец, метод конечных элементов используется для проверки вышеупомянутых результатов, и все ошибки составляют менее 12%, демонстрируя надежность для использования в качестве теоретической основы проектирования для глубоких структур HSHPRCSL.
1. Введение
Поскольку более доступные части угольных ресурсов вблизи поверхности постепенно истощаются в крупных угледобывающих провинциях Китая, таких как Хэбэй, Хэнань, Шаньдун и Аньхой, возникает необходимость в разработке более глубоких угольных пластов.По мере того, как шахты строятся глубже, аллювий, проходящий через футеровку ствола, становится все толще и толще. Например, шахта Ванфу, строящаяся в настоящее время на угольном месторождении Джуе в Шаньдуне, и шахта Кузиси, планируемая для угольного месторождения Чжангоу в Аньхой, будут проходить через 600-800 м над уровнем моря. Это, естественно, приводит к увеличению давления на грунт, действующего на футеровку вала. Чтобы противостоять сильному давлению морозного пучки и постоянной нагрузке, действующей на футеровку промерзающего ствола в таком глубоком намывном слое, необходимо обеспечить высокопрочную конструкцию футеровки ствола [1, 2].Согласно теории конструктивного проектирования футеровки вала, основным методом повышения предельной несущей способности футеровки замораживающего вала является увеличение толщины футеровки вала, использование стальной пластины на внутренней стороне футеровки в качестве бетонной сдерживающей конструкции. или отлить вал из высокопрочного бетона. Среди этих вариантов наиболее эффективной мерой является повышение прочности бетона в футеровке ствола за счет использования высокопрочного бетона с высокими эксплуатационными характеристиками (HSHPC) [3], например марок от C60 до C80, в конструкции шахты глубокой заморозки. облицовочная конструкция.
Хотя HSHPC класса C60 – C80 использовался в Китае при строительстве мостов, водосбережения и высотных зданий, условия строительства и требования к рабочим характеристикам этих HSHPC сильно отличаются от требований, предъявляемых к бетону для футеровки шахт глубокого аллювия замораживания. Поскольку толщина внутренней и внешней футеровки ствола увеличивается с примерно 0,7 м в неглубоких пластах до примерно 1,2 м в глубоких пластах, использование HSHPC в этих глубоких конструкциях классифицируется как проект по массивному бетону, и, соответственно, контроль растрескивания является значительная проблема в процессе строительства.Для обеспечения безопасности ствола скважины при его опускании на такую глубину средняя расчетная температура замерзающей стенки снижается с примерно -10 ° C до примерно -15 ° C. По мере того, как температура замерзающего ствола скважины уменьшается, разница между внутренней и внешней температурой бетона футеровки ствола увеличивается, что приводит к ухудшению условий отверждения бетона. Как правило, при строительстве футеровки ствола в глубоких россыпях с использованием промерзающего ствола скважины бетон должен иметь высокую прочность, высокую непроницаемость и удобоукладываемость [4].Следовательно, чтобы гарантировать, что соотношение смеси HSHPC, используемое при строительстве ствола, является экономичным, разумным и надежным, важно провести исследования подготовки и поведения HSHPC в скважинах с глубокой заморозкой.
