Тепловые насосы: ▷ Как выбрать тепловые насосы

Опубликовано в Разное
/
15 Мар 2021

Содержание

▷ Как выбрать тепловые насосы

Источник

Источник, из которого тепловой насос «выкачивает» энергию при работе, фактически — базовая схема работы насоса.

— Воздух-вода. Тепловые насосы, отбирающие тепло из окружающего воздуха. Преимуществами таких агрегатов являются простота в установке и возможность использования независимо от наличия свободной земли около здания. С другой стороны, воздушные модели имеют меньший COP (см. ниже), чем грунтовые, при этом их эффективность сильно зависит от погодных условий и значительно падает именно в холодное время года, когда потребность в отоплении наиболее высока (вплоть до полной неэффективности в мороз). Таким образом, насосы «воздух-вода» оправданы прежде всего в системах с небольшими перепадами температур и невысокими теплопотерями (тёплые полы, обогрев бассейна с весны по осень), в системах бивалентного отопления (с дополнительным источником тепла, например, котлом), а также там, где нет возможности установить агрегат «грунт-вода».

— Грунт-вода. Тепловые насосы, работающие от тепла, накопленного в грунте. Такие агрегаты намного эффективнее воздушных: земля способна накапливать много тепла, перепады температур даже при сильных морозах минимальны, а на большой глубине температура вообще остаётся постоянной круглый год. Главным недостатком грунтовых моделей является сложность в установке. Для этого потребуется свободный участок грунта, причём, в зависимо…сти от размеров этого участка, потребуется либо закапывать коллектор на обширной территории, либо «упаковывать» его в глубокую скважину, бурение которой обходится недёшево.

— Универсальный. Тепловые насосы, допускающие работу и от воздуха, и от грунта — вплоть до обоих вариантов одновременно. Об особенностях того и другого подробнее см. выше. А универсальность делает насос максимально удобным как в установке, так и в использовании, однако обходится недешево.

Назначение

— Отопление. Тепловые насосы, рассчитанные на использование в системах отопления — наиболее традиционный и простой по конструкции вариант. Стоит учитывать, что далеко не все из подобных агрегатов способны полноценно обеспечить температуру и мощность, необходимые для традиционного водяного отопления — многие из них подходят скорее для низкотемпературного обогрева вроде «тёплых полов», либо для работы в качестве дополнительного источника энергии в сочетании с котлом. Поэтому перед покупкой такого агрегата стоит внимательно ознакомиться с его характеристиками.

— Отопление и ГВС. Тепловые насосы, способные работать и на отопление, и на горячее водоснабжение. От описанных выше чисто отопительных моделей, как правило, отличаются наличием встроенного водонагревателя (либо возможностью подключения внешнего).

— Горячее водоснабжение. Тепловые насосы, предназначенные исключительно для ГВС, встречаются относительно редко. Особенностью многих подобных моделей является отсутствие внутреннего блока — агрегат (обычно типа «воздух-вода», см. «Источник») располагается вне помещения и соединяется с установленным внутри водонагревателем косвенного типа.

По ряду причин данный вариант особого распространения не получил.

— Для бассейна. Основным отличием тепловых насосов для бассейна является рабочая температура, которая в хол…од делает насос крайне не эффективными. Второй основной параметр — это температура нагрева теплоносителя, в таких моделях она обычно не выше +40 °С, но на практике такая температура возможна лишь в идеальных условиях. В большинстве моделей наивысшие показатели эффективности достигаются при температурах воздуха от 15° до 27° и температуре подачи воды ~26 °C что комфортно для человека. Как правило, такие модели имеют моноблочную конструкцию, что позволяет подключать подающую и обратную линию непосредственно к тепловому насосу.

Комплектация

— Внутренний блок (гидромодуль). Часть теплового насоса, устанавливаемая внутри помещения. По определению входит в комплект поставки агрегатов «грунт-вода» (см. «Источник») — внутренний блок в данном случае и является собственно тепловым насосом, наружу выводится только коллектор и соединительные трубы. А вот воздушные модели могут не иметь данного модуля.

— Внешний блок. Часть теплового насоса, располагаемая снаружи помещения. Практически не используется в грунтовых моделях, однако является практически обязательным элементом комплектации для агрегатов типа «воздух-вода» — как правило, внешний блок включает и коллектор для отбора тепла. Впрочем, существуют воздушные тепловые насосы с возможностью установки в помещении, с подводом и отводом воздуха по вентиляционным каналам — однако для таких моделей в комплектации указывается только внутренний блок, хотя устройство обычно может устанавливается и снаружи. А есть и вовсе модели моноблоки, сочетающие в себе внутренний и внешний блок в одном корпусе.

— Водонагреватель. Собственное приспособление для нагрева воды и подачи её в систему ГВС; подробнее см. «Водонагреватель». Наличие собственного водонагревателя, с одной стороны, упрощает установку насоса и избавляет от необходимости докупать дополнительное оборудование; с другой.

..— при покупке такого насоса приходится полагаться на выбор производителя, тогда как внешний водонагреватель можно докупить и отдельно.

Макс. тепловая мощность

Наибольшая тепловая мощность, вырабатываемая тепловым насосом — то есть количество тепла, которое он способен «перекачать» снаружи в систему отопления и/или ГВС.

Тепловая мощность является важнейшей характеристикой теплового насоса — она напрямую определяет его эффективность и способность обеспечить необходимое количество тепла. Отметим, что данный показатель указывается для оптимальных условий работы — в частности, довольно высокой наружной температуры. На практике такие условия встречаются редко, поэтому фактическая мощность обычно заметно ниже максимальной; это нужно учитывать при выборе. Существуют специальные формулы для расчёта оптимального значения максимальной тепловой мощности в зависимости от конкретной ситуации.

Тепловая мощность (~ 0 °C)

Тепловая мощность — проще говоря, количество тепла — вырабатываемое тепловым насосом при температуре источника (воздуха или грунта — см. выше) около 0 °С. Этот показатель более нагляден и приближён к реальности, чем максимальная тепловая мощность (см. выше), поэтому часто он указывается в характеристиках как основной.

Необходимая тепловая мощность зависит от площади и некоторых особенностей помещения, от потребности в горячей воде и ряда других факторов; для её расчёта в специальных источниках можно найти соответствующие формулы.

