Устройство рекуператора воздуха для самостоятельного изготовления: Рекуператор воздуха своими руками — как сделать для дома или квартиры, в том числе пластинчатый, чертежи и схемы, устройство, виды + видео

Опубликовано в Разное
/
18 Июн 2019

Содержание

Рекуператор воздуха своими руками — как сделать для дома или квартиры, в том числе пластинчатый, чертежи и схемы, устройство, виды + видео

О комфортабельности современного жилища у разных людей разные представления. Но в целом они выражаются в простой формулировке благоприятных условий обитания человека в нём, зимой тут должно быть тепло, а летом прохладно. Это требует затрат на обогрев и охлаждение дома или квартиры. Учитывая постоянно растущую стоимость энергоресурсов, содержание жилья обходится всё дороже. Теплоизоляция жилища становится особенно актуальной, обогревать улицу стало непозволительной роскошью.
Качественное утепление жилья немыслимо без выполнения герметизации дома или квартиры. Специальными материалами уплотняются все дверные и оконные примыкания к стенам, конструкции окон и дверей обеспечивают герметичность их закрывания и т. п. Но в результате жилище превращается в своеобразный термос, в котором, без использования принудительной вентиляции, жить становится очень некомфортно. И что, дополнительный обогрев/охлаждение свежего воздуха, который теперь сможет проникать в дом только через вентиляционные каналы, вызовет новые неизбежные расходы на электроэнергию? Напротив, экономии способствуют сами вентиляционные системы. Всё дело в их конструкции. Ниже рассмотрены способы вентиляции помещений с помощью рекуператоров воздуха. Что это такое, как устроены эти агрегаты и можно ли сделать своими руками?

Преимущества системы вентиляции с рекуперацией

Современная принудительная приточно-вытяжная вентиляция с рекуперацией обеспечивает, как минимум, трёхкратное повышение эффективности и энергосбережение по сравнению с традиционными прямоточными схемами. Благодаря применению устройства утилизации тепла, называемого рекуператором, очень эффективно решается задача ограничения дополнительного расхода энергии, притока чистого и свежего воздуха, обеспечения требуемого уровня влажности в помещениях. При этом важно, что в закрытом объёме, постоянно обеспечиваемая принудительная смена воздуха обладает следующими преимуществами:

  • не даёт развиваться колониям опасных микробов, плесени;
  • удаляет углекислый газ и пыль.

Внешние атмосферные условия не влияют на принудительную вентиляцию с рекуператором, что выгодно отличает её от естественного вентилирования.

Типы рекуператоров

Рекуператор является фактическим теплообменником, центральным узлом такой эффективной системы. В нём воздух, нагнетаемый в дом, нагревается или охлаждается за счет части энергии, получаемой от удаляемого воздушного потока, не смешиваясь с ним, благодаря особенностям конструкции. По мнению специалистов, за схемами рекуперационной вентиляции будущее, поскольку именно они дают существенную экономию энергоресурсов.

Пластинчатый

Важным параметром блока рекуператора является его коэффициент полезного действия. Для обеспечения требуемой эффективности он должен быть не менее 70−80%. Путей повышения КПД несколько. Это увеличение времени и площади теплообмена или предварительный нагрев подаваемого воздуха. В условиях частного домовладения, добиться роста КПД таким способом достаточно легко, используя грунтовые теплообменники. Пластиковая труба, диаметром до 200 мм, проложенная на расстояние до 50 метров, на глубине около 2 метров, позволит дополнительно согреть зимой и охладить летом подаваемый в дом воздух.

Важным параметром блока рекуператора является его КПД

Приём значительно увеличивает общую эффективность всей системы вентилирования с рекуперацией. При использовании грунтового теплообменника зимой снижается риск возникновения обледенения или инея на пластинах теплообменника перекрёстной или противоточной конструкции за счёт большого перепада температур воздушных потоков. Исключаются расходы энергии на нагрев входящего потока, упрощается конструкция теплообменника и снижается его конечная стоимость. Если не применять грунтовой теплообмен, то неизбежное выпадение конденсата на пластинах приведет зимой к их обмерзанию. В этом случае в блоке теплообмена устанавливается дополнительное оборудование. Сюда входит блок автоматики, управляющий по сигналам датчиков температуры и давления, заслонкой обходного воздуховода («байпас») и включением дополнительного калорифера для нагрева поступающего воздуха до оттаивания пластин рекуператора.

Чертёж и схема работы
Принцип работы пластинчатого рекуператора
Схема пластинчатого рекуператора

Децентрализованный

В условиях многоэтажных домов, для квартир удобнее другой тип теплообменника, более компактный, называемый децентрализованным рекуператором тепла вентиляционного воздуха (ДРТВВ), попросту «тёплой форточкой». Такие системы не занимают много места в установке. Их легко расположить открыто или замаскированно в нише под окном, на боковой стене, в откосе оконного проёма и т. п. Использование такого устройства совершенно необходимо при установке герметичных пластиковых окон. Этот теплообменник обеспечивает поступление согретого свежего воздуха в зимнее время и охлаждённого летом, особенно, если в помещении установлен кондиционер. Работа рекуператора не влияет на температуру в квартире.

В квартире обычно устанавливаем более компактный рекуператор — децентрализованный

Конструкция этого типа представляет пластиковую трубу диаметром до 200 мм и длиной до 1,5 метров, в которую вставлен пучок тонкостенных трубок (алюминий) равной длины. Их развальцованные торцы собраны в кассету на двух фланцевых пластинах, равных внутреннему диаметру внешней пластиковой трубы. В конструкции используются два тройника и Г-образных колена из пластика, того же диаметра, что и основная труба. Кассета алюминиевых трубок вставляется в пластиковую трубу. На внешние края одеваются тройники и колена. С одной стороны в колене и тройнике установлены по одному электрическому вентилятору, которые обеспечивают вытяжку и приток воздуха. Длина внутренней трубчатой кассеты подобрана так, чтобы обеспечить проход подаваемого воздуха через два колена, удаляемый воздух проходит через тройники.

Чертёж и принцип работы
Принцип работы децентрализованного рекуператора
Схема децентрализованного рекуператора

Роторного типа

Наиболее высоким КПД обладает конструкция рекуператора роторного типа. В них встречные воздушные потоки проходят через двухканальный короб. Посередине короба перпендикулярно потокам вращается диск. Диск выполнен из пластин, укреплённых в одной с потоками плоскости или сплошной гофрированной металлической полосы, свёрнутой в неплотную спираль. Металл пластин или полосы вращающегося диска нагревается в теплом выходящем потоке воздуха. Поворачиваясь, нагретая часть попадает в холодный входящий поток и нагревает его.

Рекуператоры роторного типа обладают наибольшим показателем КПД

Для эффективной работы конструкции диск должен иметь большой диаметр и это один из недостатков, ограничивающий применение роторных рекуператоров в бытовой сфере. Кроме того, в отличие от двух предыдущих типов, в этой конструкции присутствует частичное смешивание потоков, что требует применения более сложной фильтрации. А наличие вращающихся элементов можно считать ещё одним «не достоинством».

Схема устройства и работы (система воздух-воздух)
Принцип работы роторного рекуператора
Схема рекуператора роторного типа

Какой выбрать для квартиры или дома

Рассмотрение типов существующих рекуператоров можно продолжать и далее, рассказав о типах рёберных пластинчатых рекуператоров и т. п. Но интерес представляет вопрос самостоятельного изготовления подобной конструкции и практическое её применение в собственном доме или квартире. Прежде всего, нужно подумать о необходимом типе такого блока теплообмена. Если в квартире все окна пластиковые и требуется эффективная вентиляция, лучше отдать предпочтение готовой промышленной компактной сборке ДРТВВ («тёплой форточке»).

Рекуператор обеспечит хорошую вентиляцию в помещении

Для частного домовладения, где вопрос свободного места не стоит так остро, вполне подойдёт одна из конструкций пластинчатого перекрёстного или противоточного типов. Именно они наиболее просты в самостоятельном изготовлении. Ниже рассмотрен наиболее простой способ самостоятельного изготовления самого теплообменника пластинчатого типа. Схемные решения автоматики управления, устройство заслонки переключения на канал «байпас» и т. п. можно найти на соответствующих ресурсах Сети или в специальной литературе.

Как сделать пластинчатый рекуператор своими руками?

Материалы для пластин

При выборе материала для изготовления кассеты самого пластинчатого теплообменника, принципиальной разницы, из чего набирать пластины, нет. Подойдёт:

  • тонкий лист алюминия или меди;
  • тонкая кровельная оцинковка;
  • листовой текстолит или гетинакс;
  • другой вид пластика.

На теплообмен теплопроводность материала пластин почти не влияет. Сколько нужно? Зависит от количества собираемых кассет. Для одной хватит около 4 квадратных метров. Если, руководствуясь изложенной выше теорией, захочется повысить КПД, нужно в два раза больше для кассеты того же размера. Можно сделать и одну, но большую. Однако требования по удалению возможного конденсата из корпуса не позволят «уложить» кассету на бок и придётся искать место для установки.

Понадобится уголок для стоек обоймы кассеты и фланцев. Перекладывать пластины можно проолифленной рейкой, полосовой технической пробкой. Если есть возможность, подготовленные для пластин заготовки можно штамповать в п-образные заготовки с высотой бортика от 4 до 5 миллиметров. Той же толщины должны быть рейки и пробковая полоса, ширина их до 10 миллиметров.

Материал для изготовления корпуса

  • металлический лист или фанера;
  • МДФ толщиной до 20 миллиметров;
  • брусок для каркаса;
  • метизы для крепежа;
  • минеральная вата;
  • силиконовый герметик.

Пошаговые действия

  1. Сначала аккуратно нарезаются пластины квадратной формы. Сторона до 300 миллиметров. Важно выполнить все пластины одинакового размера, стараясь не деформировать их края. Лучше всего пользоваться электроинструментом, разрезая несколько листов, сложенных пачкой. Всего нужно около 70 таких заготовок на кассету. На противоположные края квадратов наклеиваются рейки или пробка, нарезанные по размеру стороны пластины. На последний лист ничего не клеится. Клею даётся время высохнуть. Подготовленные заготовки склеиваются в кассету. Для чего клеем намазываются верхние стороны реек или полос пробки, а каждый последующий лист укладывается с поворотом на 90 градусов. Завершает набор пластина без прокладок. Получится кассета с чередующимися каналами, направленными перпендикулярно друг другу — будущий теплообменник.
  2. Кассета стягивается каркасом из уголка. В щели заполняют силиконовый герметик. На сторонах кассеты выполняются крепления для фланцевых соединений. Нужно учесть, что кассета должна располагаться вертикально на одном из углов квадрата, образуя равносторонний ромб. В нижней её части будет скапливаться образующийся конденсат. Тут предусматривается дренажное отверстие с трубкой отвода скопившейся влаги. Как говорилось выше, в одном корпусе может быть установлено более одной кассеты теплообменника для большего КПД. В этом случае, вторая должна иметь такие же габариты, как и первая. Их смежные углы должны плотно соприкасаться, не допуская щелей и просветов. Снизу и сверху на стык поместить силиконовый герметик.
  3. Подготовленная кассета вставляется в корпус. Его внутренняя высота и длина равны диагонали квадрата (если используется одна кассета), а ширина — толщине набора пластин. В стенках корпуса, напротив соответствующих сторон кассеты, выполняются отверстия для крепления пластиковых фланцев под воздуховоды. Устанавливать теплообменник нужно в специальные направляющие из уголка, укреплённые на стенках корпуса. Кассета получается съёмной, что важно для её обслуживания.
  4. Для входящих потоков нужно предусмотреть возможность установки простейших съёмных кассетных фильтров. На внутреннюю поверхность стенок корпуса крепится минеральная вата толщиной около 4 сантиметров. Для обеспечения принудительной вентиляции устанавливаются вентиляторы, позволяющие регулировать скорость вращения.

Видео: изготовление рекуператора в домашних условиях

Часть 1: сборка корпуса
Часть 2: пластины
Часть 3: монтаж

Для создания благоприятного микроклимата в доме или квартире, помещения нужно регулярно проветривать. Чтобы обеспечить баланс свежего воздуха и влажности нужно обеспечить жилище хорошей вентиляцией. Установка рекуператора решит эту проблему и кроме того, сэкономит энергоресурсы.

 

Оцените статью: Поделитесь с друзьями!

Самодельный рекуператор своими руками — Кондиционеры Gree

Зимой, вместе с отработанным воздухом, наружу выбрасывается драгоценное тепло, а с улицы в дом поступает холодный воздух, на нагрев которого тратится дополнительная энергия. Чтобы не отапливать улицу, всё большее количество современных и энергоэффективных домов оснащают рекуператорами. А т.к. цены на промышленные образцы, мягко говоря, кусаются, то лучший выход – это засучить рукава и сделать подобное устройство самостоятельно!

Что такое рекуператор воздуха?

Прежде чем приступить к конструированию рекуператора, необходимо разобраться что это такое.

Слово «рекуператор» (от латинского «recuperatio») означает получение или возвращение чего-либо обратно. Воздушный рекуператор – это устройство, в котором посредством теплообмена происходит передача тепла от потока исходящего, уже нагретого воздуха, входящему холодному воздуху.

Не следует путать понятия воздушное отопление и рекуперация. Если первое относится к системе отопления, то рекуператор является частью современной системы вентиляции загородного дома.

Эффективность и экономическая выгода от установки рекуперационной системы в доме зависит от следующих факторов:

  • стоимости энергоносителей;
  • предполагаемых сроков эксплуатации системы;
  • сумм, затраченных на монтаж системы;
  • суммы, затрачиваемой на ежегодное обслуживание системы.

Рекуператор – это всего лишь часть (и не самая дорогая) системы принудительной вентиляции. Поэтому и рекуператор, и вентиляцию, следует рассматривать как общую систему.

Особенности и принцип работы рекуператора

Особенностью рекуператора по принципу работы которого, процесс теплообмена, когда идущий с улицы холодный воздух нагревается тёплым потоком, который удаляется из квартиры. Используемые установки отличаются простотой конструкции, они надежны, позволяя предупредить быстрое охлаждение помещения в зимнее время года. Работают рекуператоры на электричестве, при этом современное оборудование отличается экономичностью, а расход энергии будет в разы меньше, чем возможная экономия на обогреве помещения.

Принцип работы таких устройств чрезвычайно прост. Внутри рекуператора холодный и теплый поток встречаются, но не смешиваются. При этом происходит активная передача тепла холодному воздуху с улицы, который может нагреваться на 3−5 градусов. В каждом конкретном случае эффективность таких устройств и их функциональные возможности будут различаться, в зависимости от выбранной конструкции, типа техники, наличия или отсутствия дополнительных вентиляторов с теплонагревающими элементами.

Эффективность рекуператора

При понижении температуры окружающей среды эффективность рекуператора уменьшается, но все же сделать рекуператор воздуха для частного дома своими руками важно, так как при существенной разнице система отопления будет перегружена. Если за окном лишь 0 градусов, то в жом будет попадать воздух с температурой в +16 градусов. Бытовые агрегаты с легкостью справляются со своей задачей. Эффективность устройства рассчитать несложно, если использовать следующую формулу:

Ƞ=(tпост  tулицы)/(tкомн  tулицы),

где

  • tпост – это температура поступившего воздуха (после рекуперации).
  • tулицы – температура на улице.
  • tкомн – температура в доме по рекуперации.

Современные устройства отличаются не только высокими показателями КПД и особенностями использования, но и по конструкции. Давайте рассмотрим наиболее популярные решения и их особенности.

Основные типы конструкций рекуператора

Изначально устройства для рекуперации тепла в системах вентиляции представляли собой простейшую по конструкции технику, выполненную в виде небольшого ящика с тонкой перегородкой. Сегодня появились многочисленные разновидности, которые отличаются своим принципом работы, наличием или отсутствием дополнительных нагревающих элементов, способом формирования воздушных потоков и рядом других характеристик.

Основные типы рекуператоров:

  • Роторные.
  • Пластинчатые.
  • Канальные.
  • Трубчатые.
  • С отдельным теплоносителем.

Устройства с пластинчатым теплообменником используют перекрестный ток потоков, которые, не смешиваясь, эффективно передают тепло, нагревая тем самым помещение. КПД у таких установок в зависимости от их размера может составлять 60−80%. Они отличаются минимальными потерями давления, удобны в подключении и использовании, имеют компактную конструкцию, что позволяет располагать его внутри стен дома.

Комбинированные рекуператоры могут иметь два пластинчатых теплообменника, где формируется перекрестный поток воздуха. К преимуществам оборудования этого типа относится высокий коэффициент полезного действия, удобство подключения и простота обслуживания. Единственный недостаток таких установок — это существенная потеря давления, что вынуждает использовать дополнительные вентиляторы и нагнетатели для воздушного потока.

Пластинчатые промышленные теплообменники рекуператоров противоточного типа отличаются простотой конструкции, они обеспечивают КПД на уровне 90%, позволяя предупредить охлаждение помещения и эффективно нагревая поступающий в дом воздух с улицы. К недостаткам оборудования противоточного пластинчатого типа относят сложную конструкцию, высокую стоимость, а также увеличенные габариты.

Противоточные трубчатые бытовые теплообменники обеспечивают максимально возможную эффективность, имеют КПД на уровне 95%. Используя такой рекуператор в системе вентиляции, необходимо дополнительно подключать нагнетатели воздуха, так как потери давления могут составить 40−50%. Также недостатком установок этого типа являются их увеличенные габариты и высокая стоимость оборудования.

Рекуперативные теплообменники роторного типа обладают показателем КПД на уровне 75−85%, они рассчитаны на одну квартиру и имеют небольшое сопротивление потоку. Предлагаются такие установки по доступным ценам, отличаются компактными габаритами, их монтаж и последующее обслуживание не представляет какой-либо особой сложности.

Самостоятельное изготовление рекуператора

Сегодня в продаже можно найти различные модели изготовленных в заводских условиях системы рекуперации воздуха для частного дома, которые отличаются качеством сборки, имеют высокие показатели КПД, а их монтаж не представляет сложности. Однако высокая цена такого оборудования отрицательно сказывается на его популярности на российском рынке.

Поэтому многие отечественные домовладельцы самостоятельно изготавливают нагреватели, выполнить которые можно из подручных материалов с использованием простейших инструментов. Нужно лишь продумать тип конструкции, а также рассчитать мощность установки, которая должна подходить под показатели производительности всей системы вентиляции в доме.

