Установка узо с заземлением tn: почему ПУЭ запрещает его использовать и как правильно поступить

Опубликовано в Разное
/
10 Июн 1975

Содержание

почему ПУЭ запрещает его использовать и как правильно поступить

Эта публикация написана для разрешения частого вопроса: «можно ли ставить УЗО без заземления?» К великому сожалению, многие горе-электрики утверждают: «УЗО в системе TN-C ставить категорически запрещено!» В подтверждение своих слов ссылаются на ПУЭ-7, а конкретно на пункт 1.7.80. И что самое удивительное, цитируют только первое предложение этого пункта.

Расставим все «точки над и» — выясним истину и больше не позволим безграмотным людям сеять дезинформацию!

Первым делом определим термины, которые важны в контексте нашей статьи, а также употребляются в ПУЭ:

Система TN-C или именуемая в народе «двухпроводка» — это система заземления, где роль рабочего нуля и защитного (заземления) выполняет один проводник. Более корректно называть эту систему четырехпроводной: три фазы и нулевой проводник (совмещенный с защитным). Просто чаще всего в дом или квартиру заходит одна фаза, поэтому употребляется формулировка «двухпроводная». Данная система использовалась повсеместно до 90-х годов, поэтому именно она до сих пор используется на всех старых объектах.

Проводник PEN — рабочий ноль и защитный проводник в одном лице. В роли защитного выступает при «занулении» электроустановок. В жилом фонде практически не использовался как защитный проводник, исключение — зануление электроплит и (если кто еще помнит) единственная кухонная розетка с «заземлением». В целом, позиция многих электриков — в бытовых приборах зануление лучше не использовать.

Проводник N — нулевой рабочий проводник, без функции защитного.

Проводник PE — защитный нулевой проводник, по которому не протекают рабочие токи электроприборов.

Итак, теперь посмотрим, что гласит «такой непонятный» пункт 1. 7.80 из 7-го издания ПУЭ:

«Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный PE-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.»

К сожалению, некоторые личности видят в этом пункте только первое предложение, а читать и вникать дальше — не считают нужным. В связи с этим и возникают ложные утверждения о недопустимости установки УЗО в двухпроводке.

Говоря же простым языком (куда уж проще, в ПУЭ это понятно описано), это означает, что после защиты по дифференциальному току, УЗО или дифавтомата, нулевой проводник может выполнять только функцию рабочего N. Если необходимо зануление (не рекомендую его использовать вообще), то его нужно подключать до УЗО. Вот и все, так просто!

Авторы правил установки электрооборудования таким образом акцентировали внимание на том, что «защитно-рабочий» PEN перестает выполнять защитную функцию при установке какого-либо коммутационного прибора. Ведь устанавливать в цепь PE размыкающие устройства запрещено, а следовательно и PEN коммутировать нельзя. Однако если очень нужно — пожалуйста, только придется сначала разделить нулевой проводник на N и PE. А уже после разделения ставит на N любые расцепители.

А если зануление не используется вообще, то и в разделении нет никакой надобности.

На почве первого предложения из правил родились бредовые утверждения типа: «без заземления ставить УЗО категорически нельзя, только дифавтомат» или наоборот. Я понимаю, что в интернете много чего написано, но подобные высказывания встречаются часто. Вред от такой информации очевиден.

Резюмируя все вышесказанное, а также и тот факт, что в системе TN-C нет надежного заземления —

УЗО можно и нужно ставить для защиты!. Основной защитой человека в электроустановках служит заземление, а потом уже расцепители, реагирующие на дифференциальный ток. В отсутствии же заземления, диф-защита выполняет основную роль в электробезопасности человека.

Собственно на этом предлагаю закончить и напоследок хочется выразить свое мнение о различных правилах и инструкциях, официальных и неофициальных: читать нужно до конца, осмысливая прочитанное. Может случится так, что в новых выпусках ПУЭ появится ошибка — ведь редакторы тоже люди. Честно говоря, не поворачивается язык назвать разумными тех, кто слепо цитирует официальные документы, даже не вникая.

Оцените публикацию: Оценка:
3.9
(116 голосов)

Смотрите так же другие статьи

Подключение УЗО : 18 основных правил

Вступление

Для обеспечения УЗО своих функций, а именно, защита человека и животных от поражений электротоком путем контроля разницы токов (определение дифференциального тока), при подключении УЗО необходимо придерживаться следующих правил.

Подключение УЗО — основные правила

1. УЗО устанавливается в квартирном электрощитке или в щитке на этаже;

2. В УЗО, как таковом, нет защиты от короткого замыкания и перегрузки в цепи. Поэтому для защиты УЗО его устанавливают параллельно с автоматом защиты. Ток отключения автомата защиты должен быть меньше номинального тока УЗО. При таком распределении номиналов тока, при перегрузке или коротком замыкании, автомат защиты разорвет аварийную цепь и УЗО сохранит свою работоспособность;

3. Автомат защиты устанавливаться до УЗО, со стороны питания и служит для защиты электропроводки. УЗО защищает человека, а автомат защиты защищает электропроводку;

4. Разрешена установка одного УЗО на несколько групп электропроводки с отдельными автоматами защиты;

5. Автомат защиты не требуется, если вместо УЗО поставить дифференциальный автомат защиты (автоматический выключатель дифференциального типа — АВДТ). Например, УЗО-ВАД;

6. При установке в сети нескольких УЗО для бытовых приборов, каждое УЗО должно на выходе иметь свою отдельную нулевую шину. Шины отдельных УЗО не должны быть связаны друг с другом. Если этого не сделать, то при срабатывании одного УЗО будут срабатывать и остальные;

Еще правила подключение УЗО

7. При установке в сети нескольких последовательных УЗО, «верхние» УЗО в цепи должны быть с селективной задержкой срабатывания. Это обеспечит каскадность срабатывания УЗО. Например, у вас стоит общее УЗО на этаже, а в квартире стоит отдельное УЗО на группу ванной комнаты. Общее УЗО должно иметь селективную задержку срабатывания и при аварийной ситуации отключаться последним;

8. Не рекомендую устанавливать УЗО в системах заземления TN-C (в ее точном исполнении). Правда, заземление типа TN-C в «чистом» встречается очень редко и с 2007 года она должна быть реконструирована на систему TN-C-S;

9. Отмечу! Если у вас в квартире двухпроводная электропроводка, это не значит, что система заземления вашего дома TN-C. Вероятнее всего, у вас в доме, система заземления TN-C-S и при такой системе заземления, установка УЗО вполне оправдана;

Не рекомендовано

10. Категорически не рекомендую делать зануление корпусов приборов и земляного контакта вилок электропитания. В этом случае при пробиве изоляции ток повреждения будет стекать обратно по рабочей нейтрали, разности токов не будет, и УЗО не будет работать;

11. Не буду вступать в дискуссии «Можно ставить УЗО в TN-C или нельзя», а дам простой совет. Если вы точно знаете, что у вас в квартире система TN-C, забудьте про УЗО и не заморачивайте себе этим голову. Не нравится совет, читайте ПУЭ изд.7, п. 7.1.80. Хотя, в сетях TN-C УЗО, мгновенного действия, до 30mA, можно использовать, как дополнительную защиту от прямого прикосновения;

12. В цепях с электронными компонентами и пульсирующими токами (например группа «Стиральная машина» или «Компьютер») ставится УЗО типа «А». В других цепях достаточно типа «АС»;

13. На группы освещения УЗО не ставится;

14. Так сложилось, что в качестве вводных клемм устройства используют верхние клеммы, а отходящие нижние клеммы. Но самом деле, разницы между верхними и нижними клеммами УЗО нет;

15. Важно, при подключении УЗО не перепутать клемму для нулевого провода и клемму фазы. Клемма нуля (N) обычно помечена;

16. Для УЗО групп розеток, ток срабатывания выбирается в 30mA.  Для ванных комнат и других мокрых зон №3, установка УЗО обязательна. В этих зонах лучше установить УЗО с током срабатывания в 10mA. Не помешает УЗО с током отключения 10mA для группы электропроводки детской комнаты;

Примечание: Мокрая зона №3 в ванных, это розетки и светильники на расстоянии не далее 2,40 см от источников открытой воды.

На этом про подключение УЗО все.

©Ehto.ru

Еще статьи

УЗО в системе TN-C — ставить или нет? | ЭТМ для профессионалов

«Двухпроводкой» называют электрические сети с глухозаземленной нейтралью, с системой заземления TN-C. Основная особенность которой заключается в том, что в одном проводнике объединены функции рабочего и защитного нуля, такой проводник называется совмещенным — PEN. Именно такая система заземления остаётся достаточно распространённой в нашей стране до сих пор.

Напомним расшифровку названий проводников:

— L – фазный проводник.

— N – нулевой рабочий проводник.

— PE – защитный нулевой проводник.

— PEN – совмещенный защитный и рабочий нулевой проводник.

Система TN-C и получила распространение еще во времена СССР, когда нужно было обеспечить жильём «всех и быстро» и использовалась до конца 90-х годов. Напомним, что в ПУЭ 7, в п. 7.1.13 сказано:

«Питание электроприемников должно выполняться от сети 380/220 В с системой заземления TN-S или TN-C-S.
При реконструкции жилых и общественных зданий, имеющих напряжение сети 220/127 В или 3 х 220 В, следует предусматривать перевод сети на напряжение 380/220 В с системой заземления TN-S или TN-C-S.»

В предыдущем, шестом, издании в этом же пункте сказано:

Питание электроприемников должно предусматриваться от сети напряжением 380/220 В с глухозаземленной нейтралью. В обоснованных случаях допускается питание от сети выше 380/220 В с глухозаземленной нейтралью. В существующих зданиях, имеющих сети 220/127 В, следует осуществлять перевод сетей на напряжение 380/220 В.

При электрификации использование системы TN-C дешевле, ведь нужно прокладывать 4 провода — 3 фазы и ноль по стоякам или ВЛЭП, поэтому она и применялась во времена массового жилищного строительства во времена СССР, и как можно убедиться выше, «старое» ПУЭ не требовало наличия отдельного PE-проводника.

Так как большая часть населения живет в домах т.н. старого жилого фонда, где о реконструкции зданий и проводки речи и не идёт, то на профильных форумах и сообществах в социальных сетях достаточно часто пользователи задают вопросы типа: «А можно ли мне УЗО в двухпроводку поставить?». Можно, но что об этом говорит ПУЭ и другие нормативные документы? Давайте разберемся.

Суть проблемы

Защитные устройства, управляемые дифференциальным током, УЗО и дифференциальные автоматы, устроены таким образом, что они отключают питание потребителей при возникновении разности токов в фазном и нулевом проводнике. Таким образом, наличие или отсутствие защитного заземления не влияет на работу защитного прибора.

Однако разность токов в фазе и нуле возникает, в случае утечки тока через корпус электрооборудования в землю. Пути протекания токов утечки фактически два:

  • Через защитный проводник к заземлителю или через естественные заземлители, такие как водопровод и прочее.
  • Через тело человека.

Если корпус электроприбора металлический, то в случае повреждения изоляции его внутренних компонентов и их соприкосновения с проводящими частями корпуса, на последнем возникает опасный потенциал (сетевое напряжение).

Заземление используется для уменьшения напряжения прикосновения до безопасных величин, а простыми словами — для того, чтобы опасное напряжение «стекало» в землю. Соответственно ток утечки будет протекать по пути фаза-корпус-система заземления. В связи с чем сработают вышеперечисленные устройства и отключат напряжение.

Если электрический прибор не заземлен, то в случае повреждения изоляции опасный потенциал с корпуса никуда не денется, но при прикосновении человека, ток потечет через его тело. В идеализированном случае сработает УЗО или дифавтомат и напряжение отключится, что обезопасит человека от поражения электрическим током.

Сила тока утечки здесь, как и всегда, рассчитывается по закону Ома:

Где U=220В, а R – сопротивления тела человека (может быть 1000 Ом, но может отличаться и в целом зависит от влажности кожи человека и других факторов). Если принять сопротивление тела в 1000 Ом, то ток утечки будет до 220 мА, при том, что смертельный исход может наступить уже при 100 мА.

Сторонники установки УЗО в системе TN-C говорят о том, что типовые УЗО с номинальным током срабатывания в 30 мА отключат напряжение и «всё будет хорошо».

Противники же приводят следующие аргументы:

  • А если сопротивление тела человека будет больше 1000 Ом, то ток утечки будет меньшим, и УЗО не сработает?

2. Если залипнет фазный контакт, то разорвется только PEN-проводник, что запрещено согласно ПУЭ, и напряжение останется на корпусе — тогда ни о какой безопасности не может идти и речи.

3. Если УЗО и вовсе не сработает?

При этом все вышеперечисленные мнения справедливы как «за», так и «против».

Что говорит «нормативка»?

Начнем с ПУЭ. В п. 1.7.80 сказано:

«Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный PE-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.»

Однако сторонники установки УЗО в двухпроводную сеть пренебрежительно относятся к первому предложению, мотивируя тем, что «если очень нужно, то всё-таки можно». Фактически то, что рекомендуется в этом пункте – похоже на зануление, тогда не совсем понятна установка такого «защитно-коммутационного аппарата», ведь при утечке возникнет короткое замыкание на корпус и должен сработать вышестоящий автоматический выключатель.

Также следует помнить о п. 1.7.145:

«Не допускается включать коммутационные аппараты в цепи PE- и PEN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей…»

п. 7.1.21:

«…Во всех случаях в цепях РЕ и PEN проводников запрещается иметь коммутирующие контактные и бесконтактные элементы.»

А также пункт 1.7.50:

«… Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ, при наличии требований других глав ПУЭ, следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.»

Но кроме ПУЭ есть и другие нормативные документы, рассмотрим некоторые из них. Например, в ГОСТ Р 50571.5.53-2013 «Электроустановки низковольтные. Часть 5-53. Выбор и монтаж электрооборудования. Отделение, коммутация и управление» в пункте 531.2.1.5 сказано:

«Применение устройства защитного отключения, управляемые дифференциальным током, связанного с цепями, не имеющими защитного проводника, если номинальный дифференциальный ток срабатывания не превышает 30 мА, не должно рассматриваться как мера, достаточная для защиты от косвенного прикосновения.»

А в ГОСТ Р 50571.3-2009 «ЭЛЕКТРОУСТАНОВКИ НИЗКОВОЛЬТНЫЕ. Часть 4-41. Требования для обеспечения безопасности. Защита от поражения электрическим током» в пункте 411.4.5 сказано следующее:

«В системах TN для защиты при повреждении могут быть использованы следующие защитные устройства:
— устройства защиты от сверхтока;
— защитные устройства дифференциального тока (УДТ).
Примечание 1 — Если для защиты при повреждении используют УДТ, цепь должна также быть защищена устройством защиты от сверхтока в соответствии с МЭК 60364-4-43[2].
Защитное устройство дифференциального тока (УДТ) не должно применяться в системе TN-C.
При применении УДТ в системе TN-C-S PEN-проводник не должен быть использован на стороне нагрузки. Присоединение защитного проводника к PEN-проводнику должно осуществляться на стороне источника питания по отношению к УДТ

ГОСТ 30331.1-2013 (IEC 60364-1:2005) Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения в пункте 312.2.1.1:

«… — система TN-C-S (система распределения электроэнергии, имеющая тип заземления системы TN-C-S), в которой в части системы применяют единый проводник, выполняющий функции нейтрального или заземленного фазного и защитного проводников (см. рисунки 31В1, 31В2 и 31В3). В электроустановках жилых и общественных зданий, торговых предприятий, медицинских учреждений запрещено применять PEN- и PEL-проводники. PEN- или PEL-проводник распределительной электрической сети должен быть разделен на нейтральный или заземленный фазный проводник и защитный проводник на вводе электроустановки…»

И в знакомом многим СП 31-110-2003 «Электроустановки жилых и общественных зданий правила проектирования и монтажа», а точнее, в его актуализированной версии (СП 256.1325800.2016) сказано:

«А.1.7 Применение УДТ для объектов действующего жилого фонда с двухпроводными сетями, в которых у электроприемников нет защитного заземления — эффективное средство в части повышения электробезопасности. Срабатывание УДТ при замыкании на корпус в таких сетях происходит только при появлении дифференциального тока, то есть при непосредственном прикосновении к корпусу (соединении с «землей»). В соответствии с этим установка УДТ может быть рекомендована как временная мера повышения безопасности до проведения полной реконструкции. Решение об установке УДТ должно приниматься в каждом конкретном случае после получения объективных данных о состоянии электропроводок и приведения оборудования в исправное состояние.»

Выводы

Как вы могли убедится, в нормативных документах четко сказано, что установка УЗО в TN-C не может быть основной мерой защиты от поражения током, и может рассматриваться лишь как временная мера повышения безопасности, потому что нет 100% гарантии, что оно сработает и что отключатся оба полюса. То есть УЗО в TN-C имеет место быть, но не стоит уповать на то, что оно вас спасёт.