Макс. мощность охлаждения

Максимальная тепловая мощность, выдаваемая насосом в режиме охлаждения.

При такой работе насос функционирует в обратном цикле — отводя излишек тепла из помещения в окружающую среду, то есть, по сути, играет роль кондиционера. Необходимая мощность охлаждения зависит от площади здания, особенностей его теплоизоляции и некоторых других факторов; способы её расчёта можно найти в специальных источниках. Здесь же отметим, что обычное отопительное оборудование (радиаторы, тёплые полы) для работы на охлаждение не подходит, для этого необходимо использовать специальное оборудование (например, фанкойлы).

Мощность потребления

Электрическая мощность, потребляемая тепловым насосом при работе только на перекачку тепла, без использования догревательного ТЭНа (при его наличии, см. ниже). Отношение тепловой мощности к потребляемой мощности определяет тепловой коэффициент СОР (см. ниже) и, соответственно, общую эффективность агрегата. Также от этого показателя зависит общее энергопотребление (и, соответственно, счета за электричество), а также некоторые требования по питанию и подключению — например, модели с питанием от 220 В и мощностью более чем 5 кВт не могут работать от розетки и требуют специального формата подключения к сети.

Питание

Тип электропитания, используемого тепловым насосом.

— Однофазное (220 В). Подключение к бытовой сети на 220 В. Многие модели с подобным питанием способны работать от обычной розетки, что заметно облегчает подключение. Однако при высокой потребляемой мощности (3,5 кВт и выше) может потребоваться особый способ подключения к сети, розетка тут уже не подойдет.

— Трехфазное (380 В). Питание от сетей 380 В подходит для тепловых насосов любой мощности, в т.ч. для моделей, оснащенных «прожорливыми» догревательными ТЭНами. Кроме того, приборы с таким питанием при постоянной работе фактически потребляют меньше энергии, чем аналогичные по мощности потребления однофазные. В свете этого данный вариант может предусматриваться даже в тепловых насосах невысокой мощности. Недостатком трехфазных сетей является слабая распространенность: если в производственном помещении с такой сетью, скорее всего, проблем не будет, то для частного дома может понадобиться прокладка отдельной линии, например от уличного столба или трансформатора.

Догревательный ТЭН

Мощность догревательного ТЭНа, установленного в устройстве (при наличии такой функции).

Догревательный ТЭН представляет собой электрический нагреватель в виде трубки с нитью накаливания внутри. Такой нагреватель играет вспомогательную роль, он применяется, когда тепловой мощности самого насоса недостаточно — например, при значительном падении температуры снаружи. Главное преимущество ТЭНов состоит как раз в том, что их эффективность не зависит от наружных условий. А основной недостаток заключается в высоком энергопотреблении: если тепловой насос способен «перекачать» значительно больше тепловой энергии, чем потребляет электричества, то тепловая мощность ТЭНа приблизительно равна потребляемой. Именно поэтому в характеристиках указывают мощность ТЭНа вообще, не уточняя, о чем идет речь: указанная цифра соответствует и мощности нагрева, и энергопотреблению. Эти параметры аналогичны соответствующим параметрам самого теплового насоса; подробнее о них см. выше.

Водонагреватель

Тип водонагревателя, которым оснащён тепловой насос с функцией ГВС (см. «Назначение»). Все подобные водонагреватели обычно работают по накопительному принципу — то есть имеют бак, где хранится запас нагретой воды — и, по сути, позволяют тепловому насосу выполнять ещё и функции бойлера. Различие же заключается в месте установки бака и принципах нагрева воды.

— Встроенный. Водонагреватель, установленный непосредственно в корпусе теплового насоса. Такая конструкция делает систему ГВС менее громоздкой (хотя и увеличивает габариты самого насоса), а также позволяет использовать не только принцип косвенного нагрева (когда тепло передаётся воде из теплообменника), но и догревательный ТЭН (при его наличии, см. выше), что положительно сказывается на эффективности

— Внешние. Водонагреватели, установленные вне корпуса теплового насоса. В отличие от встроенных, могут работать только по принципу косвенного нагрева, из-за чего в целом несколько менее эффективны. В то же время вынос дополнительного оборудования за пределы корпуса уменьшает габариты насоса, да и возможность самостоятельно выбрать место для установки водонагревателя часто оказывается немаловажной.

Объем водонагревателя

Объём накопительного бака водонагревателя, установленного в тепловом насосе. Чем больше этот объём — тем больше горячей воды можно запасти в устройстве, тем меньше риск израсходовать её при интенсивном потреблении. Существуют формулы, позволяющие рассчитать оптимальный объём водонагревателя в зависимости от конкретной ситуации; их можно найти в специальных источниках.

Мин. рабочая t

Наименьшая температура среды (воздуха или грунта, см. «Источник»), при которой тепловой насос может безопасно и достаточно эффективно выполнять свои функции. Эффективность при минимальной температуре, разумеется, заметно снижается, однако устройство всё равно можно использовать в качестве источника тепла.

Данные о минимальной рабочей t позволяют оценить пригодность насоса для холодного времени года.

Макс. t теплоносителя

Наибольшая температура, до которой насос способен нагреть теплоноситель. Стоит отметить, что достигнуть таких показателей можно при довольно высокой температуре воздуха или грунта. А поскольку тепловые насосы используются в холодное время года, то и фактическая максимальная температура, как правило, оказывается меньше теоретически достижимой. Тем не менее, этот параметр вполне позволяет оценить возможности агрегата или его пригодность для тех или иных задач.

Компрессор

Модель компрессора, установленного в тепловом насосе.

Компрессор является главным элементом, «сердцем» агрегата: именно он обеспечивает циркуляцию теплоносителя по контурам насоса и перенос тепла снаружи в помещение. Зная название компрессора, можно найти подробную информацию о нем и выяснить некоторые особенности теплового насоса в целом. Отметим, что название обычно указывают в том случае, если в устройстве используется высококлассный компрессор, часто — инверторный (с переменной скоростью; это положительно сказывается на эффективности, экономичности и уровне шума).

при t°C наружной

Наружная температура, для которой приводится коэффициент COP. Подробнее об этом коэффициенте и значении наружной температуры см. ниже.

подача t°C

Температура в прямом трубопроводе, для которой указан коэффициент COP. Подробнее об этом коэффициенте см. ниже. А данная температура — это температура теплоносителя на выходе из насоса, при которой достигается приведенное значение COP.