Проще всего сделать своими руками рекуператор для частного дома пластинчатого типа, который отличается простотой конструкции и эффективностью. Можно найти многочисленные схемы выполнения такого оборудования, что существенно упрощает работу, одновременно имеется возможность точного расчёта мощности конкретной установки.

Преимущества и недостатки самодельного рекуператора

К преимуществам самодельных пластинчатых рекуператоров принято относить следующее:

  • Длительный срок эксплуатации.
  • Простота используемых материалов и функциональных элементов.
  • Надежность конструкции.
  • Полная автономность и отсутствие привязки к электроснабжению.
  • Высокий КПД.

К минусам таких нагревателей для системы вентиляции принято относить лишь вероятность образования наледи при сильных морозах, что отрицательно сказывается на эффективности установки, вплоть до полного прекращения нагрева поступающего с улицы воздуха. Чтобы решить такие проблемы с обледенением, необходимо дополнительно утеплять рекуператор или устанавливать его в теплом обогреваемом помещении.

Большой популярностью пользуются самодельные рекуператоры кассетного типа, которые эффективны и при этом полностью решают проблемы с появлением конденсата и обледенением при низких температурах. Выполнить такие нагреватели и их кассеты можно из целлюлозы, а корпус устройства изготавливается из жести или любого другого металла, хорошо защищенного от коррозии.

Инструменты и материалы для изготовления рекуператора своими руками

Перед тем как непосредственно приступать к изготовлению рекуператора своими руками, необходимо подготовить используемые инструменты и материалы.

Примерный набор материалов и инструментов:

  • металл 0.5-1 мм, текстолит или сотовый поликарбонат 1-5 мм в количестве 5, 10 или 15 м2 в зависимости от типа рекуператора;
  • рейки 2-3 мм из дерева, технической пробки или оргстекла, шириной 1-1.5 см;
  • нержавейка, ДСП, фанера для корпуса согласно чертежам;
  • минеральная вата, пенополистирол для теплоизоляции;
  • 4 фланца из пластика для воздуховодов на основе канализационных труб;
  • лобзики по дереву и металлу, желательно электрические;
  • силиконовый герметик;
  • алюминиевая трубка 2-5 мм, длина по проекту;
  • универсальный клей;
  • саморезы;
  • стальной уголок 20х20 мм, длина по проекту;
  • шуруповёрт, ножовка по металлу;
  • фильтры бумажные, автомобильные – сколько потребуется;
  • строительный нож;
  • молоток;
  • дрель, набор свёрл;
  • вентиляторы компьютерные или канальные в зависимости от проекта.

Фильтры заменяются или очищаются раз в 1-4 месяца.

Рекомендуются НЕРА-фильтры. Они недорогие, при этом выполняют очень глубокую очистку воздуха, в продаже есть разные типоразмеры.

Материалы заготавливаем соответственно выбранному типу рекуператора.

Чертежи для изготовления рекуператора своими руками

При подготовлении чертежей для изготовления рекуператора своими руками, листы металла используют для нарезания квадратов, которые по размеру должны иметь стороны от 20 до 30 см. В таком случае постарайтесь подобрать оптимальное значение с учетом того, какая система вентиляции была установлена в вашем доме. Листов должно быть не меньше 75 штук. Для того, чтобы они были ровнее, используйте одновременно только с 2-3 листами.

Для полноценного осуществления рекуперации энергии в системе следует подготовить деревянные рейки по размерам сторон квадрата. После этого аккуратно обработайте их при помощи олифы, а после каждый деревянный элемент приклейте на вторую сторону металлического квадратика. Один из квадратов обязательно должен остаться не оклеенным.

Чтобы рекуперация и вентиляция воздуха были эффективнее, каждую грань реек сверху следует тщательно промазать клеевым составом. Отдельные элементы должны быть собраны в сэндвич из квадратов. Очень важно, чтобы второй, третий и остальные квадраты были повернуты на 90 градусов по отношению к предыдущему. Благодаря такому способу изготовления рекуператора воздуха своими руками будет проведено чередование каналов и их перпендикулярное положение.

После этого на клей следует зафиксировать верхний квадрат, на котором будут отсутствовать рейки. При использовании уголков конструкцию следует аккуратно стянуть и прикрепить. Чтобы процесс рекуперации тепла в системе вентиляции был осуществлен без потерь воздуха, следует заполнить щели герметиком. Изготовьте фланцевые крепления. Изготовленное устройство поместите в корпус. Заранее на стенах устройства следует сделать несколько уголковых направляющих. Теплообменник должен быть размещен так, чтобы его углы упирались в боковые стенки, и тогда конструкция будет напоминать ромб.

Остатки в виде конденсата будут оставаться в нижней части. Главной задачей является получить два вытяжных канала, которые изолированы друг от друга. Внутри конструкции из элементов в виде пластин должно быть смешение воздушных масс. Внизу следует сделать небольшое отверстие, чтобы отвести конденсат через шланг. В конструкции сделайте четыре отверстия для фланцев.

Отдельно на входе оставьте место для фильтров. Конструкцию требуется покрыть минеральной ватой, и после установить вентилятор, а само устройство должно быть совмещено с вентиляционной системой.

Сборка рекуператора

Сборка рекуператора не представляет особой сложности: необходимо нарезать не менее 70 листов металла с размерами сторон от 200 до 300 мм. Подготавливаются деревянные рейки, размеры которых должны полностью соответствовать сторонам нарезанных листов металла. Древесину следует обработать олифой, что предупредит гниение и потерю прочности у внутренних элементов теплообменника. Подготовленные рейки приклеивают клеем с двух сторон металлических квадратов. Собрав все заготовки, можно приступать к следующему этапу работы.

Чередовать собранные квадраты следует с поворотом в 90 градусов, что позволит обеспечить перпендикулярное расположение кассет внутри рекуператора, гарантируя тем самым максимальную эффективность нагрева воздушных потоков без их смешивания. Верхний квадрат, к которому не крепят рейки, приклеивается к нижнему с помощью специального металлического клея. Дополнительно для повышения прочности конструкции ее стягивают уголками и фиксируют саморезами или аналогичным крепежом. Щели следует обработать герметиком, после чего формируют фланцевые крепления.

Теплообменник приточного рекуператора готов. Осталось выполнить из металла или пиломатериалов корпус устройства, смонтировать внутри каркаса сотовую кассету. Устанавливать теплообменник необходимо таким образом, чтобы он упирался в рёбра, формируя визуально ромб, через который в последующем будет проходить холодный воздух с улицы и удаляемый нагретый поток из дома.

Если корпус самодельного рекуператора изготавливается из древесины, следует обработать пиломатериалы специальными пропитками, что предупредит их гниение и быстрый выход из строя оборудования. В процессе работы на теплообменнике будет образовываться конденсат, который стекает с металлических кассет, скапливаясь на дне корпуса. Следует предусмотреть небольшие отверстия для удаления влаги, которые располагаются на одном уровне с дном корпуса устройства.

На последнем этапе работы крепят к деревянному или металлическому корпусу четыре фланца, которые выполняют из полипропиленовых труб или аналогичных материалов. Их фиксируют с использованием соответствующих хомутов и фитингов, дополнительно промазывая герметиком, чтобы обеспечить максимально возможную герметичность изготовленного корпуса устройства.

Для повышения эффективности самодельного вентиляционного рекуператора его следует дополнительно обшить минеральной ватой, которая предупреждает теплопотери и образование конденсата. Последний часто появляется, если такое оборудование установлено на открытом воздухе или же в неотапливаемом помещении.

На входе установки можно смонтировать воздушные фильтры, которые обеспечивают первичную очистку воздуха от имеющихся загрязнений, тополиного пуха и различных аллергенов.

Использование рекуператора в системе вентиляции частного дома позволяет расширить функциональные возможности такого оборудования, предупреждая быстрое охлаждение комнат в зимнее время года, что экономит расходы домовладельца на оплату коммунальных услуг. Хозяева могут приобрести уже готовые обогреватели, которые отличаются компактными размерами, простотой монтажа и эффективностью. Также можно изготовить рекуператор своими руками, что позволит сократить расходы на обустройство инженерных коммуникаций в частном доме.

Расчет мощности рекуператора

Для того, чтобы определить мощность рекуператора для конкретного пространства, используйте такую формулу:

Ǫ=0,355 *L * (tкомн tнач. ),

где

  • Ǫ – производительность (м3/сек).
  • L – общее кол-во приточного воздуха, которое должно поступить по норме на 1 человека (65 м3/час на того, кто в помещении постоянно, и 25 м3 на тех, кто находится в помещении временно).
  • (tкомн – tнач.) – это показатель разницы между температурой, которая требуется, и той, что на улице.

К примеру, для того, чтобы нагреть воздух в комнате до +25 градусов, где постоянно находиться один человек, требуется произвести следующий расчет: Ǫ=0.355*60*25=532, 5 Вт.

Для определения КПД агрегата будет достаточно узнать температуру в трех главных точках входа в систему:

КПД=(tрекупtулич)/ (tдомtулич),

где

  • Температура, поступающая с улицы до рекуперации (tулич).
  • Температура, поступающая в дом после рекуперации(tрекуп).
  • Температура, выходящая из дома до рекуперации (tдом).

Схема изготовления рекуператора

Прежде чем приступать к изготовлению, разберем, какие бывают рекуператоры и их схемы.Приведём основные виды:

  • собранные из тонких пластин;
  • с применением вращения ротора;
  • коаксиальные;
  • изготовленные из трубок;
  • с отдельным теплоносителем.

Параметры теплообменников рекуператоров

Общие параметры теплообменников рекуператоров:

  • пластинчатый – КПД 60-80%, компактный, легко подключается;
  • противоточный – КПД 80-90%, установка сложнее, более дорогой;
  • роторный – КПД 75-85%, подходит для одной квартиры.

Квадратный теплообменник является основным узлом пластинчатого рекуператора. Пластины изготавливают из листов меди, алюминия толщиной 0.5-1.5 мм в зависимости от размера устройства. Можно использовать алюминиевую фольгу, но это дорого и сложно в изготовлении. Дешевле и проще в обработке полипропилен и поликарбонат 3-10 мм, практически без уменьшения КПД.

Из алюминиевых трубок можно собрать трубчатый рекуператор. От квадратного он отличается только формой в виде трубы, имея практически такой же КПД. Крепится в стене, то есть не требует системы крепления к потолку.

Из нескольких автомобильных радиаторов (обычно 2-4) можно сконструировать рекуператор с отдельным теплоносителем. Переносчиком тепла служит вода либо антифриз.

Для частного или загородного дома проще всего сделать своими руками пластинчатый рекуператор воздуха. Принцип его работы: тёплый и холодный воздушные потоки проходят сквозь друг друга не перемешиваясь.

Пошаговая инструкция изготовления пластинчатого рекуператора

Разберем пошагово инструкцию изготовления пластинчатого рекуператора:

Из листов металла нарезаются квадраты 40х40, 50х50 мм в зависимости от желаемой мощности прибора в количестве 70-80 штук и площадью не меньше 3-5 м2.  Плюс к этому 2 квадрата тех же размеров из фанеры или ДВП для обкладки батареи теплообменника.

Заметим, что элементы теплообменника можно изготовить из сотового поликарбоната, который дешевле и проще в обработке, а также не требует применения прокладок. Рекомендуется брать листы типа 2Н толщиной 4 мм.

Пожалуй, самая выгодная схема: для подачи тёплого воздуха использовать пластину из поликарбоната, а для холодного – металлическую.

Из рейки или пробки готовятся прокладки для металлических пластин по их размерам и шириной 1-1.5 см с расчётом 3 штуки на 1 пластину.

Рассчитывается приблизительная толщина стопки пластин по формуле Т= (тл х тп) х К + Д, где:

  • тл – толщина листа;
  • тп – толщина прокладки;
  • К – количество листов;
  • Д – допуск (сантиметров 10).

Отрезаем 4 уголка вычисленной длины, закрепляем на рабочем столе вертикально по углам 1 квадрата из дерева. Это шаблон для сборки.

Наклеиваем на каждый металлический лист по три прокладки: 1 по центру и 2 на краях параллельно друг к другу.

Формируем теплообменник, укладывая на шаблон лист за листом, поворачивая каждый раз на 90 градусов. Так организован обмен теплом в этом устройстве.

Завершается сборка вторым квадратом из дерева. Сверху кладём груз 5-6 кг до полного высыхания клея. Затем, отметив высоту пачки на уголках, снимаем их, удаляем лишнее. Саморезами прикрепляем к обкладкам.

Изготавливаем корпус по размерам теплообменника: основной масштаб – это его диагональ и толщина.

В случае одного пакета его края могут крепиться на всех сторонах корпуса. Отверстия в боковых стенках выпиливаются под имеющиеся материалы, такие как вентиляторы, входные/выходные вентиляционные короба или трубы.

Следует иметь в виду, что теплообменник монтируется вертикально так, чтобы вентиляторы оказались вверху. Это важно для оттока конденсата: сливная трубка должна находиться в правой нижней части рекуператора.

Из помещения воздух подаётся ко входу левого на рисунке вентилятора, а правый – всасывает наружный воздух.

В случае если устройство будет работать в неотапливаемом помещении, теплоизолируйте его как можно лучше, например, минеральной ватой, пенополистиролом.

Один из вариантов установки пластинчатого рекуператора приведён на рисунке.

Пошаговая инструкция изготовления коаксиального рекуператора

Далее рассмотрим, как в домашних условиях собрать самому коаксиальный рекуператор.

Преимущества рассматриваемого устройства:

  • не имеет движущихся частей;
  • хороший КПД до 65%;
  • простота конструкции;
  • автономность – монтируется непосредственно в стене.

Все необходимые материалы легко приобрести в хозяйственном магазине:

  • пластиковая канализационная труба диаметром 16 см;
  • тройники – 2 шт.;
  • соответствующие трубе и вентиляторам переходники – 3 шт.;
  • алюминиевая гофротруба диаметром 10 см, длина равна 1.5 длины пластиковой трубы.

Диаметры переходников, гофротрубы и вентиляторов одинаковые:

  1. Определяемся с длиной трубы, помня, что КПД напрямую зависит от этого параметра. Отрезаем по размеру обе трубы.
  2. Размещаем кольцами предельно растянутый гофр внутри пластиковой трубы.
  3. После растяжки присоединяем тройники с обеих сторон так, чтобы гофр проходил в ответвления. Приклеиваем алюминий по диаметру к краям пластика, отрезаем лишнее.
  4. Присоединяем третий переходник со стороны домашней части трубы. С этой же стороны устанавливаем вентиляторы: через гофротрубу воздух выдувается наружу.
  5. Не забываем оба уличных отверстия закрыть фильтрами, чтобы мухи не летели.

В том случае, если рекуператор проходит через стену, вставьте его в канал стены и продолжайте с пункта 2.

Для небольших помещений и при наличии материала можете собрать трубчатый теплообменник рекуперации воздуха. Комплектующие те же, что в предыдущем случае, только надо заменить гофротрубу на трубки алюминиевые или стальные с диаметром 3-5 мм, взять немного листового металла либо пластика 2-4 мм и два Т-образных тройника:

  1. Из листа по диаметру трубы вырезаем 2 круга.  Разметив произвольно, одновременно в обоих высверливаем отверстия под внешний размер трубок. Чем больше отверстий, тем выше КПД.
  2. Все трубки собираем между кругами, проклеивая соединения. Теплообменник готов.
  3. Помещаем его в трубу. На обе стороны надеваем тройники так, чтобы край каждого был выше пластин теплообменника.
  4. С одной стороны конструкции в оба раструба тройника укрепляем вентиляторы.

Противоположные следует закрыть фильтрами.

Пошаговая инструкция изготовления реверсивного рекуператора

Представим интересное практическое решение: парный трубчатый реверсивный рекуператор для монтирования в стене.

Необходимые материалы:

  • 2 отрезка канализационной трубы;
  • заглушки на них – 2 шт.;
  • схема управления.

Общий вид приведён ниже:

  1. Как обычно, рисуем чертеж с учётом места эксплуатации прибора. Отрезаем кусок трубы и необходимое количество трубок.
  2. Забиваем рабочий объём трубками вплотную.
  3. Монтируем вентиляторы в заглушку «спинами» друг к другу. С другой стороны трубы клеим фильтр.
  4. Повторяем операции для второго устройства.
  5. Ответственный момент – изготовление электронной схемы управления. Принцип работы системы двух блоков «тяни-толкай»: один выталкивает воздух в течение, например, минуты, другой – засасывает, и наоборот.

Вместо трубок предлагается использовать пластмассовые шарики с диаметрами около 5 мм. Поверхность обмена теплом значительно увеличится, и КПД – тоже.

Пошаговая инструкция изготовления роторный рекуператора

Роторный рекуператор воздуха имеет высокий КПД, однако считается малопригодным для установки в жилых помещениях из-за высоких массогабаритных показателей, сложности изготовления и сборки.

Принцип функционирования понятен из рисунка: в кожухе вращается барабан, состоящий из множества канальцев, образованных гофрированным тонким металлом или трубочками, в которых и происходит теплообмен. В состав кожуха входят 2 воздушных короба подачи и отвода.

Ясно, что в такой конструкции происходит смешение потоков и частичный возврат воздуха, что уменьшает эффективность прибора. Но есть и плюс – влажность практически не изменяется.

Представляем вариант самодельного роторного рекуператора воздуха.

Материалы:

  • длинный стальной стержень с резьбой, диаметр 5-10 мм;
  • щипцы для блоков-заклёпок;
  • G-образная струбцина.

Приведем примерный порядок действий:

  • Создаём чертежи всего устройства под роторный теплообменник, включая короба отвода-подвода воздуха, крепления моторчика, привод и прочее.
  • Нарезаем трубки в количестве, рассчитанном по формулам: К = (площадь барабана) / (площадь трубки) или [ (радиус барабана) / (радиус трубки) ]х2. Длина трубок меньше длины барабана сантиметра на 2, чтобы была возможность загнуть бортики сверху и снизу.
  • Если удалось найти трубу из металла или пластика с нужными диаметром и длиной, переходите к следующему пункту.  В противном случае из металла сделайте барабан по своему эскизу. Для этого вначале выпилите круг из фанеры, затем металлический прямоугольник. Сверните его вокруг фанерного кружка с нахлёстом, скрепите струбциной. Действуя дрелью и щипцами, склепайте края цилиндра.
  • Из листа металла делаем 2 круга, и лобзиком вырезаем из них 2 торцевые крестовины.
  • Концы резьбового стержня зашлифовываем – это ось теплообменника.
  • Собираем каркас ротора: цилиндр + крестовины + ось. Туго набиваем цилиндр трубками.