Как отечественные, так и зарубежные ученые провели большое количество исследований бетонных футеровок шахт [5–10], но было мало исследований механических свойств высокопрочных и высокоэффективных железобетонных футеровок шахт (HSHPRCSL). структура, и большая часть этих существующих исследований была в основном экспериментальной [3, 11–14].Ян вывел практическое уравнение для радиальной и вертикальной несущей способности бетонной футеровки ствола, используя результаты программы разрушающих испытаний моделей бетонной футеровки ствола, и выразил критерий прочности бетона для внутренней поверхности футеровки ствола в форме, аналогичной формуле. Критерийное уравнение прочности на кулоновский сдвиг [7]. Rong et al. получили экспериментальное уравнение регрессии для предельной несущей способности футеровки вала с использованием экспериментальных результатов модельных испытаний футеровки вала и проанализировали механические свойства конструкции футеровки вала с использованием критерия прочности Мора – Кулона [14].Предполагая, что внешняя нагрузка не слишком велика, часто бывает более практичным анализировать механические свойства бетона футеровки ствола, используя критерий Мора – Кулона, но было обнаружено, что механические свойства бетона при многоосном напряжении следует рассматривать при больших внешние нагрузки [15]. Действительно, футеровка вертикального ствола шахты угольной шахты, построенная с использованием метода замораживания в глубоких наносах, обычно имеет двухслойную конструкцию футеровки ствола, в которой бетон внутренней футеровки ствола промерзающей скважины обычно находится в двух- или трехстороннем направлении. стрессовое состояние [16–18].Поскольку трехпараметрический критерий прочности [19–22] учитывает влияние многоосного напряжения, он лучше приспособлен для отражения механических свойств HSHPRCSL при многоосном напряжении.
Принимая во внимание текущее состояние исследований HSHPRCSL и в соответствии с особыми условиями отверждения и конструкционными условиями футеровки валов глубокой заморозки, в этом исследовании качество различных соотношений смеси оценивается в тестах подготовки HSHPC C60 – C80 для получения оптимальное сочетание.В соответствии с характеристиками напряжения внутренней футеровки вала глубокой заморозки затем изучаются механические свойства и характеристики разрушения конструкции HSHPRCSL с использованием модельных испытаний и теоретических расчетов. Затем принимается трехпараметрический критерий прочности, соответствующий прочностным характеристикам бетона, для получения аналитического выражения для предельной несущей способности и распределения напряжений в упругих и пластических зонах конструкции HSHPRCSL. Наконец, метод конечных элементов используется для проверки вышеупомянутых результатов.Полученные выводы представляют собой основу для проектирования инженерного применения HSHPC в конструкциях футеровки стволов глубокой заморозки.
2. Оценка смесей HSHPC
2.1. Цели HSHPC Preparation
Высокопрочный, высокоэффективный бетон обладает превосходными свойствами до и после затвердевания, которые обеспечиваются смешиванием мелкодисперсной активной добавки и высокоэффективного компаундного водоредуцирующего агента в условиях низкого содержания цемента и низкой водоцементности. соотношение.Эти свойства обычно включают в себя высокую обрабатываемость, высокую непроницаемость, высокую объемную стабильность (отсутствие растрескивания во время закалки и меньшую усадку и ползучесть), высокую прочность (выше класса C30), поддержание непрерывного роста долговременной прочности и, в конечном итоге, отличную долговечность при воздействии. в суровых условиях. Ввиду особых условий отверждения и условий конструкции внутренней футеровки ствола морозильной шахты в глубоком намывном слое бетон внутренней футеровки ствола должен обладать высокой прочностью, трещиностойкостью, предотвращением просачивания и высокой начальной прочностью для предотвращения утечки футеровки ствола. после оттаивания промерзшей стены.Таким образом, подготовка HSHPC для внутренней футеровки вала должна учитывать следующие основные качества: (i) сверхвысокая ранняя прочность, с которой бетон может быть извлечен из формы через 10 часов после заливки (ii) простой процесс подготовки (iii) хорошая удобоукладываемость и осадка более 180 мм, что удобно для транспортировки и разливки (iv) Низкая теплота гидратации и высокая долговечность (v) Высокая объемная стабильность и высокая герметичность
2.2. Приготовление HSHPC
Различные факторы, влияющие на прочность, текучесть и долговечность HSHPC, включают разновидность и дозировку цемента, соотношение смеси бетона, разнообразие и дозировку добавок и активных материалов, смешиваемых снаружи, градацию заполнителя, конструкцию технологического процесса и условий окружающей среды на площадке.В общем, обычная смесь для марки C60 HSHPC и выше состоит из высококачественного цемента, суперпластификатора (со степенью уменьшения обводненности более или равной 35%), минеральной добавки, высококачественного заполнителя и контролируемого содержания песка.