Основными мерами защиты от поражения электрическим током является всё же заземление и надёжная изоляция токопроводящих частей электрооборудования, а для этого необходима реконструкция электросетей многоквартирных домов, что, в свою очередь, и есть основная проблема обеспечении электробезопасности.

Алексей Бартош специально для vk.com/etm_company

Применение УЗО в двухпроводных цепях Статьи

Электротехника – строгая дисциплина и чётко регулируется рядом нормативных документов (таких как ПУЭ, ГОСТ и другие). Однако изредка некоторые положения этих правил могут пониматься двояко и вызывать споры. Среди прочего это вопросы, касающиеся заземления и установки устройства защитного отключения (УЗО), особенно в двухпроводных электрических цепях.

В настоящее время в жилищном строительстве России применяется два варианта системы заземления — TN-C и TN-C-S. Первая из них часто встречается в старом жилом фонде, вторая — в новых многоквартирных и частных домах. Друг от друга они различаются по количеству проводов.

Система TN-C, применяемая в бытовых цепях, состоит из четыре проводов в случае трехфазной сети или 2 проводов в случае однофазной. При этой системе заземления рабочая нулевая и защитная линия совмещены в одну — PEN.

В системе TN-C-S совмещённая нулевая линия PEN на вводе в жилое здание разделяется на отдельные рабочую и защитную. (В случае, если в здание со стороны трансформаторной подстанции входят два отдельных провода – нулевой рабочий и нулевой защитный, система заземления называется TN-S, но она в жилищном строительстве России встречается редко.) Система TN-C-S после точки разделения совмещённого нулевого в трехфазной системе состоит из пяти проводов, в однофазной из трёх.

Системы TN-C-S и TN-S являются современными решениями, и установка устройств защиты по дифференциальному току, таких как дифференциальный автомат или УЗО в них не вызывает вопросов. Но это не так для объектов с устаревшей системой заземления TN-С, которая, к сожалению, не способна полностью обеспечить требуемый нормативными документами уровень электробезопасности.

По отношению к вопросу установки УЗО в двухпроводных цепях TN-С электрики делятся на две группы. Большинство из них настаивает на установке УЗО и для подтверждения своей правоты ссылается на ПУЭ, которое ставить УЗО в жилых помещениях настоятельно рекомендует, поскольку именно оно является единственным средством защиты от поражения человека электрическим током при прикосновении.

Однако существуют и противники этой точки зрения. Удивительно, но и эта группа электриков находит подтверждение в ПУЭ. Согласно их точке зрения, установка УЗО возможна исключительно в случае модернизации всей электропроводки — то есть при смене системы TN-C на TN-C-S. Ведь УЗО, установленное в трёхпроводную цепь, сработает в момент появления утечки, до прикосновения человека к токоведущим частям, а в двухпроводке оно отключится после прикосновения, когда ток уже протекает через тело человека, что опасно для его жизни.

Дополнительным аргументом противников УЗО являются частые «беспричинные» отключения УЗО в домах старого фонда. Объясняется это тем, что для срабатывания УЗО требуется утечка силой всего лишь 30 миллиампер, что на объектах с протяжёнными линиями из отслужившего свой срок кабеля происходит регулярно.

Стоит заметить, что разделение совмещённой нулевой линии на две в квартирном или этажном щите не является рекомендуемым решением, так как в точке разделения ПУЭ настоятельно советует делать повторное заземление, что в условиях многоквартирного дома осуществимо только в вводном щите. В противном случае, при обрыве нулевой линии ниже по стояку, между фазной линией и металлическими объектами в помещении, возникнет опасный для жизни электрический потеницал.

Но, несмотря на все недостатки использования УЗО в системе TN-C, мы считаем, что ставить его нужно. Да, оно сработает только после возникновения утечки (например, после того, как человек дотронулся до корпуса аварийной электроплиты, а не до этого, как в TN-C-S), и человек почувствует некоторый электрический ток, но это лучше, чем ничего.

Важно знать, что использование УЗО – это важное, но всё же только дополнительное средство защиты от поражения током, а основным является изоляция кабелей и проводов. Поэтому следует следить за их состоянием и менять до превышения срока службы. Использование кабелей и проводов с хорошей изоляцией также существенно снизит случаи «ложного» срабатывания УЗО.

Случалось также, что при использовании в двухпроводных сетях розеток с заземлением, электрики делали внутри розетки перемычку между нулевым и защитным контактами – зануление корпуса электроприбора. При использовании УЗО такие перемычки и вообще любые зануления должны быть сняты, так как в противном случае оно свои защитные функции выполнять не сможет. Отключение такой системы будет производиться автоматом, что в ряде случаев может проходить недостаточно быстро и привести к трагическим последствиям.

В случае, если установить в квартирный электрический щит модульное УЗО возможности нет, потребитель может использовать розеточное УЗО или подобное ему штепсельное устройство (УЗО-вилку или УЗО-переходник).

Купить УЗО Вы можете в магазинах ГТК «Метизы».

Подключение УЗО в квартире. Схемы и инструкции | ENARGYS.RU

Наличие устройства защитного отключения – гарантия безопасной работы электропроводки. Предназначается, в первую очередь, для безопасности жизни человека и предотвращения пожаров и коротких замыканий в электропроводке.

Подключение УЗО в квартире производится по двум самым распространенным России схемам TN-Cи TN-C-S.

  1. TN-C система. Она состоит, из одного общего проводника, выполняющего роль заземления и рабочего «нуля», без отдельного проводника выполняющего функцию заземления.
  2. TN-C-S система. Она включает в свой состав нулевой и заземляющий провод, объединенных в один общий проводник, разделяемый после ввода в помещение на два проводника N(ноль) и PE (заземление). Служит промежуточным вариантом между, редко используемыми в жилищном российском строительстве, системами TN-S, TN-C

Рекомендуемое и самое удобное место расположения УЗО в схеме электропроводки является его установка в электрощите рядом со счетчиком электроэнергии и вводным автоматом, то есть рядом с источником питания.

В процессе монтажа электропроводки для более надежной схемы целесообразно использовать подключение УЗО и автомата на отходящие линии электропроводки с дифференциальной защитой, они дублируют друг друга.

Подключение УЗО в системе TN-C без защитного заземления

При отсутствии заземляющего проводника использование УЗО позволяет снизить опасность от удара электрического тока при коротком замыкании и пробое электротока на корпус бытового оборудования. При использовании УЗО без заземления происходит автоматическое отключение автомата при касании поврежденного участка цепи человеком, и при всех повреждениях электроцепи.

Рис №1. Схема подключения УЗО и автоматов без использования заземления

УЗО в отсутствии заземления обеспечивает защиту помещения от пожара, так как предохраняет от утечки тока металлические конструкции оборудования.

В использовании УЗО без заземления, есть необходимость в значительно большей мере, чем с использованием заземляющего проводника, так как при наличии заземляющего провода уже осуществляется защита человека, а при отсутствии «земли», УЗО компенсирует защиту человека.

Рис №2. Принципиальная схема подключения УЗО в квартире без использования заземления

Подключение УЗО в системе TN-C-S, с защитным и нулевым проводником

Одна из надежных схем использования УЗО заключается с использованием отдельного заземляющего провода и рабочего нулевого проводника.

Использование УЗО в системе TN подразумевает наличие нейтрали, без которой невозможно произвести замер электросчетчиком потребляемой электрической энергии

Электропроводка в системе TN-C-S. За пределами помещения отрезок провода выглядит как проводник PEN в системе TN-C, но со значительно более высокой степенью защиты. Электрозащита электропроводки с заземлением и подключенным УЗО выше, чем степень защиты электропроводки без заземления.

Рис №3. Схема подключения УЗО в системе TN-C-S с заземлением

Подключение УЗО в частном секторе

Частное домовладение подразумевает использование значительного количества бытовых устройств, для, которых требуется использование УЗО. Для подключения УЗО в частном доме используют несколько устройств защиты селективного (избирательного) действия, например для стиральной машины, водонагревателя, печи для сауны или бани и другого оборудования, требуется применение индивидуального УЗО. В этом случае при неисправности произойдет отключение только необходимого поврежденного оборудования.

Рис №4. Схема подключения УЗО для частного дома

Для частного сектора допускается использовать систему ТТ, она подразумевает сама по себе относительную безопасность при пробое сопротивления изоляции на корпус. Повышает степень надежности, УЗО в этом случае гарантирует наивысшую степень безопасности из-за распределения защитного заземления отдельных потребителей индивидуальным заземлителем. УЗО в этой системе, мгновенного срабатывания

Рис №5. Схема подключения УЗО в системе защитного заземления ТТ

В российских электросетях ПУЭ рекомендует применение стандартной системы TN-C-S, объясняется это, прежде всего тем, что при токах КЗ, ток проходит в землю через защитное заземление, а не идет в проводник РN, поэтому отключение не всегда проходит. Именно для таких случаев и рекомендуется устанавливать УЗО, реагирующее на минимальные токи утечки.

Рекомендация: В современных жилых помещениях желательно разделять потребители на разные группы. УЗО устанавливается на оборудование, требующее выполнения повышенных норм безопасности, например стиральная или посудомоечная машина, бойлер. Освещение через УЗО подключать не обязательно, иначе при каждой перегоревшей лампочке, в случае использования УЗО общего назначения, для квартиры, будет происходить полное отключение электричества.

Важно: УЗО необходимо включать последовательно с автоматическим выключателем, в крайнем случае, использовать с предохранителем, предназначенным для защиты УЗО от сверхтоков. Ток нагрузки УЗО должен превышать номинальный ток автомата на ступень или по крайней мере, быть равен ему.

Строго запрещается: Выполнять соединение нулевого провода с проводником, осуществляющим защитное заземление, или с заземлителем металлического корпуса оборудования, в зоне действия защиты УЗО.

При отключении УЗО необходимо проверить состояние проводки, отсутствие постороннего запаха оборудования, устранить причины и после этого ввести УЗО в работу.

Памятка: На корпусе УЗО находится кнопка «ТЕСТ», предназначенная для проверки срабатывания УЗО, нажав кнопку можно убедиться в мгновенном отключении электросети.

На корпусе УЗО рядом с клеммами подключения нанесен специальный значок, показывающий к какой клемме необходимо подключить «ноль» к какой – «фазу», перепутав провода и подав напряжение ошибочно, УЗО выйдет из строя.

Запрещается использовать УЗО с повреждениями корпуса и изоляции проводников электрической сети!

 

Схема подключения заземления в загородном доме

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Сегодня практически каждый загородный дом оснащен электрическими приборами. Безопасность их эксплуатации обеспечивается соединением установленного в помещениях электрооборудования с заземляющим устройством. Грамотно выполненное защитное заземление исключит вероятность поражения людей электрическим током и предотвратит выход из строя бытовой техники и сложных технических устройств от воздействия перенапряжений, если они защищаются УЗИП. Выбор схемы подключения зависит от различных факторов. В частном доме, в отличие многоквартирного, заземление можно сделать самостоятельно. Разобраться в вопросе его подключения поможет данная инструкция.

Основные элементы схемы подключения заземления загородного дома и правила по их выполнению

Схема подключения заземления в загородном доме выглядит следующим образом: электроприбор— розетка — электрический щит — заземляющий проводник — контур заземления — земля.

Подключение начинается с выполнения на придомовом участке заземляющего устройства в соответствие с правилами, определенными в главе 1.7 ПУЭ 7-го издания. Заземлитель представляет собой металлическую конструкцию, имеющую большую площадь контакта с землей. Предназначен для выравнивания разности потенциалов и уменьшения потенциала заземленного оборудования, в случае замыкания на корпус или появления избыточного напряжения в электросети. Конструкция и глубина его установки определяется исходя из сопротивления грунта на участке (например, сухой песок или влажный чернозем).

От выполненного на участке заземляющего устройства (заземления) прокладываем заземляющий проводник, который подключаем к главной заземляющей шине, с использованием болтового соединения, зажима или сварки. Выбираем проводник сечением не менее 6 мм2 для меди и 50 мм2 для стали, при этом он должен соответствовать требованиям к защитным проводникам, указанным в таблице 54.2 ГОСТ Р 50571.5.54-2013, а для системы ТТ иметь сечение не менее 25 мм2 для меди. Если проводник голый и прокладывается в земле, то его сечение должно соответствовать приведенному в таблице 54.1 ГОСТ Р ГОСТ Р 50571.5.54-2013.

В электрощитке заземляющий проводник через шину заземления соединяется с защитными проводниками, проложенными к розеткам, имеющим заземляющий контакт и остальным электроприемникам в доме. В результате чего, каждый электроприбор оказывается подключенным к системе заземления.

Зависимость схемы подключения заземления от контура заземления

Если у столба линии электропередач выполнено повторное заземление, то схема подключения заземления в загородном доме выполняется по системам TN-C-S или TT. Когда состояние сетей не вызывает опасений, в качестве заземляющего устройства дома следует использовать повторное заземление линии и подключать дом в соответствии с системой заземления TN-C-S. Если воздушная линия старая, либо качество выполнения повторных заземлений подлежит сомнению, лучше выбрать систему ТТ и оборудовать индивидуальное заземляющее устройство на придомовом участке.

Для заземляющего устройства в первую очередь следует использовать естественные заземлители — сторонние проводящие части, имеющие непосредственный контакт с грунтом (водопроводы, трубы скважин, металлические и железобетонные конструкции загородного дома и прочее). (см. п.1.7.54, 1.7.109 ПУЭ 7-го издания).

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

Наиболее эффективен в использовании, если на вашем участке почва представлена суглинком, торфом, насыщенным водой песком, обводненной глиной. Стандартная длина стержней составляет от 1,5‑х до 3‑х м. Выбирая длину вертикальных электродов, исходим из водонасыщенности вмещающих пород на участке. Заглубленные грунт вертикальные заземлители объединяются горизонтальным электродом, например, полосой, а для минимизации экранирования располагаются на расстоянии, соразмерном длине самих штырей.

Конструкцию заземляющего устройства рекомендуют располагать на расстоянии одного метра от фундамента строения (см. п. 1.7.94 ПУЭ 7-го издания).

Зависимость схемы подключения от типа системы заземления

Заземление объектов жилого фонда выполняют по следующим системам: ТN (подсистемы TN-C, TN-S, TN-C-S) или ТТ. Первая буква в названии обозначает заземление источника питания, вторая – заземление открытых частей электрооборудования.

Последующие буквы после N указывают на совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников. S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены. С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник).

Электробезопасность обеспечивается полноценно, когда уменьшение сопротивления заземлителя не влечет за собой увеличения показателей тока замыкания на землю. Рассмотрим, как схема подключения заземления зависит от выполненной на объекте системы электрической сети.

Система заземления TN-S


Рисунок 1. Система TN-S

На объектах, оборудованных электросетью по системе TN-S, нулевые рабочий и защитный проводники разделены по всей длине, и в случае пробоя изоляции фазы, аварийный ток отводится по защитному РЕ-проводнику. Устройства УЗО и дифавтоматы, реагирующие на появление утечки тока через защитный ноль, отключают сеть с нагрузкой.

Достоинством подсистемы заземления TN-S является надежная защита электрооборудования и человека от поражения аварийным током при пользовании электросетями. За счет чего данную систему относят к наиболее современной и безопасной.

Для выполнения заземления по системе TN-S, требуется прокладка от трансформаторной подстанции отдельного провода заземления к своему строению, что приведет к значительному удорожанию проекта. По этой причине, для заземления объектов частного сектора, подсистема заземления TN-S практически не используется.

Система заземления TN-C. Необходимость перехода на ТN-C-S


Рисунок 2. Система TN-S

Заземление по системе TN-C наиболее распространено для старых построек жилого фонда. Преимуществом является экономичность и проста ее выполнения. Существенным недостатком — отсутствие отдельного проводника РЕ, что исключает наличие в розетках загородного дома заземления и возможности уравнивания потенциалов в ванной.

К загородным постройкам электрических ток подводится по воздушным линиям. К самому строению подходят два проводника: фазный L и совмещенный PEN. Подключить заземление можно, только при наличии в частном доме трехжильной проводки, что требует переделки системы TN-C на TN-C-S, путем разделения нулевого рабочего и нулевого защитного проводника в электрическом щите (см. п. 1.7.132 ПУЭ 7-го издания).

Подключение заземления по системе TN-C-S

Для подсистемы заземления TN-C-S характерно объединение нулевого рабочего и нулевого защитного проводников на участке от линий электропередач до ввода в здание. Заземление по данной системе достаточно простое в техническом исполнении, за счет чего рекомендуется для широкого применения. К недостатку можно отнести потребность в постоянной модернизации, во избежание обрыва PEN проводника, в результате чего электроприборы могут оказаться под опасным потенциалом.

Рассмотрим схему подключения заземления в загородном доме по системе TN-C-S на примере перехода к ней от системы TN-C.