Ротор рекуператора готов. Смонтируйте его в корпусе воздухообменника.

Правила монтажа рекуператора

Правильный монтаж рекуператора начинается с выбора места. Пластинчатые интегрируются в вентиляционную систему на стадии ее разработки или уже готовую. В последнем случае вырезается часть магистрали по длине готового изделия. Затем монтируется с помощью переходников. Для крепления используют кронштейны с прорезиненным основанием. Так можно минимизировать вероятность появления шума.

Установка трубчатых моделей сложнее, так как они не привязаны к системе вентиляции. Их применяют в квартирах и частных домах, где она отсутствует. Поэтому важно выбрать правильное место установки и количество устройств. Одна модель может обслуживать помещение площадью до 60 м². Учитывается наличие межкомнатных дверей.

Этапы монтажа рекуператора

  1. Определите место крепления. Располагается в верхней части комнаты, у потолка, примыкает к наружной стене здания.
  2. Диаметр отверстия в стене больше сечения корпуса на 2-3 мм.
  3. Между корпусом и стеной монтируется теплоизолирующая прокладка из стекловолокна, пенополистирола. Альтернатива – герметизация с помощью монтажной пены.
  4. Установка корпуса. В помещении он крепится к потолку с помощью специальных хомутов.
  5. Подключите вентилятора. Электропитание от ближайшей розетки или по установленному ранее электропроводу. Некоторые модели имеют дистанционный пульт управления.

После завершения работ и запуска ждут 2-3 часа. Затем проверяется разность температур во входном, выходном патрубке, в помещении и на улице. Так можно определить фактическую эффективность работы. Обслуживание простое. Необходимо периодически проверять отсутствие мусора и пыли внутри, герметичность соединений.

Как увеличить КПД рекуператора

Для увеличения эффективности самодельного устройства следует тщательно исполнять технологические операции на всех этапах его проектирования и изготовления.

КПД – это доля энергии, которую при теплообмене тёплый воздух отдаёт холодному. Поэтому следует максимизировать эту долю:

  • увеличить габариты прибора – увеличивается время взаимодействия воздушных потоков, а значит, и теплообмен;
  • увеличить площадь рабочей поверхности рекуператора, используя гофрированные пластины с меньшими размерами профиля;
  • проектировать большие объёмы выходящего воздуха, чем входящего;
  • использовать теплоизолирующие материалы хорошего качества;
  • тщательно герметизировать все объёмы с движущимся воздухом, не допуская смешения потоков;
  • вовремя очищать или заменять входные/выходные фильтры, уменьшая этим сопротивление потоку воздуха и улучшая его качество;
  • если у вас неуправляемый рекуператор, в зимнюю пору время от времени отключайте входной вентилятор, чтобы удалить наледь внутри устройства.

После установки рекуператора в рабочее положение разумно и интересно узнать его КПД. Эта величина даёт отношение доли переданной холодному воздуху энергии от тёплого домашнего.

Порядок такой:

  1. включаем прибор, выжидаем некоторое время;
  2. градусником измеряем три температуры – с улицы на входе устройства, в доме, на выходе;
  3. вычисляем по формуле КПД = (Тр-Ту) / (Тд-Ту) *100, где
    • Тр – температура на выходе рекуператора;
    • Ту – температура на входе, с улицы;
    • Тд – температура дома.

Пример: Тр=17, Ту=5, Тд=24 градусов. КПД = (17-5) / (24-5) *100=63%.

Рекомендации по изготовлению рекуператора своими руками

Выбирайте тип рекуператора для изготовления устройства своими руками, исходя прежде всего из имеющихся возможностей – материальных и финансовых.

Нарисуйте схемы устройства и чертежи отдельных элементов и узлов. Сделайте, если есть возможность, хотя бы простейший расчёт основного параметра рекуператора – его площади.

В случае пластинчатого теплообменника из металла эта площадь в расчёте на одного человека 4-6 м2 в зависимости от объёма помещения, а мощность вентилятора – 60-100 м3/час.

В общем случае КПД зависит от размеров агрегата, поэтому используйте свои возможности в полной мере.

Заключение

Теперь вы знаете, что собой представляет рекуператор и насколько он важен для современной вентиляционной системы. Такие устройства намного чаще начинают устанавливать в загородных домах и объектах общественной важности. Сейчас рекуператоры стали востребованы, и при желании вы даже можете сделать устройство своими руками из подручных материалов, как это описано в статье.

 

Источники:

  • https://zen.yandex.ru/media/forumhouse/effektivnyi-rekuperator-vozduha-svoimi-rukami-5a181b552f578c33be1a028f
  • https://topventilyaciya.ru/ventilyaciya/izgotovlenie-bytovogo-rekuperatora.html
  • https://stroy-podskazka.ru/rekuperator/svoimi-rukami/
  • https://domsdelat. ru/ventiliacia/samodelnyj-rekuperator-vozduxa-vse-plyusy-i-minusy-instrukciya-po-izgotovleniyu-video.html
  • https://proffstroygroup.ru/kommunikacii/rekuperator-svoimi-rukami.html

Читайте также:

Монтаж блоков кондиционера своими руками
Вентиляционный дефлектор погреба 

Принцип работы вентиляции с рекуператором воздуха

Свежий воздух не только в промышленных, но и в жилых помещениях – это залог здоровья людей и безопасного микроклимата. Но, у классической вентиляции есть существенный недостаток – в зимний период вместе с воздухом уходит драгоценное тепло. В летние месяцы, если в помещении установлен кондиционер, он будет чаще включаться в работу. Чтобы не выбрасывать деньги вместе с потоком ветра, существует технология рекуперации воздуха.

Что такое рекуператор?

Простыми словами, это специальный теплообменник для воздуха. Он способен частично возвращать уходящее тепло в зимнее время, и охлаждать поступающий с улицы воздух в летний период. Рекуперация – простой и эффективный способ снизить затраты на подержание нормального микроклимата в помещениях.

Что такое рекуператор?

Это специальная труба с двумя стенками, в которой поступающий поток и вытяжной не смешиваются друг с другом. Но, так как они тесно взаимосвязаны тонкими стенками теплообменника, температура двух потоков выравнивается относительно друг друга. Кроме этого, теплообменник способен уменьшать влажность воздуха путем конденсации излишек влаги на холодных стенках рекуператора.

Технология, по сути, разновидность энергосберегающих систем, призванных уменьшить потери тепла. При этом сохраняется нормальная циркуляция воздуха в доме или любом другом помещении. Исследования показали, что грамотно продуманная система сохраняет до 70% уходящего тепла. Благодаря разнообразию конструкций, подобрать оптимальное устройство можно для любого помещения или целого здания.

Классифицировать рекуператоры можно по следующим различиям:

Роторный тип устройства с механическим приводом.

Прямоточные и противоточные теплоносители системы.

Пластинчатые, ребристые или трубчатые конструкции.

Для подогрева воздуха или жидкого теплоносителя.

Первая конструкция имеет самый высокий показатель КПД. Но, система имеет один значительный недостаток, большие размеры устройства требуют большие габариты приточно-вытяжной системы чтобы обеспечить эффективную работу пластинчатого ротора.

Пластинчатый рекуператор воздуха — одна из самых компактных и недорогих конструкций, не требующих значительных изменений в уже существующей системе вентиляции. Работает по принципу несмешиваемых потоков воздуха. Но, благодаря этому обладает одним существенным недостатком – в зимний период вытяжная труба очень часто обмерзает. Повышенная влажность мгновенно конденсируется на стенках трубы, и превращается в растущую корку льда. Тем не менее, рекуператор пользуется популярностью, и широко применяется практически во всех широтах.

Подробное устройство и принцип работы

Отсутствие трущихся и движущихся деталей делает устройство очень надёжным в повседневной эксплуатации. КПД достигает средних показателей 60% за счёт простого устройства теплообменника. Несмотря на некоторые недостатки, связанные с частым обмерзанием в зимний период, конструкция теплообменника достаточно простая. Чаще всего применяется в квартирах, жилых домах и отапливаемых гаражах.

Частично нивелировать обмерзание удаётся установкой вентилятора принудительного обдува. Который необходимо периодически включать в работу. Клапан байпас тоже может решить проблему обмерзания, но он немного усложнит конструкцию рекуператора.

Технология достаточно простая, и вполне реализуема своими силами. Для этого не потребуется покупать сложные материалы, и иметь сложный электрический и ручной инструмент.

Самодельный рекуператор

Любой современный дом просто обязан иметь качественную вентиляцию. Отделочные материалы и пластиковые окна делают его практически герметичным. Если не обеспечить нормальное движение воздушных масс, люди, проживающие в таком доме, будут страдать от повышенной влажности воздуха и частыми респираторными болезнями. Кроме этого, вопрос энергосбережения с каждым годом всё острее становится перед владельцами частной недвижимости. Поэтому вполне оправданно желание самостоятельно изготовить недорогой, но эффективный теплообменник.

Перед тем как приступить к изготовлению, необходимо купить 4 квадратных метра жести, можно оцинкованной, и разрезать её на пластины размером 30 х 20 см. Пластины должны быть максимально точными. Это необходимо для создания эффективного рекуператора с показателем КПД не ниже 50%.

Важно: лучше воспользоваться не ножницами по металлу, а болгаркой. Резка отрезным кругом ускорит процесс и даст большую точность, если сложить листы в несколько слоёв.

Пластины не должны создавать повышенного сопротивления воздуху, то есть, зазор между отдельно взятыми кусками жести минимум 4 мм. В идеальных условиях поток воздуха должен быть максимально близким к значению 1 м/с. При такой скорости как раз можно выйти на показатель эффективности в 50-60%. Уложенные пластины дополнительно герметизируют любым веществом с нейтральными характеристиками.

Основной корпус рекуператора делают из жести или более толстого металла. Дополнительно его упаковывают в деревянный короб из фанеры или ДВП. Между деревянной и стальной частью обязательно должна быть прослойка из утеплителя. На эту роль лучше использовать минеральную вату. Общая эффективная площадь пластин будет 3,3 м кубических, этого вполне достаточно для обмена воздуха 150 м3/ч.

Важно: в зимний период, когда температура будет опускаться ниже -10, выходной фланец будет частично обмерзать. Датчик изменения давления позволит своевременно направлять приточный воздух через байпас, давая возможность тёплому потоку избавить фланец от накопившегося льда.

Рекуператор воздуха: что это такое и принцип работы

В этой статье рассмотрим:
Принцип работы рекуператора воздуха и его эффективность
Виды рекуператоров воздуха и чем они отличаются друг от друга

Как сделать рекуператор воздуха самостоятельно: инструкция

Что такое рекуперация? Переводя дословно с латинского, recuperatio – обратное получение чего-либо. Касательно воздуха это понятие подразумевает возврат тепловой энергии, уносимой воздухом через систему вентиляции. Именно о таком устройстве, помогающем вентилировать и не охлаждать помещения, мы поговорим в этой статье, в которой вместе с сайтом stroisovety.org ответим на вопросы: что такое рекуператор воздуха, как он работает, какие виды бывают у этого устройства и как его изготовить самостоятельно.

Рекуператор воздуха для частного дома схема

Принцип работы рекуператора воздуха и его эффективность

По своей сути, рекуператор воздуха для частного дома представляет собой ничто иное, как теплообменник, в котором выходящий из помещения воздух отдает большую часть своего тепла входящему с улицы – он его подогревает, предупреждая таким способом охлаждение помещений.

Комнатные рекуператоры воздуха фото

Устроен такой прибор достаточно просто – чтобы понять его принцип работы, представьте себе квадратную трубу, по которой выходящий из помещения воздух идет вдоль нее, а приходящий – поперек. При этом оба потока не смешиваются благодаря специальным теплопроводящим пластинам. Примерно так и устроен современный рекуператор для воздуха, в котором один поток отдает тепло другому. Эффективность работы такого устройства достаточно высока. Приведу цифры – если поток исходящего из помещения воздуха имеет температуру 21˚C, а на улице мороз -10˚C, то после рекуператора уличный воздух будет иметь температуру от +2 до +6˚C. Представляете, сколько энергии можно сэкономить с помощью этого устройства? Много! Счета за оплату энергоносителей снизятся в несколько раз.

Принцип работы рекуператора воздуха схема

Виды рекуператоров воздуха и чем они отличаются друг от друга

Разновидностей рекуператоров не так уж много. Можно выделить всего четыре основных вида, которые получили наибольшее распространение.

  1. Пластинчатые рекуператоры воздуха. Это самый распространенный тип подобных устройств, являющийся одновременно дешевым и эффективным. Их КПД составляет от 40 до 65%.
    Устроены такие агрегаты достаточно просто и в своей конструкции не имеют никаких трущихся подвижных частей. А это в первую очередь надежность – они практически не ломаются. Кроме того, комнатные рекуператоры воздуха пластинчатого типа не потребляют никакой энергии – они работают без ее использования. К недостаткам пластинчатых устройств можно отнести его обмерзание в зимний период года и невозможность осуществления влагообмена.
  2. Роторные рекуператоры воздуха. Этот тип рекуператора для своей работы требует наличия электрической энергии – его электроника, в зависимости от перепада температур снаружи и внутри помещения, подбирает оптимальное количество оборотов ротора, благодаря чему не происходит обледенения этого устройства зимой. Принцип его работы основан на вращении теплообменника, по которому проходит уличный воздух в потоке исходящего теплого воздуха. Именно благодаря такому вращению КПД роторных рекуператоров может достигать 87%. Кроме того, это устройство позволяет частично возвращать влагу назад в помещение, не пересушивая воздух. И еще, регулируя скорость вращения теплообменника, можно изменять скорость теплоотдачи.

    Рекуператор воздуха фото

  3. Рециркуляционный водяной рекуператор. У этого устройства КПД практически такое же, как и у пластинчатого рекуператора (50-65%), только в отличие от последнего, он имеет сложную конструкцию, в которой роль посредника для передачи тепла выполняет жидкость (вода или антифриз). Конструктивно эта система имеет некоторое сходство с отоплением. Роль котла в нем играет теплообменник, установленный на вытяжном канале вентиляции, а вместо батареи имеется теплообменник, который установлен на канале всасывания уличного воздуха. В первом вода нагревается, а во втором отдает свое тепло. Единственным преимуществом рециркуляционного водяного рекуператора является возможность установки его отдельных частей в разных местах. К влагообмену эти устройства не приспособлены, а без электроэнергии обходиться не могут, таков уж принцип работы искусственной циркуляции теплоносителя.
  4. Крышный рекуператор воздуха – для квартиры или дома не подойдет. Это промышленные установки, используемые в системах вентиляции магазинов, цехов и других подобных помещений. Их КПД составляет 55-68%. Основное их отличие – это низкие расходы на обслуживание и установку. Кроме того, благодаря своему месторасположению они экономят подпотолочное пространство, что является немаловажным в таких помещениях, как торговые залы и цехи, где и без того хватает другого оборудования.

Вот и все, можно сказать, что с видами рекуператоров мы разобрались, теперь самое время ознакомиться с возможностью самостоятельного изготовления этого устройства для дома или квартиры.

Рекуператор воздуха для квартиры и дома фото

Как сделать рекуператор воздуха самостоятельно: инструкция

Изготавливаются рекуператоры воздуха своими руками не так сложно, как может показаться на первый взгляд – чтобы было понятнее, изложим по пунктам всю технологию изготовления.

  1. Изготавливаем теплообменник. Для этого приобретаем листовой оцинкованный металл, пластиковые полосы шириной 2см и толщиной 4мм, а также четыре пластиковых фланца. Металл нарезается одинаковыми прямоугольными пластинами 300 на 300мм, пластиковые полосы режутся в такой же размер. После этого можно приступать к сборке теплообменника. На первый лист с двух сторон приклеиваются с помощью нейтрального силикона пластиковые полосы (плашмя), после чего на эти полосы приклеивается следующий лист. На него пластиковые полосы клеятся с другой стороны листа – если на первом вы приклеили их слева и справа, то на втором нужно будет приклеить спереди и сзади. Снова клеим лист металла. Смотрим что получилось. Должно выйти так – если между первым и вторым листом металла просматривается пустота, то между вторым и третьим она не должна просматриваться. Идея в том, чтобы исходящий поток воздуха проходил через одну полость, а входящий через другую поперек исходящего потока воздуха. Таким вот образом клеим теплообменник, пока он не достигнет высоты 150мм.
  2. Когда вся эта конструкция высохнет и превратится в цельное изделие, с четырех ее сторон, там, где должен проходить воздух, приклеиваем фланцы, а оставшееся пространство, которое не попало под фланец, герметизируем нейтральным силиконом.
  3. Помещаем получившийся теплообменник в заранее изготовленный корпус – сделать его можно из любых подходящих материалов (фанера, ДСП, ОСБ).

Как сделать рекуператор воздуха своими руками

Готовый рекуператор подключается к системе приточно-вытяжной вентиляции. Что и куда вы подсоедините не важно, главное – соблюсти вход и выход потоков воздуха.

Вот, в принципе, и весь рекуператор воздуха пластинчатого типа действия. Ну и в заключение пару советов, которые помогут избавиться от некоторых проблем в процессе эксплуатации этого устройства. Во-первых, корпус рекуператора лучше утеплить – например, оклеить его изнутри теплоотражающим экраном или вспененной полиуретановой подложкой для ламината (так он будет меньше промерзать в зимнее время). Во-вторых, для размораживания теплообменника и удаления с пластин наледи лучше сделать байпас на приточной магистрали и периодически производить подачу свежего воздуха в помещения через него. В такой ситуации теплая исходящая струя будет растапливать наледь.

Автор статьи Александр Куликов

бытовой вентиляционный нагреватель своими руками, воздушная установка для частного дома

Обязательным условием комфортного проживания в частном доме является наличие правильно подобранной системы вентиляции, которая качественно обновляет воздух в помещении. Такое оборудование поддерживает оптимальный микроклимат, регулирует влажность и не охлаждает помещение зимой. Используя специальный рекуператор воздуха, можно расширить функциональность системы вентиляции, сократить расходы домовладельца на обогрев и коммунальные платежи.

