Зарядное устройство для аккумуляторов из компьютерного блока питания: Зарядное устройство из компьютерного БП АТХ

Опубликовано в Разное
/
9 Мар 2021

Содержание

Зарядное устройство из компьютерного БП АТХ

Мощное зарядное устройство для автомобильного свинцового аккумулятора можно собрать на основе стандартного компьютерного БП АТХ. Сегодня как раз и рассммотрим переделку компьютерного блока питания под зарядное устройство автомобильных аккумуляторов с емкостью 55-65А/час. Почти во всех компьютерных блоках питания используется микросхема TL494 или его полный аналог KA7500. Автомобильные аккумуляторы, в основном имеют ёмкость 55-65 А/час. Это по типу свинцово-гелиевые или кислотные аккумуляторы, требуют ток 5-7 ампер, что составляет 10% емкости аккумулятора. Такой ток при напряжении 12 вольт может обеспечить любой блок питания с мощностью порядка 150 ватт. Схема переделки показана ниже:

Заранее нужно выпаять все ненужные провода «-12 В», «-5 В», «+5 В» и»+12 В». Резистор R1 с сопротивлением 4,7 кОм, подает напряжение +5 В на вывод 1, его тоже нужно выпаять. Вместо этого резистора запаиваем подстоечный на 27килоом. На верхних вывод этого резистора нужно будет подать напряжение +12 В. Вывод 16 нужно отключить от от общего провода, а перемычку (соединение) 14-го и 15-го выводов удалить. На задней стенке блока питания, которая после переделки будет уже передней, на плате укреплен регулятор зарядного тока R10. Не забываем о сетевом шнуре и клеммах-крокодилах. Для надёжного подключения и регулировки был изготовлен блок из нескольких резисторов.

Автор данной идеи рекомендовал использовать в качестве токоизмерительного резистора С5-16МВ мощностью 5 Вт и сопротивлением 0,1 Ом, он был заменен импортным 5WR2J — 5 Вт с сопротивлением 0,2 Ом каждый, соединив их параллельно. В результате этого, их суммарная мощность стала 10 Вт, а сопротивление 0,1 Ом.

Подстроечный резистор R1 находится на этой же плате. Этот резистор нужен для настройки готового устройства. Металлический корпус блока питания не должен иметь гальванической связи с общим проводом цепи АКБ. Пайки на выводах микросхемы (1, 16, 14, 15) сделаны тонкими проводами в надежной изоляции, желательно использование провода МГТФ.

Перед сборкой устройства подстроечным резистором R1 необходимо при среднем положении потенциометра R10 выставить напряжение холостого хода, оно лежит в пределе 13,8-14,2 В. Именно такое напряжение на полностью заряженном аккумуляторе.

Итак, продолжаем нашу тему о переделке компьютерного блока питания под

зарядное устройство для автомобильного аккумулятора. Но собственно говорить больше не о чем, поскольку переделка блока питания во всех подробностях была представлена в предыдущей статье. Хотелось бы внести некоторые пояснения о работе устройства. Это устройство работает на импульсной основе, поэтому неисправность даже одного, маленького резистора, может привести к выходу из строя или к более серьезным последствиям (взрыв, дым и т.п.). Ни в коем случае, нельзя перепутать полярность питания или коротить клеммы, поскольку данное устройство не имеет защит от переплюсовки питания и КЗ. Мультиметр показывает напряжение 12,45 В — начальный цикл зарядки. Вначале потенциометр нужно установить на отметку «5,5», то есть, начальный ток заряда равен 5,5 А. Со временем, напряжение на аккумуляторе будет увеличиваться, постепенно достигая максимального уровня, выставленного подстроечником резистором R1, а ток зарядки соответственно будет уменьшаться, доходя практически до нуля. После полной зарядки АКБ, устройство переходит в стабилизированный режим, этим исключается процесс самозаряда аккумулятора. В этом режиме устройство может находится на очень долгое время, никаких сбоев, перегревов и других неприятностей не будет. Если это устройство предназначено только для работы в качестве ЗУ автомобильных аккумуляторов, то вольтметр и амперметр можно исключить. В итоге у нас получилось полностью автоматическое зарядное устройство, который может также служить в качестве мощного блока питания. При зарядном токе в 5 -5,5 Ампер устройство может полностью зарядить автомобильный аккумулятор за 10 часов, но это только тогда, если аккумулятор полностью севший. Получившееся устройство достаточно мощное, поэтому можно использовать для зарядки более мощных аккумуляторов (к примеру- 75 А).

Зарядное устройство для автомобильных аккумуляторов из компьютерного блока питания

Делаем зарядное устройство для автомобильных акб из блока питания от компа.


У каждого автолюбителя должно быть зарядное устройство. Кто знает, когда сядет аккумулятор, да и лампочки можно проверять. Купить всегда можно, но сделать своими руками всегда здорово. Самым дешевым решением в сборке будет переделка готового решения. Я взял старенький блок питания от компьютера.

Материалы для изготовления

Для самоделки нам понадобится:
  • БП компьютера;
  • листовой пластик;
  • тумблер;
  • зажимы «крокодил»;
  • радиокомпоненты не из БП ПК;
  • инструменты.

Часть компонентов

ок питания я взял как на картинке. Думал, переделаю быстро, но не тут то было.

Провода с зажимами применю валяющиеся без дела. Разве что поменяю «крокодилы» на побольше.

Сборка

рыв блок питания, я слегка разочаровался. Микросхема, на которой он собран, очень специфическая.

кросхема. Это такой себе ШИМ контроллер и контроллер отклонения основных напряжений.

порывшись в интернете, я нашел схему своего БП.

Довольно простая доработка получится. Разве что не будет регулировки тока.

На схеме, красным маркером, отмечены элементы под выпаивание. Используем шину +12 вольт.

Выпаиваем все лишнее.

Оставил мощный диод. Точней, перепаял его с шины +5 вольт. Он по току с запасом.

Установил мощный дроссель, применил тот, что был установлен по шине +3,3 вольта.

Дросель групповой стабилизации размотал, оставил только обмотку с +12 вольтовой шины.

R60-й резистор временно заменил регулировочным. С помощью его, осуществляется регулировка выходного напряжения. Коричневая перемычка нужна для запуска БП, замыкает PC-ON на общий.

Нам нужно обойти контроль выходных напряжений. Для этого нужно собрать три стабилизатора на основные напряжения. Номиналы резисторов рассчитаны в калькуляторе, который можно найти в сети.