Рисунок 3. Схема главного распределительного щита

Как уже отмечалось, для получения трехжильной проводки, необходимо произвести правильное разделение PEN проводника в распределительном щитке дома. Начинаем с того, что в электрощит устанавливаем шину с обеспечением прочной металлической связи с ним, и подключаем к этой шине идущий со стороны линии электропередач объединенный проводник PEN. Шину PEN соединяем перемычкой со следующей установленной шиной РЕ. Теперь шина PEN выступает в качестве шины нулевого рабочего проводника N.


Рисунок 4. Схема подключения заземления (переход с TN-C на TN-C-S)


Рисунок 5. Схема подключения заземления TN-C-S

Выполнив указанные подключения, соединяем распределительный щиток с заземлителем: от заземляющего устройства заводим проводна шину РЕ. Таким образом, в результате несложной модернизации, мы оснастили дом тремя отдельными проводами (фазным, нулевым защитным и нулевым рабочим).

Правилами устройства электроустановок требуется выполнение повторного заземления для РЕ — и РEN-проводников на вводе в электроустановки, с использованием, в первую очередь, естественных заземлителей, сопротивление которых при напряжении электросети 380/220 В должно быть не более 30 Ом (см. п. 1.7.103 ПУЭ 7-го издания).

Подключение заземления по системе TТ


Рисунок 6. Система TT

Другим вариантом схемы является подключения заземления загородного дома по системе ТТ с глухозаземленной нейтралью источника тока. Открытые токопроводящие элементы электрооборудования такой системы подсоединены к заземляющему устройству, не имеющему электрической связи с заземлителем нейтрали источника питания.

При этом должно соблюдаться следующее условие: значение произведения величины тока срабатывания устройства защиты (Iа) и суммарного сопротивления заземляющего проводника и заземлителя (Rа) не должно превышать 50 В (см. п.1.7.59 ПУЭ). Rа Iа ≤ 50 В.

Для соблюдения этого условия “Инструкция по устройству защитного заземления и уравнивания потенциалов в электроустановках” И 1.03-08 рекомендует выполнять заземляющее устройство с сопротивлением 30 Ом. Данная система достаточно востребована на сегодняшний день и применяется для частных, преимущественно мобильных построек, при невозможности обеспечения достаточного уровня электробезопасности системой TN.

Заземление по системе TТ не требует разделения совмещенного PEN проводника. Каждый из подходящих к дому отдельных проводов подсоединяем к изолированной от электрощита шине. А сам PEN проводник, в таком случае, считаем нулевым проводов (нулем).


Рисунок 7. Схема подключения заземления по системе TT


Рисунок 8. Схема подключения заземления и УЗО по системе TT

Как следует из схемы, системы TN-S и ТТ очень похожи между собой. Отличие состоит в полном отсутствии у ТТ электрической связи между заземляющим устройством и PEN проводником, что, в случае отгорания последнего со стороны источника питания, гарантирует отсутствие избыточного напряжения на корпусе электрических приборов. В этом и состоит очевидное преимущество системы ТТ, обеспечивающее более высокий уровень безопасности и надежности в эксплуатации. Недостатком ее использования можно назвать лишь дороговизну, поскольку для защиты пользователей при косвенном прикосновении, обязательна установка дополнительных устройств защитного отключения питания (УЗО и реле напряжения), что, в свою очередь, требует прохождение апробации и заверение специалистом энергонадзора.

Заключение

Схема заземления в общем виде представляет собой соединение ее элементов: электрооборудования, вводно-распределительного щита, заземляющего проводника РЕ, заземлителя.

Для установки заземляющего устройства в загородном доме необходимо разобраться в особенностях его подключения, в зависимости от следующих факторов:

  • способ питания электрической сети (воздушными линиями или кабелем от трансформаторной подстанции)
  • тип грунта на придомовом участке, где выполняется контур заземления.
  • наличие системы молниезащиты, дополнительных источников питания или специфического оборудования.

Выполняя подключение заземления самостоятельно, необходимо руководствоваться положениями раздела 1.7 Правил устройства электроустановок. При невозможности использования естественных заземлителей, выполняем заземляющее устройство с применением искусственных заземлителей.. Заземление частного дома может быть выполнено по двум системам: TN-C-S или ТТ. Наиболее широкое применение получила модернизированная система TN-C — TN-C-S, за счет простоты ее технического исполнения. Для обеспечения электробезопасности загородного дома по системе TN-C-S, требуется разделение PEN проводника, на нулевой рабочий и нулевой защитный проводники.

Выполнив контур заземления, необходимо проверить качество его монтажа, и произвести замеры сопротивления на соответствие нормам ПУЭ при помощи специальных приборов, для чего может потребоваться привлечение специалистов.

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в Технический центр ZANDZ.ru!


Смотрите также:


Смотрите также:

Ставить ли УЗО в домашнюю электропроводку

Просмотров 146 Опубликовано Обновлено

Электрика, где бы она не применялась — в частном секторе или на производстве, требует неукоснительного соблюдения определенных правил и норм, которые четко прописаны в различных документах (ПУЭ, ГОСТы, инструкции и т.д.). Электрика не может руководствоваться такими понятиями, как «нравится» и «не нравится». Даже если профессионалу-электрику что-то не устраивает в дизайне электропроводки, то он должен четко руководствоваться только технической документацией, отбросив в сторону эмоции.

Но наша жизнь является очень сложной штукой, и даже в таких вещах, как монтаж электропроводки в квартирах и частных домах, может возникнуть разное толкование такой мудрой книги, как ПУЭ. Особенно бурные споры среди специалистов на различных электротехнических форумах вызывают два вопроса: что и как заземлять в квартире и доме, а также нужно ли ставить УЗО (устройство защитного отключения) в домашней электропроводке. В данной статье я выскажу свою точку зрения по второму вопросу, с которой вы можете согласиться или нет.

На данный момент, как мы знаем из электротехники, существует три варианта систем заземления: TN-C, TN-C-S и TN-S. Применяются же в частном секторе только две из них: TN-C и TN-C-S. Отличаются данные системы заземления друг от друга количеством проводников в электропроводке.

Система TN-C в трехфазной электропроводке имеет четыре проводника — 3 фазы и нулевой провод, а в однофазной два проводника — фаза + ноль (PEN проводник). Т.е. в данной системе «трехфазка» имеет совмещенный рабочий и защитный нулевой проводник, а «однофазка» не имеет заземляющего проводника. Данная система заземления, в подавляющем большинстве случаев, устанавливалась в домах старой постройки.

Система заземления TN-C-S отличается от TN-C тем, что нулевой провод разделяется на рабочий (N) и защитный (PE) проводники. Разделение осуществляется непосредственно на вводе, т.е. в распределительном щите многоквартирного или частного дома. В трехфазной проводке появляются 5 проводников — 3 фазы, нулевой рабочий и нулевой защитный, а в однофазной 3 проводника — фаза, нулевой рабочий и нулевой защитный.

Система заземления TN-S — это система, где нулевой проводник разделяется на защитный (PE) и рабочий (N) непосредственно в трансформаторной подстанции (КТП). Т.е. к доме уже подходит воздушная линия из 5 проводов (3 фазы + N + PE). В перспективе, все электропотребители будут получать питание по системе TN-S, ну или что более вероятно — TN-C-S.

Я описывал все эти системы заземления для того, чтобы наглядно показать, что мы с вами, в подавляющем большинстве, проживаем в домах с системой TN-C. Как мы видим, данная система не имеют защитного заземляющего проводника, который предназначен для защиты именно человека от поражения электрическим током.

Но многие скажут — ставьте автоматический выключатель и живите спокойно. Но хочу еще раз напомнить, что автоматы призваны защищать электропроводку от короткого замыкания и перегрева, а вот человека, попавшего под напряжение, они защитить не могут. Что же делать? На помощь человеку пришли устройства защитного отключения (УЗО), которые молниеносно реагируют на малейшую утечку тока в проводке и отключают электропитание.

Вот теперь переходим к главному вопросу данной статьи: ставить ли УЗО в системе заземления TN-C?

Существует две группы квалифицированных товарищей с противоположными точками зрения по данному вопросу.

Первая группа утверждает, ссылаясь на Правила, нормативы и инструкции, что ставить устройство защитного отключения просто необходимо. Они утверждают, и правильно, что УЗО является единственным устройством, обеспечивающим защиту человека от поражения электрическим током при прямом прикосновении к одной из токоведущих частей.

Казалось бы все просто — бери и устанавливай УЗО в электропроводку, но существует и другая точка зрения. Группа специалистов с данной точкой зрения выступает против установки устройства защиты в систему заземления TN-C. По их глубокому убеждению, устанавливать УЗО нужно только после модернизации всей электропроводки с переходом системы TN-C в TN-C-S. В этом случае устройство будет всегда срабатывать в момент появления тока утечки. А иначе УЗО больше принесет вреда, т.к. в системе TN-C УЗО срабатывает только в момент прикосновения (ток утечки идет через тело человека). Кроме этого есть вариант включения человека в цепь при одновременном прикосновении к фазному проводнику и нулю. В этом случае через человека пойдет ток смертельной величины, а устройство защитного отключения не сработает.
Еще один фактор, что не стоит устанавливать УЗО — постоянные беспричинные его срабатывания при старой электропроводке.

Для срабатывания УЗО достаточно тока утечки 30 мА, а в старой проводке появляться он будет очень часто.

Так с какой же из этих групп стоит согласиться? Ведь самостоятельно перевести свою электропроводку на систему TN-C-S очень сложно, особенно в многоквартирном доме, где имеется общий стояк.

Я, это мое личное мнение, принимаю сторону первой группы, которая говорит о том, что ставить УЗО в домашней проводке нужно обязательно вне зависимости от системы заземления. Еще раз повторюсь: устройство защитного отключения — это единственное устройство, которое защищает именно человека от поражения электрическим током. Даже учитывая все недостатки работы УЗО при установке его в однофазке, с ним нам будет спокойнее, чем без него.

Но что же делать со старой проводкой, которая будет являться поводов бесконечных беспричинных отключений УЗО? Выход есть и в данной ситуации. Можно заменить всю старую проводку на новую, либо воспользоваться новейшими технологиями в сфере электробезопасности в быту.

Я сейчас говорю об устройствах с уже встроенным УЗО — розетки с УЗО, УЗО-вилка, УЗО — переходник и т.д. Использование таких устройств защитного отключения решает проблему постоянных срабатываний и отключений всей квартиры при старой плохой электропроводке и при этом обеспечивает достаточно хороший уровень электробезопасности.

Такие УЗО можно использовать для защиты от поражения электрическим током отдельных электрических цепей. Особенно целесообразно поставить такие розеточные устройства защитного отключения в опасных с точки зрения поражения электрическим током помещениях, например кухнях, на стиральную машину, в детских комнатах. И самое главное, для подключения таких типов УЗО подходят все типы электросетей — TN-C, TN-S и TN-C-S (этот факт отмечен в инструкциях к розеточным УЗО).

При этом не надо лезть в этажный электрощиток, достаточно просто поменять розетку. Ну а затем остается ждать, когда эксплуатирующая дом организация наконец-то займется модернизацией электропроводки в стояке вашего подъезда.

Какие устройства нуждаются в заземлении. Почему заземление и что такое узо?

Заземление и посадка. Слова однокоренные. Посадка относится к стыковке с поверхностью. Заземление — это термин из области электроприборов, связанный с ними. Осталось проанализировать, какая связь с землей.

Что такое заземление

Если обсуждается подключение электрооборудования к земле, это может быть вопрос заземления. Иногда на поверхности устройств накапливается разряд.Среди причин — нарушение поверхности проводов. Через негерметичную изоляцию ток от оборудования проходит к телам людей, прикоснувшихся к нему животных.

Плоть становится проводником на пути электронов к Земле. Зная это, люди предлагают стресс по-другому. Проволока, выходящая из оборудования в почву, образует направляющую. Устойчивость кожи к току выше, чем у металла.

Получив выбор, отпускаемый ток переключается на сплавы.Почва, куда они ведут, отлично поглощает энергию. Особенно ток «течет» в водоносных горизонтах земли.

Изобрел, как сделать заземление Бенджамин Франклин. Ему принадлежит идея громоотвода. Первоначально американец прикрепил металлический стержень к приспособлению для станка.

Заряд от последнего стал плавно течь по шпилю, точно так же, как перед грозой течение спускается по мачтам кораблей и шпилям церквей. Франклин был уверен в электрической природе молнии и предположил, что при высоком потенциале поля некоторые электроны от него могут тянуть проводники на себя.


Суммарный заряд уменьшается. Вместо искры-молнии рождается коронный разряд, тот же разряд, только слегка сияющий. Это не способно зажечь окружающие предметы и поющую плоть.

Получается, с практической точки зрения контур заземления — это защита здоровья и материального имущества. Давайте поговорим о роли текущего дренажа в почве в следующей главе.

Почему заземление?

Если описать ток, то это вещество без запаха, вкуса и цвета.Прикоснувшись к предмету, находящемуся под напряжением, человек может не подозревать об опасности. Искра начинается только в случае короткого замыкания. Это происходит, когда точки электрической цепи соединены с разными электронными потенциалами.

«Бесшумное» заземление предназначено для избавления от так же незаметного напряжения. Потенциал земли уравнивается с потенциалом корпуса электроприбора. Однако ток может быть полностью отведен в землю только при низком сопротивлении участка цепи.

Альтернативой заземлению является обнуление. Его провод подводится к нейтрали трансформатора подстанции. Когда фаза попадает в прибор, происходит короткое замыкание. Он служит для срабатывания предохранителей в сети.


Устройство автоматически выключается. То есть обнуление дает людям сигнал о неисправностях, но на корпусах приборов остается напряжение. Необходимо наладить сеть, только после этого вернуться к работе оборудования. Актуально для промышленных объектов. Домашнее заземление получше.

Зонирование еще называют рабочей площадкой. Они руководствуются не столько вопросами безопасного труда, сколько страховкой на случай аварии. Необходимо обеспечить возможность эксплуатации оборудования в экстремальных условиях.

Обычное заземление называется защитным. Его главная роль — спасать жизни и здоровье людей. Для поражения электрическим током, кстати, недостаточно прикоснуться к аппарату, находящемуся под напряжением. Нужна электрическая схема.

В нем 3 участника — устройство, тело и земля. Если человек, например, висит в воздухе, цепь не образуется, и поражение электрическим током проходит. Но, как сетовала героиня романа Островского «Гроза»: — «Почему люди не летают?»

В первой главе было указано, что вода поглощает ток даже лучше, чем земля. Смертельными, как правило, становятся электрические дуги, образующиеся через тело человека во влажной почве, лужах.

Достаточно вспомнить сцены из фильмов, где руки опускаются в воду с включенным феном.В общем, заземление оборудования особенно важно во влажных помещениях, зонах с риском затопления.

Способность разных грунтов по-разному «воспринимать» ток составляет сопротивление земли . Земля противодействует распространению электронов через нее. Есть простор для этого противостояния. Для частных коттеджей и дач рекомендуется сопротивление 30 Ом. На газопроводах и громоотводах достаточно 10-Ом, а на телекоммуникации — 2-4-а.


Третий тип заземления — это тот же громоотвод, созданный Бенджамином Франклином.Отсутствие защиты бытовой и промышленной техники редко приводит к пожарам.

Температура в месте стресса низкая. Чтобы разжечь огонь, вам нужна искра и горючие газы в воздухе. Совпадают с факторами редко. При ударе молнии точка взаимодействия с ней нагревается до 30 000 градусов. 1/5 пожаров на личных усадьбах — результат получения небесного разряда.

Это статистика. Поэтому заземление в частном доме необходимо по приборам и на крыше в виде металлического шпиля.Как его установить и сделать защиту на электрооборудовании, мы расскажем дальше.

Как заземлить себя

Шпиль громоотвода, как правило, представляет собой стальной стержень шириной сантиметр и длиной около 2,5 метров. Это текущий ресивер. Установите его в верхней части крыши. Известно, что молния притягивает высотные объекты.

От ресивера на стенах дома опускается штанга. Это заземляющий провод круглого и широкого сечения.Проведите катанку подальше от окон и дверей. Сам заземляющий электрод используется в бытовых приборах.

Другими словами, жилы от дома и от крыши ведут к единому контуру, закопанному в землю. Достаточно рамки из 3-х электродов. Так называются проводники типа 1, контактирующие с ионным проводником.

Электроды контура заземления должны быть «голыми», то есть без антикоррозионных диэлектриков. Ограничивается лаком в местах сварки.

Необходимо учитывать постепенное утонение стали под действием коррозии. Поэтому электроды берут с запасом по сечению. Есть минимальные требования. Итак, ширина оцинкованного прутка должна составлять 6 миллиметров и более. Минимум для стержней из черного металла — сантиметр.