Содержание статьи

Особенности и принцип работы

Под рекуперацией принято понимать процесс теплообмена, когда идущий с улицы холодный воздух нагревается тёплым потоком, который удаляется из квартиры. Используемые установки отличаются простотой конструкции, они надежны, позволяя предупредить быстрое охлаждение помещения в зимнее время года. Работают рекуператоры на электричестве, при этом современное оборудование отличается экономичностью, а расход энергии будет в разы меньше, чем возможная экономия на обогреве помещения.

 

Принцип работы таких устройств чрезвычайно прост. Внутри рекуператора холодный и теплый поток встречаются, но не смешиваются. При этом происходит активная передача тепла холодному воздуху с улицы, который может нагреваться на 3−5 градусов. В каждом конкретном случае эффективность таких устройств и их функциональные возможности будут различаться, в зависимости от выбранной конструкции, типа техники, наличия или отсутствия дополнительных вентиляторов с теплонагревающими элементами.

Основные типы конструкций

Изначально устройства для рекуперации тепла в системах вентиляции представляли собой простейшую технику, выполненную в виде небольшого ящика с тонкой перегородкой. Сегодня появились многочисленные разновидности, которые отличаются своим принципом работы, наличием или отсутствием дополнительных нагревающих элементов, способом формирования воздушных потоков и рядом других характеристик.

Основные типы рекуператоров:

  • Роторные.
  • Пластинчатые.
  • Канальные.
  • Трубчатые.
  • С отдельным теплоносителем.

Устройства с пластинчатым теплообменником используют перекрестный ток потоков, которые, не смешиваясь, эффективно передают тепло, нагревая тем самым помещение. КПД у таких установок в зависимости от их размера может составлять 60−80%. Они отличаются минимальными потерями давления, удобны в подключении и использовании, имеют компактную конструкцию, что позволяет располагать его внутри стен дома.

Комбинированные рекуператоры могут иметь два пластинчатых теплообменника, где формируется перекрестный поток воздуха. К преимуществам оборудования этого типа относится высокий коэффициент полезного действия, удобство подключения и простота обслуживания. Единственный недостаток таких установок — это существенная потеря давления, что вынуждает использовать дополнительные вентиляторы и нагнетатели для воздушного потока.

Пластинчатые промышленные теплообменники рекуператоров противоточного типа отличаются простотой конструкции, они обеспечивают КПД на уровне 90%, позволяя предупредить охлаждение помещения и эффективно нагревая поступающий в дом воздух с улицы. К недостаткам оборудования противоточного пластинчатого типа относят сложную конструкцию, высокую стоимость, а также увеличенные габариты.

Противоточные трубчатые бытовые теплообменники обеспечивают максимально возможную эффективность, имеют КПД на уровне 95%. Используя такой рекуператор в системе вентиляции, необходимо дополнительно подключать нагнетатели воздуха, так как потери давления могут составить 40−50%. Также недостатком установок этого типа являются их увеличенные габариты и высокая стоимость оборудования.

Рекуперативные теплообменники роторного типа обладают показателем КПД на уровне 75−85%, они рассчитаны на одну квартиру и имеют небольшое сопротивление потоку. Предлагаются такие установки по доступным ценам, отличаются компактными габаритами, их монтаж и последующее обслуживание не представляет какой-либо особой сложности.

Самостоятельное изготовление рекуператора

Сегодня в продаже можно найти различные модели изготовленных в заводских условиях системы рекуперации воздуха для частного дома, которые отличаются качеством сборки, имеют высокие показатели КПД, а их монтаж не представляет сложности. Однако высокая цена такого оборудования отрицательно сказывается на его популярности на российском рынке.

Поэтому многие отечественные домовладельцы самостоятельно изготавливают нагреватели, выполнить которые можно из подручных материалов с использованием простейших инструментов. Нужно лишь продумать тип конструкции, а также рассчитать мощность установки, которая должна подходить под показатели производительности всей системы вентиляции в доме.

Проще всего сделать своими руками рекуператор для частного дома пластинчатого типа, который отличается простотой конструкции и эффективностью. Можно найти многочисленные схемы выполнения такого оборудования, что существенно упрощает работу, одновременно имеется возможность точного расчёта мощности конкретной установки.

К преимуществам самодельных пластинчатых рекуператоров принято относить следующее:

  • Длительный срок эксплуатации.
  • Простота используемых материалов и функциональных элементов.
  • Надежность конструкции.
  • Полная автономность и отсутствие привязки к электроснабжению.
  • Высокий КПД.

К минусам таких нагревателей для системы вентиляции принято относить лишь вероятность образования наледи при сильных морозах, что отрицательно сказывается на эффективности установки, вплоть до полного прекращения нагрева поступающего с улицы воздуха. Чтобы решить такие проблемы с обледенением, необходимо дополнительно утеплять рекуператор или устанавливать его в теплом обогреваемом помещении.

Большой популярностью пользуются самодельные рекуператоры кассетного типа, которые эффективны и при этом полностью решают проблемы с появлением конденсата и обледенением при низких температурах. Выполнить такие нагреватели и их кассеты можно из целлюлозы, а корпус устройства изготавливается из жести или любого другого металла, хорошо защищенного от коррозии.

Необходимые компоненты и материалы

Перед тем как непосредственно приступать к изготовлению рекуператора, необходимо подготовить используемые инструменты и материалы. Для такой работы потребуется следующее:

  • Компьютерный вентилятор.
  • Четыре фланца.
  • Уголок.
  • Метизы.
  • Герметик.
  • Клей.
  • Фанера или металл для корпуса аппарата.
  • Минеральная вата для утепления.
  • Деревянные рейки для основания.
  • Алюминиевые листы для изготовления кассет.

Можно использовать уже готовые целлюлозные кассеты, которые выпускаются для фильтров автомобилей и кондиционеров. Их использование позволяет существенно упростить изготовление рекуператора, повышая его мощность и в последующем упрощая обслуживание самодельного оборудования.

Подыскать в интернете простые в реализации схемы изготовления самодельных рекуператоров не составит труда. Также простейшие чертежи можно выполнить самостоятельно с учетом мощности оборудования и необходимой производительности. Выполнять такое устройство без схемы изготовления не следует, так как в последующем сложно правильно собрать всю систему, что отрицательно сказывается на надежности оборудования и его эффективности.

Сборка нагревателя

Сборка рекуператора не представляет особой сложности. Необходимо нарезать не менее 70 листов металла с размерами сторон от 200 до 300 мм. Подготавливаются деревянные рейки, размеры которых должны полностью соответствовать сторонам нарезанных листов металла. Древесину следует обработать олифой, что предупредит гниение и потерю прочности у внутренних элементов теплообменника. Подготовленные рейки приклеивают клеем с двух сторон металлических квадратов. Собрав все заготовки, можно приступать к следующему этапу работы.

Чередовать собранные квадраты следует с поворотом в 90 градусов, что позволит обеспечить перпендикулярное расположение кассет внутри рекуператора, гарантируя тем самым максимальную эффективность нагрева воздушных потоков без их смешивания. Верхний квадрат, к которому не крепят рейки, приклеивается к нижнему с помощью специального металлического клея. Дополнительно для повышения прочности конструкции ее стягивают уголками и фиксируют саморезами или аналогичным крепежом. Щели следует обработать герметиком, после чего формируют фланцевые крепления.

Теплообменник приточного рекуператора готов. Осталось выполнить из металла или пиломатериалов корпус устройства, смонтировать внутри каркаса сотовую кассету. Устанавливать теплообменник необходимо таким образом, чтобы он упирался в рёбра, формируя визуально ромб, через который в последующем будет проходить холодный воздух с улицы и удаляемый нагретый поток из дома.

Если корпус самодельного рекуператора изготавливается из древесины, следует обработать пиломатериалы специальными пропитками, что предупредит их гниение и быстрый выход из строя оборудования. В процессе работы на теплообменнике будет образовываться конденсат, который стекает с металлических кассет, скапливаясь на дне корпуса. Следует предусмотреть небольшие отверстия для удаления влаги, которые располагаются на одном уровне с дном корпуса устройства.

На последнем этапе работы крепят к деревянному или металлическому корпусу четыре фланца, которые выполняют из полипропиленовых труб или аналогичных материалов. Их фиксируют с использованием соответствующих хомутов и фитингов, дополнительно промазывая герметиком, чтобы обеспечить максимально возможную герметичность изготовленного корпуса устройства.

Для повышения эффективности самодельного вентиляционного рекуператора его следует дополнительно обшить минеральной ватой, которая предупреждает теплопотери и образование конденсата. Последний часто появляется, если такое оборудование установлено на открытом воздухе или же в неотапливаемом помещении.

На входе установки можно смонтировать воздушные фильтры, которые обеспечивают первичную очистку воздуха от имеющихся загрязнений, тополиного пуха и различных аллергенов.

Использование рекуператора в системе вентиляции частного дома позволяет расширить функциональные возможности такого оборудования, предупреждая быстрое охлаждение комнат в зимнее время года, что экономит расходы домовладельца на оплату коммунальных услуг. Хозяева могут приобрести уже готовые обогреватели, которые отличаются компактными размерами, простотой монтажа и эффективностью. Также можно изготовить рекуператор своими руками, что позволит сократить расходы на обустройство инженерных коммуникаций в частном доме.

принцип работы, преимущества, недостатки и технология изготовления своими руками

Чистый и свежий воздух в помещении является залогом хорошего самочувствия, здоровья и крепкого сна. Чтобы обеспечить поступление свежего воздуха необязательно проветривать частный дом или квартиру привычным способом. Для этого есть специальные устройства, которые работают 24 часа в сутки, и обеспечивают непрерывное вентилирование помещения — рекуператоры

Принцип работы

Принцип работы устройства для рекуперации воздуха

Рекуператор — это техническое устройство, в котором происходит теплообмен между потоками воздуха, выходящими и входящими в помещение по системе приточной, принудительно или вытяжной вентиляции. При этом потоки воздуха не смешиваются.

В зимнее время тёплый поток воздуха, выходящий из помещения, при прохождении через конструкцию рекуператора нагревает рабочие элементы. Холодный поток воздуха, входящий в систему вентиляции, проходя через рекуператор, нагревается за счёт теплообмена с рабочими элементами.

Когда температура снаружи помещения выше, чем в помещении, то происходит обратный процесс. Тёплый воздушный поток охлаждается в рекуператоре благодаря рабочим элементам, через которые прошёл прохладный отработанный воздух.

При сравнении с обычной системой вентилирования наличие рекуператора позволяет сохранить до 2/3 тепловой энергии. Это уменьшает потребление энергии на 30–40%, что позволяет снизить расходы на оплату центрального отопления, обогревательного оборудования и системы кондиционирования.

Типы конструкций

Роторный рекуператор и схема его работы

Конструктивно рекуператор представляет собой прямоугольный, квадратный или круглый блок, с обеих сторон которого располагаются отверстия для ввода приточного и вытяжного вентиляционного канала.

В зависимости от конструкции блока и его составных элементов рекуператор подразделяется на следующие типы:

  • Роторный — устройство с вращающимся ротором в корпусе из нержавеющей или оцинкованной стали. Вращение ротора вокруг горизонтальной оси происходит за счёт подачи электропитания. Рабочими элементами являются алюминиевые гофрированные ленты, намотанные на специальный вал. В процессе вращения пластины соприкасаются с тёплым и холодным потоком воздушной массы. КПД роторного рекуператора — до 85%. Одни из главных недостатков устройства — это большой размер и наличие движущихся элементов, которые изнашиваются и требуют периодической замены.

    Устройство дял рекуперации воздуха с рабочими элементами в виде пластин

  • Пластинчатый — наиболее популярный тип рекуператоров. Состоит из тонких панелей, соединённых и аккуратно уложенных друг на друга с небольшим вентиляционным зазором. Металлические панели нагреваются за счёт тёплого воздуха, который проходит сквозь устройство. Панели путём теплообмена передают накопленную энергию холодному потоку. КПД устройства — 40–65%. Отличаются высокой надёжностью и возможностью работы без затрат электроэнергии.

    Рекуператор с конструкцией из стальных трубок

  • Трубчатый — устройство, состоящее из металлических трубок диаметром до 10 мм, скомпонованное в цилиндрический воздуховод. По принципу работы аналогично пластинчатому рекуператору. Нагретый отработанный воздух проходит по трубкам, отдавая часть тепловой энергии, а холодный воздух, перемещаясь в пространстве между трубками, забирает часть тепла. За счёт простой конструкции рекуператор имеет высокую надёжность и занимает мало места.

    Рециркуляционный водяной рекуператор для вентиляции в общественных местах

  • Рециркуляционный водяной — устройство с промежуточным теплообменником в виде жидкости. Обычно, используется дистиллированная вода или антифриз. В отличие от остальных типов циркуляционный рекуператор имеет более сложную конструкцию. Жидкость циркулирует по каналам между вытяжным и приточным каналом за счёт нагнетающего насоса. КПД рекуператора — до 65%.

В общественных помещениях большой площади применяются крышные рекуператоры воздушного потока, которые устанавливаются в существующую систему вентиляции. КПД крышного рекуператора не превышает 65–68%, но из-за малых габаритов и высокой надёжности устройство идеально для использования в загромождённых помещениях. Для работы в условиях жилого дома и квартиры не подходит.

Видео: что такое рекуперация воздуха

Как выбрать для частного жилья

Пластинчатый рекуператор идеально подходит для использования в частных и загородных домах

КПД устройства напрямую влияет на объем сохраняемой тепловой энергии, срок службы и надёжность рекуператора. Конструкции с ротором наиболее эффективны, но в их работе участвует множество движущихся элементов и требуется электроэнергия. Пластинчатые и трубчатые рекуператоры имеют меньший КПД, но они бесшумны и для их функционирования не требуется электропитание.

Выбор рекуператора для частного жилья в первую очередь должен основываться на требованиях владельца и учитывать, какая система вентиляции присутствует в доме. Для жилого дома оптимально устройство приточно-вытяжной вентиляции с роторным рекуператором.

Эта система будет обладать достаточной мощностью, способной не только осуществлять теплообмен между воздушными потоками, но и регулировать уровень влажность подаваемого воздуха, за счёт регуляции оборотов устройства.

Проветриватель с рекуперацией для квартиры

Если площадь дома небольшая, то вместо роторного рекуператора можно установить устройство с металлическими пластинами. Это сделает систему не только более надёжной, но и позволит сохранить автономность приточной вентиляции.

Для типовых квартир одно из важнейших требований при выборе рекуператора — это его габариты. В большинстве квартир система вентиляции представлена только общедомовой вытяжкой, а поступление свежего воздуха происходит за счёт обычного проветривания.

Для квартир оптимальным выбором будет установка приточно-вытяжных клапанов или установок с рекуперацией воздуха. Это компактные устройства, которые монтируются в стену. Управляющий блок снабжается дистанционным управлением, что позволяет выставить оптимальные параметры вентилирования и нагрева воздуха.

Расчёт мощности системы

Проветриватель для больших помещений повышенной мощности

Габариты и мощность рекуператора влияют на производительность устройства. Чем больше площадь вентилируемого помещения, тем более мощный рекуператор потребуется. Поэтому прежде чем приобретать устройство следует провести расчёт мощности рекуператора.

Для этого используется формула: Q = 0,335 x L x (T1 – T2), где:

  • Q (Вт) – мощность устройства;
  • L (м3/ч) – объём воздуха, необходимый для нормальной жизнедеятельности человека. Согласно норме для одного человека требуется 60 м3/ч;
  • Т1 (оС) – температура воздуха после рекуперации;
  • Т2 (оС)– температура воздуха до рекуперации.

Например, рассчитаем мощность рекуператора для квартиры, где проживает 3 человека. Температура воздуха, транспортируемого в помещения, должна равняется не менее 20 оС, а с улицы поступает воздух температурой -10 оС. Q = 0,335 x 180 x 32 = 1929,6 Вт.

При проведении расчёта следует брать минимально возможную температуру (в среднем за 5 лет), которая наблюдалась в регионе, где планируется установка рекуператора. Если устройство не планируется использовать как основной источник обогрева помещения, то показатели температуры подбираются индивидуально.

Изготовление пластинчатого рекуператора воздуха для дома своими руками

Изготовление пластинчатого рекуператора своими руками

Рекуператор воздуха — это дорогое оборудование, рассчитанное на длительный срок использования. Срок окупаемости может варьироваться от 3–8 лет, в зависимости от начальной стоимости агрегата. При возможности устройство для рекуперации воздуха можно изготовить самостоятельно. Для этого лучше всего подойдёт конструкция на основе металлических пластин.

Плюсы и минусы

К преимуществам пластинчатого рекуператора можно отнести:

  • простая и надёжная конструкция, не требующая замены рабочих элементов в ходе эксплуатации;
  • простая технология монтажа без применения специализированного инструмента;
  • КПД до 80% в зависимости от параметров воздуха;
  • минимальные затраты энергопотребления для работы приточного и вытяжного вентилятора;
  • высокий срок службы за счёт отсутствия движущихся частей и износа деталей;
  • возможность модернизации путём добавления большего количества пластин.
  • при отсутствии электроэнергии воздух транспортируется по системе вентиляции за счёт естественной тяги.

Главным недостатком пластинчатого рекуператора является образование конденсата на рабочих элементах. При низкой температуре воздуха влага замерзает, что приводит к падению пропускной способности вентиляции. Для решения проблемы применяются специальные устройства, которые прогревают конструкцию рекуператора.

Необходимые материалы

Материал для сборки пластинчатого теплообменника

Для изготовления пластинчатого рекуператора потребуется следующий материал:

  • оцинкованный металл толщиной 0,7–1,5 мм, текстолит, полипропилен или поликарбонат общей площадью 7–8 м2;
  • тонкие деревянные рейки, пробковая подложка или оргстекло толщиной 2–3 мм;
  • нержавеющий металл, пластик, фанера или древесно-стружечная плита;
  • пластиковый или металлический фланец для воздуховода в количестве 4 шт.;
  • стальной уголок 20×20 мм;
  • силиконовый герметик;
  • оцинкованные саморезы.

Для равномерной циркуляции воздуха потребуется приобрести 2 вентилятора нужной мощности. В качестве фильтров можно использовать специальные бумажные изделия для вентиляции, которые требуют замены раз в 3–4 месяца.