Отметим, что производители нередко идут на хитрость и замеряют COP для сравнительно невысокой температуры (заметно ниже, чем максимальная температура теплоносителя — например, 35 °С для модели с максимумом в 55 °С). Это позволяет приводить в характеристиках довольно внушительные цифры эффективности. Однако при более высоких температурах фактические затраты энергии на единицу тепловой мощности будут больше, и фактический COP будет ниже.

коэффициент COP

Тепловой коэффициент COP (coefficient of performance) является ключевой характеристикой, описывающей общую эффективность и экономичность работы теплового насоса. Он представляет собой соотношение между тепловой и потребляемой мощностью агрегата (см. выше) — проще говоря, сколько киловатт тепловой энергии вырабатывает насос на 1 кВт затраченного электричества. В современных тепловых насосах этот показатель может превышать 5.

Однако стоит учитывать, что фактическое значение COP может быть разным в зависимости от температуры снаружи и температуры подачи. Чем выше разница между этими температурами — тем больше затрат нужно на «перекачивание» тепловой энергии и тем ниже будет COP. Поэтому в характеристиках принято указывать значение COP для конкретных значений температур (а во многих моделях — два значения, для разных вариантов) — это позволяет оценить фактические возможности агрегата.

при t°C наружной

Наружная температура, для которой приводится дополнительный коэффициент COP. Подробнее об этом коэффициенте и значении наружной температуры см. ниже.

подача t°C

Температура в прямом трубопроводе, для которой указан дополнительный коэффициент COP. Подробнее об этом коэффициенте см. ниже. А данная температура — это температура теплоносителя на выходе из насоса, при которой достигается приведенное значение COP.

Отметим, что производители нередко идут на хитрость и замеряют COP для сравнительно невысокой температуры (заметно ниже, чем максимальная температура теплоносителя — например, 35 °С для модели с максимумом в 55 °С). Это позволяет приводить в характеристиках довольно внушительные цифры эффективности. Однако при более высоких температурах фактические затраты энергии на единицу тепловой мощности будут больше, и фактический COP будет ниже.

коэффициент COP

Дополнительный тепловой коэффициент COP, указанный в характеристиках в дополнение к основному. Подробнее о значении этого показателя см. п. «Коэффициент COP» выше. А дополнительный коэффициент указывается для иных рабочих температур, чем основной — это позволяет оценить возможности насоса в разных условиях.

Управление со смартфона

Возможность управления устройством при помощи смартфона / планшета обусловлена наличием встроенного Wi-Fi модуля. Подключив тепловой насос в сеть и настроив необходимые параметры в приложении у Вас будет постоянный до

принцип работы для отопления дома

Меню
  • Главная
  • Рубрики
    • Все о крышах
    • Все о лестницах
    • Фундамент
    • Стены
    • Пол
    • Потолок
    • Отделка
    • Интерьер
    • Тепло в доме
    • Ландшафт
    • Недвижимость
    • Своими руками
    • Инвентарь
    • Интересное
    • Разное
    • Другое
  • Карта сайта
  • Главная
  • Рубрики
    • Все о крышах
    • Все о лестницах
    • Фундамент
    • Стены
    • Пол
    • Потолок
    • Отделка
    • Интерьер
    • Тепло в доме
    • Ландшафт
    • Недвижимость
    • Своими руками
    • Инвентарь
    • Интересное
    • Разное
    • Другое
  • Карта сайта

Что нужно знать?

Содержание

  • 1 Что нужно знать?
  • 2 Принцип работы теплового насоса
  • 3 Вкратце о видах тепловых насосов
  • 4 «Грунт-вода»: как лучше разместить?
  • 5 Принцип работы теплового насоса «Воздух-вода»
  • 6 Насосы «воздух-воздух» и кое-что еще
  • 7 Тепловой насос «Вода-вода»: принцип работы
  • 8 Достоинства и негативные стороны тепловых насосов
  • 9 Тепловые насосы – классификация
    • 9. 1 Насос геотермального типа – принципы устройства и работы
    • 9.2 Использование воды в качестве источника тепла
    • 9.3 Воздух – наиболее доступный источник тепла
  • 10 Тепловой насос – альтернативная система отопления дома
  • 11 Разновидности тепловых насосов и систем
    • 11.1 Грунтовые тепловые насосы
    • 11.2 Водяные тепловые насосы
    • 11.3 Воздушные тепловые насосы
  • 12 Коэффициент эффективности тепловых насосов
  • 13 Применение тепловых насосов в условиях российского климата
  • 14 Применение теплового насоса для охлаждения
  • 15 Тепловой насос для отопления дома принцип работы
  • 16 Отопление тепловым насосом воздух воздух.
  • 17 Тепловые насосы для отопления дома вода вода.
  • 18 Применение теплового насоса для горячего водоснабжения
  • 19 Тепловые насосы со встроенным ТЭНом
  • 20 Особенности и принцип работы ТН
  • 21 Разновидности установок
  • 22 Какой ТН лучше собирать
  • 23 Простейший тепловой насос из оконного кондиционера
  • 24 Делаем геотермальную установку
    • 24. 1 Расчет грунтового контура и теплообменников насоса

Тепловые насосы российского производства для отопления дома 2019

Тепловые насосы российского производства – отличная альтернатива зарубежным. Чем они так хороши и почему стоят дешевле аналогов? Какие российские тепловые насосы достойны внимания и как определиться с изготовителем?

Список производителей со временем будет пополняться, мы будем добавлять новые фирмы и предприятия. Если вам есть что высказать по поводу тепловых насосов из РФ – делайте это в комментариях.

Преимущества российских производителей тепловых насосов

Тепловые насосы в России производят более 20 лет, за это время они стали достойными конкурентами зарубежному оборудованию. Отличительная особенность российских тепловых насосов – хорошее соотношение цены и качества. Их стоимость несколько выше, чем у китайских, но производительность и срок службы приближается к европейским и американским.

Российские производители ориентированы на внутренний рынок. Климат в стране холоднее чем в Европе и Азии, поэтому чаще используют геотермальные установки и тепловые насосы вода-вода. Устанавливать воздушный тепловой насос целесообразно лишь в некоторых регионах, где температуры зимой не опускаются ниже -15, поэтому их в России практически не собирают.