Электроды в контуре заземления соединены стальной лентой. Это называется трипс. С электродами приварен. Может своими руками сделать заземление .Важно брать контур до метра от стен и 5 метров от пешеходных дорожек и крыльца дома.

Соответственно проводники удобно вести к задним стенкам конструкции и скатам кровли. Однако есть дома с несколькими подъездами. Важно удалить контур по 5 метров с каждого.

В частных домах удобно делать систему естественного заземления. Он заключается в использовании уже имеющихся в конструкции элементов для проведения тока.На фундаменте, например, натяжение может удерживать арматура. В целом можно сэкономить на покупке провода и сохранить естественный вид постройки. Провод, кстати, называют выключателем искусственного заземления.

В многоквартирном доме система заземления подводится к заслонкам. Они должны войти в контур системы. Связь с ним происходит через шину заземления . К ней привозят много гидов. Шина позволяет уравнять потенциал сети.

Сделайте элемент из железа.На самом деле медь и алюминий подойдут лучше, но дороги и есть риск порезать металл для доставки в пункты приема. Сделать покрышку можно даже из золота, что тоже нелогично при наличии дешевых и неинтересных сборщиков железных сплавов.

Заземляющий провод даже в квартире, даже в доме должен входить в основную проводку, чтобы соответствовать сечению с фазным проводом в домашней проводке. Это стандарт. Соответственно разводка сделана трехжильной.


Один в нем «жил» — ноль, второй — фаза, а третий — заземление. Розетка с снабжена контактами. Их подводят к корпусу. Его активация автоматически «запускает» не только текущий пробег, но и срабатывание заземлителя.

Износ изоляции приводит не только к коротким замыканиям. Они реагируют на автоматическую защиту. Чаще из системы «текут» небольшие токи. Они оснащены УЗО.Аббревиатура расшифровывается как «устройство защитного отключения». Однако избыточный ток передается обоими устройствами на провод заземления, и это приводит напряжение к земле.

Помимо стационарного заземления может быть переносным. Применяется, как правило, на предприятиях при отключении от тока участков сети вблизи электроустановок. Существует риск неправильной подачи напряжения или появления наведенного тока. Под последним мы подразумеваем определенный выброс электронов из соседней линии, которая остается проводящей.

Переносное заземление Несущий провод, желательно медный. У нее минимальное сопротивление. Провод подключается к проводящей линии. Предварительно он обесточен. Другой конец переносного проводника подключается к заземлителю. Речь идет о естественном, хотя и искусственном, отводе электронов.


Какой инструмент вам пригодится

Для искусственных заземлителей возьмите стальные стержни, уголки и трубы. Последние могут быть как круглыми, так и прямоугольными.Бетон подойдет. Имеет электропроводящий тип. Использование бетона выгодно с точки зрения устойчивости материала к коррозии.

Электроды забиваются в землю кувалдой. С заводскими установками работают бамперы. Для соединения штифтов возьмите латунные резьбовые муфты. Присоединение токопроводящей жилы к электроду происходит через зажим. Возьми сталь.

Специальная паста помогает снизить сопротивление в стыках. Она в магазинах электротоваров. Сварить конструкцию, конечно же, сварочным аппаратом или старинным паяльником.Стремянка при установке тоже пригодится.

Не забывайте о стальной, медной стяжке, если мы делаем заземление в многоквартирном доме. В целом точный набор инвентаря зависит от типа сооружения, его этажности, мощности сети.

В этой статье мы разберемся с вами, как подключить заземление . Эта тема достаточно обширная и имеет множество нюансов, и здесь нельзя просто так сказать — сделайте или подключите сюда. Поэтому, чтобы вы меня понимали, и мне было легче вам объяснить, будет и теория, и практика.

Заземление в нашей современной жизни является неотъемлемой частью. Без заземления, конечно, можно обойтись, ведь сколько мы без него прожили. Но с появлением современной бытовой техники заземление стало просто обязательным условием защиты человека от поражения электрическим током.

Общие понятия.

Заземление — Преднамеренное электрическое соединение любой точки сети, электроустановки или оборудования с заземляющим устройством.

Заземление предназначено для отвода токов утечки , возникающих на корпусе электрооборудования в аварийном режиме работы этого оборудования, и обеспечения условий для немедленного отключения напряжения от поврежденного участка сети путем срабатывания устройства защиты и автоматического отключения.

Например: произошел пробой изоляции между фазой и корпусом электрооборудования — на корпусе появился определенный фазный потенциал. Если оборудование заземлено, то это напряжение будет проходить через защитное заземление с низким сопротивлением, и даже если устройство защитного отключения не сработает, то при прикосновении человека к корпусу ток, который остается на корпусе, не будет опасен для персона. Если оборудование не заземлено — весь ток будет проходить через человека.

Заземление состоит из заземляющего провода и заземляющего провода , соединяющего заземляющее устройство с заземленной частью .


Заземляющее устройство представляет собой металлический стержень, чаще всего из стали, или другой металлический предмет, который контактирует с землей напрямую или через промежуточную проводящую среду.

Заземляющий провод — это провод, который соединяет заземленную часть (корпус оборудования) с заземляющим электродом.

Заземлитель — комплект заземляющих и заземляющих проводов.

Немного теории.

Все, что вы видели во дворах, — это небольшие кирпичные строения, в которые заходят и уходят силовые кабели — это трансформаторные подстанции , (электроустановки). Трансформаторные подстанции служат для приема, преобразования и распределения электрической энергии. На каждой подстанции есть силовой трансформатор для преобразования напряжения, распределительные устройства и устройства автоматического управления и защиты.

Предполагая напряжение высоковольтной сети 6 — 10 кВ (киловольт), подстанция преобразует его и передает потребителю, то есть нам. Прием и преобразование напряжения обеспечивает силовой трансформатор, с выхода которого на потребителя подается трехфазное переменное напряжение 0,4 кВ или 400 Вольт . Для питания бытовой однофазной техники (телевизор, холодильник, утюг, компьютер и др.) Используется одна из трех фаз L1 ; L2 ; L3 и нулевой рабочий кондуктор « N ».

Типовая схема электроснабжения потребителей, на основе которой разработаны дополнительные схемы, различающиеся способом подключения защитного заземления, подключения и защиты электрооборудования, , а также принимаемых мер по защите людей. от поражения электрическим током .

Трансформаторная подстанция имеет собственный контур заземления , к которому подключаются все металлические корпуса оборудования подстанции.Контур заземления представляет собой металлический стержень, вбитый в землю, соединенный между собой металлическим стержнем при помощи сварки. Эта шина называется шиной заземления .

Шина заземления вводится в здание подстанции и прокладывается по периметру здания. К нему привариваются болты, к которым уже подключено заземлителей, все оборудование подстанции.


Согласно ПУЭ (Правила устройства электроустановок) заземляющий провод ( ноль защитный ) на электрических цепях имеет буквенное обозначение « РЭ » и цветовую маркировку с чередованием поперечных или продольных полос желтого и зеленого цветов.

Системы заземления.

Системы заземления различаются способом их заземления нулевой рабочий Провод «N» на вторичной обмотке силового трансформатора и потребителей электроэнергии (двигатель, телевизор, холодильник, компьютер и т. Д.), Питаемых от этого трансформатора.

Рассмотрим на примере трансформаторной подстанции.
Вторичная обмотка силового трансформатора подстанции имеет три катушки, соединенные « звезда », где начало катушек подключено к общей точке, называемой нейтраль « N », которая напрямую связана с заземляющее устройство .Свободные концы катушек подключаются к проводам трехфазной сети, идущей к потребителям трехфазной или однофазной электрической энергии. Такое соединение нейтрали называется с полым заземлением и используется в системах заземления типа TN .

Здесь нейтраль « N », иначе она называется рабочий ноль , выполняет две функции:

1. Вместе с одной из трех фаз он вырабатывает 220 вольт.
2. Выполняет защитную функцию, так как имеет прямой контакт с землей.

На данный момент существует 3 типа систем заземления:

1. TN — система, в которой нейтраль трансформатора заземлена, а открытые токопроводящие части соединены с нейтралью;
2. TT — система, в которой нейтраль трансформатора заземлена, а открытые проводящие части заземлены с помощью заземленного устройства, которое электрически не зависит от заземленной нейтрали трансформатора;
3. IT — Система, в которой нейтраль трансформатора изолирована от земли или заземлена через устройства с большим сопротивлением, а открытые проводящие части заземлены.

Все три системы заземления предназначены для защиты людей и электрического оборудования от воздействия электрического тока. Эти системы заземления считаются равноценными защите людей, но они не эквивалентны по способу обеспечения надежности (надежности, ремонтопригодности) электроснабжения потребителей электрической энергией.

Системы заземления обозначаются двумя буквами.
Первая буква определяет соединение нейтрали трансформатора с землей:

T — нейтраль заземлена;
I — нейтраль изолирована от земли.

Вторая буква определяет отношение открытых проводящих частей к земле:

T — открытые токопроводящие части заземлены напрямую;
N — открытые токопроводящие части подключены к смертельной нейтрали трансформатора.

Теперь рассмотрим все системы по порядку.

1. Система заземления TN.

Система « TN » — это система, в которой нейтраль , трансформатор заземлен , а открытые проводящие части присоединены к нейтралам с по нулевые защитные проводники .

Открытая токопроводящая часть — доступная на ощупь токопроводящая часть электроустановки (например: корпус бытовых электроприборов), которая в нормальном режиме работы электроустановки не находится под напряжением , а может быть находиться под напряжением в случае повреждения изоляции.

Как правило, повреждение изоляции может быть вызвано многими факторами: старением оборудования, механическими повреждениями, длительной работой при максимальных нагрузках, скоплением пыли между корпусом оборудования и токоведущими частями, образованием влаги на пыльной поверхности, прилегающей к токоведущим частям. детали, климатические воздействия, заводской брак и др.

Итак, в свою очередь, система TN разделена на три подсистемы:

1. TN-C — система, в которой нулевой защитный «PE» и нулевой рабочий «N» проводники объединены в один провод «PEN» по всей системе;
2. TN-S — система, в которой нулевой защитный «PE» и нулевой рабочий «N» проводники разделены по всей системе;
3. TN-C-S — система, в которой функции нулевого защитного «PE» и нулевого рабочего «N» проводников совмещены в одном проводе в некоторой части, начиная с силового трансформатора.

Начнем с системы TN-C.

Система TN-C.

Система TN-C — это одна из первых систем заземления, которая до сих пор встречается в старом жилом фонде, построенном до середины 90-х годов, но, несмотря на это, существует и действует.В данной системе проложен четырехжильный кабель , в котором есть 3 фазы , проводов и 1 нулевых проводов .

Здесь нулевой защитный « RE » И нулевой рабочий « N » Проводники выровнены в одном проводе по всей системе. То есть для питания электрооборудования и его заземления нужен один проводник « PEN », и это, безусловно, главный недостаток системы TN-C .

В то время практически не существовало электрооборудования, требующего трехпроводного подключения, и поэтому к защитному заземлению не предъявлялись особые требования, и такая система считалась надежной.Но с появлением в современной жизни современного трехпроводного оборудования, где предусмотрен провод PE, система TN-C перестала обеспечивать требуемый уровень электробезопасности.

На сегодняшний день практически вся современная техника питается от импульсных источников питания, не имеющих гальванической развязки с сетью 220 вольт. Это связано с тем, что в импульсных источниках питания присутствуют интерференционные фильтры , которые предназначены для подавления высокочастотных помех питающей сети 220 вольт, и которые подключены к корпусу оборудования через разделительные конденсаторы.

Высокочастотные помехи, возникающие в питающей сети через разделительные конденсаторы, защитный провод PE, трехполюсную вилку и розетку, утекают на землю. Поэтому существует опасность появления фазного напряжения на корпусе оборудования при пробое изоляции между фазой и корпусом или исчезновении рабочего нуля «N» при питании современного оборудования с помощью системы заземления TN-C, не иметь отдельного заземляющего провода.

Например: если ваш рабочий ноль «N» обрывается или перегорает между полом и доской квартиры, существует опасность появления фазного напряжения на корпусе, в котором в данный момент работает бытовая техника.А если он не заземлен, то при прикосновении голой руки к металлическому неокрашенному корпусу через вас протекает ток и вы получаете заряд.

Хотя благодаря импульсным источникам питания современная техника стала меньше, дешевле и проще, но, естественно, требования к уровню электробезопасности уже стали выше.

Но, как говорится, спасение рук рук утопающих, а потому некоторые умельцы, чтобы защитить себя, сами роют землю.Одни садятся на батареи центрального отопления, другие подключаются к корпусу панели пола, вставляют перемычку в розетку, устанавливают УЗО, а некоторые даже делают свой контур заземления.

Например: вы подключены третьим проводом к корпусу панели пола и думаете, что вы заземлены. Это большое заблуждение. Вы сделали обнуление — и не более того.

Защитное обнуление — это преднамеренное электрическое соединение открытых токопроводящих частей электроустановки (например, корпуса оборудования) с глухозаземленной нейтралью генератора или силового трансформатора, выполняемое в целях электробезопасности.

Глухая нейтраль Подключается ли нейтраль трансформатора непосредственно к заземляющему устройству.

Теперь обнуление на корпусе этажного щита опасно тем, что в случае выхода из строя вашего рабочий ноль «Н» мощность бытовой техники, включенной в данный момент в розетку, будет проходить через защитный проводник » ЧП ».

А это уже неправильный Схема питания бытовой техники что приведет к короткому замыканию и поломке всего оборудования.Автоматический выключатель сработает, но только от тока короткого замыкания, который создаст ваша уже сгоревшая техника. А если в этот момент возьмитесь за металлический неокрашенный корпус, то вдобавок на мгновение получите заряд бодрости. Хотя в ПУЭ № 7 пристрелка разрешена и считается дополнительной мерой защиты. Но снова возникает вопрос: где делать обнуление . Здесь вам решать.

Другой пример.
Вы подключаетесь к батарее центрального отопления , пытаясь таким образом обмануть счетчик или землю.На вашем стояке сосед снизу ремонтирует и заменяет старые ржавые трубы на пластиковые. В результате — вы оказались отрезанными от своей воображаемой земли. Теперь вы и соседи сверху будете в постоянной опасности.

Или другой пример.
Вы учли все нюансы и решили заземлить наоборот. В подвале дома или возле дома была вырыта яма, штыри забиты, сделали по всем нормам контур заземления , а PE проводник вёл в их квартиру.Все сделано, и теперь вы можете спать спокойно. А здесь нет.

Внезапно ваш сосед планирует подшутить над вами из вреда или просто из зависти, что у вас есть заземление, а у него его нет. Возьмите и перережьте заземляющий провод. Или человек, отвечающий за дом, увидит провод, не проложенный по проекту, и удалит его, и вы живете, и вы не знаете, что вас не заземлили. Кроме того, следует периодически проверять заземление специальными приборами.Вы сделаете это? У вас есть такие устройства?

В качестве варианта защиты вы установили в двухпроводную линию УЗО . В принципе, это не такой уж и плохой вариант, но и в нем есть свои нюансы .

УЗО срабатывает токами утечки 10 мА, 30 мА и 300 мА, но для этого ему нужен защитный провод «PE», относительно которого УЗО видит эти токи. В системе TN-C защитный проводник «PE» нет , но он есть в системе TN-S , для которой разработано УЗО.На двухпроводной линии УЗО тоже работает, но через ток утечки вы создаете свое тело .

Возьмем, к примеру, тот же пробой изоляции на кузове и одновременно одновременное прикосновение к голой батарее центрального отопления. В системе TN-S Возникший на корпусе ток утечки сразу пойдет по защитному проводнику « RE », и если его порог превысит уставку УЗО, он сработает и отключит питание.И даже когда порог для УЗО небольшой и он не работает — вы ничего не почувствуете, или вас просто будет немного ущипнуть.

В системе TN-C другой случай. При одновременном прикосновении к корпусу и оголенной батарее центрального отопления через вас к батарее будет течь ток. Если есть обычный автомат, то вы, в зависимости от силы тока , так и останетесь висеть между двумя лампочками, так как проходящий через вас ток не будет током короткого замыкания .Если стоит УЗО , то при достижении порога уставки сработает и отключит питание.

И вот наступает момент истины: УЗО, в системе TN-C, от удара током не спасешь. Свой заряд бодрости вы получите. Вопрос только в времени воздействия электрического тока .

В ПУЭ № 7 относительно установки УЗО в системе TN-C сказано:

1,7.80. Не допускается использование УЗО, реагирующих на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C).Если необходимо использовать УЗО для защиты отдельных приемников, получающих питание от системы TN-C, защитный провод PE электрического приемника должен быть соединен с PEN-проводником цепи, питающей электрический приемник к устройству защитной коммутации.

Опять же возникает вопрос: как протянуть защитный проводник. Итак, здесь вы снова решаете.