2.3. Выбор сырья для HSHPC
2.3.1. Цемент
HSHPC C60 – C80, оцениваемый в этом исследовании, использовал марку Conch P.O. 42.5R и P.O. Обычный портландцемент ранней прочности 52,5R с более низкой относительной теплотой гидратации, производимый Ningguo Cement Factory.Ранняя прочность и низкая теплота гидратации этого цемента делают его особенно подходящим для подготовки HSHPC для использования в замораживании футеровки стволов в глубоких аллювиях.
2.3.2. Заполнитель
Мелкозернистый заполнитель, использованный в этом исследовании, представлял собой средний песок Huaibin из провинции Хэнань с модулем тонкости 2,9, насыпной плотностью 1540 кг / м 3 и содержанием бурового раствора 1,6%. В качестве крупного заполнителя использовали известняковый гравий Шанъяо из города Хуайнань и базальт Мингуан из города Чучжоу, оба в провинции Аньхой, которые имеют индекс дробления 8.3% и 3,3% соответственно, а непрерывный размер зерна 5–31,5 мм.
2.3.3. Водоредуцирующий агент
Принимая во внимание особые условия использования HSHPC в футеровках вала, очень важно выбрать добавку, которая обеспечивает отличные характеристики с сырьем в смеси. Соответственно, был проведен тест на совместимость путем оценки восьми типов высокоэффективных композиционных водоредуцирующих добавок (суперпластификаторов). В конце концов, суперпластификатор на основе нафталина NF производства Huainan Mining Group Synthetic Material Co., Ltd., был выбран для использования в экспериментах из-за его хорошей совместимости с другими материалами в смеси.
2.3.4. Минеральная добавка
Минеральные добавки, использованные в экспериментах, представляли собой кремниевый порошок, произведенный на заводе Shanxi Dongyi Ferroalloy Factory, измельченный шлак, производимый Hefei Iron and Steel Group of Jinjiang Building Materials Co., Ltd., и летучая зола Grade I. Электростанция Хуайнань Пинвэй. Основные химические компоненты кремниевого порошка и измельченного шлака представлены в таблице 1.
|
Тип кремниевого порошка, использованный в этом исследовании, содержал очень мелкие частицы, соответствующие ультратонким твердым материалам с ультратонкими характеристиками. . Содержание SiO 2 в кремниевом порошке составляло более 90%, его средний размер частиц составлял 0,1–0,15 мкм мкм, его минимальный размер частиц составлял 0,01 мкм мкм, а размер частиц менее 1 мкм мкм. приходилось более 80% порошка.Удельная поверхность 250 000–350 000 см 2 / г, что в 70–90 раз больше, чем у цемента. Удельный вес составлял 2,1–3,0 г / см 3 , а насыпная плотность составляла 200–250 кг / м 3 . Удельная поверхность измельченного шлака составила 3800 см 2 / г. Коэффициент водопотребности летучей золы составлял 89%, ее потери при возгорании составляли 0,95%, содержание SO 3 составляло 0,29%, а степень измельчения составляла 4%.
2.4. Результаты испытаний на прочность на сжатие смесей HSHPC
В соответствии со спецификацией для расчета бетонных смесей, прочность бетона C60, C65, C70, C75 и C80 составляет 69.8, 74,8, 79,8, 84,8 и 89,8 МПа соответственно. Используя метод ортогональных испытаний, пропорции бетонной смеси C60 – C80, показанные в таблице 2, были оценены для применения в замораживающей футеровке валов.
|
Испытания на прочность на сжатие были проведены на смесях, подробно описанных в Таблице 2, с результатами, показанными в Таблице 3, из которой видно, что трехдневная прочность на сжатие смесей достигла 80% от расчетного значения, прочность на сжатие в течение семи дней достигла 90% от расчетного значения, а прочность на сжатие в течение двадцати восьми дней соответствовала или превысила расчетную прочность.Эти результаты показывают, что предлагаемые смеси могут полностью удовлетворить требования HSHPRCSL по прочности и характеристикам.
|
3. Метод испытания модели HSHPRCSL
3.1. Принцип подобия модельного теста
Учитывая высокую прочность и большой размер конструкции HSHPRCSL, было определено, что разрушающие испытания на прототипе футеровки вала чрезвычайно трудны для выполнения. В результате в данном исследовании были протестированы масштабные модели конструкции футеровки вала.