Такая вот платка, сделанная на коленке, получилась.

Распаиваем провода по измененной схеме. Зеленым маркером указаны точки, куда будут припаяны стабилизаторы. Два верхних стабилизатора припаиваем к выходу третьего. Выхода верхних стабилизаторов, и выход нижнего распаиваем на указанные точки: +3,3; +5; +12 вольт.

Включаем. Если все выпаяно как на фото, то блок стартует. Если не стартует, то проверяем все внимательно. Выставляем выходное напряжение на 14.4 вольта. Замеряем сопротивление, у меня получилось почти 12 кОм. Устанавливаю постоянный резистор, собрал его из двух.

Для индикации включения установил светодиод. Припаял его на шину дежурного напряжения по пяти вольтам.

На переднюю панель закрепил отрезок пластика. Панель на себе содержит тумблер включения и индикаторный светодиод. Закручиваем крышку и готово.

Видео по сборке

Зарядное устройство для автомобильного аккумулятора из блока питания компьютера.

Здравствуйте, дорогие дамы и уважаемые господа!

   На этой странице я вкратце расскажу Вам о том, как своими руками переделать блок питания персонального компьютера в зарядное устройство для автомобильных (и не только) аккумуляторов.

   Зарядное устройство для автомобильных аккумуляторов должно обладать следующим свойством: максимальное напряжение, подводимое к аккумулятору — не более 14.4В, максимальный зарядный ток — определяется возможностями самого устройства. Именно такой способ зарядки реализуется на борту автомобиля (от генератора) в штатном режиме работы электросистемы автомобиля.

   Однако, в отличие от материалов из этой статьи, мною была избрана концепция максимальной простоты доработок без использования самодельных печатных плат, транзисторов и прочих «наворотов».

   Блок питания для переделки подарил мне друг, сам он его нашел где-то у себя на работе. Из надписи на этикетке можно было разобрать, что полная мощность данного блока питания составляет 230Вт, но по каналу 12В можно потреблять ток не более 8А. Вскрыв этот блок питания я обнаружил, что в нем нет микросхемы с цифрами «494» (как то было описано в предлагаемой выше статье), а основой его является микросхема UC3843. Однако, эта микросхема включена не по типовой схеме и используется только как генератор импульсов и драйвер силового транзистора с функцией защиты от сверхтоков, а функции регулятора напряжения на выходных каналах блока питания возложены на микросхему TL431, установленную на дополнительной плате:

 На этой же дополнительной плате установлен подстроечный резистор, позволяющий отрегулировать выходное напряжение в узком диапазоне.

   Итак, для переделки этого блока питания в зарядное устройство, сперва необходимо убрать все лишнее. Лишним является:

   1. Переключатель 220 / 110В с его проводами. Эти провода просто нужно отпаять от платы. При этом наш блок всегда будет работать от напряжения 220В, что устраняет опасность его сжечь при случайном переключении этого переключателя в положение 110В;

   2. Все выходные провода, за исключением одного пучка черных проводов (в пучке 4 провода) — это 0В или «общий», и одного пучка желтых проводов (в пучке 2 провода) — это «+».

Теперь необходимо сделать так, чтобы наш блок работал всегда, если включен в сеть (по умолчанию он работает только если замкнуть нужные провода в выходном пучке проводов), а также устранить действие защиты по перенапряжению, которая отключает блок, если выходное напряжение станет ВЫШЕ некоторого заданного предела. Сделать это необходимо потому, что нам нужно получить на выходе 14.4В (вместо 12), что воспринимается встроенными защитами блока как перенапряжение и он отключается.

   Как оказалось, и сигнал «включение-отключение», и сигнал действия защиты по перенапряжению проходит через один и тот же оптрон, которых всего три — они связывают выходную (низковольтную) и входную (высоковольтную) части блока питания. Итак, чтобы блок всегда работал и был нечувствителен к перенапряжениям на выходе, необходимо замкнуть контакты нужного оптрона перемычкой из припоя (т. е. состояние этого оптрона будет «всегда включен»):

Теперь блок питания будет работать всегда, когда он подключен к сети и независимо от того, какое напряжение мы сделаем у него на выходе.

   Далее следует установить на выходе блока, там где раньше было 12В, выходное напряжение, равное 14.4В (на холостом ходу). Поскольку только с помощью вращения подстроечного резистора, установленного на дополнительной плате блока питания, не удается установить на выходе 14.4В (он позволяет сделать только что-то где-то около 13В), необходимо заменить резистор, включенный последовательно с подстроечным, на резистор чуть меньшего номинала, а именно 2.7кОм:

 

 Теперь диапазон настройки выходного напряжения сместился в большую сторону и стало возможным установить на выходе 14.4В.

   Затем, необходимо удалить транзистор, находящийся радом с микросхемой TL431. Назначение этого транзистора неизвестно, но включен он так, что имеет возможность препятствовать работе микросхемы TL431, т. е. препятствовать стабилизации выходного напряжения на заданном уровне. Этот транзистор находился вот на этом месте:

 Далее, чтобы выходное напряжение было более стабильным на холостом ходу, необходимо добавить небольшую нагрузку на выход блока по каналу +12В (который у нас будет +14.4В), и по каналу +5В (который у нас не используется). В качестве нагрузки по каналу +12В (+14.4) применен резистор 200 Ом 2Вт, а по каналу +5В — резистор 68 Ом 0.5Вт (на фото не виден, т. к. находится за дополнительной платой):

Только после установки этих резисторов, следует отрегулировать выходное напряжением на холостом ходу (без нагрузки) на уровне 14.4В.

   Теперь необходимо ограничить выходной ток на допустимом для данного блока питания уровне (т. е. порядка 8А). Достигается это путем увеличения номинала резистора в первичной цепи силового трансформатора, используемого как датчик перегрузки. Для ограничения выходного тока на уровне 8…10А этот резистор необходимо заменить на резистор 0.47Ом 1Вт:

 

 После такой замены выходной ток не превысит 8…10А даже если мы замкнем накоротко выходные провода.

   Наконец, необходимо добавить часть схемы, которая будет защищать блок от подключения аккумулятора обратной полярностью (это единственная «самодельная» часть схемы). Для этого потребуется обычное автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А (я использовал диоды 1N4007). Кроме того, для индикации того факта, что аккумулятор подключен и заряжается, потребуется светодиод в корпусе для установки на панель (зеленый) и резистор 1кОм 0.5Вт. Схема должна быть такая:

Работает следующим образом: когда к выходу подключается аккумулятор правильной полярностью, реле срабатывает за счет энергии, оставшейся в аккумуляторе, а после его срабатывания аккумулятор начинает заряжатся от блока питания через замкнутый контакт этого реле, о чем сигнализирует зажженный светодиод. Диод, включенный параллельно катушке реле, нужен для предотвращения перенапряжений на этой катушке при ее отключении, возникающих за счет ЭДС самоиндукции.