Тем не менее рынок воздушных установок растет. Большую популярность получают тепловые насосы воздух-вода в России, так как они не требуют сложного монтажа. В большинстве регионов их нецелесообразно использовать зимой, но весной, летом и осенью они позволяют существенно сэкономить на отоплении и ГВС.

Еще 10 лет назад потребители не были готовы обустраивать теплонасосное отопление, но ситуация изменилась. Стоимость подключения газа непомерно высока, установка грунтового теплового насоса обходится в два-три раза дешевле. Поэтому по срокам окупаемости, соотношению цена-качество, геотермальный тепловой насос российского производства – хороший вариант.

Компании-производители из РФ набрались опыта, более 10 лет дорабатывали оборудование и расширяли модельный ряд. Сейчас отопление с помощью теплового насоса может быть дешевле, чем обогрев дома газом.

Тепловой насос — Википедия

Материал из Википедии — свободной энциклопедии

Тепловой насос — устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой[1]. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель — теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.

По прогнозам Международного энергетического агентства, тепловые насосы будут обеспечивать 10 % потребностей в энергии на отопление в странах ОЭСР к 2020 году и 30 % — к 2050 году[источник не указан 1151 день]

Общие сведения

Основу эксплуатируемого сегодня в мире парка теплонасосного оборудования составляют парокомпрессионные тепловые насосы, но применяются также и абсорбционные, электрохимические и термоэлектрические.

При использовании обычного отопления при помощи источника энергии, с помощью которого можно получить механическую работу A{\displaystyle A}, количество теплоты Qout{\displaystyle Q_{out}}, поступающее в отопительную систему, равно этой работе Qout=A{\displaystyle Q_{out}=A}.

Если же эту работу использовать для приведения в действие теплового насоса, то получаемая нагреваемым телом теплота Qout{\displaystyle Q_{out}} будет больше, чем совершаемая работа A:Qout>A{\displaystyle A:Q_{out}>A}. Пусть температура воды в системе отопления равна Tout{\displaystyle T_{out}}, а температура окружающей отапливаемое помещение среды равна Tin{\displaystyle T_{in}}, причем Tin<Tout{\displaystyle T_{in}<T_{out}}. Тогда получаемое отопительной системой количество теплоты Qout=AToutTout−Tin=A11−TinTout{\displaystyle Q_{out}=A{\frac {T_{out}}{T_{out}-T_{in}}}=A{\frac {1}{1-{\frac {T_{in}}{T_{out}}}}}}. Таким образом, чем меньше температура отопительной системы Tout{\displaystyle T_{out}} отличается от температуры окружающей среды Tout{\displaystyle T_{out}}, тем больший выигрыш дает тепловой насос по сравнению с непосредственным превращением работы в теплоту[2].

Величину

Геотермальный насос для отопления дома: что это такое, принцип работы

Автор Петр Андреевич На чтение 10 мин. Просмотров 168 Обновлено

Ни для кого не секрет, насколько остро стала проблема экологии в последние годы. Именно поэтому геотермальные тепловые насосы пользуются все большей популярностью у людей неравнодушных, желающих пользоваться альтернативными энергоносителями. Благодаря этой разработке ученым удалось найти способ отапливать жилище в холодные месяцы и нагревать воду круглый год. Причем электроэнергии, газа, угля и дров затрачивать не нужно. А значит, вредных выбросов нет никаких.

Что это и принцип работы геотермального насоса

Тепловой насос – это устройство, преобразующее теплоту Земли в энергию. Данный способ организации отопления частного дома позволяет отказаться от дорогостоящих энергоносителей. Экономия со временем полностью окупает затраты на установку уже в первые сезоны использования. Европа уже давно ищет и внедряет альтернативные методы энергосбережения, чем проявляет заботу об окружающей среде. И нет ни одного повода действовать иначе, тем более, сейчас на рынке нашей страны есть все необходимое.

Применяемых хладогент обладает исключительным свойством, которое заключается в поглощении и отдаче тепла при переходе из одного агрегатного состояния в другое. Если говорить утрировано, принцип работы теплового насоса идентичен холодильной установки. Только главным элементом является теплообменник, который в последнем случае устанавливается на задней стенке.

Схематично геотермальное устройство состоит из трех контуров:

  1. Принимающий низкопотенциальное тепло от источника.
  2. Для циркуляции фреона, меняющего агрегатное состояние.
  3. Водяной, передающий тепло от установки к радиаторам.

Именно фреон в процессе работы принимает тепловую энергию от источника, когда испаряется. И наоборот он отдает ее при конденсации. Если рассматривать работу теплонасоса по циклам, суть принципа действия заключается в следующем:

  1. Хладогент, находящийся в системе в виде жидкости, в испарителе испаряется. Тепло от источника поглощается в результате этого процесса.
  2. Компрессор нагнетает фреон, который сжимаясь, снова переходит в жидкое состояние. При этом накопленная энергия передается теплообменнику.
  3. Вода в отопительном контуре, проходя через теплообменник, нагревается и циркулирует по системе. Доходя до батарей, она отдает тепло в комнату.

При этом достигается большой перепад температуры. Такая схема теплового насоса предполагает, что хладогент охлаждается до 6-10 градусов Цельсия, а к теплообменнику подается уже при +60. Но это находясь под давлением. После отдачи тепла оно сбрасывается (стабилизируется) при помощи дроссельного клапана, и циклы повторяются. Кто знаком с работой холодильной установки заметил, что принцип передачи энергии в данном случае идентичен, хотя цели абсолютно противоположные.

Если в холодильнике решается задача понижения температуры в камерах, где хранятся продукты, то отопление тепловым насосом – это возможность поднять температуру в помещении без сжигания электричества или твердых энергоносителей, газа и т.д.

Разновидности тепловых насосов и систем

Инженерам-разработчикам удалось найти способ «перехвата» энергии природы для последующего преобразования в ту, что способна отопить дом и нагреть воду в системе водоснабжения. Причем источник – низкотемпературный (низкопотенциальный), что в корне отличает идею от классической, где сжигается уголь, газ, дрова, жидкое топливо или расходуется электроэнергия. Сейчас есть несколько источников, от которых можно получить достаточно энергии, чтобы обогреть частный дом.