Целью модельных испытаний было не только определение распределения напряжений в секции футеровки вала, но и измерение разрушающей нагрузки футеровки вала.Следовательно, конструкция модели футеровки вала должна подвергаться не только масштабному напряжению и деформации, но и масштабной нагрузке через индекс подобия. Используя теорию подобия и основные уравнения упругости, в этом исследовании был применен метод анализа уравнений [23] для определения индекса подобия модели футеровки вала.
Условия подобия напряжений и деформаций в модели футеровки вала могут быть получены из геометрических, граничных и физических уравнений следующим образом: где — константа подобия деформаций; — константа геометрического подобия; — константа подобия перемещений; — константа подобия нагрузки (поверхностной силы); — константа подобия модулей упругости; — константа подобия напряжений; и — коэффициент подобия коэффициента Пуассона.
HSHPRCSL — это композитная конструкция, состоящая из двух материалов, стали и бетона, поэтому, чтобы гарантировать, что напряжения и деформации каждого компонента модели и прототипа строго сопоставимы, необходимо поддерживать геометрическое сходство между моделью. и прототип футеровки вала до, во всем и после нагружения и деформации; соответственно, и. Следовательно, условия напряжений и деформаций в футеровке вала можно записать как
. Чтобы гарантировать, что нагрузка и форма модели футеровки вала идентичны таковым у прототипа во время разрушения, поведение деформации при растяжении модель в упругом состоянии должна быть аналогична прототипу в упругом состоянии.Соответственно, должны быть выполнены следующие требования к прочности: (i) Кривые напряжения-деформации модели и прототипа футеровки вала должны быть одинаковыми на протяжении всего процесса нагружения (ii) Прочность материалов в каждой части футеровки вала должна быть одинаковой. друг к другу (iii) Критерии прочности на повреждение модели и прототипа футеровки вала должны быть одинаковыми. модельный тест.Поэтому конструкционный материал модели футеровки вала был скорректирован в эксперименте следующим образом: где — константа подобия прочности, — константа подобия степени армирования.
В этом случае соответствующая константа геометрического подобия — единственная переменная, которую необходимо определить. Чтобы сделать результаты исследования универсальными, вместо использования конкретной футеровки вала в качестве объекта моделирования, моделирование было связано с влиянием отношения толщины к диаметру, безразмерной величины с константой подобия, равной 1.Модельные испытания трех различных толщин футеровки вала были проведены соответственно со значениями 0,219, 0,216 и 0,201. С учетом размера устройства для испытания и характеристик конструкции футеровки основного ствола угольной шахты Цзиси Шэнцзянь в Шаньдуне и вспомогательного ствола угольной шахты Хуайнань Динцзи в Аньхой были получены параметры модели футеровки ствола. из таблицы ортогональных расчетов [24] и показаны в таблице 4. Геометрия модели футеровки вала показана на рисунке 1, на котором внешний диаметр и высота модели равны 925.0 мм и 562,5 мм соответственно, а толщина варьируется путем изменения внутреннего диаметра.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Примечание: a — внутренний радиус; b — внешний радиус; λ — отношение толщины к диаметру, где λ = ( b — a ) / a ; μ — коэффициент усиления; и σ см — средняя прочность куба на сжатие. |
3.2. Загрузка модели
Для обеспечения хорошего качества модели футеровки валов были отлиты с использованием профессиональной опалубки. Чтобы обеспечить согласованные граничные условия под нагрузкой, верхняя и нижняя грани модели были обработаны на токарном станке для получения высокого качества отделки после заливки. Испытания на нагрузку модели футеровки вала проводились с использованием высоконагруженного гидравлического нагружающего устройства, показанного на Рисунке 2, для поддержания постоянной нагрузки, имитирующей равномерное давление на грунт, как показано на схеме на Рисунке 3.Испытание под нагрузкой проводилось путем предварительного двух-трехкратного приложения предварительной нагрузки перед увеличением нагрузки со стабильными приращениями давления, каждое из которых выдерживалось в течение 5–10 минут, пока измеренные данные записывались, до тех пор, пока модель не обнаружила повреждения.