   Реле приклеивается к радиатору блока питания с помощью силиконового герметика (силиконового — потому что он остается эластичным после «засыхания» и хорошо выдерживает термические нагрузки, т. е. сжатие-расширение при нагревании-охлаждении), а после «засыхания» герметика на контакты реле монтируются остальные компоненты:

Провода к аккумулятору выбраны гибкие, с сечением 2.5мм2, имеют длину примерно 1 метр и оканчиваются «крокодилами» для подключения к аккумулятору. Для закрепления этих проводов в корпусе прибора использованы две нейлоновые стяжки, продетые в отверстия радиатора (отверстия в радиаторе необходимо предварительно просверлить).

   Вот, собственно, и все:

 

В заключении, с корпуса блока питания были удалены все этикетки и наклеена самодельная наклейка с новыми характеристиками прибора:

 К недостаткам полученного зарядного устройства следует отнести отсутствие какой-либо индикации степени заряженности аккумулятора, что вносит неясность — заряжен аккумулятор или нет? Однако, на практике установлено, что за сутки (24 часа) обычный автомобильный аккумулятор емкостью 55А·ч успевает полностью зарядится.

   К достоинствам можно отнести то, что с данным зарядным устройством аккумулятор может сколь угодно долго «стоять на зарядке» и ничего страшного при этом не произойдет — аккумулятор будет заряжен, но не «перезарядится» и не испортится.

Зарядное устройство из блока питания компьютера: схема, фото, подробное описание

Самодельное зарядное устройство для автомобильного аккумулятора, сделанное из блока питания компьютера.

Уже, так, лет 25 назад, сделал себе, автоматическое зарядное устройство, аналогового типа, для зарядки автомобильного АКБ. В схеме был использован перемотанный трансформатор ТС-180. Это зарядное использовалось, используется, и, думаю, еще будет использоваться не один год.

Но прогресс не стоит на месте и вот пару лет назад возникло желание изготовить зарядное устройство на основе импульсного блока питания от компьютера.

Благо методов переделки блока питания в зарядное устройство для автомобильных АКБ в литературе и в интернете описано великое множество. Не стал изобретать велосипед и воспользовался рекомендациями одной из статей в журнале «Радио», благо исправные блоки питания от старых компьютеров имелись в наличии. Остановлюсь на некоторых нюансах конструктивного и сервисного решений.

В качестве «донора» для переделки был взят блок питания от АТХ компьютера мощностью (заявленной производителем) 300 Ватт. Данный блок обеспечивал по + 5 Вольт до 20 А, по +12 Вольт до 12 А, что для зарядки автомобильных АКБ более чем достаточно. Перед переделкой проверил исправность данного блока и убедившись в его работоспособности приступил к работе.

Прежде всего, удалил «жгуты» разноцветных проводов, выходящих с блока, оставив по три черных (минус) и три желтых (+12 Вольт) и один красный (+ 5 Вольт). Питание +5 Вольт будет использоваться для питания цифровых индикаторов тока и напряжения (красный провод), желтые (+12 Вольт) для зарядки АКБ. Сигнал Power ON (запуск блока питания) включил напрямую, непосредственно на плате БП.

Далее отключил цепи блокировки по + 3,3 Вольта и минус 12 Вольт, как неиспользуемые и изменил схему регулировки и стабилизации выходного напряжения с + 5 Вольт на + 12 Вольт (смотри схему на рисунке 1, резисторы R4, R5, R32). Плечи делителя подобраны таким образом, что при изменении положения движка потенциометра R4 от крайнего нижнего до крайнего верхнего, схема регулировки обеспечивает изменение напряжение в цепи + 12 Вольт от 12,4 Вольта до 14,5 Вольт (напряжение по шине + 5 Вольт изменяется при этом от +5,2 Вольта до +6,8 Вольта, что обеспечивает типовое напряжение питания для цифровых индикаторов).

На рисунке показана схема соединений в ЗУ из импульсного БП ПК для автомобильного аккумулятора.

Штатная схема защиты от КЗ осталась неизменной, дополнившись схемой ограничения зарядного тока. Схема ограничения зарядного тока выполнена на части микросхемы ШИМ в БП (TL494) и вновь введенных элементах R1, R2, R3 и Rш (сопротивление шунта для амперметра). Схема работает следующим образом:

— опорное напряжение Uref (+ 5 Вольт с вывода 14 микросхемы TL494) поступает на делитель, выполненный на элементах R1, R2, R3. С движка резистора R2 напряжение ограничения зарядного тока поступает на вход компаратора (вывод 15 микросхемы TL494).

— на другой вход компаратора (вывод 16 микросхемы TL494) поступает напряжение с Rш (вернее в качестве сопротивления, на котором меряется падение напряжения фактически используется сопротивление проводов от минуса БП, до соединения с Rш и далее до выхода с Rш). О величине сопротивления шунта будет сказано позже.

— при превышении напряжения на 16 ноге микросхемы TL494 (U Rш) напряжения на 15 ноге микросхемы TL494 (U с делителя R1, R2, R3) логика работы ШИМ уменьшает напряжение на выходе БП уменьшая тем самым выходной ток.

Плечи делителя подобраны таким образом, что при изменении положения движка потенциометра R2 от крайнего нижнего до крайнего верхнего, схема регулировки обеспечивает изменение ограничения тока от примерно 1,3 А до 31 А. В реальности регулятор R2 обычно находится в первой четверти оборота от начала.
В качестве индикаторов напряжения и тока применены миниатюрные встраиваемые цифровые вольтметр (SVH0001G) и амперметр (SAH0012R-50), которые по своей сути и назначению и являются индикаторными приборами и не предназначены для использования в сфере действия государственного регулирования обеспечения единства измерений, т.е. не попадают под требования метрологических нормативов и поверок.