В первую очередь это Солнце. Лучи, достигая поверхности Земли, емли нагревают элементы, которые поглощают энергию. А установка перерабатывает ее, усиливает, и передает на теплообменник для разогрева теплоносителя в отопительном контуре. Второй источник – сама Земля, а точнее тепло ее ядра, передаваемого через мантию верхним слоям земной коры. При этом инженерам удалось разработать три различных схемы, определяющих тип устройства: грунтовые, водяные, воздушные. Каждый вид отличается, что позволяет выбрать наиболее эффективный способ для отдельно взятого случая.

Грунтовые тепловые насосы

Количества тепловой энергии, получаемой от грунта, достаточно для разогрева хладогента до уровня, где тот меняет агрегатное состояние, превращаясь в пар. Удобно то, что на глубине уже в несколько метров сезонные температурные колебания не наблюдаются. Это позволяет пользоваться прибором круглый год, и в доме всегда будет горячая вода.

Для приема тепла земли используется раствор этиленгликоля или пропиленгликоля. Водный эталон применяется, но реже. Система труб, по которым циркулирует энергопоглощающая жидкость, герметична.

Есть два способ размещения трубопровода в грунте:

  1. Горизонтальный коллектор – это система горизонтально лежащего контура.
  2. Геотермальный зонд – приемники расположены вертикально и связаны между собой.

Геотермальные насосы с горизонтальным коллектором предполагают заглубление на полтора-два метра. Главное пройти отметку уровня промерзания грунта. Для каждого региона она своя. В среднем это 1,2 метра. Если требуется отопить здание, площадью до 100 кв. м., придется выкопать котлован или вырыть сеть траншей, площадью в 2-3 сотки. Это не обязательно делать под самим сооружением. Главное не садить на задействованном участке растения, имеющие корни, уходящие глубоко в землю.

Эту проблему полностью решает геотермальный зонд. Трубы устанавливаются в скважины. Бурить придется на 100-200 метров. Но их достаточно двух, если требуется обогреть здание в сто квадратов.

Между скважинами должно быть расстояние не менее пяти метров. Поэтому если участок мал, застроен или засажен, скажем, садом, это лучший способ установки теплового насоса с зондом, когда задействована минимальная площадь надела. С другой стороны цепь горизонтальных приемников тепла можно построить самостоятельно без применения бурового оборудования.

Водяные тепловые насосы

Для использования такого теплового насоса, принцип действия взят тот же. Но отличается тип источника. В данном случае это грунтовые воды. Естественно, глубина их залегания должна быть доступна в регионе. Но если такая возможность есть, система отличается тепловой стабильностью, так как подземные воды имеют постоянную температуру круглый год. Это делает устройство пригодным для применения в течение всех четырех сезонов. Перед монтажом проводят геологическую разведку, чтобы убедиться, что вода течет на глубине 30-40 метров.

Однако требуется и химический анализ. Если в составе мало солей железа и ряда других примесей, можно ставить геотермальный зонд. В противном случае это нецелесообразно ввиду наличия риска преждевременного выхода из строя и низкой производительности. В данном случае применяют грунтовый тепловой насос или воздушный. Именно это требование является причиной того, что среди всей массы рабочих ныне установок тепловые насосы водяного типа используются реже – порядка 5% случаев.

Воздушные тепловые насосы

Главное преимущество этого способа организации отопления и подачи горячей воды – отсутствие необходимости вести полномасштабное строительство. Не нужно бурить скважины для геотермальных зондов. Нет необходимости рыть траншеи, как в случае с грунтовым тепловым насосом. Все узлы размещаются на поверхности. В итоге сметная стоимость значительно ниже. Времени на установку и обустройство затрачивается меньше. Но при всем кажущемся комфорте это устройство далеко не идеально.

Главный минус – высокий КПД будет только если воздух на улице не охлажден до -15…-20 градусов по Цельсию. Если ударят морозы еще сильнее, система будет работать с меньшей эффективостью, что приводит к выходу из строя. А если теплоноситель в трубах и радиаторах замерзнет, произойдет разгерметизация, а по весне дом будет затоплен. Придется тратить деньги на ремонт. Однако в районах, где подобного не случается, люди пользуются таким методом организации отопления.

Коэффициент эффективности

Именно этот параметр позволяет сопоставить эффективность установок различного типа, чтобы определить оптимальный вариант. Данный термин является тем самым КПД. Рассчитывается эффективность как отношение вырабатываемого количества энергии и потребляемому. Под потреблением стоит понимать электроэнергию, затраченную на запуск системы и расходуемую в процессе ее работы. Независимо от времени года для водяных модификаций коэффициент эффективности равен 5.

Другими словами, если устройство потребляет, скажем 2 кВт в час, то установка выдает до 10 кВт час, но уже в виде тепла. Геотермальное отопление частного дома менее эффективно, так как коэффициент равен 4,0-4,5. В случае с воздушным типом определяющим фактором является температура окружающей среды. Так при нуле он равен 3,5. Если же она снизится до -20 град. то эффективность будет равна 1,5. Именно нестабильность в последнем случае является фактором низкого спроса на устройства воздушного типа. А все больше людей отдают предпочтение «золотой» середине – геотермальным агрегатам.

Часто поставщики оборудования указывают в техническом описании КПД в процентах. Этот маркетинговых ход не должен ввести вас в заблуждение. Если, например, имеет место характеристика эффективности в 400%, то это означает, что коэффициент равен 4. Иными словами при потреблении 1 кВт*ч электроэнергии отопительная система способна вырабатывать до4 кВт*ч. То есть величину, указанную в процентах необходимо разделить на 100. Это и будет отношение потребления к «выработке».

Применение геотермальных насосов в условиях российского климата

Теперь вы знаете, чем отличаются типы тепловых установок, и сможете правильно определить, какой именно необходим в вашем случае. Воздушный тип пригоден для регионов, где температура не опускается ниже нуля. Это отличный способ организовать отопление дачи тепловым насосом, если собственник проводит там досуг с семьей с весны по осень. На зиму систему консервируют. В Сибири, Северных регионах, и даже в Европейской части России об отоплении зимой воздушными агрегатами не стоит и помышлять.

Водяные также не подойдут людям, живущим в условиях вечной мерзлоты. Здесь вода в грунте есть, но она находится в виде льда, а значит, не может служить источником тепла. На юге Российской Федерации, где глубина промерзания грунта невелика, а подземные реки и озера залегают неглубоко, такие устройства вполне жизнеспособны и достаточно эффективны. А вот геотермальные – универсальный вариант, и поэтому является самым востребованным на всей территории РФ, несмотря на трудоемкость организации зонда или коллектора.