Следовательно, если вы живете в домах старой постройки и у вас двухпроводная сеть, то при защите вашей квартиры заземлением, вам кажется, проблема не решается, а только усугубляется для вас или ваших соседей. Проблему двухпроводной сети надо решать коллективно — всем домом:

1. Перепроектировать или изменить систему электроснабжения дома с четырехпроводной на пятипроводную.
2. Замена старых половиц на новые, рассчитанные на пятипроводную линию.

Но не думайте, что все так страшно. В этой части статьи я рассказал о возможных ситуациях, которые могут возникнуть у нас при неправильном подключении и использовании защитного заземления.В статье продолжим разбираться с остальными системами заземления.
Удачи!

Практически в любом руководстве по эксплуатации современного бытового прибора указано, что его необходимо заземлить. Как его заземлить? Можно ли включить без заземления? Будет нормально работать? Жестяная банка. Будет.
Большинство наших сограждан живут в домах, где нет заземления. А современная техника доступна всем. Соответственно, большая часть техники, предназначенной для заземления, довольно успешно эксплуатировалась без него.

Заземление используется для защиты человека от поражения электрическим током. При нормальной работе прибора его корпус надежно изолирован от токоведущих частей. В случае поломки устройства токоведущие части могут коснуться тела, и тогда на него будет подано напряжение. Человек, прикоснувшийся к такому устройству, будет шокирован.

Автоматический выключатель в этом случае не поможет, потому что тока, протекающего через человека, явно будет недостаточно для его срабатывания. Но этого тока достаточно, чтобы лишить человека здоровья и даже жизни.
Для исключения подобных ситуаций корпуса всех электрических устройств, к которым может прикоснуться человек, должны быть заземлены, то есть электрически соединены с землей посредством проводников. В этом случае ток от корпуса устройства, а вместе с ним и опасное напряжение уйдет на землю, не причинив человеку никакого вреда.
Для обеспечения такого заземления европейцы добавили заземляющий провод к электропроводке жилых помещений. Электропроводка была трехпроводной. Два провода, как и в нашей разводке — фазный и нулевой, предназначены для питания электроприборов, а третий — защитное заземление.
Розетки такой проводки должны иметь три контакта — нулевой, фазный и заземляющий. В бытовой технике, предназначенной для такой разводки, имеется трехжильный шнур и трехконтактная вилка. Две жилы шнура — это фаза и ноль, а третья предназначена для подключения корпуса прибора к заземлению электропроводки. Заземляющий контакт розетки (металлические полосы сверху и снизу) подключают к защитному заземлению проводки. Штырь заземления вилки подключается к корпусу прибора.
Включая вилку в розетку, подключаем металлический корпус прибора с защитным заземлением. Теперь даже при наличии напряжения на корпусе устройства весь заряд будет стекать в землю, и неисправное устройство не будет бить током.
Заземление бытовой техники возможно только при наличии в доме контура заземления. В домах старой постройки этого, к сожалению, нет. В то время проводка проводилась двухжильным кабелем, один из проводов был нулевым, а другой — фазным.Розетки и вилки также имели два контакта, нулевой и однофазный. Ни о каком заземлении тогда никто не думал. Ведь в то время у людей практически не было бытовой техники, а в их домах хватало розеток на шесть ампер. То есть, если мощность всех включенных в квартиру электроприемников доходила до полутора киловатт, вилки перегорали.
С развитием технологий в домах людей стало доступно все больше и больше электрических помощников.Где-то в середине шестидесятых годов в домах стали появляться телевизоры, холодильники, стиральные машины, электрические утюги. Девяностые годы принесли в нашу повседневную жизнь компьютеры, стиральные, посудомоечные машины, кондиционеры и т. Д. Вместе с увеличением количества и мощности электроприемников стало увеличиваться количество случаев поражения электрическим током от неисправных электроприборов. Эту проблему нужно было решить, и с 1997 года строители обязались оборудовать все строящиеся дома защитным заземлением.
В домах современной постройки вся проводка трехжильная, и нет проблем с эксплуатацией современной техники.


В старых домах с двухпроводной разводкой абсолютно совершенная техника может победить ток. Дело в том, что бытовые электроприборы оснащены встроенным сетевым фильтром, который защищает электронные схемы устройства от резких скачков напряжения. Конструкция фильтра такова, что он соединяет нейтральный и фазный проводники через конденсаторы с корпусом устройства.Если корпус устройства не заземлен, то на нем появляется 110 вольт. То есть на корпусе стиральной машины, холодильника, микроволновки, компьютера напряжение 110 вольт.
Если вы живете в доме со старой проводкой без заземления и имеете некоторые познания в области электротехники, попробуйте измерить напряжение на корпусе вашего компьютера, холодильника и стиральной машины. Не исключено, что будет напряжение 110 В. Это утверждение похоже на бред. Ведь производители прекрасно понимают, что производимая ими технология должна быть абсолютно безопасной для человека и ни в коем случае не наносить вред его здоровью.Но создатели импортной техники, далекой от российской действительности, не представляют, что где-то она может работать без заземления. Это обстоятельство позволяет понять логику производителя. Новый метод разработан таким образом, что небольшой ток должен течь от конденсаторов к земле через корпус устройства. Напряжение 110 В появляется на корпусе только в том случае, если он не подключен к земле.
Несмотря на большие размеры, это натяжение не представляет серьезной опасности.Малая емкость конденсаторов фильтра ограничивает величину тока, поэтому он не может нанести серьезный вред человеку. От него можно получить неприятный электрический шок, только если одновременно прикоснуться к живому телу и любому заземленному объекту, например, батарее или крану. Хотя делать это специально не обязательно, но никто не может гарантировать успешный исход такого эксперимента.
Гораздо хуже обстоит дело, когда из-за поломки устройства его корпус подключается к проводу питания.В этом случае на корпусе устройства будет 220 В и ток больше не будет ограничиваться конденсаторами сетевого фильтра. Прикосновение к такому устройству может привести к летальному исходу при неблагоприятном стечении обстоятельств.
Несмотря на то, что неисправная бытовая техника может быть источником серьезной опасности, большая часть населения нашей страны живет в домах без заземления и даже не подозревает об опасности, с которой они сталкиваются. Почти каждый из нас был потрясен, но лишь немногие из нас получили серьезные травмы электрическим током.Чем объясняется такая избирательность тока? Почему одни люди калечат и убивают, а другие лишь слегка щелкают?
Действие тока на организм человека определяется его величиной. Человек способен ощущать ток в один миллиампер. Ток от одного до десяти миллиампер вызывает у человека болезненные ощущения. Ток более десяти миллиампер вызывает судорожное сокращение мышц, в результате чего человек не может самостоятельно разжать руку, чтобы разорвать контакт с токоведущей токоведущей частью.При силе тока более сорока миллиампер наступает паралич дыхания и нарушение работы сердца. Ток в сто миллиампер приводит к остановке сердца и смерти.
Величина тока, протекающего через тело человека, зависит от величины приложенного к нему напряжения и от сопротивления цепи, по которой проходит ток. Чтобы понять, почему при одном и том же напряжении ток в одном случае может вызывать у человека только неприятные ощущения, не причиняя ему никакого вреда, а в другом — убивать, необходимо понять, что такое токовая цепь и как он создан.
Цепь тока — это путь тока, и этот путь всегда замкнут. Ток в наш дом идет от трансформаторной подстанции по фазовому проводу, а затем возвращается на ту же подстанцию ​​по нулевому проводу. И сколько тока пришло с подстанции в дом, сколько должно вернуться из дома в подстанцию, не больше и не меньше.
Ток не обязательно возвращается на подстанцию ​​только по нулевому проводу. Если изоляция повреждена, ток может просочиться в землю.В этом случае часть тока будет возвращаться на подстанцию ​​по земле, а часть — по нулевому проводу. Но в этом случае полный ток, возвращаемый на подстанцию, будет равен току, идущему от подстанции к потребителю.
Если по каким-то причинам возврат тока на подстанцию ​​невозможен, например, на подстанции сгорел нулевой провод, то в домах потребителей тока не будет. В розетках будет напряжение, как на фазных, так и на нулевых контактах 220 вольт, но ток через устройства не пойдет и работать они не будут.


Почему нельзя зонировать дома?

Кстати, этот случай наглядно показывает, почему в домах невозможно произвести обнуление, то есть прикрепить корпуса приборов к нулевому проводу, как это иногда делают электрики в домах, где нет заземления. Ведь пока все работает исправно, большой разницы с нулевым или заземляющим проводом, подключенным к корпусам защищаемых электроприборов, нет. Но когда нулевой провод на проводе, а значит, и все устройства, подключенные к нейтральному проводу, отключится, появится напряжение 220 В.То же произойдет, если при ремонте распределительного щита электрик перепутает нулевой провод с фазным. В этом случае корпуса приборов будут подключены не к нулю, а к фазовому проводу и они также будут иметь напряжение 220 В.
Итак, токовая цепь — это путь тока от подстанции к потребителю и обратно от подстанции. потребителя на подстанцию. Если в каком-то месте он сломан, в цепи не будет тока. Сидящих на проводах птиц не попадает ток только потому, что нет цепи для прохождения тока.Стоя на резиновом коврике электрик не попадает в ток, потому что мат мешает возврату тока на подстанцию ​​по цепи: фазный провод -> электрик -> земля -> подстанция. Вот почему при одинаковом напряжении ток может лишь слегка повлиять на человека и, возможно, убить. Все зависит от того, есть ли у него надежный способ вернуться на ТП или нет. Если есть, то мужчине, находящемуся в стрессе, многого не найдешь.
Интернет описывает трагическое событие, которое произошло с мальчиком, который хотел делать уроки в вечернем саду.Взял настольную лампу с удлинителем и стал выносить из дома. Лампа была неисправна — фазовый шнур под напряжением касался корпуса лампы. Мальчик держал под напряжением кожух лампы, но ток его не бил. Сухой деревянный пол не позволял току возвращаться на подстанцию. Как только мальчик вышел с крыльца и наступил на землю, образовалась замкнутая цепь тока: трансформаторная подстанция -> фазный провод -> настольная лампа -> человек -> земля -> снова трансформаторная подстанция и мальчик был убит электрическим током.Не могло быть трагедии. Если бы лампа, удлинитель и проводка в доме были заземлены, ток от корпуса лампы протекал бы через землю, не причинив вреда мальчику.
Если в доме нет возможности установить заземление, то хотя бы следует помнить, что ток не должен иметь возможность вернуться на подстанцию ​​через землю. Только для специально разработанного нулевого провода. Ни в коем случае нельзя одновременно прикасаться к электроприборам и заземленным частям, таким как батареи, водопроводные трубы и т. Д., Чтобы не позволить току пройти через вас в землю и вернуться на подстанцию.Если в комнате влажный пол, желательно иметь обувь с водонепроницаемой подошвой, которая станет препятствием между вами и токопроводящим полом на случай, если вы случайно столкнетесь с нагрузкой.

Что такое УЗО?

Если вас не устраивают такие методы электробезопасности и установить заземление не представляется возможным, то есть еще одно мощное средство, способное надежно защитить вас от травмирующего воздействия электрического тока. Это устройство защитного отключения, более известное под аббревиатурой УЗО.Он сравнивает фазный ток с нулевым током. Если ток в фазном проводе, по крайней мере, немного больше тока в нулевом проводе, это означает, что есть утечка, и часть тока возвращается на подстанцию ​​через землю. В этом случае УЗО мгновенно отключает линию и если утечка вызвана человеком, находящимся под напряжением, по которому ток течет в землю, с ним ничего страшного не случится. УЗО успеет отключить ток до того, как успеет навредить человеку.Хотя аварии с электрическим током в домашних условиях случаются очень редко, на таких устройствах не стоит экономить. Ведь жизнь человека слишком дорога, чтобы пренебрегать такой опасностью.

Видео: зачем нужно заземление и что такое УЗО

Из школьного курса физики каждый человек вспоминает, что электрический ток не может возникнуть ниоткуда, это движение заряженных частиц в проводнике, которым может служить провод. Но также многие помнят, из курса ОБЖ, что электрический ток опасен для жизни человека.Когда существует опасность поражения электрическим током? Это происходит, когда человек прикасается к оголенным проводам или к устройству, подключенному к незаземленной розетке. В здравом уме ни один взрослый не прикоснется к оголенным проводам, но каждый может включить чайник в розетку без заземления.

Для того, чтобы произошел «удар», нужно создать электрическую цепь. В случае использования розетки без заземления ток течет в устройство, накапливается в нем и проходит к человеку, как только он к нему прикасается.Мужчина в данном случае — дирижер, так как он стоит на полу. Ток проходит через тело, а затем уходит на пол. В лучшем случае пострадавший испытает неприятные ощущения, а в худшем — на «скорой» поедет в больницу.

Как защитить себя от поражения электрическим током?

Когда в доме много электроприборов, люди не всегда используют только заземленные розетки. В спешке они забывают о важности заземления или не знают, есть ли оно у них в квартире, и просто вставляют вилку в розетку, которая находится ближе.Постоянно используя для работы металлического электроприбора розетку без заземления, велик риск того, что в ней скопится статическое напряжение и человек получит удар электрическим током. Чтобы этого не произошло, нужно в каждой комнате установить домашнюю розетку с заземляющими контактами. Конечно, полностью риск не исчезнет, ​​ведь в качестве розеток нельзя быть полностью уверенным, но он станет меньше.

Тем, у кого дома есть большая плита и стиральная машина, необходимо дополнительно заземлить устройства.Это довольно просто, нужно взять специальный провод, прикрепить его к корпусу устройства и отправить на землю. В частных домах это несложно реализовать, но в квартире могут возникнуть проблемы с тем, куда направить этот заземляющий провод.

В связи с тем, что смерть от поражения электрическим током давно перестала быть редкостью, большинство застройщиков перед вводом дома в эксплуатацию оборудуют электрическую сеть специальными устройствами защитного отключения. Его работа заключается в том, что в случае утечки тока он отключает всю квартиру от электричества, тем самым спасая жителей от смертельной травмы.На сегодняшний день это самая эффективная защита от поражения электрическим током. Установить такую ​​систему может каждый, для этого достаточно обратиться в соответствующую компанию.

Как работает Узо. Что такое УЗО и как оно работает? Что такое RCD

При проведении электромонтажных работ, когда специалисты проводят новую электропроводку, устанавливаются специальные контрольно-защитные устройства — УЗО. В старых домах такие устройства не предусмотрены. Поэтому у владельцев квартир возникает резонный вопрос, что это за квартира и для чего она используется.

Цель и специфика приложения

При эксплуатации бытовых приборов, а также электрических механизмов разного типа со временем происходит износ, в результате чего изоляция проводов перестает выполнять свою роль. Причем ток пойдет не по установленной цепи, а на землю, когда факт соединения с ней обеспечен.

Гидом, как правило, является сам человек, касающийся, например, корпуса стиральной машины или бойлера.Ток, действующий на корпус, делает его аналогом неизолированного провода.

Разумеется, эффективным методом устранения предпосылок для такой ситуации является создание контура заземления, то есть искусственно сформированного проводящего контакта с землей корпусов, проводящих ток, или отдельных блоков электрических блоков. Но такая система создается далеко не во всех домах. Поэтому на помощь могут прийти устройства защитного отключения.

Принцип работы УЗО основан на его способности четко воспринимать малейшие изменения в электросети, несоответствие входных и выходных токов, а также обеспечивать отключение сети в аварийных ситуациях.

Здесь необходимо помнить, что ток, который движется по фазному проводу (или во всех фазах трехфазной цепи), должен быть равен току в нейтральном проводе.

Во время работы схемы возможна ситуация, когда человек касается неизолированной проводки или корпуса бытового прибора, находящегося под напряжением. Затем создается новая цепь тока утечки. В исходной схеме входящий ток не будет равен исходящему.Это отклонение будет записано УЗО с последующей командой на размыкание цепи.

Когда срабатывает УЗО

Чтобы понять, как работает УЗО, необходимо определить его основные составляющие. В увеличенном виде он будет выглядеть так:

  • Дифференциальный трансформатор тока с тремя обмотками. Для первых двух обмоток есть замыкание на ноль и фазу, но третья связана с пусковым механизмом — реле или электронным узлом.
  • Ударно-спусковой механизм, который представлен блоком силового пуска, а также контактными элементами.
  • Тестовый переключатель — позволяет проверить работу устройства путем тестирования всей сети.

Благодаря действию цепи устройства защитного отключения обеспечивается защита в таких случаях:

  • при замыкании фазного провода на корпус бытовой техники;
  • , когда была произведена неправильная разводка, например, забыли установить задний короб;
  • при нарушениях в устройстве и подключении щита;
  • из-за утечки тока по другим бытовым причинам — заземление у соседей на водопровод, подключение стиральной машины с помощью шланга с металлическим покрытием и т. Д.