С другой стороны при зарядке аккумулятора мало кто заморачивается выставлением напряжения с точностью до сотых долей вольта (да и аккумулятору такая точность до лампочки) и сотых долей ампера по току. С другой стороны такие индикаторы обеспечивают регулировку параметров тока и напряжения заряда с точностью до десятых долей.
Подключение вольтметра не составило труда, только разделил цепи питания и измерения. Запитал устройство от цепи + 5 Вольт.
При подключении амперметра ввиду отсутствия калиброванного шунта 50 А, 75 mV (миллиВольт) и исходя из требования только индикации тока зарядки (от индикаторов требуется меньшая точность) решил изготовить шунт из подручных материалов. В качестве материала шунта использовал медный обмоточный провод диаметром по меди 0,8 мм и длиной 5 см (диаметр выбран исходя из максимального рабочего тока не более 10 А).

При выборе исходил из следующего:

  • — сопротивление калиброванного шунта 50 А, 75 mV составляет 0,0015 Ом (рассчитано по закону Ома).
  • — сопротивление 1 метра медного обмоточного провода диаметром по меди 0,8 мм составляет 0,0348 Ом (из справочника).
  • — простой математический расчет показывает, что для получения ближайшего большего сопротивления проводника достаточно взять 5 (пять) сантиметров медного обмоточного провода диаметром по меди 0,8 мм, этот фрагмент будет иметь сопротивление (расчетное) 0,00174 Ом. Точное место подсоединения амперметра определяется по контрольному прибору, при проведении испытаний.
  • — для фанатов метрологии и точности измерения сразу скажу, что ТКС (температурный коэффициент сопротивления) не учитывался (для меди он составляет около 0,4).

После достижения работоспособности схемы «на столе», в ее макетном варианте разработал компоновку зарядного устройства, размещения дополнительных и штатных элементов. Разработан и выполнен чертеж фасадной части ЗУ с органами регулировки, коммутации и индикации.

Разработана фальшпанель передней части корпуса зарядного устройства.

Не буду останавливаться процессе изготовления фронтальной части корпуса для данного зарядного устройства для автомобильного АКБ из пластика от корпуса какого-то импортного телевизора.

В результате всех манипуляций получилось следующее:

Размещение органов регулировки, индикации и коммутации в «подвале» фасадной части ЗУ. В качестве соединителей для миниатюрных встраиваемых цифровых вольтметра (SVH0001G) и амперметра (SAH0012R-50) применены разъемы из б/у системного блока компьютера.

Соединение платы импульсного блока питания от компьютера и элементов передней панели ЗУ.

При настройке, в качестве нагрузки использовал автомобильные лампы разной мощности, чем обеспечивалась настройка при различных рабочих токах.

С помощью контрольного прибора «откалибровал» амперметр, т.е. подобрал и уточнил точку присоединения входа измерения к шунту. Точность до 0,1 А обеспечивается.

На задней стенке закреплен выключатель питания, а также выведены сетевой шнур и провода с «крокодильчиками» для присоединения к аккумулятору (к нагрузке)

На передней панели установлен разъем «прикуривателя», для подключения различных «девайсов» с разъемом от прикуривателя, для их использования вне автомобиля.
ЗУ оснащено предохранителем на 10 А, защищающее как само ЗУ, так и потребителей, от возможных ошибок при подключении.

Распечатал и вырезал фальшпанель передней части ЗУ, дополнительно защитив надписи прозрачной пленкой. Фальшпанель и защитная пленка закреплены без применения клея, только за счет существующего крепежа органов управления и коммутации.

Результатом доволен. При минимуме затрат, из блока питания, сделано удобное и практичное зарядное устройство для автомобильного аккумулятора.


Автор самоделки: Valentinyich г. Ногинск.

Заметки для мастера — ЗАРЯДНОЕ УСТРОЙСТВО ИЗ КОМПЬЮТЕРНОГО БП


 

Тема, в постройке зарядного устройства для автомобильного аккумулятора, еще многим остается актуальна и на просторах интернета можно найти много информации по ней. Хочу поделится одним из проверенным и простым способом в его постройке, точнее доработки компьютерного блока питания (идея не новая и взята еще из журналов »Радио»). Что касается некоторой теории, о том как правильно заряжать АКБ, рекомендую очень интересную книжку «Зарядные устройства-1» авторы Ходасевич А.Г., Ходасевич Т.И., стр. 7-9.
Для начала, нам нужен рабочий компьютерный блок питания, модель которого должна соответствовать как на рисунке ниже, мощностью от 250 Ватт и выше.

Почему именно такой БП? Схемные решения во всех моделях компьютерных блоков питания разные и не всегда получается добиться желаемого результата с какой либо другой имеющейся платой, поэтому наша переделка основана на конкретно указанной с минимальными изменениями.
Для начала проверяем аппарат на работоспособность. Делаем перемычку из проволоки и ставим ее на зеленый и черный провод широкого разъема, а затем уже включаем в сеть 220В.

Блок питания должен заработать. Меряем напряжение на жёлтом и черном проводах, оно должно быть 12В.


Для регулировки тока, понадобится переменный резистор номиналом 33 кОм любой мощности, допускается + — пару кОм. Штатный электролитический конденсатор (шина 12В) для надежности, желательно поменять на 25В, так как он, все-таки, рассчитан на 16В. Амперметр используем компактный — готовый или самодельный с рассчитанным шунтом на 10 А.

Два компьютерных силовых кабеля.


Разбираем корпус, вытаскиваем плату. Обращаем внимание на микросхему, она должна быть серии TL494 или ее аналог КА7500.
Следующий этап: выпаиваем все ненужные провода, кроме зеленого, одного красного (5 вольт) и черного (минусовая шина).
Ищем конденсатор 12 Вольтовой шины (желтый провод) и перепаиваем на наш с большим напряжением.


Зеленый провод запаиваем на общую минусовую шину (черные провода).


Запаиваем красный и синий провода большего сечения на + 12В и -12В и оставляем небольшой запас их длинны. В дальнейшем один провод пойдет на амперметр, второй на разъем »папа».
На крайние выводы переменного резистора запаиваются черный и красный провод. От среднего вывода, контакт ведет на первую ножку микросхемы.

 


Теперь можно провести первую проверку: для этого ставим резистор в среднее положение, и включаем блок питания. БУДТЕ ВНИМАТЕЛЬНЫ, НА ПЛАТЕ ПРИСУТСТВУЕТ ВЫСОКОЕ НАПРЯЖЕНИЕ!!!

Замеряем напряжение и плавно крутим ползунок по часовой стрелки. В крайнем положении оно, в идеальном варианте, должно быть где-то 15 В, однако может быть и меньше. Если напряжение вместо увеличения уменьшается, то меняем местами контакты чёрного и красного проводов на резисторе. Обращаю внимание на то, что если резистор скрутить в сторону меньшего напряжения, при вольтаже ниже 10В, блок выключится, то есть войдет в защиту. Что бы его повторно запустить нужно выключить питание и подождать несколько секунд.