Применение геотермального насоса для охлаждения

Некоторым производителям удалось интегрировать функцию кондиционирования. Такие модели стоят дороже, но нет необходимости нести дополнительные затраты, ведь нужно покупать кондиционеры для всех комнат. Если же такой опции изначально не предусмотрено, делают гидравлическую развязку, что также требует капиталовложений.

Охлаждение происходит благодаря холодным панелям на стенах и потолке, охлаждающему «теплому пол», через радиаторы отопления с хорошим обдувом или же с помощью фанкойла. В последнем случае речь идет о пластинчатом теплообменнике, вмонтированном в кожух с вентилятором и направляющими жалюзями.

Применение геотермального насоса для горячего водоснабжения

Каждая из описанных выше схем позволяет не только обогревать жилище, но и снабжать людей горячей водой, причем независимо от времени года. Даже при отключенном отоплении в трубах будет вода с температурой от +45 до +60 град. Используется специальная емкость с теплообменником – бойлер. Проточные модификации не нашли применения ввиду слабой эффективности и отсутствия возможности иметь запас. Недостаток – необходимость обустройства отдельного помещения под котельную.

Обычный водонагреватель не подойдет. Покупают специализированное оборудование, предназначенное для подключения к теплонасосной установке. Такой бак обойдется дороже, ведь для эффективного разогрева объема воды потребуется развитая сеть теплообменных элементов, что влечет за собой удорожание. Материалов расходуется больше, а устройство сложнее в исполнении. Однако экономия перекроет затраты уже в первые год-два в зависимости от частоты использования и количества жильцов.

Геотермальные насосы со встроенным тэном

Это способ решить массу возможных проблем. Даже если морозы превысят отметку в -20 градусов, электроника включит дополнительный нагревательный элемент, и температура в комнатах будет всегда комфортной. Если на зиму дом оставлен без присмотра, такая система не будет заморожена, так как ТЭН поддерживает положительную температуру в системе. Любая поломка не является проблемой, и пока не будут предприняты меры по ее устранению, агрегат работает как обычный электрический котел. Правда придется заплатить чуть больше.

Советы и рекомендации

Выбирая оборудование, оценивайте имеющиеся возможности, но не экономьте. Рассчитывая требуемую производительность, закладывайте запас мощности в 10%. Это необходимо на случай запредельных морозов. Оснащение, работающее на пределе, прослужит меньше, тогда как насос, эксплуатируемый в нормальном диапазоне нагрузки, отработает дольше. Разработку проекта и монтаж доверьте профессионалам. Изучите инструкцию, и не отступайте от требований производителя. Без согласования не вносите в конструкцию изменений.

ПолезноБесполезно

Какой выбрать теплоноситель для тепловых насосов? Тепловые насосы для отопления

  • Главная
  • Продукция
    • Хладоносители
      • Хладоноситель ХНТ
      • Хладоноситель ХНТ-НВ
      • Хладоноситель ХНТ-СНВ
      • Хладоноситель ХНТ-КФ
      • Жидкость для консервации ХНТ-60
      • Пропиленгликоль СП-ПГ-Х
      • Хладоноситель Spektrogen S
      • Кремнийорганическая жидкость Spektrogen MS
    • Теплоносители, антифризы
      • Теплоноситель ХНТ
      • Антифриз Spektrogen GI
      • Теплоноситель Spektrogen S
      • Теплоноситель Spektrogen S-LV
      • Высокотемпературный теплоноситель Spektrogen MS
      • Теплоноситель ХНТ-Э-35
      • Теплоноситель Spektrogen ОЖ
    • Ингибиторы коррозии, антикоррозионные добавки
      • Ингибитор коррозии СП-В-10К
      • Ингибитор коррозии СП-В-К67
      • Ингибитор коррозии СП-В-12-0
      • Ингибитор коррозии СП-В-14-0
      • Ингибитор коррозии СП-В-10-0
      • Ингибитор коррозии СП-В-Н2С
      • Ингибитор коррозии СП-В-10-Б41
    • Жидкости для промывки и очистки
      • Жидкость для промывки СП-ОМ-99К
      • Жидкость для промывки СП-ОМ-77Ц
      • Очиститель металла СП-ОМ-84Н
      • Средство для промывки СП-ОМ-82Л
    • Биоциды
    • Дезинфицирующие средства
      • Средство для дезинфекции Спектродез
    • Пищевые добавки
      • Комплексная пищевая добавка ПРАМ-Чикен
      • Комплексная пищевая добавка Лемикур
      • Комплексная пищевая добавка ПРАМ-Вашбиф
      • Комплексная пищевая добавка ПРАМ-классика
      • Комплексная пищевая добавка ПРАМ-ПОРК
    • Контрактное производство
  • Области применения
  • Сервисный центр
    • Мониторинг текущего состояния теплообменных и водооборотных систем
    • Анализ теплопередающих жидкостей (теплоносителей, хладоносителей и т. п.)
    • Восстановление состава и свойств (регенерация) теплопередающих жидкостей
    • Промывка теплообменного оборудования
    • Определение и корректировка водно-химических режимов для водооборотных циклов
    • Системы дозирования ингибиторов коррозии и биоцидов
    • Скачать опросный лист, заявку на анализ
  • Где купить
  • Нам доверяют
  • О компании
    • Патенты
    • Публикации
    • Нам доверяют
  • Контакты
  • Главная
  • Продукция
    • Хладоносители
      • Хладоноситель ХНТ
      • Хладоноситель ХНТ-НВ
      • Хладоноситель ХНТ-СНВ
      • Хладоноситель ХНТ-КФ
      • Жидкость для консервации ХНТ-60
      • Пропиленгликоль СП-ПГ-Х
      • Хладоноситель Spektrogen S
      • Кремнийорганическая жидкость Spektrogen MS
    • Теплоносители, антифризы
      • Теплоноситель ХНТ
      • Антифриз Spektrogen GI
      • Теплоноситель Spektrogen S
      • Теплоноситель Spektrogen S-LV
      • Высокотемпературный теплоноситель Spektrogen MS
      • Теплоноситель ХНТ-Э-35
      • Теплоноситель Spektrogen ОЖ
    • Ингибиторы коррозии, антикоррозионные добавки
      • Ингибитор коррозии СП-В-10К
      • Ингибитор коррозии СП-В-К67
      • Ингибитор коррозии СП-В-12-0
      • Ингибитор коррозии СП-В-14-0
      • Ингибитор коррозии СП-В-10-0