Технология изготовления

Проклейка изоляционной прокладки на металлическую пластинку

Перед изготовлением рекуператора потребуется подготовить электролобзик, ножовку по металлу, шуруповёрт, молоток, строительный нож, перчатки и защитные очки. Технология изготовления пластинчатого рекуператора состоит из следующего:

  1. Листовой металл нарезается с помощью ножовки по металлу на пластины размером 20×30, 30×30 или 30×40 см. Размер пластин зависит от габаритов и расчётной мощности рекуператора. Желательно, чтобы общая площадь подготовленных пластин была не менее 3–4 м2.
  2. Из тонкой деревянной рейки или пробковой подложки нарезаются прокладки шириной 1–1,5 см. Длина равна длине пластины. Далее, из фанеры или ДСП выпиливается 2 полотна такого же размера, как и пластины.

    Сборка пластин в единый теплообменник

  3. На каждую металлическую пластину приклеивается три прокладки — одна по центру и две по противоположным сторонам. После приклейки все пластины собираются в стопку. Для этого каждая полоса промазывается универсальным клеем, после чего панели укладываются друг на друга.
  4. При укладке каждая последующая панель поворачивается на 90о. Полученная стопка панелей аккуратно прижимается грузом. Для этого сверху укладывается прокладка из дерева, на которую можно положить груз весом 5–7 кг.
  5. Стальной уголок подгоняется по высоте стопки с панелями. Всего потребуется 4 заготовки, которые прикручиваются по углам стопки. Для крепления используются оцинкованные саморезы.

    Установка теплообменника в корпус из дерева или металла

  6. Приступают к сборке корпуса из фанеры, ДСП, пластика или металла. Высота и длина корпуса будет равна диагонали пластинчатого элемента, а ширина — высоте стопки с пластинами. После раскройки выполняется сборка корпуса с помощью шуруповёрта и саморезом.
  7. После сборки корпуса на его боковые стенки наносится разметка под монтаж фланцев. Диаметр отверстия должен быть равен сечению воздуховода. Для пропила используется электролобзик. В завершение в отверстия устанавливаются фланцы.

    Корпуса для пластинчатого теплообменника

  8. Внутри корпуса монтируются направляющие под теплообменный короб. Направляющие можно изготовить из уголка. Для фиксации направляющей к коробу используются саморезы и силиконовый герметик. После производится сборка рекуператора. Теплообменный блок помещается в корпус.

Если в корпусе предусмотрено место, то на входе воздушных потоков закрепляются бумажные или тряпичные фильтры и вентиляторы. После сборки рекуператора можно переходить к монтажу в существующую систему вентиляции.

Как самостоятельно сделать трубчатый коаксиальный рекуператор

Трубчатый рекуператор из пластиковой трубы и алюминиевый трубок

По принципу работы трубчатый рекуператор аналогичен пластинчатому типу. Как и в предыдущем случае, при умении работать с электроинструментом системы можно собрать своими руками.

Преимущества и недостатки конструкции

К достоинствам устройства для рекуперации воздуха на основе трубок можно отнести:

  • простая конструкция без использования движущихся деталей;
  • простой монтаж и быстрое обслуживание в ходе эксплуатации;
  • КПД рекуператора до 65–70% в зависимости от условий;
  • небольшие размеры и низкий уровень шума.

К существенным недостаткам, как и у пластинчатого рекуператора, следует отнести риск обмерзания в зимний период. Вследствие чего нарушается естественный уровень тяги, и свежий воздух плохо поступает в помещение. Для предотвращения этого в системе должен быть установлен электрический или водяной калорифер.

Материалы для изготовления устройства

Материал для изготовления трубчатого рекуператора

Для сборки трубчатого рекуператора потребуется:

  • алюминиевые или стальные полые трубки диаметром 3–5 мм;
  • пластиковый канал для вентиляции;
  • пластиковый соединитель для воздуховода;
  • оцинкованный металл или пластик размером 50×50 см;
  • силиконовый герметик.

Сечение воздуховода и соединителей выбирается индивидуально. Оптимально, если сечение будет равно диаметру воздуховода в системе вентиляции. При необходимости возможна установка вентиляторов на приток и отвод воздуха.

Процесс изготовления

Алюминиевые трубки и заготовки для изготолвения теплообменника

Для изготовления рекуператора потребуется электрическая дрель, ножовка по металлу, штангенциркуль, рулетка и карандаш. Последовательность действий при изготовлении трубчатого рекуператора следующая:

  1. Производится подгонка пластикового канала по длине. При этом учитывается, что длина рабочих элементов будет на 15–20 см короче, чем длина самого корпуса. На конец трубы надевается пластиковый соединитель.
  2. Измеряется внутреннее сечение пластикового канала при помощи штангенциркуля. Далее, из пластика или металла выпиливаются две заготовки с учётом измеренного сечения. В заготовке просверливаются отверстия сечением равным внешнему диаметру металлической трубки.
  3. Согласно длине корпуса выполняется подрезка стальных трубок. Количество трубок равно количеству отверстий в заготовке. Для сборки потребуется надставить трубу между двух заготовок. Зазор между отверстием и трубкой заполняется герметиком или эпоксидным клеем.
  4. После сборки трубчатого теплообменника конструкция помещается в пластиковый корпус. Стык между заготовкой и корпусом заделывается эпоксидным клеем. После высыхания конструкция готова к установке.

В качестве вентилятора лучше использовать изделия канального типа, которые одеваются на один из монтажных концов рекуператора. Для установки описанной выше конструкции достаточно использовать соединитель соответствующего сечения, герметик и обжимной хомут.

Видео: трубчатый рекуператор своими руками

Как узнать КПД системы рекуперации

Формула расчёта КПД рекуператора

При самостоятельном изготовлении рекуператора не всегда удаётся собрать устройство с максимальным показателем КПД. Тем более КПД рекуператора зависит от температуры и влажности воздуха снаружи помещения.

Для расчёта КПД рекуператора используется формула: H = (tр — tу) / (tд — tу), где:

  • tр – температура воздуха после рекуперации;
  • tу – температура воздуха до рекуперации;
  • tд – температура отработанного воздуха, выходящего из помещения.

Итоговое значение следует умножить на 100%. Например, рассчитаем КПД устройства для конкретных условия. Температура воздуха снаружи — 5 оС, после рекуперации — 17 оС, в помещении — 24 оС. КПД = (17 – 5) / (24 – 5) = 0,63 * 100% = 63%.

Установка и подключение системы рекуперации

Для подсоединения рекуператора используется обжимной хомут, герметик и алюминиевая клейкая лента

Процесс установки рекуператора зависит от типа устройства. В большинстве случаев устройство монтируется по аналогии с другими составными элементами в системе. К примеру, чтобы установить пластинчатый рекуператор, технология изготовления которого была описана выше, потребуется:

  1. С помощью напарника конструкция поднимается под потолок. Выполняется разметка под отверстия для крепления стальных шпилек. Далее, просверливаются отверстия, забиваются пластиковые пробки и вкручиваются стальные шпильки нужной длины.
  2. Рекуператор снова поднимается под потолок и фиксируется на нужной высоте. Для этого между шпильками монтируется стальная пластина, которая будет удерживать рекуператор на весу.
  3. Для подсоединения устройства к системе воздуховодов потребуется обработать часть соединяемого фланца и обжимного хомута растворителем. После этого внутренняя часть хомута промазывается герметиком и фиксируется к фланцу. Аналогичным образом монтируют воздуховод к рекуператору. Места стыков проклеиваются алюминиевой клейкой лентой.

Видео: монтаж проветривателя с системой рекуперации

Отзывы

Современные производители предлагают богатый выбор устройств различной мощности для рекуперации воздуха в жилых помещениях. Если вы планируете приобретение такого оборудования, то рекомендуем ознакомиться с отзывами покупателей.

Видео: отзыв о рекуператоре «Экоклим»

https://

Рекуператор воздуха — это современное и практичное оборудование, которые должно устанавливаться в каждую систему приточно-вытяжной вентиляции. Помимо экономии электроэнергии, рекуператор выравнивает уровень влажности и фильтрует воздух, поступающий в помещение, что особенно важно в условиях современных городов.

Рекуператор воздуха для квартиры: особенности выбора устройства

Автор Евгений Апрелев На чтение 5 мин. Просмотров 4.3k.

Среди наших соотечественников бытует мнение, что рекуператор воздуха для квартиры вещь совершенно необязательная. Действительно, как это устройство может снизить затраты на отопление в квартирах с центральным отоплением? О том, какую полезную функцию рекуператор воздуха может выполнять в обычной городской квартире и правилах его выбора читайте в этой статье.

[contents]

Зачем в квартире с центральным отоплением рекуператор воздуха

Теплообменник-регенератор, или как все привыкли называть такой прибор, рекуператор – это компактная приточно-вытяжная установка, предназначенная для экономии на отоплении помещения.

Многие наши соотечественники обращают внимание именно на последние слова «экономия на отоплении», хотя в условиях современной городской квартиры теплообменник-регенератор – это прежде всего компактная приточно-вытяжная установка, которая является вспомогательным устройством для улучшения или создания вентиляции в квартире.

Благодаря популярности металлопластиковых окон и качественных герметичных дверей, которые на сегодняшний день установлены в 80% городских квартир, естественная вентиляция в таких жилищах практически не действует. Установка рекуператора в квартире с центральным отоплением делает возможным воздухообмен и обогащает воздушную смесь жилища кислородом.

Есть в монтаже теплообменника-регенератора и экономический эффект. В герметичной городской квартире отсутствует естественный приток воздуха, а как известно, без притока нет вытяжки. Для создания воздухообмена в помещениях устанавливают принудительные приточно-вытяжные вентиляционные системы. Приточный воздух, в зимний период, требует обогрева, который, как правило, создается благодаря электрическим калориферам. В летний период, для снижения температуры воздуха в жилище устанавливают кондиционеры.

Калориферы и кондиционеры – достаточно энергозатратные устройства. И если счетчики тепловой энергии у нас в стране еще не распространены, то счетчики электричества считают каждый использованный киловатт, за которые мы платим из собственного кармана. Рекуператор делает эту же работу без использования энергозатратных модулей: нагревает приточный воздух в холодное время года и охлаждает его летом. Установка только одного такого прибора позволяет полностью менять воздух в стандартной «двушке», приблизительно 1 раз за 2 часа.  Пи этом, поступающий в жилище воздух будет очищен от уличной пыли, пыльцы растений и пр.

Как выбрать теплообменник-регенератор 

Существует три основных типа таких устройств.

  1. Пластинчатый рекуператор. Устройство этого типа представляет собой кассету из множества слоев металла с высокой теплопроводностью, собранных особым способом для получения разделенных вытяжных и приточных каналов. В этом устройстве воздушные потоки не смешиваются, но между ними происходит теплообмен. В классическом варианте исполнения такой прибор имеет достаточно компактную конструкцию и подходит для установки в просторное жилище с высокими потолками, в подпотолочном пространстве с канальным расположением воздуховодов.
  2. Роторный рекуператор. Его конструкция предполагает наличие приточно-вытяжной установки, в которой установлен вращающийся ротор из гофрированной стали. Особой компактностью такая конструкция не отличается, хотя современные модели легко вписываются в интерьер квартиры. На фото показано, как выглядит теплообменник-регенератор воздуха в интерьере небольшого жилища.
  3. Третий тип рекуператоров состоит из двух теплообменников по которым циркулирует этиленгликоль в качестве теплоносителя. Такие установки сложны в монтаже, поэтому используют их в основном на крупных объектах.

Большинство компаний производят рекуператоры, которые внешне выглядят как цилиндр. Теплообменник в таком приборе состоит из собранных в компактный пучок профилированных трубок или керамических пластин. По принципу действия, такое устройство относится к классу перекрестно-точечных.

Этот тип прибора наиболее компактный, внешне – практически незаметный и не требует особых сложностей при монтаже, кроме бурения отверстия в несущей стене. Несмотря на это, именно такой тип теплообменников-регенераторов воздуха лучше всего подходит для установки в квартиру. Для создания полноценной принудительной приточно-вытяжной вентиляционной системы, производители рекомендуют использовать два устройства, работа которых координируется при помощи беспроводной связи. Пока один прибор работает на приток, второй удаляет отработанные воздушные массы.

Достоинства и недостатки

Современные рекуператоры воздуха, как уже отмечалось выше – это полноценные приточно-вытяжные установки компактного размера, с мощной системой очистки воздуха G4-F7. С помощью этих устройств можно сохранить драгоценное тепло в зимний период и создать прохладу в жаркий летний день, с минимальными энергозатратами. Еще одним неоспоримым достоинством установки данного прибора в небольшое жилище является возможность создания эффективной вентиляционной системы без затрат на проектирование.

Однако, у таких приборов существует и ряд недостатков, которые могут являться определяющими при выборе приточно-вытяжной установки.

  • Достаточно высокий уровень шума. Справедливости ради стоит отметить, что немецкий производитель комнатных теплообменников Marley снизил уровень шума своих устройств благодаря инновационной системе шумоподавления и вентилятору, установленному с внешней стороны прибора.
  • Обледенение теплообменников. Эта болезнь присуща всем рекуператорам, так как конструктивные особенности прибора предполагают появление конденсата. Хотя разработчики из компании Marley заявляют, что им удалось избежать образование конденсата даже при 30-и градусном морозе, благодаря эффективному утеплению устройства.
  • Стоимость устройства. Приведем в пример приточно-вытяжные установки с воздушным теплообменником-регенератором Marley. В зависимости от модели, стоимость одного устройства без расходов на его монтаж составляет около 400 у.е.

Самостоятельное изготовление устройства

Изготовить рекуператор воздуха для квартиры своими руками достаточно просто. В сети и на специализированных ресурсах присутствует масса схем этого прибора. Но так, как в этой статье рассматривается для жилища в многоквартирном доме, то все самоделки оказываются слишком громоздкими и не очень привлекательными. Кроме того, эффективность самодельных приборов достаточно низкая, именно поэтому рекомендовать собирать теплообменник-регенератор своими руками мы не будем. Всем, кто интересуется подобными устройствами собственного изготовления, рекомендуем посмотреть данный видеоролик:

Прежде чем приобрести и установить в жилище воздушный теплообменник-регенератор, обратитесь к профессионалам за консультацией по выбору мощности прибора. Также обязательно обратитесь в управляющую компанию за разрешением на бурение отверстия в несущей стене.

Engineered Air | Один из крупнейших в Северной Америке полностью интегрированных производителей оборудования для отопления, вентиляции, кондиционирования, охлаждения и рекуперации энергии на заказ.


Справочная информация:

Медицинский центр Grant был назван одной из лучших больниц Америки по версии журнала US News & World Report за выдающиеся достижения в области ортопедии. В их специализированном центре, работающем по принципу «все включено», работает обширная команда врачей, стремящихся обеспечить самое современное лечение и терапию для всего, от переломов до полной замены сустава.Опытные хирурги Grant по полной замене суставов выполняют более 1500 операций в год.

Медицинский центр Грант, подразделение компании Ohio Health, решил переоборудовать свое существующее реабилитационное отделение для костей и суставов в более современное учреждение с расширенными операционными залами для замены суставов, костей и дополнительных ортопедических хирургических нужд.

Здание Grant Bone and Joint Center изначально было центром Holiday Inn, которое с годами было модернизировано.В здании бывшего отеля не было механических помещений, а пространство на крыше уже было ограничено существующими чиллерами и оборудованием для обработки воздуха. Расположение этого здания в центре города требовало установки на крышу дополнительных агрегатов.

Приложение:

В новых операционных требовалось поддерживать температуру на уровне 60º F (15,6º C) при постоянной относительной влажности 50%. Эти условия были критическими, потому что во многих хирургических операциях используются уникальные швы и клеи, правильная фиксация которых зависит от точного уровня влажности.

Это, в сочетании с хирургической одеждой, которую носят хирургические бригады, также требовало более низкой температуры в помещении при постоянной влажности. Эти условия от хирургов сыграли большую роль в дизайне новых хирургических кабинетов.

Задача:

Существующая система охлажденной воды не имела достаточной мощности или более низкой температуры воды, необходимой для удовлетворения требований к температуре воздуха в операционных. На крыше также не хватало места для установки нового низкотемпературного чиллера с устройством обработки воздуха.

Стоимость охлаждающей системы оказалась выше, чем стоимость комплектной системы DX. Другой предложенной альтернативой было использование адсорбционного осушителя, но это было бы слишком дорого.

Кроме того, консультант уточнил, что, когда хирургические комплекты не используются, объем воздуха должен быть сокращен вдвое в течение «режима незанятости / времени без операции». Это представляло собой серьезное препятствие для решения низкотемпературного механического охлаждения.

Решение:

Сотрудничая с отделом специальных цен Engineered Air, Columbus Sales предложила конструкцию блока с двойным охлаждением с моделью Engineered Air FWA-186 / O / MV / UVC. Конструкция оборудования соответствовала требованиям комфорта хирургов. Когда блок двойного охлаждения работает при 100% объёме воздуха в «хирургическом режиме», он обеспечивает температуру выходящего воздуха 45 ° F / 45 ° F (7,2 ° C / 7,2 ° C) с использованием как первой, так и второй катушек DX.

В оборудование также входит дополнительный змеевик для повторного нагрева конденсатора, обеспечивающий повторный нагрев на 5 ° F (9 ° C) до температуры осушенного воздуха по мере необходимости.Чтобы обеспечить дополнительный контроль температуры в зоне, консультант установил подогреватели для каждой хирургической комнаты.

Когда комплекты находятся в режиме «Non Surgery», воздушный поток снижается до 50%, а вторая система DX отключается, работая только с первой механической змеевиком DX с температурой воздуха на выходе 55 ° F (12,7 ° C). Действительно предоставление двух операционных систем в одной.

Резюме:

Из этого проекта мы получили несколько других запросов на этот тип системы.Включая систему ультрафиолетового света «UV Centurion», он сделал этот комплект полным комплектом для нашего рынка. Все чаще хирургические центры строятся в небольших или существующих зданиях, где владельцы не могут установить низкотемпературную систему охлаждения. После этого проекта у нас был еще один аналогичный дизайн с консультантом, который в настоящее время готовится к предварительной покупке.

Завод Инжиниринг | Улавливание тепла из печи

Технологические печи, работающие на природном газе, широко используются в промышленности, особенно в областях металлургии, термообработки, стекла и керамики.Даже при нынешних привлекательных тарифах на природный газ в качестве промышленного топлива имеет смысл утилизировать как можно больше отработанного тепла из печи и использовать его в полезных целях.