Варианты выбора

Емкостные УЗО считаются первыми бытовыми моделями. Их принцип действия аналогичен принципу действия емкостного реле, которое реагирует на реактивный ток смещения. Чувствительность у них чрезвычайно высока — доли мкА, срабатывают практически мгновенно и не реагируют на факторы заземления. Но при этом они очень сильно реагируют на помехи и не могут различить причины аварийной ситуации.

Рассматривая типы УЗО, нельзя не отметить модификации, которые сейчас стали прототипами наиболее распространенных моделей.Это дифференциальные УЗО-D, которые работают на основе оценки дисбаланса полных токов, возникающих в силовом кабеле.

Дифференциальные электромеханические модели сейчас популярны при проведении электромеханических работ различного уровня сложности. Когда происходит утечка, один из токов увеличивается, в результате чего возникает магнитный поток. Он создан на феррите, что приводит к наведению ЭДС во второй обмотке. Электромагнит отодвигает защелку, размыкающую контакты.

Известны также УЗО-ДЭ, относящиеся к электронным модификациям. Они имеют сенсор и встроены непосредственно в операционную систему. Такие изделия отличаются высокой чувствительностью и возможностью размыкания цепи в ответ на токи смещения.

И, конечно же, у них высокая скорость реакции. Но при этом их стоимость на порядок выше аналогов, а электроника может выйти из строя.

Если вы хотите знать, как выбрать УЗО, то желательно решить несколько вопросов:

  • поставить комплект УЗО и автомат или отдельно дифавтомат;
  • оценить расчетным путем требуемый ток отключения в момент перегрузки;
  • рассчитать рабочий ток устройства;
  • установить требуемый ток утечки.

Особенности подключения

Необходимо помнить, что штатное УЗО срабатывает для защиты человека, не реагируя на короткое замыкание или чрезмерную нагрузку. Но дифавтомат рассчитан на любые нарушения в работе схемы. УЗО можно установить параллельно с обычными машинами, попросив их работать попарно, или выбрать дифавтомат.

Первый вариант подходит для ситуации, когда проводка уже активна и в цепи уже установлены машины.Второй подход целесообразно применить с новым расположением проводки и экрана.

Чтобы понять, как правильно подключить УЗО, вам необходимо рассмотреть несколько вариантов:

  • Базовым подходом было бы подключение после счетчика, который, в свою очередь, следует за центральной машиной.
  • Предпочтительная последовательность следующая: счетчик следует за центральной машиной, после чего устанавливается селективное УЗО. Затем выходит из строя групповая машина, за ней следуют групповые защитные устройства.

Итак, устройство вылетает максимально близко к счетчику, что видно по фото УЗО в приборной панели. Но ставить обычное защитное устройство на старую проводку TN-C недопустимо. Но есть ли необходимость в установке устройства для обеспечения безопасности? Потом нужно ставить после машин, идущих к приборам.

Также следует учитывать некоторые правила установки:

  • , чтобы исключить возможность совмещения «нулевого» провода с клеммой заземления после УЗО;
  • избегайте неполного подключения фаз;
  • не подключайте нагрузочный провод защитного устройства к рабочему проводнику;
  • не закрепляйте ноль защитным проводом при установке розеток;
  • исключить непреднамеренную ошибку при выборе полярности в момент подключения УЗО;
  • не соединяйте нейтраль и фазу, прошедшую через защитное устройство, с другими нейтральными и фазными проводниками.

Сложнее обстоит дело в квартирах без заземления. В этом случае действует другая инструкция по подключению:

  • Во-первых, нельзя поставить общий прибор.
  • Во-вторых, для каждого потребителя необходимо предусмотреть защиту индивидуальных УЗО.
  • В-третьих, проводники защитного типа от розеток нужно как можно быстрее наматывать на защитный зажим.
  • В-четвертых, при каскадном подключении верхние защитные устройства должны быть менее чувствительны, чем устройства, следующие за ними.

Устройства защитного отключения позволяют существенно защитить человека, исключая получение электротравм из-за утечек тока. Самостоятельно устанавливать данное устройство не рекомендуется. Для качественной и безопасной работы электросети желательно привлекать к работе специалистов.

Фото УЗО

Можно услышать мнение, в котором оспаривается необходимость установки устройств защитного отключения (далее УЗО).Чтобы его опровергнуть или подтвердить, необходимо понимать функциональное назначение этих устройств, принцип их действия, конструктивные особенности и схему подключения. Также немаловажным фактором является правильное подключение в зависимости от конкретной задачи. Мы постараемся максимально широко ответить на все вопросы по этой теме.

Функциональное назначение

Согласно официальному определению, этот тип устройства играет роль быстродействующего защитного выключателя, реагирующего на ток утечки.То есть срабатывает при образовании цепи между фазой и «землей» (провод PE).

Рассмотрим классический пример, в ванной установлен электрический водонагреватель. Работает без проблем, гарантийный срок и даже больше, потом наступает момент, когда корпус одного из ТЭНов трескается и фаза разрывается на воду.

Если в этом случае образуется цепь фаза — человек — земля, то тока нагрузки будет недостаточно для срабатывания электромагнитной защиты, она рассчитана на короткое замыкание.Что касается тепловой защиты, время ее отклика намного больше, чем сопротивление человеческого тела разрушительному воздействию электрического тока. Результат не поддается описанию, самое страшное, что в многоквартирном доме такой котел может представлять угрозу для соседей.

В таких случаях представленное устройство — единственный действенный способ обеспечить надежную защиту. Пришло время рассмотреть его концепцию, конструкцию и принцип действия.

Схема устройства

В первую очередь представим принципиальную схему устройства с указанием его основных элементов.


Обозначение:

  • A — Реле, управляющее контактной группой.
  • B — Дифференциальный ТТ (трансформатор тока).
  • C — Фазная обмотка на ДТТ.
  • D — Нулевая обмотка на ДТТ.
  • E — Контактная группа.
  • F — Сопротивление нагрузки.
  • G — Кнопка, запускающая тестирование устройства.
  • 1 — Фазный вход.
  • 2 — фазный выход.
  • N — Контакты нейтрального провода.

Теперь давайте объясним, как это работает.

Принцип действия

Допустим, некое устройство с внутренним сопротивлением R n питается от нашего защитного устройства, а корпус подключенного устройства заземлен. В этом случае при нормальной работе токи одинаковой величины, но разные по направлению будут течь через обмотки I и II DGT.


Таким образом, суммарное значение i 0 и i 1 будет равно нулю. Соответственно, магнитные потоки, вызванные токами в DTT, также будут противоположными, поэтому их общее значение также будет равно нулю.С учетом вышеперечисленных условий во вторичной обмотке ДДТ не будет генерироваться ток, поэтому реле, управляющее контактной группой, не срабатывает. То есть защитное устройство останется включенным.

Теперь рассмотрим ситуацию, когда на корпусе подключенного оборудования произошла поломка.


В результате появления тока утечки (i y) на «землю» баланс токов, протекающих через первичные обмотки I и II, будет нарушен.Это приведет к тому, что величина магнитного потока также станет ненулевой, что вызовет образование тока (i 2) на вторичной обмотке ДТП (III), на который реле, управляющее контактной группой подключен. Он будет работать, и подключенное оборудование будет обесточено.

Кнопка тестирования на устройстве имитирует утечку тока через резистор R t, что позволяет проверить, что устройство работает. Эта проверка должна выполняться не реже одного раза в месяц.

Конструктивные характеристики

На рисунке ниже показано типичное защитное устройство со снятой верхней крышкой, которая позволяет видеть основные компоненты конструкции.


Условные обозначения:

  • A — Механизм кнопки запуска тестирования устройства.
  • B — Контактные площадки для подключения фазового входа и нулевого провода.
  • C — Дифференциальный TT.
  • D — Электронная плата усилителя тока, питаемая от вторичной обмотки до уровня, необходимого для срабатывания реле.
  • E — Нижняя часть пластикового корпуса со стандартной установкой на DIN-рейку.
  • F — Дугогасительные камеры на размыкающей группе контактов.
  • G — Контактные площадки для подключения фазного вывода и нулевого провода.
  • H — Механизм разблокировки (реле срабатывает или вручную).

Перечень основных характеристик

Разобравшись с устройством устройств и принципом их работы, перейдем к основным параметрам. К ним относятся:

  • Тип защищаемой электропроводки, она может быть однофазной или трехфазной.Этот параметр влияет на количество полюсов (2 или 4).
  • Значение номинального напряжения для двухполюсных устройств составляет 220-240 Вольт, для четырехполюсных — 380-400 Вольт.
  • Значение номинальной токовой нагрузки, этот параметр соответствует значению автоматических выключателей (далее AB), но имеет несколько иное назначение (будет подробно рассмотрено ниже), измеряется в Амперах.
  • Номинальное значение дифференциального (отключающего) тока, типовые значения: 10, 30, 100 и 300 мА.
  • Вид отключающего тока, принятых обозначений:
  1. AC — соответствует синусоидальному переменному току. Допускаются как медленный его рост, так и внезапное проявление.
  2. A — Добавлена ​​к предыдущим характеристикам (AC) возможность отслеживать утечку выпрямленного пульсирующего тока.
  3. S — Обозначение селективных устройств, они отличаются относительно большой задержкой срабатывания.
  4. G — То же, что и предыдущий тип (S), но с меньшей задержкой.

Теперь необходимо пояснить значение параметра номинального тока, так как это вызывает некоторые вопросы. Это значение указывает максимально допустимый ток для этого защитного электромеханического устройства.

При выборе этого параметра необходимо учитывать, что он должен быть на одну ступень выше, чем у AB на этой линии. Например, если АКБ рассчитана на 25 А, то необходимо установить защитные устройства с номинальным током 32 А.

Обратите внимание, что этот тип устройства не предназначен для работы от короткого замыкания и перегрузки.Если такая авария произойдет, то вся проводка сгорит и произойдет пожар, но прибор останется включенным. Именно поэтому такие защитные устройства необходимо использовать совместно с АВ. Как вариант, можно установить диффузавтомат, по сути, это тоже устройство защитного отключения, но снабженное механизмом защиты от короткого замыкания и перегрузки.

Маркировка

Маркировка нанесена на лицевую панель устройства, что это означает, мы расскажем на примере двухполюсного устройства.


Условные обозначения:

  • A — Аббревиатура или логотип производителя.
  • Б — обозначение серии.
  • C — значение номинального напряжения.
  • D — Параметр номинального тока.
  • E — значение тока отключения.
  • F — Графическое обозначение типа тока отключения, может дублироваться буквами (в нашем случае показана синусоида, указывающая на тип переменного тока).
  • G — Графическое обозначение устройства на принципиальных схемах.
  • Н — Значение условного тока короткого замыкания.
  • I — Схема устройства.
  • Дж — минимальное значение рабочей температуры (в нашем случае — 25 ° C).

Мы привели типичную маркировку, которая используется в большинстве устройств этого класса.

Варианты подключения

Прежде чем перейти к типовым схемам подключения, необходимо сказать о нескольких общих правилах:

  1. Устройства этого типа должны быть спарены с AB, как мы уже упоминали выше, это связано с тем, что защитные устройства не оснащены защитой от короткого замыкания.
  2. Значение номинального тока защитного устройства, оно должно быть на одну ступень выше, чем у АКБ, стоящих с ним в паре.
  3. Входные и выходные контакты не следует путать. То есть фаза должна применяться ко входу, отмеченному, как правило, «1», а ноль — к «N». Соответственно, «2» — это фазовый выход, а «N» — ноль.
  4. Ноль после аппарата не должен подключаться к нулю перед ним.

Теперь рассмотрим простейшую схему, в которой защита от КЗ и тока утечки установлена ​​на каждой линии.


В этом случае все просто, на вводе АБ (А на рис. 7) устанавливается с номинальным током 40 А. После него идет общий прибор (В), его еще называют противопожарным. устройство. Это устройство должно иметь ток утечки не менее 100 мА и номинальный ток не менее 50 А (см. Пункт 2 общих правил выше). Далее идут две связки УЗО-АВ (C-E и D-F). Параметр номинального тока для «C» и «D» составляет 16 А. Для «E» и «F» этот параметр должен быть на одну ступень выше, в нашем случае это 20 А.Что касается величины тока отключения, то для влажных помещений этот показатель должен составлять 10 мА, для других групп потребителей — 30 мА.

Этот вариант подключения самый простой и надежный, но и более дорогой. Его по-прежнему можно использовать для двух внутренних линий, но когда их количество от 4 и более, имеет смысл поставить по одному устройству защиты на группу АВ. Пример такой схемы показан ниже.


Как видно на этой схеме, у нас установлено одно общее (противопожарное) защитное устройство и четыре групповых для освещения, кухни, розеток и санузла.Такой вариант подключения позволяет значительно снизить затраты по сравнению со схемой, в которой жгут RCD-AB подключается к каждой линии. Кроме того, обеспечивается необходимый уровень защиты.

В заключение несколько слов о необходимости защитного заземления. Для нормального функционирования УЗО это необходимо. В интернете можно найти схему переключения без PE (по сути, она ничем не отличается от обычной), но следует учесть, что срабатывание будет только при контакте с батареями, трубами холодной или горячей воды, и т.п.

Введение

Разработаны специальные электрические устройства для защиты людей и животных. Их называют УЗО, сокращенно УЗО. УЗО защищает от поражения электрическим током при прикосновении к находящемуся под напряжением оборудованию. Защита происходит как при прямом, так и косвенном контакте с оборудованием, находящимся под напряжением. Помимо этой задачи, УЗО используется для контроля состояния изоляции электропроводки. Это обеспечивает дополнительную защиту помещения от огня.Разберем подробнее функции устройства защитного отключения (УЗО).

Функции УЗО

УЗО защищает людей и животных от поражения электрическим током при прикосновении к корпусам электроприборов, находящихся под напряжением.

Токопроводящие корпуса и отдельные элементы оборудования и устройств могут находиться под напряжением. Это определенно чрезвычайная ситуация, и она может возникнуть в двух случаях.

  1. Если фазный провод электропроводки замкнут на корпус устройства, то при заземлении корпуса происходит так называемое короткое замыкание.Для отключения сети при коротком замыкании предназначены автоматические выключатели. Но корпус может быть не заземлен или сопротивление короткого замыкания очень велико и автоматические выключатели не сработают. Решит проблему защиты, в данном случае установка УЗО в электрической цепи.
  2. Либо контакт с фазным проводом корпуса оборудования не полный. То есть можно только повредить изоляцию на токоведущих проводах, и тогда появятся так называемые токи утечки.Ток утечки может не только неприятно «укусить», но и быть смертельным, особенно во влажных помещениях. Правильно подобранное и установленное УЗО защитит от токов утечки.

выводы

Основных функций УЗО две:

  • Обнаружение тока утечки и автоматическое отключение электрической цепи. Время отключения цепи УЗО составляет 200 миллисекунд (1 миллисекунда = 0,001 секунды).
  • Защищайте не только от непрямого, но и от прямого контакта.Прямой контакт — это прикосновение человека или животного к токоведущим частям устройств под напряжением.

Дополнительная функция УЗО

УЗО, установленное на вводе электросети в дом, обеспечивает дополнительную пожарную безопасность помещения. В некоторых странах установка УЗО с чувствительностью 500 мА является обязательной. В нашей стране (в РФ) установка УЗО на 300 мА на входе в дом, для противопожарной защиты, носит рекомендательный характер.

Давайте посмотрим, как УЗО контролирует токи утечки и как это работает в целом.

Принцип действия УЗО

Рассмотрим принцип работы УЗО, по объяснению принципа работы реле тока повреждения (Схема 1, Схема 2)

УЗО имеет магнитную цепь из круглого сердечника. Вокруг сердечника протекают ток потребителя INPUT (I1) и потребителя OUT (I2). При нормальной работе эти токи равны, и система находится в равновесии.

Схема 1.

class = «eliadunit»>

При возникновении тока утечки на стороне потребителя (Id) баланс токов нарушается и через измерительную обмотку начинает течь ток, пропорциональный току утечки сердечника УЗО.Реле в УЗО срабатывает, потому что реле питается от этой измерительной обмотки. «Реле сработало» означает, что цепь разомкнута, и ток не течет к поврежденному потребителю и, как следствие, УЗО защищает человека от тока утечки.

Разность токов называется дифференциальным током, поэтому говорят, что УЗО реагирует на дифференциальные токи в цепи.

Автоматический выключатель в сочетании с УЗО называется дифференциальным выключателем.То есть он реагирует как на ток короткого замыкания, так и на дифференциальный ток, возникающий из-за утечки тока.

Схема 2: Принцип работы УЗО по схеме с системой питания TN-S.

Схема 2.

Легенда:

  • I 1 — ток на ВХОДЕ потребителя
  • I2 — ток потребителя ВЫХОД
  • Id — ток утечки
  • Ic — ток через корпус при прикосновении к корпусу под напряжением
  • RA — сопротивление заземления

Прочтите и посмотрите визуальную схему работы УЗО в системе TN-S… Формат схемы 750 × 1120 точек. Статья с формулами и таблицами.