Если появится желание, выходное напряжение зарядного устройства можно повысить и до 18В, для этого достаточно найти на плате и выпаять стабилитрон Z1. Местонахождение элемента находится около питания вентилятора.


Амперметр подключается в разрыв плюсового или минусового проводника.
Перед окончательным монтажом желательно проверить устройство под нагрузкой. Для эксперимента, подключаем автомобильную лампочку на 12В, можно рабочий аккумулятор от UPS или т.п.
Правильно подключенный амперметр отклонится на какое-то значение силы тока.
Далее идет сборка платы в корпус, его оформление может быть произвольным. В моем варианте 220В идет на разъем »мама», а плюс и минус на »папа». Для питания блока, использую готовый шнур с вилкой, а кабель для зарядки АКБ, следует доработать с добавлением клеммных зажимов. Обязательно проверьте полярность.
Такой способ постройки не требует каких либо особых серьезных доработок, однако в нем есть свои плюсы и минусы.
Минусы: следует избегать короткого замыкания между клеммами ЗУ, хотя блок с защитой, однако не рекомендую этого делать. Регулировка тока не всегда в широком диапазоне.
Плюсы: компактный, большая отдача тока (особенности данной модели блока питания), автоматический, не боится перепадов напряжения в сети, простейший в постройке, эффективно охлаждается, легкий и компактный. 

Оксема О.

г. Ужгород

Статистика

Онлайн всего: 1

Гостей: 1

Пользователей: 0

схемы переделки в лабораторный или регулируемый, в зарядное устройство

Автор Акум Эксперт На чтение 13 мин. Просмотров 45.8k. Опубликовано


Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.

Важно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей  подается после включения этого тумблера.

Для подачи напряжения на этот БП служит механический выключатель 

Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.

Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.

Перемычка имитирует команду процессора “включить БП”

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Расцветка и назначение проводов блока питания ATX

Цвет

Назначение

Примечание

черныйGNDпровод общий минус
красный+5 Восновная шина питания
желтый+12 Восновная шина питания
синий-12 Восновная шина питания (может отсутствовать)
оранжевый+3.3 Восновная шина питания
белый-5 Восновная шина питания
фиолетовый+5 VSBдежурное питание
серыйPower goodпитание в норме
зеленыйPower onкоманда запустить БП

Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Сразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Схема блока питания ATX, переделкой которого мы займемся

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Лишние провода нужно выпаять

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

Назначение выводов интегральной микросхемы TL494 и ее аналогов

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

Эти дорожки надо перерезать

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

Доработанная схема ШИМ контроллера теперь уже лабораторного блока питания

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Приборы могут быть любого типа, важен лишь предел измерения

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Первое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.

Включение блока питания через балластную лампу

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку –  2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Как сделать зарядное устройство

Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.

Прибор для зарядки постоянным напряжением

Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.

Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.

А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.

Оставляем только те провода, которые нам нужны, остальные выпаиваем или просто откусываем

Впаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.

Этот резистор отвечает за величину выходного напряжения

Нам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.

Установленный переменный резистор вместо постоянного

Включаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.

Эти детали нужно выпаять

Снова включаем БП, выставляем напряжение между черным и желтым проводами величиной 14 В. Выключаем, выпаиваем резистор, не трогая его движок, измеряем сопротивление. На место переменного устанавливаем постоянный того же номинала. Устанавливаем на корпус две клеммы, подпаиваем к ним черный и желтый провода, помечаем, где плюс и минус (желтый – плюс, черный – минус).

Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.

Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.

Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.

Зарядник с регулировкой тока и напряжения

Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.

В первую очередь производим манипуляции, которые подробно описаны в пункте «Прибор для зарядки постоянным напряжением». Выпаиваем лишние провода, оставив желтый, черный и зеленый. Меняем сглаживающий конденсатор на шине +12 В на прибор с напряжением 35 В. Подключаем зеленый провод на общую шину.

Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.

Отключаем стабилизацию напряжения

Теперь ШИМ контроллер будет работать «на всю», а напряжение на шине +12 В поднимется до максимума – 28 В. Но опять сработает защита по перенапряжению. Отключаем ее так же, как и в конструкции выше: выпаиваем диод, помеченный на схеме ниже стрелкой.

Отключаем узел защиты по перенапряжению

Включаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.

Схема узла регулировки напряжения и тока

На транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.

Вольтметр и амперметр можно использовать любые – хоть цифровые, хоть стрелочные. Первый должен иметь предел измерения 30 В, второй – 10 А. В качестве токовыравнивающих резисторов используются отрезки монтажного провода длиной 20 см и сечением 1 мм. кв. Если блок выполнен навесным монтажом, то в их качестве будут выступать монтажные провода.

Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.

Здесь транзистор и стабилизаторы размещены на радиаторе от процессора

Если все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.

Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.

Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.


как сделать зарядку из компьютерного блока питания своими руками

Для подзарядки аккумуляторной батареи лучший вариант — готовое зарядное устройство (ЗУ). Но его можно сделать своими руками. Существует множество разных способов сборки самодельного ЗУ: от самых простых схем с использованием трансформатора, до импульсных схем с возможностью регулировки. Средним по сложности исполнения является ЗУ из компьютерного блока питания. В статье описано, как своими руками изготовить зарядное устройство из БП компьютера для автомобильного аккумулятора.

Самодельное ЗУ из блока питания

Содержание

[ Раскрыть]

[ Скрыть]

Инструкция по изготовлению

Переделать компьютерный БП в зарядное устройство не сложно, но нужно знать основные требования, предъявляемые к ЗУ, предназначенным заряжать автомобильные аккумуляторы. Для аккумуляторной батареи машины ЗУ должно иметь следующие характеристики: подводимое к батарее максимальное напряжение должно иметь значение 14,4 В, максимальный ток зависит от самого зарядного устройства. Именно такие условия создаются в электрической системе автомобиля при подзарядке аккумулятора от генератора (автор видео Rinat Pak).

Инструменты и материалы

Учитывая, описанные выше требования, для изготовления ЗУ своими руками сначала нужно найти подходящий блок питания. Подойдет б/у АТХ в рабочем состоянии, мощность которого составляет от 200 до 250 ВТ.