Тепловые насосы для жилых помещений | Сравните высококачественные тепловые насосы

За Дилеры и дистрибьюторы За Строители Для собственности Управление Trane Commercial

Язык

Английский
  • Español
  • Français
  • Продукты
    • Кондиционеры
    • Печи
    • Кондиционеры
    • Тепловые насосы
    • Качество воздуха в помещении
    • Упакованные системы
    • Термостаты
    • Бесконтактные системы
    • Все остальные товары
  • Покупка Trane
    • Покупка Trane
    • Финансирование
    • Налоговые льготы
    • Руководство по ценам
    • Ремонт или замена
    • Скидки и предложения
    • Бесплатная оценка дома
    • Найдите дилера по Государство
  • Ресурсы
    • Почему Trane
    • Гарантия и регистрация
    • Основы HVAC
    • Глоссарий
    • Поддержка владельцев
    • Блог тем компании Trane
  • Услуги
    • Аварийное обслуживание
    • Сезонное обслуживание
Найдите местного дилера Позвоните, чтобы поговорить с дилером нажмите, чтобы позвонить дилеру
  • Меню
  • Найти дилера Найти продукт
  • Продукция
  • Покупка Trane
  • Ресурсы
  • Язык

    Английский Español Français
  • Товары
  • Помогите мне найти продукт
  • Кондиционеры
  • Печи
  • Кондиционеры
  • Тепловые насосы
  • Качество воздуха в помещении
  • Упакованные системы
  • Термостаты
  • Бесконтактные системы
  • Все остальные продукты
  • Покупка Trane

Как работает тепловой насос | HVAC

В тепловом насосе с воздушным источником тепла используются передовые технологии и цикл охлаждения для обогрева и охлаждения вашего дома. Это позволяет тепловому насосу обеспечивать комфорт в помещении круглый год — независимо от сезона.

Тепловой насос в режиме кондиционирования воздуха

При правильной установке и функционировании тепловой насос может поддерживать прохладную комфортную температуру, снижая при этом уровень влажности в вашем доме.

  1. Теплый воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  2. Компрессор обеспечивает циркуляцию хладагента между внутренним испарителем и наружными конденсаторными блоками.
  3. Теплый воздух в помещении затем направляется к воздухоочистителю, в то время как хладагент перекачивается из внешнего змеевика конденсатора во внутренний змеевик испарителя. Хладагент поглощает тепло, проходя через воздух в помещении.
  4. Этот охлажденный и осушенный воздух затем проталкивается через соединительные внутренние воздуховоды к вентиляционным отверстиям по всему дому, снижая внутреннюю температуру.
  5. Цикл охлаждения продолжается снова, обеспечивая постоянный метод охлаждения.


Тепловой насос в тепловом режиме

Тепловые насосы уже много лет используются в регионах с более мягкими зимами. Тем не менее, технология тепловых насосов с воздушным источником энергии претерпела значительные изменения, что позволяет использовать эти системы в районах с продолжительными периодами отрицательных температур.

  1. Тепловой насос может переключаться из режима кондиционирования воздуха в режим нагрева путем реверсирования цикла охлаждения, в результате чего внешний теплообменник работает как испаритель, а внутренний теплообменник — как конденсатор.
  2. Хладагент проходит через замкнутую систему холодильных линий между наружным и внутренним блоком.
  3. Несмотря на низкую температуру наружного воздуха, теплообменник конденсатора поглощает из наружного воздуха достаточное количество тепловой энергии и выделяет внутри змеевик испарителя.
  4. Воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  5. Хладагент перекачивается из внутреннего змеевика во внешний змеевик, где он поглощает тепло из воздуха.
  6. Этот нагретый воздух затем проталкивается через соединительные каналы к вентиляционным отверстиям по всему дому, повышая внутреннюю температуру.
  7. Цикл охлаждения продолжается снова, обеспечивая постоянный способ согреться.

Детали теплового насоса


Чтобы лучше понять, как нагревается или охлаждается воздух, полезно немного узнать о частях, составляющих систему теплового насоса. Типичная система с воздушным тепловым насосом представляет собой раздельную или состоящую из двух частей систему, в которой в качестве источника энергии используется электричество.Система содержит наружный блок, похожий на кондиционер, и комнатный кондиционер. Тепловой насос работает вместе с устройством обработки воздуха, распределяя теплый или прохладный воздух по внутренним помещениям. Помимо электрических компонентов и вентилятора, система теплового насоса включает:

Компрессор: Перемещает хладагент по системе. Некоторые тепловые насосы содержат спиральный компрессор. По сравнению с поршневыми компрессорами спиральные компрессоры тише, имеют более длительный срок службы и обеспечивают на 10–15 ° F более теплый воздух в режиме нагрева.

Плата управления: Определяет, должна ли система теплового насоса находиться в режиме охлаждения, обогрева или размораживания.

Змеевики: Конденсатор и испарительный змеевик нагревают или охлаждают воздух в зависимости от направления потока хладагента.

Хладагент: Вещество в охлаждающих трубопроводах, которое циркулирует через внутренний и наружный агрегаты.

Реверсивные клапаны: Измените поток хладагента, который определяет, охлаждается или нагревается ваше внутреннее пространство.

Термостатические расширительные клапаны: Регулируйте поток хладагента так же, как кран крана регулирует поток воды.

Аккумулятор: Резервуар, который регулирует заправку хладагента в зависимости от сезонных потребностей.

Холодильные линии и трубы: Подсоедините внутреннее и внешнее оборудование.

Нагревательные полоски: Электрический нагревательный элемент используется для дополнительного нагрева. Этот добавленный компонент используется для добавления дополнительного тепла в холодные дни или для быстрого восстановления после низких температур.

Воздуховоды: Служат воздушными туннелями в различные помещения внутри вашего дома.