Аббревиатура УЗО образована от словосочетания «Устройство защитного отключения», которое определяет назначение устройства, заключающееся в снятии напряжения с подключенной к нему цепи в случае случайных пробоев изоляции и образования через них токов утечки.

Принцип работы

Для работы УЗО используется принцип сравнения токов, входящих в управляемую часть цепи, и токов, выходящих из нее на основе дифференциального трансформатора, преобразующего первичные значения каждого вектора во вторичные значения. Строго пропорциональна по углу и направлению геометрического сложения.

Метод сравнения может быть представлен обычным балансом или балансиром.


При соблюдении баланса то все работает нормально, а при его нарушении качественное состояние всей системы меняется.

В однофазной цепи сравнивается вектор фазного тока, приближающийся к измерительному элементу, и нуль, выходящий из него. При нормальной работе с надежной интегральной изоляцией они равны, уравновешивают друг друга.При возникновении неисправности в цепи и появлении тока утечки баланс между рассматриваемыми векторами нарушается его величиной, которая измеряется одной из обмоток трансформатора и передается на логический блок.

Сравнение токов в трехфазной цепи проводится по такому же принципу, только токи всех трех фаз пропускаются через дифференциальный трансформатор, и на основе их сравнения создается дисбаланс. При нормальной работе токи трех фаз уравновешиваются геометрическим сложением, и в случае нарушения изоляции в любой фазе в ней возникает ток утечки.Его значение определяется суммированием векторов в трансформаторе.


Структурная схема

Упрощенная работа устройства защитного отключения может быть представлена ​​блоками на блок-схеме.


Неуравновешенность токов от измерительного прибора направлена ​​в логическую часть, которая работает по принципу реле:

1. электромеханический;

2. или в электронном виде.

Важно понимать разницу между ними.Электронные системы сейчас переживают бум и становятся все более популярными по многим причинам. У них широкий функционал, большие возможности, но для логики и исполнительного органа требуется электрическое питание, которое обеспечивает специальный блок, подключенный к главной цепи. Если по разным причинам отключится электричество, то такое УЗО, как правило, не подойдет. Исключение составляют редкие электронные модели, оснащенные этой функцией.

В электромеханических реле

используется механическая энергия взведенной пружины, что в принципе напоминает обычную мышеловку.Минимальное механическое усилие на активированном исполнительном механизме достаточно для срабатывания реле.

Когда мышь касается приманки приготовленной мышеловки, ток утечки, возникающий в случае дисбаланса в дифференциальном трансформаторе, приводит к срабатыванию исполнительного механизма и отключению напряжения от цепи. Для этого реле имеет встроенные силовые контакты в каждой фазе и контакт подготовки тестера.

Реле любого типа имеет определенные достоинства и недостатки.Электромеханические конструкции надежно работают многие десятилетия и хорошо себя зарекомендовали. Для них не требуется внешний источник питания, и электронные модели полностью от него зависят.

В настоящее время принято считать, что наиболее эффективной мерой защиты от поражения электрическим током в электроустановках с напряжением до 1000 В является устройство защитного отключения (УЗО) для тока утечки.

Не возражая против важности данной меры защиты, большинство специалистов много лет спорят о значениях основных параметров УЗО — тока установки, времени срабатывания и надежности.Объясняется это тем, что параметры УЗО тесно связаны с его стоимостью и условиями эксплуатации.

Действительно, чем меньше ток уставки и меньше время срабатывания, тем выше надежность УЗО, тем дороже его стоимость.

Кроме того, чем ниже ток уставки и чем короче время срабатывания УЗО, тем строже требования к изоляции защищаемой зоны, так как даже незначительное ее ухудшение в условиях эксплуатации может привести к частому, а в некоторых случаи длительных ложных отключений электроустановки, что делает невозможной нормальную работу.

С другой стороны, чем выше ток уставки УЗО и больше время его срабатывания, тем хуже его защитные свойства.

Конструкция УЗО

Схема однофазного УЗО показана на рисунке ниже.


В нем на входные клеммы подается напряжение, а к выходным клеммам подключается управляемая схема.

Устройство трехфазного дифференциального тока выполнено таким же образом, но контролирует токи всех фаз.


На рисунке показано четырехпроводное УЗО, хотя трехпроводные конструкции доступны в продаже.

Как проверить УЗО

Функциональная проверка встроена в любую проектную модель. Для этого используется блок «Тестер», представляющий собой разомкнутый контакт — пружинную кнопку самовозврата и токоограничивающий резистор R. Его величина подбирается так, чтобы создать минимально достаточный ток, который искусственно имитирует утечку.

При нажатии кнопки «Тест» подключенное к операции УЗО должно отключиться.Если этого не произошло, то его следует забраковать, поискать неисправность и отремонтировать или заменить на исправный. Ежемесячная проверка устройства защитного отключения (УЗО) повышает надежность его работы.

Кстати, исправность электромеханических и отдельных электронных конструкций несложно проверить в магазине перед покупкой. Для этого при включенном реле достаточно кратковременно подать ток в цепь фазы или нуля от аккумулятора с любой полярностью подключения по вариантам 1 и 2.


Работающее УЗО с электромеханическим реле будет работать, а электронные изделия в подавляющем большинстве случаев не могут быть проверены таким образом. Им нужна сила для работы логики.

Как подключить УЗО к нагрузке

Устройства защитного отключения предназначены для использования в цепях питания по системе TN-S или TN-C-S с подключением в проводке шины защитной нейтрали PE, к которой подключаются корпуса всех электрических устройств.

В этой ситуации, если изоляция нарушена, потенциал, возникающий на теле, немедленно проходит через провод заземления на землю, и компаратор вычисляет неисправность.

В обычном режиме питания УЗО не отключает нагрузку, поэтому все электроприборы работают оптимально. Из тока каждой фазы в магнитной цепи трансформатора индуцируется собственный магнитный поток F. Поскольку они равны по величине, но противоположно направлены, они взаимно уничтожают друг друга.Полный магнитный поток отсутствует и не может вызвать ЭДС в обмотке реле.

В случае утечки опасный потенциал переходит на землю через шину PE. ЭДС индуцируется в обмотке реле из-за возникающего дисбаланса магнитных потоков (токов в фазе и нуле).

УЗО мгновенно таким образом вычисляет неисправность и за доли секунды обесточивает цепь с силовыми контактами.

Особенности УЗО с электромеханическим реле

Использование механической энергии заряженной пружины в некоторых случаях может быть более выгодным, чем использование специального блока для электропитания логической схемы. Рассмотрим это на примере, когда отключен ноль питающей сети, и наступает фаза.

В такой ситуации статические электронные реле не получат питание и, следовательно, не смогут работать.В то же время в этой ситуации трехфазная система имеет разбаланс фаз и повышение напряжения.

Если пробой изоляции происходит в ослабленном месте, то потенциал появится на корпусе и уйдет через проводник защитного заземления.

В УЗО с электромеханическим реле защиты нормально работают от энергии заряженной пружины.

Как работает УЗО по двухпроводной схеме

Неоспоримые преимущества защиты от токов утечки в электрооборудовании, выполненном по системе TN-S за счет использования УЗО, обусловили их популярность и желание отдельных владельцев квартир устанавливать УЗО по двухпроводной схеме, не оснащенной провод PE.

В этой ситуации корпус электроприбора изолирован от земли, не контактируя с ней. Если происходит пробой изоляции, то на корпусе появляется фазный потенциал, не сливается с него. На человека, который контактирует с землей и случайно касается устройства, действует ток утечки так же, как и в ситуации без УЗО.

Однако в цепи без УЗО ток может протекать через тело в течение длительного времени.Когда УЗО установлено, оно обнаружит неисправность и отключит напряжение во время настройки за доли секунды, что также снизит степень поражения электрическим током.

Таким образом, защита облегчает спасение человека, находящегося под напряжением в зданиях, оборудованных схемой TN-C.

Многие домашние мастера пытаются самостоятельно установить УЗО в старых домах, ожидающих реконструкции, с целью перехода на систему TN-C-S. При этом в лучшем случае выполняют самодельный контур заземления или просто подключают корпуса электроприборов к водопроводной сети, батареям отопления, железным частям фундамента.

Такие соединения могут создавать критические ситуации, когда возникают неисправности и причиняют серьезный ущерб. Работы по созданию контура заземления должны проводиться качественно и контролироваться электрическими измерениями. Поэтому их выполняют обученные специалисты.

Типы монтажа

Большинство УЗО выполнены в стационарном исполнении для установки на общую DIN-рейку в распределительном щите. Однако в продаже можно найти переносные конструкции, которые подключаются к обычной электрической розетке, а защищаемое устройство дополнительно питается от них.Стоят они немного дороже.

Что делает УЗО? УЗО — выключатель дифференциального тока. Он сравнивает ток, который прошел в квартиру, с током, который вернулся из квартиры. Если эти токи разные, УЗО отключает напряжение.

В каких случаях полезно это свойство УЗО? При повреждении изоляции проводов в электроприборах. Например, внутри стиральной машины повреждается изоляция на фазном проводе, в результате чего он касается корпуса.УЗО сразу отключит электричество, потому что ток, который прошел в квартиру по фазному проводу, не вернулся на УЗО (из корпуса машины он вернулся в экран по «заземляющему» проводу, минуя УЗО, а значит , входящий и исходящий токи через УЗО оказались разными) …

При неаккуратном обращении с электропроводкой. Вот классический пример. Мужчина сверлит стену, упираясь босой ногой в батарею, и попадает в фазовый провод.Ток, проходящий по цепи «тело сверла по металлу — рука — грудь — нога — батарея», вызывает паралич сердца и / или остановку дыхания. Но если есть УЗО, то сразу «почувствует», что часть тока не вернулась (та часть, которая прошла через человека и ушла в аккумулятор). Напряжение будет отключено так быстро, что неприятностей не будет. Конечно, человек будет шокирован, но не более того.

В случае неосторожного обращения с электроприборами.Вот классический пример. Мужчина сидит на краю ванны, и в ней его жена хорошо застрахована. И он случайно роняет подключенный к розетке радиоприемник в воду … Думаю, принцип ясен — ток не вернулся в УЗО, а пошел по трубам в землю и т. Д. Обратите внимание, что ситуация, когда часть ток не возвращается в УЗО, это называется «утечка тока».

Когда не помогает УЗО

Увы, УЗО не настолько умен, чтобы различать, что именно входит в электрическую цепь — человека или лампочку.Если утечки тока нет, все в порядке. Почему же тогда считается, что УЗО значительно повышают безопасность? Да, потому что подавляющее большинство случаев поражения электрическим током так или иначе связано с током утечки — ситуация, которую распознает УЗО. Вероятность опасной для жизни ситуации (например, когда ток проходит через грудную клетку) без утечки намного ниже.

Сколько у вас должно быть УЗО?

Для защиты от поражения электрическим током достаточно одного на всю квартиру.Другое дело удобство. Конечно, лучше, если при возникновении проблем с электропроводкой или электроприборами отключалась только соответствующая линия, а не обесточивалась вся квартира. Более одного УЗО, как правило, можно установить только в индивидуальной собственной приборной панели, специально предназначенной для этого. В «родном» торпеде на лендинге для этого места обычно не хватает.

Когда УЗО используется для одной линии и ток течет от него непосредственно к потребителю, он должен иметь встроенный ограничитель максимального тока.Если поставить простое УЗО, то в случае короткого замыкания может выйти из строя. Или при длительной перегрузке по току он будет постоянно нагреваться и в конце концов тоже выйдет из строя (например, без особой причины начнет отключаться). Такое устройство, т.е. УЗО и «автомат» в одном случае, стоит в 2 раза дороже простого УЗО. Например, фирменные устройства стоят около 50 и 100 долларов соответственно.

Таким образом, если вы видите на простом УЗО надпись «40А», это не значит, что оно отключится при 60А, а значит, при 60А через какое-то время сгорит.

В каких случаях установка УЗО нецелесообразна?

Например, в случае старой ветхой проводки. Способность УЗО обнаруживать утечку тока может вызвать больше проблем, чем пользы, если оно начнет непредсказуемо срабатывать. А со старой проводкой это может запуститься в любой момент (даже при первом включении УЗО). Поэтому в данной ситуации лучшим выбором может быть не установка УЗО в цепи электроснабжения всей квартиры, а в местах с повышенной опасностью использовать розетки со встроенным УЗО.

УЗО

делятся на типы:

AC — реагирует на дифференциальный синусоидальный переменный ток;
А — реагирует на синусоидальный переменный и пульсирующий постоянный дифференциальный ток;
B — реагирует на синусоидальные переменные, пульсирующие постоянные и прямые дифференциальные токи.

Пункт 7.1.78 ПУЭ 7-го издания гласит: «В зданиях могут использоваться УЗО типа А, реагирующие как на переменные, так и на пульсирующие токи короткого замыкания, или« переменный ток », реагирующие только на переменные токи утечки.Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и т. Д. »

Во Временной инструкции по применению УЗО в электроустановках жилых домов (I. стр. От 29.04.97 № 42-6 / 9-ET, п. 4.10) указано:

«В жилых домах, как правило, следует применять УЗО типа А, которые реагируют не только на переменные, но и на пульсирующие токи короткого замыкания. В обоснованных случаях допускается использование УЗО типа «АС», реагирующих только на переменные токи утечки.«

Следует отметить, что в последние годы резко увеличилось количество электроприборов с бестрансформаторным питанием.

Практически все персональные компьютеры, телевизоры, видеорегистраторы имеют импульсные блоки питания, все последние модели электроинструментов, стиральные, швейные машины, бытовая техника для кухни оснащены тиристорными регуляторами без изолирующего трансформатора. Широко используются различные лампы — торшеры, бра с тиристорными диммерами.

Это означает, что вероятность возникновения пульсирующей утечки постоянного тока и, соответственно, ущерба человеку значительно возросла, что послужило основанием для внедрения УЗО типа А в широкую практику.
В европейских странах в соответствии с требованиями электротехнических стандартов последние несколько лет происходит повсеместная замена УЗО типа АС на тип А.
В нашей стране также началось повсеместное внедрение УЗО типа А. Опытные конструкторы, при выполнении важных заказов включать в проекты только УЗО типа А.

В таблице приведены осциллограммы токов в цепях, содержащих различные регулируемые и неуправляемые вентильные элементы, и отмечена возможность использования в этих цепях УЗО типа А или переменного тока.

УЗО типа В встречаются крайне редко; они используются в специальных промышленных электроустановках со смешанным питанием — переменным, выпрямленным и постоянным токами.

Схемы подключения УЗО в электроустановках зданий

По ГОСТ Р 50571.3-94 (п. 413.1.3.2) обязательным условием нормального функционирования УЗО в электроустановке здания является отсутствие в зоне срабатывания УЗО каких-либо соединений нулевого рабочего проводника N с заземленными элементами электроустановки. и нейтральный защитный провод PE.

В распределительных щитах электроустановок с системой заземления TN-C-S в точках разъединения PEN-проводника необходимо предусмотреть отдельные клеммы или шины нулевого рабочего N и нулевого защитного PE-проводника.

Поскольку повреждение и старение изоляции возможно как в фазных, так и в нейтральных рабочих проводниках, а УЗО реагирует на утечку на землю от любого из них, на отходящих линиях следует устанавливать двух- и четырехполюсные автоматические выключатели. Только в этом случае можно найти неисправную цепь, поочередно подключив линии, в том числе цепь с утечкой из нулевого проводника без демонтажа вводного распределительного устройства, а также возможно отключение неисправной цепи для обеспечения работы остальной части электроустановки.

В ГОСТ Р 50571.9-94 «Электроустановки зданий. Часть 4. Требования безопасности. Применение мер защиты от сверхтоков »содержит инструкции по установке и защите нулевого рабочего и нулевого защитных проводов.

Пункт 473.3.2 «Защита нейтрального рабочего проводника» регулирует порядок защиты нейтрального рабочего проводника от тока короткого замыкания.

Пункт 473.3.2.1. Системы TT и TN:

а) в случаях, когда сечение нулевого рабочего проводника не менее или равно сечению фазных проводов, не требуется предусматривать устройство для обнаружения тока короткого замыкания в этом проводе. или устройство для его отключения;

б) в случаях, когда поперечное сечение нулевого рабочего проводника меньше поперечного сечения фазных проводов, следует обеспечить обнаружение тока короткого замыкания в нейтральном рабочем проводнике, соответствующем его поперечному сечению, с помощью влияние на отключение фазных проводов.В этом случае отключение нулевого рабочего проводника обязательно.