Источники тепловых потерь

При любой работе печи тепло теряется от кожуха печи, от нагретого продукта, покидающего зону обработки, от конвейерного или толкающего оборудования, от чрезмерной тяги и от открытых дверей или других точек доступа. Но самый большой и наиболее концентрированный тип потерь тепла происходит из выхлопных газов печи, некоторые с температурами 1000 ° F или выше. К счастью, это, как правило, наиболее практичное тепло для рекуперации и повторного использования.

Два типа систем рекуперации тепла, которые обычно используются в промышленных печах, — это рекуператоры и регенераторы. По данным Министерства энергетики США, рекуператор является наиболее широко используемым устройством для рекуперации тепла. Рекуператор — это газовый теплообменник, установленный на выхлопе печи, который предварительно нагревает поступающий воздух для горения.

Рекуператор Модернизация

При относительно чистом выхлопе природного газа, эти теплообменные поверхности могут быть даже оребрены или углублены для захвата максимального количества тепла.Хотя выхлопные газы сами по себе чистые, в процессе нагрева могут образовываться коррозионные или твердые побочные продукты, которые могут повредить или засорить высокоэффективный теплообменник, например, с ребрами. Убедитесь, что конструкция вашего рекуператора учитывает конкретные характеристики работы вашей печи.

Доступные технологии

Джон Сульцбо — технический директор компании Hauck Manufacturing Company, Ливан, Пенсильвания. Компания Hauck производит оборудование для сжигания печей, включая рекуперативные горелки, и предлагает индивидуальные инженерные услуги пользователям промышленных печей.Сульцбо отмечает, что текущие привлекательные цены на природный газ из внутренних источников поощряют использование газовых печей, но в некоторых случаях могут привести к более длительной окупаемости модернизации рекуперации. Тем не менее, он также указывает, что для операторов, имеющих разрешения на выбросы на объекте, записанные в фунтах / млн БТЕ, рекуперация позволяет использовать большую мощность печи, следовательно, повысить производительность.

Hauck предлагает ряд типов горелок для промышленных печей, в том числе самовосстанавливающуюся горелку Ecomax с прямым нагревом для высокотемпературных печей на рынке Северной Америки.Компания также оказывает помощь клиентам, желающим добавить рекуперацию в существующую систему горелок.

Он отмечает, что элементы, которые следует учитывать, включают существующую конструкцию горелки для определения открытых металлических частей и изоляции, которые, возможно, придется модернизировать, чтобы обеспечить более высокие температуры воздуха для горения и температуры пламени. Возможно, потребуется увеличить размер трубопровода подачи воздуха или изменить его конструкцию, чтобы обеспечить более высокое давление воздуха. Сульцбау добавляет: «Нам также нужно посмотреть на соотношение воздух-топливо, которое потребует корректировки.”

На вопрос, можно ли приспособить существующие автоматы горения к добавлению рекуперации, Сульцбо поясняет: «Это зависит от типа используемого метода управления. Технология старого типа, использующая релейную логику, не может быть легко адаптирована. Если используется электронное управление, например, с использованием управления массовым расходом, его легче адаптировать с помощью изменений программирования с помощью программируемого логического контроллера (ПЛК). «

Firebridge, Inc — это инженерно-строительная компания с головным офисом в Берлингтоне, Онтарио, имеющая большой опыт в области проектирования промышленных печей.Расс Чепмен из этой фирмы указывает, что в рекуператорах дымовых газов обычно ограничиваются температурой дымовых газов около 1800 ° F. Его компания работает над конструкциями, которые позволят системам работать при температурах до 2200 ° F, но на данный момент ограничение все еще остается в силе.

Eclipse, Inc. — давний лидер в области технологии горелок для промышленных печей. По словам Джима Робертса из Eclipse, в последние годы важным усовершенствованием в области рекуперации тепла печи является разработка самовосстанавливающихся горелок, таких как конструкция ThermaJet компании Eclipse.Он говорит: «Это кульминация 20 лет разработки на рынке горелок, которые не только выбрасывают горячий поток газов, но и отводят отработавшие газы обратно через горелку для рекуперации тепла, обычно теряемого в дымоходе».

Регенераторы: другой подход

Еще один потенциальный инструмент для утилизации значительного количества тепловой энергии от выхлопных газов печи — регенератор. Хотя регенераторы используются реже, чем рекуператоры, они по-прежнему широко используются в высокотемпературных печах, таких как печи для повторного нагрева стекла и стали.В регенераторе используются два или более резервуара или секций резервуара, содержащих матрицу с высокой теплопроводностью. Матрицы могут быть керамическими или металлическими. Выхлопные газы проходят через матрицу, отдавая большую часть своего тепла перед выпуском.

После нагрева матрицы поток механически направляется в другую секцию или емкость, а поступающий воздух для горения втягивается через горячую секцию и нагревается. Регенератор чередует горячий и холодный потоки, поэтому рекуперация тепла происходит непрерывно.Преимущество регенератора перед рекуператором состоит в том, что он представляет собой гораздо большую поверхность теплообмена для потока горячих выхлопных газов.

Недостатком является то, что теплосодержание поступающего воздуха имеет некоторые вариации, что затрудняет точное регулирование горения. Это можно уменьшить за счет сокращения продолжительности цикла или использования нескольких сосудов на разных этапах охлаждения. Еще одно соображение заключается в том, что некоторые выхлопные продукты неизбежно остаются в емкости, чтобы объединиться с поступающим воздухом для горения.

В будущее

По-прежнему существует много заводов с большим потенциалом снижения энергопотребления, и уровень их внедрения неравномерен. Расс Чапман из Firebridge отмечает, что более крупные компании начинают сравнивать свои крупные предприятия друг с другом и с конкурентами с точки зрения устойчивости предприятий. Однако он считает, что упор на краткосрочную прибыльность иногда означает отсутствие стимулов для долгосрочных проектов по энергосбережению.

В качестве примера он приводит производителя автомобилей Уровня 2, у которого есть завод с ежемесячным счетом за электроэнергию в размере 200 000 долларов в месяц. Он считает, что эта компания может снизить этот счет на 25%. Тем не менее, за последние три года на заводе переходит третий управляющий, и никаких действий по его усовершенствованию не предпринимается. Очевидно, что экономии энергии не всегда достаточно.

Глобальная конкуренция

Чепмен отмечает, что выплавка в горнодобывающей промышленности является примером того, как отрасль начинает двигаться в этом направлении.«Это потому, что они конкурируют во всем мире и сравнивают ключевые показатели эффективности, прилагая усилия, чтобы соответствовать».

На вопрос, может ли эффективная рекуперация тепла снизить выбросы парниковых газов от промышленных печей, Чепмен отвечает: «Совершенно верно! Снижение энергии равно сокращению выбросов. Единственный ингибитор накипи ». Он поясняет: «Стоимость модернизации небольших печей непропорционально выше, чем стоимость модернизации, скажем, 45 MMBtu / час или больше, поэтому экономическое обоснование сделать труднее.”

На шаг

Несомненно, стратегии рекуперации тепла обладают огромным потенциалом для сокращения счетов за электроэнергию и выбросов предприятий.

Джим Робертс из Eclipse отмечает: «Иногда стоимость выглядит ошеломляющей, но помните, что у большинства печей очень активный график работы, поэтому окупаемость даже при низких затратах на газ может быть очень быстрой. Даже если окупаемость составит от двух до трех лет, долгосрочная экономия того стоит ».

Подробнее:

Блум Инжиниринг

Программа промышленных технологий Министерства энергетики США

Eclipse, Inc.

Центр энергетических решений Информация о рекуперации тепла печи

Firebridge Inc.

Производство Hauck

(PDF) Рекуператор под давлением для рекуперации тепла в промышленных высокотемпературных процессах

1852

4. Выводы

Анализ расчетов системы рекуперации энергии

показывает, что генерируемая электрическая мощность, el

,

, существенно зависит от температуры сжатого воздуха,

предварительно нагретого в рекуператоре, которая ограничена максимально допустимой температурой

стенок трубок, TR  

трубки не загрязнены никакими отложениями , электрическая мощность

, выработанная при TR = 750oC, составляет примерно

   

до прибл. el

R = 850oC. Для получения хорошей энергии

эффектов с системой рекуперации энергии, оптимальный выбор

        

Требуется

в экстремальных температурных условиях.

Повышенное термическое сопротивление отложений в пределах

            

температура сжатого воздуха, который входит в турбину и в

 

Для получения предполагаемых эффектов Применение системы рекуперации энергии

, необходима разработка эффективной системы очистки

поверхностей труб.

Для выхлопных газов, выходящих из печи, в диапазоне температур

от 850 ° C до 950 ° C температура стенки трубы

во всей системе рекуперации может достигать значений от 570 ° C от

до 860 ° C. Если при определении прочностных параметров материалов

в отдельных модулях учесть такое большое разнообразие температур стенок

, то затраты на систему рекуперации

будут заметно снижены.

Способ подключения модулей в системе рекуперации

(рис.2) обеспечивает хорошее выравнивание конечной температуры и потери давления

для воздушных потоков M6 + M5 + M1 и M4 + M3 + M2

. Учитывая давление воздуха на выходе компрессора

, потери составляют около 1,35% от его значения. В проанализированных расчетных случаях

температура воздуха, нагретого в системе рекуперации

без нагара в трубке, составляет Ta2 = 715oC —

776oC. Температура воздуха на выходе из модуля M1 всего

             

выгодно для решений компенсации температурного удлинения трубопровода

.

Для получения возможных наилучших эффектов производства электроэнергии

необходимо математическое моделирование

для выбора турбоагрегата с рабочими параметрами, которые

      

система рекуперации.

ССЫЛКИ

[1]     

Рекуперация энергии в норвежской промышленности ферросплавов.

     

Тронхейм 165–177 (1995).

[2]           

      

  

     

       

 

[3]        

 

     79, 3, 144-151

(2012).

[4]   

 

[5]       



[6] JP ​​Holman, Heat Передача. Седьмое издание, McGraw-Hill,

London (1992).

[7]          

  

(2007).

[8]  Rd ed.,

Mc Graw-Hill, USA, (1984).

[9]  

[10]       

высокотемпературные трубчатые рекуператоры тепла. Gaswarme

International 44, 10, 487-492 (1995).

[11]  №

Hutnik 2, 87–97 (1981).

[12]       

typu — У. Хутник 4, 114-125 (1987).

[13]   

      

Hutnik 1, 16-22 (2006).

[14]      

 №12,

506-514 (2006).

[15]        

Рекуператоры.Gaswärme International 49, 4/5, 240-244

(2000).

[16]        

         

в системе жидкий сплав — тугоплавкий материал — газовая фаза.

Архив металлургии и материалов 59, 1, 281-285 (2014).

[17]          

 №9, 4, 517-522 (2012).

[18]           

Влияние параметров источника питания на поток металла

 

Металлы из автомобильных каталитических нейтрализаторов. Архив

Металлургии и материалов 59, 2, 779-783 (2014).

[19]  

 №3, 102-107 (2006).

Поступила: 20 декабря 2014 г.

Все о бытовой вентиляции, теплообменниках HRV и ERV

Дома, построенные за последние 40 лет в Канаде, относительно герметичны . Раньше мы обычно полагались на неплотные неизолированные стены, чтобы обеспечить свежий воздух и предотвратить появление плесени и грибка, и они справились с этим очень хорошо.

Стоимость и комфорт заставили нас добавить изоляцию, но не обязательно герметизировать наши стены. Безумие этого было быстро осознано, и вскоре после этого пароизоляция стала частью оболочки здания.

Пароизоляция препятствовала прохождению влажного воздуха через стены, это, конечно, приводило к накоплению влаги в домах, а конденсат на окнах был обычным явлением, и его трудно было остановить. Это привело к образованию плесени и грибка в домах. Современные герметичные дома нуждаются в механической помощи, чтобы остановить повреждение влаги и защитить качество воздуха в помещении, особенно в подвалах, где вентиляция необходима для предотвращения образования плесени.

Есть еще те, кто утверждает, что стены должны дышать и что «дома слишком герметичны», но этот миф полностью ложен и наносит большой ущерб вашему дому.Стены должны высыхать, в идеале в обоих направлениях.

Если зимой держать дверь открытой в щели, естественная конвекция будет втягивать воздух внизу и вытеснять его вверху. Ваш дом будет вести себя аналогичным образом, это называется эффектом стека.

Теплый воздух поднимается, вытесняя воздух из верхней части дома и втягивая холодный воздух снизу, чтобы заменить его. Насколько изменится воздух, зависит от того, насколько хорошо герметичен ваш дом.

В то время как естественная конвекция предлагает определенное количество свежего воздуха, для большинства новых домов этого просто недостаточно.Правильно закрытые дома требуют систем механической вентиляции для удаления влаги и обеспечения жителей достаточным количеством свежего воздуха.

Вентиляционные системы — что такое HRV?

Системы механической вентиляции известны как теплообменники , HVAC (отопление, вентиляция и кондиционирование воздуха) или HRV (вентиляторы с рекуперацией тепла). Эти системы предназначены для удаления влаги и подачи свежего воздуха в ваш дом, который предварительно нагревается выходящим воздухом.

© Van EE

Ядро HRV имеет небольшие отдельные каналы, через которые проходит воздух, что позволяет предварительно нагреть поступающий воздух выхлопным воздухом.Здесь нет нагревательных спиралей, вы просто управляете вентиляторами, поэтому они относительно дешевы в эксплуатации. И вы, безусловно, сэкономите деньги в целом, поскольку нагревание влажного воздуха потребляет много энергии.

В зависимости от качества машины, которую вы покупаете, вы можете рассчитывать на возмещение от 50% тепла воздуха до 95%. Планируйте потратить около 2000 долларов на установку, это достаточно эффективный вариант. Вдвое больше, чем у высокопроизводительных моделей с алюминиевым сердечником, который проводит тепло лучше, чем пластиковый.

Вентиляционные системы — Что такое ERV?

Вентиляция с рекуперацией энергии ( ERV ) — это процесс обмена энергией, содержащейся в обычном вентиляторе, забираемом несвежим или влажным воздухом из домов, и ее использование для обработки (предварительной подготовки) поступающего наружного свежего воздуха в бытовых и коммерческих системах ОВК. В теплые дни система ERV предварительно охлаждает и осушает, а в зимний период системы ERV увлажняют и предварительно нагревают входящий воздух снаружи дома.Одним из преимуществ использования рекуперации энергии в США является возможность соответствовать стандартам вентиляции и энергопотребления ASHRAE, одновременно улучшая качество воздуха в помещении и снижая общие рейтинги HVAC и потребности в энергии.

Технология

ERV — это не только эффективное средство снижения затрат на электроэнергию и отопление и охлаждение, но также позволяет использовать меньшее оборудование. Кроме того, системы ERV позволяют поддерживать идеальную относительную влажность от 40% до 50% в домашних условиях. Этот диапазон может поддерживаться более или менее во всех условиях, с единственной потерей энергии для воздуходувки, которая преодолевает падение давления в системе.

Если вам нужна помощь в выборе между системой HRV и ERV, см. Здесь

Качество воздуха в помещении важно по многим причинам:

  • Предотвращение проблем с влажностью, таких как гниль и плесень

  • Предотвращение повреждения окон конденсатом

  • Профилактика респираторных заболеваний, вызванных внутренними загрязнителями

  • Снижение затрат на отопление за счет отказа от нагрева избыточного водяного пара, выходящего из вашего дома.

Идеальный уровень влажности:

© Министерство здравоохранения Канады


Наряду с удалением загрязняющих веществ из воздуха, слишком много или слишком мало влаги в наших домах имеет последствия для здоровья. Есть бактерии, вирусы, плесень и клещи, которые появятся на любом конце спектра, если ваш воздух слишком влажный или слишком сухой.

Обычно считается, что относительная влажность в диапазоне от 35 до 50% является наилучшей для предотвращения большинства рисков для здоровья и раздражителей.Он достаточно высокий, чтобы не было потрескавшейся мебели, потрескавшихся губ или постоянных кровотечений из носа, и не слишком влажный для комфорта, конденсации или потребления тепла.

Если вы живете в старом доме, не паникуйте. То, что мы пишем на этих страницах, призвано вдохновлять на идеи и решения, а не на страх и беспокойство. Если вам хорошо, воздух хорошо пахнет, а из окон не капает, расслабьтесь.

Для душевного спокойствия подумайте о покупке ареометра для измерения относительной влажности в помещении, который в большинстве хозяйственных магазинов будет стоить вам от 20 до 30 долларов.Если у вас есть проблема, немного взломайте окно, пока не разберетесь с ней. Для решения некоторых из этих проблем доступны увлажнители, осушители и очистители воздуха.

Осушитель будет стоить от 200 до 300 долларов в месяц, а эксплуатация — от 10 до 15 долларов в месяц. Эти дополнительные затраты, вероятно, будут нивелированы за счет экономии тепла, поскольку для нагрева влажного воздуха требуется гораздо больше энергии, чем для нагрева сухого воздуха.

Если вы планируете самостоятельно выполнить проект по установке HRV или ERV, сначала проведите исследование, чтобы определить правильное размещение вентиляции.Например, воздухозаборник в ванной, а не простой вытяжной вентилятор, будет означать нагретый входящий воздух вместо того, чтобы просто создавать отрицательное давление и позволять холодному воздуху находить свой путь каждый раз, когда кто-то включает вентилятор.

Конечно, если у вас есть воздухозаборник, вам не нужно устанавливать вентилятор в ванной, просто обязательно установите таймер, чтобы вы и ваши гости могли его включить. Воздухозаборник на кухне или рядом с ней помогает улавливать общую влагу и загрязнения, но не подключайте ее к вытяжке.Посылать кулинарный жир через дорогой теплообменник — не лучший вариант.

Что касается монтажа воздуховодов, гибкие трубки дешевле и с ними проще работать, но они могут быть довольно шумными, а ребра замедляют движение воздуха, заставляя ваш воздухообменник работать тяжелее.

Поскольку вентиляционные отверстия для свежего воздуха лучше всего размещать в жилых помещениях и спальнях, вы можете обнаружить, что они оправдывают дополнительные затраты на массивные воздуховоды просто для снижения шума.

Дополнительные статьи о высокоэффективных системах вентиляции для пассивных домов и домов, сертифицированных по стандарту LEED, см. Здесь из Руководства по экологическому строительству EcoHome

Современное состояние рекуперации печей в первичной металлургической промышленности: технический брифинг (технический отчет)

Мур, Н. Л. Современное состояние рекуперации печей в первичной металлургической промышленности: технический брифинг . США: Н. п., 1983. Интернет. DOI: 10,2172 / 5831613.