За основу мы берем компьютер, который имеет следующие характеристики:

  • выходное напряжение 12В;
  • номинальное напряжение 110/220 В;
  • мощность 230 Вт;
  • значение максимального тока не больше 8 А.

Из инструментов и материалов понадобится:

  • паяльник и припой;
  • отвертка;
  • резистор на 2,7 кОм;
  • резистор на 200 Ом и 2 Вт;
  • резистор на 68 Ом и 0,5 Вт;
  • резистор 0,47 Ом и 1 Вт;
  • резистор 1 кОм и 0,5 Вт;
  • два конденсатора на 25 В;
  • автомобильное реле на 12 В;
  • три диода 1N4007 на 1 А;
  • силиконовый герметик;
  • зеленый светодиод;
  • вольтамперметр;
  • «крокодилы»;
  • гибкие медные провода длиной 1 метр.

Приготовив все необходимые инструменты и запчасти можно приступать к изготовлению ЗУ для АКБ из блока питания компьютера.

Алгоритм действий

Зарядка АКБ должна проходить под напряжением в интервале 13,9-14,4 В. Все компьютеры работают с напряжением 12В. Поэтому основная задача переделки – поднять напряжение, идущее от БП до 14,4 В.
Основная переделка будет проводиться с режимом работы ШИМ. Для этого используется микросхема TL494. Можно использовать БП с абсолютными аналогами этой схемы. Данная схема используется, чтобы генерировать импульсы, а также в качестве драйвера силового транзистора, который выполняет функцию защиты от высоких токов. Для регулирования напряжения на выходе компьютерного блока питания предназначена микросхема TL431, которая установлена на дополнительной плате.

Дополнительная плата с микросхемой TL431

Там же находится резистор для настройки, который дает возможность регулировки выходного напряжения в узком интервале.

Работы по переделке блока питания состоят из следующих этапов:

  1. Для переделок в блоке сначала нужно убрать из него все лишние детали и отпаять провода.Лишним в этом случае является переключатель 220/110 В и провода, идущие к нему. Провода следует отпаять от БП. Для работы блока необходимо напряжение 220 В. Убрав переключатель, мы исключим вероятность сгорания блока при случайном переключении выключателя в положение 110 В.
  2. Далее отпаиваем, откусываем ненужные провода или применяем любой другой способ их удаления. Сначала отыскиваем синий провод 12В, идущий от конденсатора, его выпаиваем. Проводов может быть два, выпаять надо оба. Нам понадобятся только пучок желтых проводов с выводом 12 В, оставляем 4 штуки. Еще нам понадобится масса – это черные провода, их также оставляем 4 штуки. Кроме того, нужно оставить один провод зеленого цвета. Остальные провода полностью удаляются или выпаиваются.
  3. На плате по желтому проводу находим два конденсатора в цепи с напряжением 12В, они обычно имеют напряжение 16В, их надо заменить на конденсаторы на 25В. Со временем конденсаторы приходят в негодность, поэтому даже если старые детали еще в рабочем состоянии, их лучше заменить.
  4. На следующем этапе нам нужно обеспечить работу блока при каждом включении в сеть. Дело в том, что БП в компьютере работает лишь в том случае, если замкнуты соответствующие провода в выходном пучке. Кроме того, нужно исключить защиту от перенапряжения. Эта защита устанавливается для того, чтобы отключать блок питания от электрической сети, если выходное напряжение, которое на него поступает, превышает заданный предел. Исключить защиту необходимо, так как для компьютера допустимо напряжение 12 В, а нам нужно получить на выходе 14,4 В. Для встроенной защиты это будет считаться перенапряжением и она отключит блок.
  5. Сигнал действия от защиты по перенапряжению отключения, а также сигналы включения и отключения проходят по одному и тому же оптрону. Оптронов на плате всего три. С их помощью осуществляется связь между низковольтной (выходной) и высоковольтной (входной) частями БП. Чтобы защита не смогла сработать при перенапряжении, нужно замкнуть контакты соответствующего оптрона перемычкой из припоя. Благодаря этому блок будет все время находиться во включенном состоянии, если он подключен к электрической сети и не будет зависеть от того, какое напряжение будет на выходе.

    Перемычка из припоя в красном кружочке

  6. На следующем этапе нужно достичь исходящего напряжения 14,4 В при работе в холостую, ведь на БП изначально напряжение равно 12 В. Для этого нам понадобится микросхема TL431, которая расположена на дополнительной плате. Найти ее не составит труда. Благодаря микросхеме регулируется напряжение на всех дорожках, которые идут от блока питания. Повысить напряжение позволяет подстроечный резистор, находящийся на этой плате. Но он позволяет повысить значение напряжение до 13 В, а получить значение 14,4 В невозможно.
  7. Необходимо сделать замену резистора, который включен в сеть последовательно с подстроечным резистором. Его мы меняем на аналогичный, но с меньшим сопротивлением — 2,7 кОм. Это дает возможность расширить диапазон настройки напряжения на выходе и получить выходное напряжение 14,4 В.
  8. Далее нужно заняться удалением транзистора, который расположен недалеко от микросхемы TL431. Его наличие может повлиять на правильную работу TL431, то есть он может помешать поддерживать выходное напряжение на необходимом уровне. В красном кружке место, где находился транзистор.

    Место нахождения транзистора

  9. Затем для получения стабильного выходного напряжения на холостом ходу, необходимо увеличить нагрузку на выход БП по каналу, где было напряжение 12 В, а станет 14,4 В, и по каналу 5 В, но его мы не используем. В качестве нагрузки для первого канала на 12 В будет использоваться резистор сопротивлением 200 Ом и мощностью 2 Вт, а канал 5 В будет дополнен для нагрузки резистором сопротивлением 68 Ом и мощностью 0,5 Вт. Как только будут установлены эти резисторы, можно настроить выходное напряжение без нагрузки на холостом ходу до значения 14,4 В.
  10. Далее нужно ограничить силу тока на выходе. Для каждого блока питания она индивидуальна. В нашем случае ее значение не должно превышать 8 А. Чтобы добиться этого, нужно увеличить номинал резистора в первичной цепи обмотки у силового трансформатора, который применяется как датчик, служащий для определения перегрузки. Для увеличения номинала установленный резистор нужно заменить на более мощный сопротивлением 0,47 Ом и мощностью 1 Вт. После этой замены резистор будет функционировать как датчик перегрузки, поэтому выходной ток не будет выше значения 10 А даже, если сомкнуть выходные провода, имитируя короткое замыкание.