Термостат или система управления: Устанавливает желаемую температуру

Обзоры тепловых насосов

— Выбор лучших тепловых насосов

Ознакомление с различными обзорами тепловых насосов является неотъемлемой частью при покупке нового теплового насоса. Прежде чем принять окончательное решение, вам необходимо ознакомиться со всеми техническими характеристиками, размерами и мощностью нагрева или охлаждения. Позвольте начать с некоторых основ теплового насоса:

Что такое тепловой насос

Тепловой насос — это машина, которая перемещает тепло из одного места с более низкой температурой в другое место с более высокой температурой. Он делает это, всасывая холодный воздух, нагревая его, а затем закачивая в нужную область. Тепловой насос может получать тепло из воздуха, земли или воды, что делает его очень универсальным.

Самое замечательное в тепловых насосах заключается в том, что, хотя кондиционеры используются только для охлаждения, тепловой насос может использоваться как для охлаждения, так и для нагрева, поскольку он использует один и тот же цикл охлаждения для охлаждения и нагрева.Посредством обратного клапана тепловой насос может работать в обратном направлении в более теплые периоды, что вытягивает теплый воздух из желаемой области, чтобы сделать его более холодным.

Когда дело доходит до производителей тепловых насосов, есть из множества вариантов. Большинство ведущих производителей тепловых насосов предлагают очень похожие продукты со схожими характеристиками. Вот некоторые из самых известных производителей тепловых насосов:

У всех есть интернет-сайты, на которых подробно описаны все их модели. Еще один очень уважаемый источник информации — ACEEE или Американский совет по энергоэффективной экономике.Они предлагают буклет под названием Consumer Guide to Home Energy Savings Online. Они помогают понять всю доступную информацию. Их веб-сайт также является отличным местом, чтобы узнать о налоговых льготах, предлагаемых федеральным правительством и правительствами штатов.

Обзоры теплового насоса — Рейтинги SEER и HSPF

Рейтинги SEER и HSPF относятся к функциям нагрева и охлаждения теплового насоса. Эффективность охлаждения измеряется с помощью рейтинга сезонной энергоэффективности (SEER), а эффективность отопления — с помощью сезонного коэффициента эффективности отопления (HSPF).

Один из способов убедиться, что вы получите выгодную сделку и найдете лучший тепловой насос для своего дома, — это прочитать и ознакомиться с рейтингами и их значением. Вы часто будете обращать внимание на сокращения SEER и HSPF, читая обзоры тепловых насосов. Эти рейтинги используются всеми производителями тепловых насосов и относятся к энергоэффективности каждого отдельного агрегата. Вы увидите рейтинг SEER от 13 до 19 и рейтинг HSPF от 7 до 9,5. В более теплом климате вы захотите найти тепловой насос с высоким рейтингом SEER, поскольку вы будете использовать его для генерации холодного воздуха, а в более холодных регионах вам понадобится тепловой насос с высоким рейтингом HSPF в качестве теплового насоса с производить более теплый воздух.

Чем выше эффективность, тем больше затраты, но чем больше вы сэкономите на счетах за отопление или охлаждение, возникает вопрос: нужно ли вам тратить дополнительные деньги на устройство с наивысшим рейтингом? Ниже приводится короткое видео, демонстрирующее, как работает тепловой насос:

Эксперты по благоустройству дома и HVAC в целом согласны с тем, что это единственный способ убедиться, что вы получаете максимальную отдачу от вложенных денег и что у вас будет реальная экономия энергии. от нового теплового насоса — это подобрать его для вашего дома и района страны, в которой вы живете.Покупка слишком большой квартиры для вашего дома будет катастрофой. Вы не только потратите слишком много денег заранее, но и агрегат никогда не будет работать эффективно. Слишком большой блок не будет циклически включаться и выключаться, чтобы вам было комфортно прохладно или тепло. Перед принятием решения о покупке ознакомьтесь со спецификациями и некоторыми обзорами тепловых насосов.

Что следует учитывать при покупке нового теплового насоса

  1. Является ли тепловой насос лучшим решением для отопления или охлаждения вашего дома — альтернативой газовой печи и кондиционированию воздуха?
  2. Тепловой насос какого размера подойдет для вашей отопительной зоны?
  3. Какой рейтинг эффективности следует учитывать?
  4. Какую марку теплового насоса вам следует рассмотреть?
  5. Для получения дополнительной информации прочтите множество обзоров тепловых насосов.
  6. Узнайте, какие тепловые насосы рекомендуют подрядчики.
  7. Кто должен устанавливать ваш тепловой насос?

Очень важно выполнить указанные выше действия перед покупкой нового теплового насоса. Эти шаги помогут вам сузить круг выбора решений для отопления или охлаждения, которые идеально подходят для вашего дома и климатических условий. Также рекомендуется хорошо понимать каждый шаг, поскольку вы можете остаться в неведении и потерять деньги, имея дело с жадными подрядчиками.Знание — сила! Поэтому чтение множества обзоров тепловых насосов и понимание их рабочих функций приведет к более грамотной покупке.

Поиск подходящего установщика теплового насоса

Кажется, что самая большая часть головоломки

, когда дело касается тепловых насосов, — это выбор установщика. Подсчитано, что 85% неисправностей и ремонтов тепловых насосов связаны с неправильной установкой. Убедитесь, что вы выбрали квалифицированного дилера / установщика, который хорошо осведомлен о конкретном устройстве, которое они устанавливают. На сайтах большинства производителей есть поиск дилеров, это одно из лучших мест для поиска признанного подрядчика. Вы также можете спросить друзей и семью об их опыте и побудить их поделиться личными отзывами о тепловом насосе. Позвоните в местное бюро Better Business Bureau. Убедитесь, что вы получили как минимум три разные оценки и все в письменной форме. Решение о заключении контракта на обслуживание зависит от вас, и это повлияет на общую цену теплового насоса.

Надежный и хорошо установленный тепловой насос должен прослужить от 18 до 20 лет.Вы хотите быть уверены, что с самого начала принимаете правильное решение. Это означает, что вы должны узнать о различных вариантах производителя и характеристиках теплового насоса. Важно понимать, как размер вашего дома, качество изоляции и территория в стране, в которой вы живете, должны повлиять на ваше решение. Сделать осознанный выбор — это единственный способ убедиться, что вы получаете лучший тепловой насос для своего дома. После того, как вы составили короткий список тепловых насосов, которые могут удовлетворить ваши потребности, найдите несколько уважаемых и надежных обзоров тепловых насосов и соберите как можно больше информации перед покупкой теплового насоса.

Оставить комментарий