Мур, Н. Л. Современное состояние рекуперации печей в первичной металлургической промышленности: технический брифинг . Соединенные Штаты. https://doi.org/10.2172/5831613

Мур, Н. Л.Пн. «Современное состояние рекуперации печей в первичной металлургии: технический брифинг». Соединенные Штаты. https://doi.org/10.2172/5831613. https://www.osti.gov/servlets/purl/5831613.

@article {osti_5831613,
title = {Современное состояние рекуперации печей в первичной металлургической промышленности: технический брифинг},
author = {Moore, N L},
abstractNote = {Определяются существующие и новые технологии рекуперации, а также технические и экономические проблемы при применении такой технологии. Представлен обзор рекуперации и ее значение для первичной металлургии. Рассмотрены соображения по проектированию, оборудованию, экономии энергии и затрат при использовании пяти рекуператоров в металлургической промышленности. Три приложения включают в себя историю недавней установки рекуператора. Инженерный анализ затрат на рекуператорную технологию включен, чтобы убедиться, что технически осуществимые инженерные проекты также являются экономически привлекательными коммерческими предприятиями. Представлен обзор новых технологий рекуперации.},
doi = {10.2172 / 5831613},
url = {https://www.osti.gov/biblio/5831613}, journal = {},
number =,
объем =,
place = {United States},
год = {1983},
месяц = ​​{8}
}

Как самостоятельно установить HRV или ERV

Размещено

Автор: Стив Максвелл

Обновлено 15 февраля 2021 г.

Перед тем, как начать.. . b e Обязательно ознакомьтесь с разделом вопросов и ответов о вентиляторе с рекуперацией тепла в конце этой статьи. Все вопросы задают реальные люди, которые ищут настоящие ответы. — Стив Максвелл

Некоторые из наиболее частых вопросов, которые мне задают, исходят от людей, которые хотят улучшить качество воздуха в своих домах с помощью вентиляторов с рекуперацией тепла (HRV). Это устройства, которые приносят свежий воздух в ваш дом, выводят застоявшийся воздух на улицу, сохраняя при этом большую часть энергии, которую вы вложили в отопление и охлаждение.Вентиляторы с рекуперацией тепла иногда называют теплообменниками, воздухообменниками с рекуперацией тепла или просто воздушными теплообменниками. Независимо от названия, это оборудование может сделать больше для улучшения качества воздуха в помещении, чем что-либо другое. Так было с моим другом Брайаном. ВСР ниже — это то, что мы установили у него дома.

Установка собственной системы HRV, подобной этой, — умеренно сложная задача, сделанная своими руками, которая может сэкономить около 1000 долларов.

Когда Брайан и его семья переехали в новый дом заводской постройки весной 2000 года, он усвоил суровый урок о качестве воздуха в помещении. «Вентилятор с рекуперацией тепла (HRV) был частью домашнего пакета, который мы купили, — вспоминает Брайан, — но установка не была включена в сделку, поэтому он просто стоял в коробке. Мы не успели подключить HRV сразу, потому что нам не понравились оценки на сумму более 1000 долларов, которые мы получили, чтобы вставить его. По крайней мере, до тех пор, пока не наступит холодная погода и не начнет стекать конденсат по нашим окнам. В черной плесени, растущей на новых оконных рамах, есть что-то, что создает совершенно новое ощущение безотлагательности.”

Эта срочность привела к тому, что мне позвонили за помощью по установке. HRV, который вы видите здесь, на всех этих фотографиях, мы поставили в подвал Брайана. Один день работы, и это сэкономило ему тысячу долларов.

Я не профессиональный подрядчик по ОВК, но знаю две вещи о вентиляторах с рекуперацией тепла . Во-первых, их следует установить в гораздо большем количестве современных домов, чем сейчас. Плохое качество воздуха в помещении — серьезная скрытая проблема, влияющая на здоровье многих людей, особенно детей.Во-вторых, установка HRV полностью находится в компетенции любого среднего квалифицированного специалиста с помощником. Если вы можете разрезать листовой металл, подвешивать предметы к потолку подвала и пробивать отверстия в наружных стенах, вы можете сэкономить немало денег на установке и установке HRV самостоятельно. Два человека могут добавить один к обычной системе воздушного отопления за один полный рабочий день, если они спешат. Уделите на работу два дня, и это будет похоже на пикник. Неплохо, учитывая, что задача экономит серьезные деньги. В свое время я установил три HRV, и все они отлично работают. Вы новичок в HRV? Посмотрите фоновое видео ниже, чтобы узнать, как они работают и какие хорошие вещи они могут принести в ваш дом.

Нет смысла утомлять вас подробными пошаговыми инструкциями по установке, потому что они бесполезны. Детали каждой работы HRV различны. Кроме того, каждый блок в любом случае идет со своим набором инструкций. Вместо этого эта статья посвящена инструментам, стратегиям и проверенным на практике приемам, которых вы не найдете ни в одном руководстве производителя.Думайте о них как о кучке советов по установке HRV. Если вы можете уверенно резать воздуховоды из листового металла, соединять трубы и приводные винты, с установкой HRV вы справитесь.

Общие сведения о системе вентиляции с рекуперацией тепла

HRV представляет собой оборудованный вентилятором ящик размером с небольшой ящик для инструментов механика. Вот и все внутри. Все HRV направляют подачу свежего наружного воздуха в ваш дом, выбрасывая застоявшийся воздух из помещения наружу. Эта двухпоточная система является частью уравнения вентиляции. HRV также извлекает большую часть тепла из застоявшегося воздуха перед тем, как вывести его на улицу. Это часть сделки по рекуперации тепла, и она происходит внутри черно-белого квадрата, который вы видите на открытом HRV ниже. Вы должны понимать эти функции, чтобы выбрать наиболее подходящее место для вашего устройства. Хорошее планирование — это первый шаг к успешной установке.

Открытый HRV показывает теплообменный сердечник и впускные и выпускные отверстия.

Местоположение любой HRV должно удовлетворять этим условиям:

  • как можно ближе к внешней стене, подходящей для впускных и выпускных отверстий
  • доступ к сливу для приема конденсированной воды из агрегата
  • ближайший источник электричества для питания внутренних вентиляторов и управления
  • близость к существующим каналам отопления или охлаждения, которые можно использовать для распределения свежего воздуха по всему дому

Рекомендации по установке вентилятора с рекуперацией тепла

Ваша первая задача — найти место для вашего HRV, которое минимизирует длину воздуховодов, необходимых для подключения его к наружной части и к любой существующей системе воздуховодов внутри вашего дома. Приточные и вытяжные воздуховоды, которые соединяются с жалюзи наружных стен, должны быть изолированы на заводе, в то время как оба воздуховода, ведущие исключительно в помещения и из них, должны быть гладкими и жесткими. Типичный размер воздуховода для обоих типов составляет 6 дюймов в диаметре. Вы можете попробовать обойтись 5-дюймовым экраном, но этот размер может не обеспечивать достаточного воздушного потока. Зачем рисковать?

По мере того, как вы приближаетесь к окончательному местоположению вашего HRV, больше склоняйтесь к сокращению изолированного воздуховода, а не к гладкой стальной детали, если вам нужно выбрать .Шероховатая внутренняя поверхность изолированного воздуховода препятствует воздушному потоку больше, чем гладкий воздуховод. Кроме того, полиэтиленовая оболочка изоляционного воздуховода хрупкая. Его нельзя рвать или повредить. По этим двум причинам вы хотите, чтобы в вашей установке было как можно меньше изолированного воздуховода.

Доступ к дренажной системе — еще одна проблема, влияющая на расположение HRV. Количество воды, производимой HRV, относительно невелико, поэтому вы можете подключить дренажную линию к отверстию отстойника в подвальном этаже, к обычному водостоку или даже к сливу в полу.Вы можете врезаться в обычную дренажную трубу из АБС-пластика, просверлив отверстие для гибкой виниловой дренажной линии от вашего устройства, а затем использовать силиконовый герметик, чтобы закрепить линию внутри трубы.

Продумайте вопрос местоположения ВСР и дайте себе день или два, чтобы рассмотреть несколько вариантов, прежде чем выбрать последнее место. Наименее важной особенностью местоположения является доступ к электричеству. Лучше добавить поблизости новую розетку, чем иметь длинные воздуховоды или длинную сливную линию.

Вентилятор с рекуперацией тепла: резка и соединение металлических воздуховодов

Обработка листового металла обычно составляет большую часть большинства установок HRV. Хорошая новость заключается в том, что это не ракетостроение и требует всего нескольких основных инструментов: лобзика, острых ножниц, аккумуляторной дрели с магнитным наконечником гайковерта, острогубцев, измерительной ленты и перманентного маркера. Если вы никогда раньше не работали с круглыми металлическими воздуховодами, вы можете не осознавать, что они поступают из магазина в виде изогнутых листов с несобранным соединением с защелками, проходящим по всей длине каждого элемента. Как бы весело ни было соединить воздуховод, не делайте этого, пока не обмерите и не отрежете необходимые детали.Воздуховод нужно разрезать ровно. Его не так легко разрезать после того, как он собрался в круглую форму, и непросто оторвать соединенный вами воздуховод.

Мой друг Брайан разрезает вентиляционный канал лобзиком. Созданное отверстие позволит HRV распределять свежий воздух через систему отопительных каналов.

Кроме того, посмотрите на каждый кусок воздуховода, только что изготовленный на заводе, и вы увидите, что один конец гофрирован, а другой прямой. Это позволяет соединять трубы в собранном виде встык — одна часть вставляется внутрь другой.Но чтобы удалить гофрированный конец с отрезка трубы, достаточно одного короткого отреза. Тогда что вы будете делать в следующий раз, когда вам понадобится еще один обжатый кусок трубы для соединения?

Создание гофрированного конца на отрезке воздуховода, чтобы он мог сцепиться с другим воздуховодом. Для этого вида опрессовки есть специальные инструменты, но подойдут и тонкие плоскогубцы.

Хотя вы можете купить специальный инструмент для восстановления обжима на концах металлических воздуховодов, он вам не понадобится. Вместо этого обожмите его самостоятельно, по одной складке за раз, используя плоскогубцы.Это займет всего пару минут и отлично справится.

Когда дело доходит до соединения труб, выбирайте самосверлящие винты с шестигранной головкой, которые затягиваются аккумуляторной дрелью. Наконечник самореза выглядит как сверло, и это то, что вам нужно. Подобных винтов без возможности самосверливания предостаточно, но они вам не нужны для этой работы. Зачем использовать крепеж, для которого требуется предварительно просверленное пилотное отверстие, если правильные винты делают работу сами?

Вентилятор с рекуперацией тепла: пробивка отверстий в наружных стенах

Создание двух отверстий для воздуховодов диаметром 6 дюймов во внешней стене — одного для забора свежего воздуха и одного для выхода несвежего воздуха — обычно является самой сложной частью любой работы по установке HRV, особенно если вам нужно пройти через кладку стена. А для этой работы вам понадобится перфоратор. Это что-то вроде перфоратора при силовых тренировках. Просверлите отверстия диаметром 1/2 дюйма, чтобы определить внешние края каждого отверстия воздуховода, затем переключитесь на зубило и отбойный молоток, чтобы удалить отходы между просверленными отверстиями. Если вы прокладываете себе путь через деревянную раму, как мы здесь, сделайте то же самое, за исключением лопаты в обычной дрели.

С учетом всего вышесказанного, даже пробиться сквозь дерево и сайдинг может быть непросто. Это особенно верно, потому что для большинства подвальных установок HRV требуется пробивка по крайней мере одного слоя строительной древесины по краю каркаса пола, где изолированные воздуховоды обычно проходят между балками на пути к стенным решеткам. Оценивая работу, запомните эти четыре шага: обвести, обрезать, сверлить и распилить.

Достаточно нескольких проходов канцелярским ножом, чтобы прорезать круглое отверстие в виниловом сайдинге. После этого деревянный каркас дома разрезается.

Начните с внутренней части подвала, просверлив единственное отверстие снаружи, прямо в середине отверстия, необходимого для воздуховода. Выйдите на улицу, затем обведите круг вокруг этой дыры. Сделайте один круг размером с воздуховод, а другой на 1/4 дюйма больше диаметра металлического фланца воздуховода, выходящего на заднюю часть каждой наружной жалюзи, входящей в комплект HRV. Если используется горизонтальный сайдинг, немного измените положение жалюзи вверх и вниз, чтобы его верхний край совпадал с естественным стыком между элементами сайдинга. Острый универсальный нож отлично справится с резкой винилового сайдинга в качестве предварительного шага даже в холодную погоду.Этот инструмент также работает с алюминиевым сайдингом, хотя для прохождения требуется больше проходов.

Просверливание нескольких отверстий по периметру круглого отверстия в сайдинге значительно упрощает удаление точного деревянного диска для внешних вентиляционных отверстий.

Затем просверлите серию отверстий диаметром 1/2 дюйма в недавно обнаженной древесине, примерно 12 по всему периметру. Они определяют стороны отверстий воздуховода, что упрощает их распиливание для придания им формы с более или менее квадратными сторонами. Лучшим инструментом для проделывания отверстия в деревянном каркасе дома является сабельная пила.Просто убедитесь, что у вас есть орбитальное лезвие, если возможно. Это означает, что лезвие движется по D-образной схеме вместо обычного прямолинейного движения вверх и вниз. Орбитальное действие лезвия приводит к более агрессивной резке, и это то, что вам нужно в такой сложной ситуации. Даже орбитальный лобзик отлично справится с грубым полотном.

До тех пор, пока вы не прожили какое-то время в тесном доме без HRV, а затем не добавили еще, трудно представить себе разницу, которую может иметь постоянный приток свежего воздуха. «Когда мы впервые включили установку, — объясняет Брайан, — мы все сидели у теплового регистратора и нюхали чистый воздух. Какая при этом разница! Если бы я знал, насколько легко установить HRV, я бы подключил блок сразу после переезда ».

Наконечник №1 для вентилятора с рекуперацией тепла: защита изолированного гибкого воздуховода

Обратите внимание на открытый воздуховод из листового металла, расположенный вокруг гибкого изолированного воздуховода, чтобы поддерживать его. Металлические ремни, непосредственно поддерживающие воздуховод, могут повредить важную пластиковую втулку на воздуховоде.

Полиэтиленовая втулка, образующая внешнюю оболочку изолированного воздуховода, необходима для предотвращения образования конденсата на внешней стороне трубы в холодную погоду. Но, к сожалению, его тоже легко повредить. Вот почему вам следует по возможности установить жесткий экран над воздуховодом. И для этой работы нет ничего лучше, чем кусок гладкого воздуховода из листового металла. Вот что вы видите выше. Согните кусок воздуховода, который еще не был соединен вместе, затем поместите его вокруг изолированного воздуховода, прежде чем закрепить воздуховод с помощью шурупов, вбитых в балки пола, или гвоздей 2 × 4.

Совет № 2 для вентиляторов с рекуперацией тепла: решающее значение имеет пароизоляция

Точно так же, как полиэтиленовый пароизоляционный слой на внутренней стороне стен вашего дома должен быть герметичным и непрерывным, чтобы полости в стенах оставались сухими, так же должен быть безупречным пластик снаружи гибких воздуховодов HRV. Любое отверстие, даже небольшое, позволит теплому влажному воздуху проникать к холодной поверхности трубы внутри. И если это произойдет, вода будет конденсироваться из воздуха и пропитать изоляцию из стекловолокна.Большой беспорядок. Наиболее вероятное место прорыва пароизоляции на изолированном воздуховоде — торцы. Вот почему имеет смысл оборачивать изолентой внешние стыки изолированных воздуховодов. Вот что вы видите ниже. Заклеивание лентой физически закрепляет трубу на блоке HRV лучше, чем одни хомуты, но это не самое важное преимущество. Лента также предотвращает просачивание воздуха в помещении вокруг трубчатой ​​полиэтиленовой пароизоляции.

Обратите внимание на клейкую ленту, герметизирующую пластик воздуховода к HRV.Если воздух в помещении может оставаться за пластиком, под пластиком и внутри изоляции будет образовываться вредный внутренний конденсат.

Совет № 3 для вентиляторов с рекуперацией тепла: не теряйте равновесие

Плечо рычага управляет внутренним демпфером. Такой рычаг есть и на впускном, и на выпускном каналах. Общий приток воздуха должен равняться оттоку для наилучшей работы HRV.

Уравновешивание потока — последняя часть установки HRV. Этот процесс происходит после того, как все установлено и запущено, и включает в себя согласование скорости потока воздуха в птичник с потоком воздуха из птичника.Дроссельные заслонки внутри воздуховодов позволяют это контролировать. Рычаг управления дроссельной заслонкой — это то, что вы видите выше в середине трубы. Чистое движение воздуха внутри приведет к снижению энергоэффективности. Чистое движение воздуха на улице вызовет отрицательное давление воздуха внутри, увеличивая вероятность того, что вредный угарный газ попадет в ваш дом из печи, водонагревателя или камина. Точная балансировка воздушного потока может быть достигнута с помощью оборудования, которое вы арендуете для измерения потока воздуха в дом и из него, но есть более простой способ.После работы HRV в течение нескольких часов приоткройте дверь или окно. Если вы не чувствуете чистого движения воздуха внутрь или наружу, значит, вы достаточно сбалансированы. Если вы чувствуете поступление воздуха, у вас отрицательное давление и вам необходимо увеличить приток свежего воздуха и уменьшить отток несвежего воздуха. Если во время теста вы чувствуете, как воздух выходит из птичника, сделайте противоположные изменения.

И последнее. . . Когда вы установите и введете в эксплуатацию свою систему HRV, не забудьте ее обслуживать. Всем HRV нужны две вещи.Во-первых, вам нужно очистить внутренние фильтры. Они улавливают пыль, и фильтр, обрабатывающий внутренний воздух, станет особенно шероховатым. Во-вторых, не забывайте ополаскивать сердечник теплообменника каждый раз, когда чистите фильтры. Никакой фильтр не улавливает всю пыль, поэтому некоторое количество пыли будет накапливаться на ребрах теплообменника. Все сердечники теплообменника можно снять с основного корпуса HRV для промывки. Руководство по эксплуатации покажет вам, как это сделать.