    Резистор для замены

  11. На последнем этапе нужно добавить схему защиты блока питания от подключения ЗУ к аккумулятору неправильной полярности. Это та схема, которая действительно будет создана своими руками и отсутствует в блоке питания компьютера. Чтобы собрать схему, понадобится автомобильное реле на 12 В с 4 клеммами и 2 диода, рассчитанные на ток в 1 А, например, диоды 1N4007. Кроме того, нужно подключить светодиод зеленого цвета. Благодаря диоду можно будет определить состояние зарядки. Если он будет светится, значит, аккумуляторная батарея подключена правильно и идет ее зарядка. Кроме этих деталей, нужно еще взять резистор сопротивлением 1 кОм и мощностью 0,5 Вт. На рисунке изображена схема защиты.

    Схема защиты блока питания

  12. Принцип работы схемы следующий. Аккумуляторная батарея с правильной полярностью подключается к выходу ЗУ, то есть блоку питания. Реле срабатывает благодаря оставшейся в батарее энергии. После того как сработает реле, АКБ начинает заряжаться от собранного зарядного устройства через замкнутый контакт релюшки БП. Подтверждением зарядки будет светящийся светодиод.
  13. Чтобы предотвратить перенапряжение, которое возникает во время отключения катушки за счет электродвижущей силы самоиндукции, в схему параллельно реле включается диод 1N4007. Реле лучше приклеивать к радиатору блока питания силиконовым герметиком. Силикон сохраняет эластичность после высыхания, устойчив к термическим нагрузкам, таким как: сжатие и расширение, нагревание и охлаждение. Когда герметик подсохнет, на контакты реле крепятся остальные элементы. Вместо герметика в качестве крепежа можно использовать болты.

    Монтаж оставшихся элементов

  14. Подбирать провода для зарядного устройства лучше разных цветов, например, красного и черного цвета. Они должны иметь сечение 2,5 кв. мм, быть гибкими, медными. Длина должна составлять не менее метра. На концах провода должны быть оборудованы крокодилами, специальными зажимами, с помощью которых ЗУ подключается к клеммам АКБ. Для закрепления проводов в корпусе собранного устройства, нужно просверлить в радиаторе соответствующие отверстия. Через них нужно продеть две нейлоновые стяжки, которые и будут держать провода.
Готовое зарядное устройство

Чтобы контролировать силу тока зарядки, в корпус зарядного устройства можно еще вмонтировать амперметр. Его нужно подключать параллельно к цепи блока питания. В итоге, мы имеем ЗУ, которое мы можем использовать для зарядки аккумуляторной батареи автомобиля и не только.

Заключение

Достоинством данного зарядного устройства является то, что аккумулятор не будет перезаряжаться при использовании прибора и не испортится, как бы долго ни был подключен к ЗУ.

Недостатком данного зарядного устройства является отсутствие каких-либо индикаторов, по которым можно было бы судить о степени заряженности аккумуляторной батареи.

Трудно определить, зарядился аккумулятор или нет. Рассчитать примерное время зарядки можно, воспользовавшись показаниями на амперметре и применив формулу: силу тока в Амперах, помноженную на время в часах. Экспериментально было получено, что на полную зарядку обычного аккумулятора емкостью 55 А/ч необходимо 24 часа, то есть сутки.

В данном зарядном устройстве сохранена функция от перегрузки и короткого замыкания. Но если оно не защищено от неправильной полярности, нельзя подключать зарядник к аккумулятору с неправильной полярностью, прибор выйдет из строя.

 Загрузка …

Видео «Зарядка для автомобильного аккумулятора»

ПОСТРОЙТЕ ДЕШЕВОЕ ИСТОЧНИК ПИТАНИЯ ДЛЯ ЗАРЯДНОГО УСТРОЙСТВА

ПОСТРОЙТЕ ДЕШЕВОЕ УНИВЕРСАЛЬНОЕ ЗАРЯДНОЕ УСТРОЙСТВО

Автор: Брайан Аллен Куэн

Я использовал этот блок питания на Flite-Fest 2014.

Хотели бы вы создать блок питания на 12 В, который будет обеспечивать постоянным током 8 или 9 зарядных устройств для литий-полимерных аккумуляторов одновременно? Как насчет 7,99 доллара? (Хорошо, это натянуто, но не сильно). Основа блока питания — блок питания ПК (персонального компьютера).Тот, который я использовал для этой сборки, я получил на NewEgg.com за 7,99 доллара плюс 3,99 доллара за доставку. Цена была низкой, потому что это отремонтированный на заводе блок питания. Остальные детали у меня уже были под рукой, так что общая стоимость для меня составила 12 долларов. Блоки питания для ПК имеют встроенную защиту от перегрузки и короткого замыкания и обеспечивают стабильные выходы +12 вольт и +5 вольт. Если вы спасете блок питания от устаревшего ПК, он может вам ничего не стоить. Вы можете найти или купить более ваттную, чем та, которую я использовал.Больше ватт означает, что он может питать больше зарядных устройств или заряжать батареи еще большего размера одновременно. Источник питания, который я использовал, рассчитан на 350 Вт. Есть много более мощных юнитов.

Блок питания для ПК, который я купил, обеспечивает мощность 20 ампер на шине 12 В. Я мог заряжать 9 аккумуляторов на 2200 мАч одновременно с этим блоком питания (используя скорость заряда 1С). Поскольку у меня есть 5 зарядных устройств, а не 9, этого не произойдет в ближайшее время. С моими 5 зарядными устройствами я мог бы обеспечить 4 ампера заряда для каждого из 5 зарядных устройств (некоторые из них не способны обеспечить такую ​​большую мощность).В любом случае я могу использовать все 5 своих зарядных устройств с этим источником питания и любую комбинацию литий-полимерных аккумуляторов, которые у меня сейчас есть, в обозримом будущем.

Провода, идущие к различным разъемам компьютерного разъема, имеют цветовую маркировку. Желтые провода обеспечивают 12 вольт (положительный). Красные провода обеспечивают 5 вольт (положительный). Черные провода — это отрицательный или заземляющий провод. Для каждого места зарядного устройства вам понадобится как минимум один желтый и один черный провод. Поскольку есть 6 желтых проводов и около дюжины черных проводов, я смог соединить 2 желтых провода друг с другом, а также соединить 2 черных провода вместе для питания каждой из 3 запланированных зарядных станций.Удвоение проводов обеспечивает больший путь проводимости, что позволяет передавать больше ампер с меньшим тепловыделением, вызванным сопротивлением.