3.3. Метод измерения
Прочность на сжатие смесей HSHPC определялась тремя стандартными испытаниями на сжатие куба для каждой модели смеси со средними значениями, указанными в таблице 4. Нагрузка, приложенная к модели HSHPRCSL, была измерена с помощью стандартного манометра, установленного на устройство нагружения высокого давления и датчик давления масла БПР.Измерения деформации в модели футеровки вала проводились с помощью тензодатчиков сопротивления, установленных на внутренней и внешней поверхностях бетонных моделей, а также на внутреннем и внешнем рядах арматурных стержней, как показано на рисунках 4 и 5. Два уровня датчиков были расположен вертикально вдоль модели футеровки вала, и каждый слой содержал четыре точки измерения, расположенные в окружном направлении. Нагрузка и деформация в футеровке вала собирались и обрабатывались тестовой системой в реальном времени.Во время испытания система использовала датчик давления масла для определения нагрузки, чтобы гарантировать, что ошибка регулирования напряжения тензодатчика находится в допустимом диапазоне.
3.4. Обработка данных по прочности бетона
3.4.1. Стандартное значение прочности на сжатие куба
В соответствии с Правилами проектирования бетонных конструкций [25] класс прочности бетона следует определять в соответствии со стандартным пределом прочности на сжатие куба 150 мм, полученным путем испытаний с использованием стандартного метода испытаний при возраст 28 дней или любой другой возраст, предусмотренный дизайном.После статистического анализа прочность бетона на сжатие можно приблизительно принять за нормальное распределение, как показано на рисунке 6, так что средняя прочность на сжатие куба обеспечивает точность 95%.
Если общая площадь под кривой на рисунке 6 принята равной 1, а площадь по обе стороны от среднего значения составляет 50%, то при использовании в качестве демаркационной линии площадь слева и справа должна составлять 5%. и 95% соответственно. Используя эти статистические характеристики, соотношение между стандартной прочностью на сжатие куба и средней прочностью на сжатие может быть получено следующим образом: где — коэффициент вариации прочности бетона согласно статистике результатов испытаний и может быть определен путем интерполяции из числовые значения приведены в таблице 5.
|
3.4.2. Прочность на осевое сжатие
Принимая во внимание разницу между фактической прочностью HSHPRCSL и прочностью бетона, определенной кубическим испытанием, прошлым опытом и анализом данных испытаний, а также со ссылкой на соответствующие положения норм проектирования других стран [26], прочность конструкции бетонной конструкции следует скорректировать в зависимости от прочности бетона образца. В этом исследовании поправочный коэффициент был установлен на 0.88.
Отношение прочности призмы на сжатие к прочности на осевое сжатие, для обычного бетона (меньше или равно C50) составляет, а для высокопрочного бетона (C80) оно равно. Когда класс прочности бетона находится между C50 и C80, для определения соответствующего соотношения используется линейная интерполяция.
Поскольку высокопрочный бетон более хрупкий, чем обычный бетон, для обеспечения безопасности конструкции в спецификации был введен коэффициент снижения хрупкости.Для обычного бетона (меньше или равно C40), а для высокопрочного бетона (C80). Когда класс прочности бетона находится между C40 и C80, для определения отношения используется линейная интерполяция.
В соответствии с этими положениями стандартное значение прочности бетона на осевое сжатие может быть получено следующим образом, результаты показаны в таблице 6:
|