Вентилятор с рекуперацией тепла: вопросы и ответы со Стивом Максвеллом

Q: Необходимо ли хранить 20 лет.старый вентилятор с рекуперацией тепла теперь, когда мы только что установили новую высокоэффективную печь? Я слышал разные мнения и хотел бы узнать ваше. Мы живем в пристроенном бунгало. Спасибо. NS, Оттава, Канада.

A: Я определенно сохраню ВСР. Если ваша старая печь раньше получала воздух для горения изнутри дома (а, вероятно, так оно и было), вам понадобится HRV больше, чем когда-либо. Это связано с тем, что печь, втягивающая воздух для горения изнутри дома, автоматически заставляет свежий воздух поступать в здание из других мест.Эта де-факто вентиляция теряется с новой печью, подобной вашей. Все дома, кроме самых негерметичных, получают выгоду от HRV.
*********************

Q: Будет ли HRV работать в доме без отопительных каналов? Мое жилище было построено с электрическими обогревателями плинтуса, и нет возможности распределять воздух, поступающий от HRV.

A: Короткий ответ — да. Вентилятор с рекуперацией тепла может работать в доме без воздуховодов. Хитрость заключается в том, чтобы расположить несвежие воздухозаборники и выпускные воздуховоды свежего воздуха так, чтобы воздух циркулировал по всему дому.Если вы можете установить воздухозаборник несвежего воздуха на одном уровне, а выход свежего воздуха — на другом, тогда бесканальная установка HRV будет работать идеально. Я знаю, потому что такая ситуация у меня дома.

Высокоэффективные газовые горелки экономически выгодны

Несмотря на то, что цена на природный газ в настоящее время низкая, вложения в высокоэффективные газовые горелки имеют экономический смысл. В этой статье обсуждаются различные типы высокоэффективных газовых горелок и радиационных труб, представленные сейчас на рынке.Он также объяснит компромисс между эффективностью и выбросами NO x и выделит технологию сжигания, которая позволяет получить лучшее из обоих миров. Наконец, в статье будет обсуждаться поправочный коэффициент, который можно использовать для корректировки ограничений выбросов NO x на основе эффективности сгорания.

Технология газовых горелок

График, изображенный на Рисунке 1, показывает эффективность сгорания (основанную на более низкой теплоте сгорания) как функцию температуры выхлопных газов перед теплообменником (если таковой существует для конкретного типа горелки).В случае горелки прямого действия она равна температуре печи. В случае горелки с радиационной трубой эта температура выше, чем температура печи, на величину, которая связана с плотностью теплового потока через радиационную трубу (см., Например, [1]).

Рис. 1: КПД в зависимости от температуры выхлопного газа на входе [2]

Кривая с обозначением ε = 0 представляет горелку с холодным воздухом (т.е. без предварительного подогрева воздуха для горения). При температуре 1832 градуса по Фаренгейту (1000 градусов по Цельсию) максимально возможный КПД для этого типа горелки составляет примерно 50 процентов. Многие старые горелки с холодным воздухом имеют КПД, который даже ниже теоретического максимума из-за множества факторов, таких как конструкция горелки, отсутствие технического обслуживания и неправильная настройка.

Кривая с меткой ε = 0,4 представляет горелку, оборудованную съемным рекуператором или центральным теплообменником. В этом случае воздух для горения предварительно нагревается примерно до 40 процентов от температуры выхлопных газов на входе. При эталонной температуре 1832 градуса F (1000 градусов Цельсия) этот тип горелки имеет КПД в диапазоне от 60 до 65 процентов.

Кривая ε = 0,6 соответствует самовосстанавливающейся горелке. В горелках этого типа теплообменник является неотъемлемой частью горелки и располагается непосредственно внутри стенки печи. Такое расположение помогает минимизировать потери тепла в окружающую среду и тем самым обеспечивает повышенную эффективность. В этом случае воздух для горения предварительно нагревается примерно до 60-65 процентов от температуры выхлопных газов на входе. При той же эталонной температуре 1832 градуса по Фаренгейту (1000 градусов Цельсия) этот тип горелки достигает КПД в диапазоне от 70 до 75 процентов.Горелки с самовосстановлением доступны с металлическим или керамическим теплообменником. Металлический тип может работать при температурах примерно до 2050 градусов F (1120 градусов C), тогда как керамический тип обычно может работать при температурах примерно до 2372 градусов F (1300 градусов C). На рис. 2 показано поперечное сечение самовосстанавливающейся горелки.

Рис. 2: Самовосстанавливающаяся горелка [2]

Существует новое поколение самовосстанавливающихся горелок, которые не попадают в типичный диапазон, показанный на Рис. 1.Этот тип горелки известен как «щелевой поток». В этой конструкции горелка оснащена множеством крошечных трубок, которые служат теплообменниками. Эта конфигурация эффективно увеличивает площадь поверхности теплопередачи в три раза, тем самым увеличивая предварительный нагрев воздуха для горения до 75-80 процентов от температуры на входе выхлопных газов. При эталонной температуре 1832 градуса F (1000 градусов C) этот тип горелки имеет КПД в диапазоне от 80 до 85 процентов. Он доступен либо с металлическим теплообменником, либо с комбинацией керамического и металлического теплообменника.Металлический тип может работать при температурах примерно до 1832 градусов F (1000 градусов C), тогда как керамический / металлический тип может работать при температурах примерно до 2300 градусов F (1260 градусов C). На рисунке 3 показаны типичные металлические и керамические / металлические горелки с зазором.

Рис. 3: Горелки с щелевым потоком [2]

Кривая, обозначенная на графике ε = 0,8, представляет собой рекуперативную горелку. Горелки этого типа оснащены накопителями тепла, такими как керамические шарики, диски и т. Д. Таким образом, накопители тепла находятся в прямом контакте с горячими выхлопными газами или холодным воздухом для горения в зависимости от точки цикла регенерации.В первой половине цикла горячий выхлопной газ нагревает носитель до очень высокой температуры. Затем срабатывают переключающие клапаны и направление потока меняется на противоположное, так что теперь холодный воздух для горения течет по теплонакопителю. При таком расположении воздух для горения предварительно нагревается примерно до 80-85 процентов от температуры выхлопного газа на входе. При эталонной температуре 1832 градуса F (1000 градусов C) этот тип горелки имеет КПД в диапазоне от 85 до 90 процентов.Традиционные регенеративные горелки работают парами: одна горелка горит, а другая гаснет, и наоборот. Более новый тип, известный как самовосстанавливающаяся горелка, объединяет все регенераторы и переключающие клапаны в один автономный блок. Каждая горелка содержит шесть каналов, и каждый канал содержит ряд керамических сотовых дисков, которые служат в качестве носителя тепла. В любой момент цикла три прохода являются выхлопными, а другие три прохода впускают воздух для горения.Примерно через 10 секунд переключающие клапаны переключаются, и путь потока меняется на противоположный. Регенеративные горелки также доступны в металлическом или керамическом исполнении. Металлический тип может работать при температурах примерно до 1832 градусов F (1000 градусов C), тогда как керамический тип может работать при температурах примерно до 2372 градусов F (1300 градусов C). На рисунке 4 показано поперечное сечение самовосстанавливающейся горелки.

Рис. 4. Саморегенерационная горелка [2]

Излучающие трубы для косвенного нагрева

Во многих случаях газовые горелки горят прямо в топку.Однако в ряде случаев процесс требует, чтобы рабочая нагрузка не подвергалась воздействию продуктов сгорания. Например, для некоторых процессов требуется защитная атмосфера, такая как азот, для предотвращения окисления на поверхности деталей. В этих случаях используется косвенный нагрев. Одним из методов непрямого нагрева является включение горелок в излучающие трубы, которые, в свою очередь, передают тепло печи и рабочей нагрузке за счет разницы температур.

Горелки с холодным воздухом или те, в которых используются съемные рекуператоры или центральный теплообменник, соединяются с традиционными радиационными трубами без рециркуляции. С этим типом трубки горелка стреляет в один конец трубки и гасит другой. Примерами трубок этого типа являются U-образные и W-образные трубки (см. Рисунки 5 и 6).

Рисунок 5: U-образная трубка Рисунок 6: W-образная трубка

Самовосстанавливающиеся и самовосстанавливающиеся горелки работают в паре с радиационными трубами рециркуляционного типа. Каждая из этих трубок обеспечивает своего рода путь для внутренней рециркуляции, а горелка запускает и выходит из одного и того же конца трубы, что приводит к улучшенной однородности температуры по сравнению с нерециркуляционными трубками.

Рисунок 7: Односторонняя радиационная труба [2]

В случае односторонней радиационной трубы (см. Рисунок 7), выхлопные газы проходят через внутреннюю трубу, а затем обратно к выхлопу через кольцевое пространство между внутренней и внешней трубами. Между кончиком горелки и началом сборки внутренней трубки имеется критическое пространство. Выхлопные газы достигают этой точки, и высокоскоростная струя горелки создает эффект Вентури, втягивая часть выхлопных газов обратно во внутреннюю трубу. Таким образом, выхлопные газы рециркулируют несколько раз, прежде чем они, наконец, пройдут через теплообменник и выйдут из отверстия на горелке.

Рис. 8: P-образная трубка [2]

P-образная трубка (см. Рис. 8) похожа на U-образную трубку, за исключением того, что она имеет поперечный соединительный элемент для обеспечения внутренней рециркуляции. Горелка попадает в одну ветвь трубы, а выхлопные газы возвращаются через другую ветку в крестовину. Высокоскоростная струя горелки создает тот же эффект Вентури, чтобы втягивать часть выхлопных газов обратно в топку.Точно так же выхлопные газы рециркулируют несколько раз, прежде чем они наконец пройдут через теплообменник и выйдут из отверстия на горелке.

Рисунок 9: Двойная P-образная трубка [2]

Двойная P-образная трубка (см. Рисунок 9) похожа на P-образную трубку, но имеет две возвратные ветви. В этом случае горелка попадает в центральную стойку, а выхлопные газы проходят обратно через боковые стойки. Этот тип трубок обеспечивает большую площадь поверхности и поэтому используется с горелками с большей потребляемой мощностью.

NO

x Методы восстановления для высокоэффективных горелок

Традиционно существует компромисс между эффективностью сгорания и выбросами NO x .Для достижения высокой эффективности необходимо предварительно нагреть воздух для горения до высоких температур. Эти высокие температуры предварительного нагрева воздуха для горения приводят к высоким пиковым температурам пламени, которые являются основным фактором образования NO x . Выбросы NO x являются экспоненциальной функцией максимальной температуры пламени, поэтому они имеют тенденцию быстро увеличиваться с увеличением температуры печи и повышением температуры предварительного нагрева воздуха для горения. Существует ряд методов, помогающих бороться с этой проблемой.

Один из таких приемов известен как воздушная постановка. При использовании этого метода часть воздуха для горения смешивается со всем топливом, чтобы вызвать частичную реакцию и высвободить некоторое количество тепла. Затем остальной воздух для горения вводится немного дальше по потоку, чтобы завершить реакцию и высвободить еще немного тепла. Таким образом, реакция распространяется, а не концентрируется в одной точке. Это способствует снижению пиковой температуры пламени и тем самым сокращает выбросы NO x .

Высокоскоростное горение также используется в качестве метода восстановления NO x .Тщательное перемешивание выхлопных газов внутри печи или радиационной трубы имеет эффект усреднения температуры. Следовательно, пиковые температуры пламени снижаются, и соответственно сокращаются выбросы NO x .

Аналогичным образом, рециркуляция дымовых газов также может служить методом сокращения выбросов NO x . Выхлопные газы очень горячие, но не такие горячие, как пламя. Таким образом, втягивание части инертных выхлопных газов обратно в фронт пламени фактически производит охлаждающий эффект. Этот эффект способствует снижению пиковых температур пламени и, следовательно, выбросов NO x .

Все эти техники достаточно эффективны в обычных условиях. Однако, когда температуры предварительного нагрева воздуха для горения достигают очень высоких уровней, как в случае использования самовосстанавливающихся или (саморегенеративных) горелок, методов часто бывает недостаточно для снижения выбросов NO x до приемлемых уровней. К счастью, для решения этой проблемы была разработана революционная технология сжигания. Эта технология известна как сжигание FLOX или беспламенное окисление (см.например [1] или [3] для получения дополнительной информации). С помощью этой специальной технологии топливо и воздух смешиваются с рециркулирующими выхлопными газами, и происходит реакция самовозгорания, которая не дает видимого пламени. За счет исключения пламени от реакции горения пиковые температуры резко снижаются, и это снижает выбросы NO x до доли уровня, достижимого с помощью традиционных методов восстановления NO x . Этот процесс происходит только при температуре выше температуры самовоспламенения, и требуется некоторый запас прочности; поэтому температура перехода FLOX обычно устанавливается на уровне 1550 градусов F (850 градусов C).Ниже этой температуры горелка работает в обычном режиме горения с пламенем. Как только достигается температура перехода FLOX, газ впрыскивается таким образом, который обеспечивает более благоприятную картину смешивания / рециркуляции и предотвращает образование и прилипание пламени. Если температура опускается ниже 1550 градусов F (850 градусов C), горелка автоматически возвращается в режим «Пламя».

Поправочный коэффициент для NO

x Ограничения

NO x Выбросы ограничены законом или кодексом во многих местах по всей Северной Америке.Хотя это выгодно для окружающей среды и общества, метод, используемый для определения предела, может значительно изменить результат, если он не учитывает в полной мере влияющие факторы. В частности, это относится к эффективности сгорания в промышленных печах. Одномерный стандарт ограничения выбросов может привести к неблагоприятным последствиям, помешать благонамеренным инициативам достичь своих целей или даже привести к прямо противоположному. Можно применить очень простой поправочный коэффициент, чтобы правильно отразить полноту сгорания и, следовательно, достичь намеченных целей.

В целом, есть два возможных метода для более точного определения ограничения выбросов для достижения намеченной цели:

  • 1. Общие абсолютные выбросы загрязняющего вещества могут быть ограничены (например, предел может быть выражен в фунтах в год).
  • 2. Ограничение концентрации выбросов в выхлопных газах можно скорректировать с помощью коэффициента эффективности.

Хотя Вариант 1 сначала кажется простым, может быть сложно проверить соответствие в реальных приложениях, поскольку обычно нет постоянно установленного устройства мониторинга выбросов, чтобы подтвердить истинные абсолютные количества загрязняющих веществ, выбрасываемых в год.Вариант 2 можно было бы использовать очень похоже на сегодняшний стандартный подход. В настоящее время ограничение концентрации загрязняющих веществ в выхлопных газах проверяется выборочно в течение типичного рабочего цикла. В случае выбросов NO x зонд анализатора выхлопных газов вставляется в выхлопную систему, и за определенный период времени снимаются несколько показаний NO x . Затем эти значения усредняются для сравнения с пределом, ранее установленным для проверенной печи.В то же время анализатор выхлопных газов обычно также определяет эффективность системы сгорания на основе содержания CO 2 и температуры выхлопных газов. Эти показания КПД (или опубликованные / гарантированные производителем КПД) можно затем использовать для корректировки ограничения выбросов.

Предположим, что эталонная система (ref) определена как наиболее эффективная технология сжигания, при которой достигается предел концентрации выбросов (E B ), установленный властями.

Если эталонная технология может обеспечить более низкие удельные выбросы, E B следует установить в соответствии с этим более низким значением. Кроме того, предположим, что существует более экономичная технология (eff), которая не соответствует ограничениям на удельные выбросы.

Скорректированный предел концентрации выбросов (E N ) должен служить новым пределом для высокоэффективной технологии, поскольку он представляет собой значение, при котором общие абсолютные выбросы более эффективной системы равны таковым для менее эффективной системы. .

Формула выглядит следующим образом:

В качестве примера предположим, что кузнечная печь работает при температуре 2280 градусов по Фаренгейту с горелками с холодным воздухом.

Концентрация выбросов горелок с холодным воздухом (E B ) = 0,06 фунта / MMBtu (50 ppm).

КПД горелок с холодным воздухом (η ref ) = 37 процентов.

В планах компании замена горелок с холодным воздухом на рекуперативные.

КПД регенеративных горелок (η eff ) = 78 процентов.

Для этого примера скорректированный предел удельных выбросов (E N ) для NO x вычисляется как:

Хотя система регенеративной горелки выделяет 0,08 фунта / ММБТЕ (70 частей на миллион) при 3 процентах O 2 , она остается значительно ниже скорректированного предела (E N ), составляющего примерно 0,13 фунта / ММБТЕ (105 частей на миллион) при 3 процентах кислорода. 2 , что позволяет сократить выбросы NO x на 33% в год по сравнению с горелками с холодным воздухом.

Заключение

Существует множество типов горелок разного уровня сложности и эффективности.

Большинство газовых горелок с высоким КПД предварительно нагревают воздух для горения для повышения эффективности горения. Традиционно существует компромисс между эффективностью и выбросами NO x ; однако сжигание FLOX позволяет получить лучшее из обоих миров.

Наконец, если при установлении ограничения выбросов NO x не учитывается эффективность сгорания, это может привести к выбору оборудования, которое фактически производит более высокие абсолютные выбросы.

Однако можно применить очень простой поправочный коэффициент, чтобы отрегулировать ограничения выбросов NO x , чтобы должным образом отразить эффективность сгорания.

Список литературы

  1. Иоахим Г. Вюннинг, Амброджо Милани: Справочник по технологии горелок для промышленных печей, 2-е издание, Vulkan Verlag, 2015
  2. Изображение предоставлено WS Wärmeprozesstechnik GmbH, Dornierstr. 14, 71272 Реннинген, Германия
  3. Иоахим Г. Вюннинг: Беспламенное окисление, 6-й симпозиум HiTACG, Эссен, Германия, 2005 г .; флокс.ru / documents / 05_HTACG_FLOX.pdf
  4. Уве Гётце, Дерил Норткотт, Питер Шустер: Оценка инвестиций — методы и модели, Springer, 2010

Об авторах

Стивен Р. Микки — выпускник Корнельского университета со степенью бакалавра наук в области машиностроения и аэрокосмической техники. Он проработал в компании WS Thermal Process Technology Inc. в Лорейне, штат Огайо, более 17 лет.

Мартин Г. Шенфельдер является совладельцем WS Thermal Process Technology Inc.Он работает в штаб-квартире компании в Реннингене, Германия.

Йоахим Г. Вюннинг является совладельцем WS Thermal Process Technology Inc. Он базируется в штаб-квартире компании в Реннингене, Германия.

.

Оставить комментарий