Однако обнаружение тока короткого замыкания в нейтральном проводе не требуется, если одновременно выполняются следующие условия:

нейтральный рабочий провод защищен от короткого замыкания устройством защиты фазных проводов цепи;

максимальный ожидаемый ток, который может протекать через нулевой рабочий проводник в нормальном режиме, значительно меньше, чем значение длительно допустимого тока этого проводника.

Примечание. Второе условие выполняется, если передаваемая мощность распределяется между рабочими фазами по возможности равномерно. Например, если сумма мощностей электрических потребителей, подключенных между фазой и нулевым рабочим проводом (освещение, розетки), намного меньше суммарной мощности рассматриваемой цепи. Сечение нулевого рабочего проводника должно составлять не менее 50% сечения фазного проводника.

Пункт 473.3.2.2. IT-система.

Системы

IT обычно не нуждаются в нейтральном проводе. Однако в случаях использования системы IT с нейтральным рабочим проводом необходимо предусмотреть устройства обнаружения перегрузки по току в нейтральном проводе каждой цепи с эффектом отключения всех токоведущих проводов соответствующей цепи, включая нулевой рабочий провод.

Такие меры не требуются, если:

нулевой рабочий проводник надежно защищен от короткого замыкания с помощью устройства, установленного на стороне питания, например, на вводе в установку, в соответствии с правилами, указанными в пункте 434.3 ГОСТ 50571.5;

рассматриваемая цепь защищена устройством защитного отключения, которое реагирует на дифференциальный дифференциальный ток с уставкой тока не более 0,15 от максимально допустимого тока нейтрального рабочего проводника.

Такое устройство должно отключать все токоведущие проводники соответствующей цепи, включая нулевой провод.

Если требуется отключить нулевой рабочий провод, то он должен быть отключен после отключения фазных проводов, и включен одновременно с фазными проводами или ранее.

ГОСТ Р 50571.3-94 в пункте 413 «Защита от непрямого прикосновения» формулирует требования к реализации защитного заземления в системе ТТ.

Пункт 413.1.4. Система ТТ.

Пункт 413.1.4.1. Все открытые токопроводящие части, защищенные одним защитным устройством, должны быть соединены защитным проводом с одним заземляющим устройством. Если несколько защитных устройств устанавливаются последовательно, это требование применяется отдельно к каждой группе открытых токопроводящих частей, защищаемых каждым устройством.

Нейтральная точка или, если ее нет, фаза питающего генератора или трансформатора должна быть заземлена.

Пункт 413.1.4.2. Должно быть выполнено следующее условие:

РАИа — 50 В, где: РА — суммарное сопротивление заземляющего электрода и заземляющего проводника; Ia — ток срабатывания защитного устройства.

Если защитное устройство является устройством остаточного тока и реагирует на остаточный ток, то Ia означает настройку остаточного тока защитного устройства IDn.

Если защитное устройство является устройством защиты от перегрузки по току, оно должно быть:

или устройство с обратно зависимой время-токовой характеристикой, где Ia — значение тока, обеспечивающее время срабатывания устройства не более 5 с;

или устройство с отсечкой по току, и тогда Ia — уставка тока отсечки.

На рис. 1-11 приведены примеры схем подключения зданий, отвечающих требованиям современных нормативных документов, с использованием УЗО (для примера взята линейка УЗО ASTRO *).

По эффективности действия до сих пор нет реальной альтернативы защитному отключению, о чем наглядно свидетельствуют результаты научных исследований и успешная практика использования УЗО по всему миру.

В ближайшие годы УЗО станут основным и наиболее радикальным средством электрозащиты, а это означает, что нормативная база должна развиваться и улучшаться, чтобы соответствовать требованиям времени.

Николай Бозов | Промышленная автоматизация и управление

Типы систем заземления

Сегодня существуют три схемы заземления системы, определенные стандартами IEC 60364 и NF C 15.100, это системы TN, TT и IT.

Для обеспечения защиты людей, оборудования и непрерывности работы токопроводящие провода и токоведущие части электроустановки «изолированы» от заземленных открытых токопроводящих частей. Изоляция включает:

  • разделение изоляционными материалами.
  • разделение линейными зазорами в газах (например, в воздухе) или путями утечки вдоль изоляторов (например,грамм. для предотвращения пробоя в электрическом распределительном устройстве).

Описанные различные схемы заземления (часто называемые типом энергосистемы или схемами заземления системы) характеризуют метод заземления установки после вторичной обмотки трансформатора СН / НН и средства, используемые для заземления открытых проводящих проводов. части установки РН, питаемые от нее.

Таким образом, обозначение типов систем заземления обозначается двумя буквами.Первая буква для подключения нейтрали трансформатора (2 возможности):

  • T для «заземленного».
  • I для «раскопанных» (или «изолированных»).

Вторая буква для типа соединения открытых токопроводящих частей установки (2 возможности):

  • T для «прямого» заземления
  • Н для «подключен к заземленной нейтрали» в исходной точке установки.

Комбинация этих двух букв дает три возможных конфигурации: TT, TN и IT.

Система ТТ

Одна точка источника питания подключена непосредственно к земле. Все открытые и посторонние проводящие части подключаются к отдельному заземляющему электроду на установке. PE-соединение обеспечивается локальным заземляющим электродом. Этот электрод может быть или не быть электрически независимым от электрода истока. Две зоны воздействия могут перекрываться, не влияя на работу защитных устройств. Таким образом, защита людей от непрямого контакта обеспечивается УЗО со средней или низкой чувствительностью.

Система ТТ

T = Terra = нейтраль с прямым заземлением

T = Terra = каждый элемент оборудования имеет отдельное заземление с низким сопротивлением


Рисунок 1. Системы заземления TT.

Техника защиты людей: открытые токопроводящие части заземлены и используются устройства защитного отключения (УЗО). УЗО вызывает отключение распределительного устройства, как только ток короткого замыкания имеет напряжение прикосновения, превышающее безопасное напряжение Ui.

Принцип действия: прерывание при первом повреждении изоляции.

Основные характеристики

  • Самое простое решение в проектировании и установке. Используется в установках, снабжаемых непосредственно общественной распределительной сетью низкого напряжения.
  • Не требует постоянного контроля во время работы (может потребоваться периодическая проверка УЗО).
  • Защита обеспечивается специальными устройствами, устройствами защитного отключения (УЗО), которые также предотвращают риск возгорания, когда они настроены на <= 500 мА.
  • Каждое нарушение изоляции приводит к прерыванию подачи питания, однако отключение ограничивается неисправной цепью путем последовательной (селективные УЗО) или параллельной (выбор цепи) УЗО.
  • Нагрузки или части установки, которые во время нормальной работы вызывают высокие токи утечки, требуют специальных мер для предотвращения ложных отключений, т. Е. Питания нагрузок с помощью разделительного трансформатора или использования специальных УЗО.

Преимущество: Требуется всего 3 проводника

Недостаток: Эффективная система только при удалении трансформатора от потребителей.Применяется в низковольтных сетях в районах, в которых подстанция находится на большом удалении от потребителей, то есть в сельской местности. Используется в сетях среднего напряжения совместно с (воздушными) линиями электропередач.

Системы TN

Источник заземлен как для системы ТТ (см. Выше). В установке все открытые и посторонние проводящие части подключены к нейтральному проводу. Ниже представлены версии систем TN.

Система TN-C

Нейтральный проводник также используется в качестве защитного проводника и называется проводником PEN (защитный проводник и нейтраль).Эта система не допускается для проводов сечением менее 10 мм2 или переносного оборудования.

T = Terra = нейтраль с прямым заземлением

N = низкоомный обратный проводник к нейтрали трансформатора

C = «комбинированный» провод для PE и N = PEN

Рисунок 2. Системы заземления TN-C.

Для системы TN-C требуется эффективная эквипотенциальная среда внутри установки с рассредоточенными заземляющими электродами, расположенными как можно более равномерно, поскольку PEN-проводник является одновременно нейтральным проводником и в то же время несет токи дисбаланса фаз, а также гармонические токи 3-го порядка (и их кратные).

Следовательно, PEN-проводник должен быть подключен к нескольким заземляющим электродам в установке.

Внимание: В системе TN-C функция «защитный провод» имеет приоритет над «функцией нейтрали». В частности, PEN-провод всегда должен быть подключен к клемме заземления нагрузки, а для подключения этой клеммы к нейтральной клемме используется перемычка.

Преимущество: всего 4 проводника

Недостаток: чувствительность к электромагнитным помехам, поскольку гармоники отводятся через PEN, что означает, что нагрузки с проводником N дополнительно нагружаются гармониками.

Система TN-S

Система TN-S (5 проводов) обязательна для цепей с поперечным сечением менее 10 мм2 для переносного оборудования. Защитный провод и нейтральный провод разделены. В подземных кабельных системах, где существуют кабели в свинцовой оболочке, защитным проводником обычно является свинцовая оболочка. Использование отдельных проводов PE и N (5 проводов) обязательно

T = Terra = нейтраль с прямым заземлением

N = низкоомный обратный провод к нейтрали трансформатора

S = отдельные провода для PE и N

Рисунок 3.TN-S Системы заземления.

Преимущество: система соответствует директивам EMC

Недостаток: 5 проводников

Система TN-C-S

Системы TN-C и TN-S могут использоваться в одной установке. В системе TN-CS система TN-C (4-х проводная) никогда не должна использоваться после системы TN-S (5-проводная), поскольку любое случайное прерывание нейтрали на восходящей части приведет к прерыванию цепи. защитный провод в выходной части и, следовательно, опасность.

В этой системе комбинированный провод N и PE (PEN) выходит из трансформатора, но в какой-то момент провод PEN разделяется на отдельные линии PE и N. Тем не менее, PEN является правильным описанием для этого PE, потому что нейтраль может быть отделена от комбинированного проводника в любое время. После того, как нейтраль была отделена от комбинированного проводника, ее нельзя снова подключить к PEN, т.е. это должна быть «ответвительная линия»! Если нейтральный провод, который уже был отделен от PEN, был бы повторно подключен к нему, он образовал бы параллельное соединение с неисчислимым импедансом и, следовательно, также неисчислимой нагрузкой короткого замыкания.Кроме того, это может привести к возникновению нежелательных блуждающих («блуждающих») токов.

Рисунок 4. Системы заземления TN-C-S.

ИТ-системы

Между нейтральной точкой источника питания и землей не выполняется преднамеренное соединение.

I = нейтраль трансформатора изолирована или с заземлением с высоким сопротивлением

T = Terra = каждый элемент оборудования имеет отдельное заземление с низким сопротивлением

Преимущество: первая неисправность = проводящее соединение от фазы к корпусу не вызывает отключения.

Недостаток: должна быть установлена ​​дополнительная система контроля для обнаружения первой неисправности.

Используется, например, в ситуациях, когда важна высокая доступность электроустановок, например в операционных больниц, во взрывоопасных зонах.

Рисунок 5. Системы заземления IT.

Типы систем заземления в соответствии со стандартом IEEE

Заземление (заземление) — это система электрических цепей, соединенных с землей, которая функционирует, когда ток утечки может разрядить электричество в землю.

Согласно Стандарту 142 ™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE), цель системы заземления:

  1. Ограничить величину напряжения на землю в допустимых пределах
  2. Обеспечьте путь для прохождения тока, который может обеспечить обнаружение возникновения нежелательной взаимосвязи между системным проводом и землей. Это обнаружение приведет к срабатыванию автоматического оборудования, которое определяет подачу напряжения от проводника.

В соответствии со стандартами IEEE система заземления делится на:

  1. TN-S (Terre Neutral — отдельный)
  2. TN-C-S (Terre Neutral — комбинированный — раздельный)
  3. TT (Дабл Терре)
  4. TN-C (Neutral Terre — комбинированный)
  5. IT (Изолированная земля)

Терре происходит от французского языка и означает земля.

Первая буква обозначает соединение между землей и источником питания, а вторая буква показывает соединение между землей и электронным оборудованием, на которое подается электричество.Значение каждой буквы следующее:

  • T (Terra) = прямое соединение с землей.
  • I (Изоляция) = Нет соединения с землей (даже при высоком импедансе)
  • N (нейтраль) = подключение напрямую к нейтральному кабелю питания (если этот кабель также заземлен в источнике питания)
  1. TN-S (Terre Neutral — отдельный)

В системе TN-S нейтральная часть источника электроэнергии соединена с землей в одной точке, так что нейтральная часть установки потребителя напрямую подключена к нейтральному источнику электроэнергии.Этот тип подходит для установок, близких к источникам электроэнергии, например, для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения для собственных нужд и если установка / оборудование находится рядом с источником энергии (трансформаторы).

  1. TN-C-S (Terre Neutral — комбинированный — отдельный)

Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземляющий на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME).В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе установка оборудования у потребителя только соединяет землю с клеммой (каналом), обеспечиваемой источником питания.

  1. TT (Дабл Терре)

В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования).В системах ТТ потребители должны обеспечивать собственное заземление, а именно путем установки заземляющего электрода, подходящего для данной установки.

  1. TN-C (Neutral Terre — комбинированный)

В системе TN-C нейтральный канал основного распределительного оборудования (источника питания) подключается непосредственно к нейтральному каналу потребителя и корпусу установленного оборудования.

В этой системе нейтральный провод используется в качестве защитного проводника, а комбинация нейтральной и заземляющей боковых рам оборудования известна как проводник PEN (защитное заземление и нейтраль).

Эта система не разрешена для проводов менее 10 мм 2 или переносного оборудования. Это связано с тем, что при возникновении неисправности по PEN-проводнику одновременно проходит ток небаланса фаз, гармонический ток третьего уровня и его кратные.

Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, при применении системы TN-C провод PEN должен быть подключен к нескольким электродным стержням для заземления на установке.

  1. IT (Изолированная земля)

Из первой буквы (I) ясно, что в этом типе IT-системы нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.

В своем применении нейтральная точка IT-системы на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом.Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.

TT IT TN-S TN-C TN-C-S
Импеданс контура замыкания на землю Высокая Самый высокий Низкая Низкая Низкая
Предпочтительно УЗО Есть НЕТ Дополнительно Нет Дополнительно
Требуется заземляющий электрод на объекте Есть Есть Нет Нет Дополнительно
PE проводник стоимость Низкая Низкая Самый высокий Минимум Высокая
Риск обрыва нейтрали Нет Нет Высокая Самый высокий Высокая
Безопасность Сейф Менее безопасный Самый безопасный Наименее безопасный Сейф
Электромагнитные помехи Минимум Минимум Низкая Высокая Низкая
Риски безопасности Высокое сопротивление контура (ступенчатое напряжение) Двойная неисправность, перенапряжение Нейтраль битая Нейтраль битая Нейтраль битая
Преимущества Безопасность и надежность Непрерывность работы, стоимость Самый безопасный Стоимость Безопасность и стоимость

Не стесняйтесь обращаться к нам по адресу marketing @ phoenixcontact.com.sg, чтобы узнать больше!

Выбор правильной системы заземления, Бернард Джовер

Регулирование энергетики

Выбор правильной системы заземления для источника питания имеет решающее значение для защиты людей и имущества. И чтобы сделать правильный выбор, вы должны понимать, как разные системы заземления влияют на электромагнитную совместимость.

Система заземления электроустановки определяет, как нейтраль источника питания (обычно трансформатора) соединяется с землей. Системы заземления были разработаны несколько десятилетий назад для защиты людей и имущества и фиксации потенциального опорного напряжения для источника электричества. Что касается электромагнитной совместимости, разные системы заземления могут вызывать помехи или перенапряжения. Вот почему при проектировании электроустановки важно выбрать правильную систему заземления.

Четыре системы заземления:

  • TT: Защитное заземление не зависит от установки.
  • IT: Нейтраль изолирована от защитного заземления или соединена сопротивлением.
  • TN-C: Нейтраль и защитное заземление совмещены.
  • TN-S: Нейтраль и защитное заземление независимы.

Основные характеристики четырех систем заземления:

Стандарты ЕС и международные стандарты рекомендуют систему заземления TN-S, которая вызывает меньше проблем с электромагнитной совместимостью для установок, включающих сети IT (и сети связи в частности).

Подсказки

Система заземления должна быть выбрана в начале процесса проектирования установки.
Нейтраль должна быть заземлена в одной точке как можно ближе к трансформатору.
Системы заземления IT, TT и TN-C часто являются источником помех; В этих случаях следует использовать разделительный трансформатор.
Если система заземления неизвестна, используйте специальный трансформатор для питания чувствительного оборудования (устройств автоматизации, электроники, интерфейсов и т. Д.)).
Используйте отдельные трансформаторы для питания чувствительных систем или систем, создающих помехи.
Используйте фильтры ЭМС (подходящего размера и правильно установленные).
Используйте устройства защиты от перенапряжения (подходящего размера и правильно установленные).
Обратите особое внимание на ток утечки, создаваемый фильтром ЭМС (конденсаторы между фазой и нейтралью на землю).

Теги: Электроустановки, электрические панели, Удар током, электромагнитная совместимость

.

Оставить комментарий