На иллюстрации №1 показаны оригинальные компьютерные разъемы после отрезания их диагональными плоскогубцами. Различные провода уже скручены и припаяны к металлическим частям банановых разъемов. БОЛЬШОЙ главный разъем, который обычно подключается к материнской плате, НЕ был отрезан. Если вы случайно обрезали этот большой разъем, не волнуйтесь.В жгуте ОДИН зеленый провод и несколько черных проводов. Для включения питания ПК необходимо подключить зеленый провод к любому черному проводу. Я сделал это, создав перемычку из отрезка канцелярской скрепки. Одна ножка U-образной скрепки вставляется в гнездо разъема для зеленого провода, а другая ножка вставляется в соседнее гнездо для черного провода. Вы можете соединить зеленый провод и любой черный провод с помощью припоя или небольшой гайки.

Ваш компьютер использует переключатель мгновенного действия (большая кнопка на передней панели корпуса), чтобы завершить соединение между зеленым проводом и черным проводом заземления для включения источника питания.Блок питания также имеет встроенный кулисный переключатель для включения и выключения питания. В компьютере кулисный переключатель обычно оставляют в положении «ON». Так как зеленый провод постоянно включен через перемычку скрепки, я использую кулисный переключатель на блоке питания, чтобы включать и выключать его.

ИЛЛЮСТРАЦИЯ № 1

На иллюстрации №1 также показаны соединенные и припаянные красные провода. Рядом с красными проводами находится пара черных проводов, которые соединены вместе и припаяны.Позже я накинул небольшую гайку на каждое из этих припаянных соединений, чтобы сохранить их для будущего использования. Выдаваемые ими 5 вольт можно было использовать для питания серво-тестера или приемника.

ИЛЛЮСТРАЦИЯ № 2

На иллюстрации №2 крупным планом показаны металлические разъемы припаянных банановых штекеров. Эти соединители также имеют пластиковые внешние втулки с цветовой кодировкой, которые обычно крепятся к металлическим сердечникам с помощью небольшого винта. Я выбросил винты, так как они мешали бы системе крепления банановых заглушек, которую я использовал.К различным разъемам добавлены красные и черные термоусадочные элементы, чтобы усилить идентификацию положительных и отрицательных контактов.

ИЛЛЮСТРАЦИЯ № 3

Я использовал часть скрепки, чтобы «перемыть» зеленый провод к черному проводу заземления. Это необходимо для включения питания компьютера. Обычно это делается нажатием кнопки на передней панели корпуса компьютера. С «перемычкой» скрепки кулисный переключатель на самом источнике питания теперь будет работать как переключатель включения / выключения источника питания.

ИЛЛЮСТРАЦИЯ № 4

Я сделал основу из 2-х кусков дерева. У меня в подвале магазин, и под рукой всегда много обрезков дерева. Основная основа — сосна спиленная из доски 1х6. См. Иллюстрацию №4. Последний размер, который я использовал, — 5,5 на 10 дюймов. Цена на древесину и ее продажа основаны на влажном или зеленом измерении. Когда это дерево было распилено и фрезеровано, на самом деле оно было 6 дюймов в ширину и 1 дюйм в толщину. После высыхания он уменьшился до 5,5 дюйма примерно на 13/16 дюйма.После строгания шероховатой поверхности остается толщина дюйма. Второй кусок дерева имеет размер примерно 3/8 дюйма на 1,5 дюйма на примерно 8 дюймов. Точный размер не имеет значения. Он служит местом для приклеивания пластиковых панелей для банановых пробок. Я использовал кусок грецкого ореха, потому что он красивый, но подойдет любой кусок дерева.

Я использовал Thin CA [цианоакрилат], чтобы склеить два куска дерева вместе, потому что это быстро. Столярный клей или клей Элмера для дерева тоже подойдут.CA можно стимулировать с помощью щелочного химического вещества в качестве катализатора. Пищевая сода отлично работает. На твердой бальсе или большинстве пород древесины, кроме бальзы, я втираю пищевую соду в соединяемые деревянные поверхности, затем щеткой или сдуваю излишки. Небольшое количество пищевой соды, оставшееся на деревянных поверхностях, способствует химической реакции. Сложите две части вместе и впустите тонкий фитиль из CA в стык.

Я не помню размер отверстий, которые я просверлил для пластиковых заглушек-бананов.Сверла поставляются в наборах, которые обычно увеличиваются на 1/64 дюйма. На куске дерева просверлите контрольные отверстия, пока не найдете одно, подходящее для используемых вами банановых заглушек. Вы вполне можете получить заглушки, отличные от моих. Гильзы несколько свободно входили в отверстия, которые я просверлил (следующий меньший размер был слишком мал, чтобы их можно было пройти. Я использовал тонкий CA (суперклей), чтобы закрепить их в отверстиях.

ИЛЛЮСТРАЦИЯ № 5

На иллюстрации № 5 крупным планом показаны пластмассовые гильзы, помещенные в деревянный держатель для приклеивания.Банановые пробки, которые я использовал, будут «гнездиться»; то есть одну банановую пробку можно вставить боком в отверстие в другой банановой пробке (см. иллюстрацию № 5). Чтобы сделать это возможным, убедитесь, что раковины расположены достаточно далеко от деревянного крепления, чтобы в них могла вставить еще одна заглушка. Отверстие, выглядывающее из дерева, — это отверстие, в которое был вставлен выброшенный винт. Частично заблокировать винт — это нормально.

ИЛЛЮСТРАЦИЯ № 6

Тонкий CA (цианоакрилат) впитается в мельчайшие щели или пространство.Осторожно нанесите небольшую каплю на пластиковую оболочку в месте соединения с деревом, и вскоре она надежно зафиксируется на месте. Используйте ускоритель, если время отверждения клея превышает ваше терпение. Можно заменить любой другой клей, достаточный для приклеивания пластика к дереву.

ИЛЛЮСТРАЦИЯ № 7

Пришло время установить блок питания ПК на подготовленное вами основание. Снова стремясь к скорости, я использовал ту же двустороннюю ленту из вспененного материала, которую использую для крепления приемников и регуляторов скорости в самолетах с радиоуправлением.Он прочный и обеспечивает гашение вибрации. Два вентилятора в блоке питания работают плавно и тихо, поэтому их не нужно гасить вибрации, но это не повредит. Я мог бы продеть винт для листового металла через дерево и в нижнюю часть металлического корпуса блока питания, но это могло вызвать короткое замыкание внутри блока питания. Я мог бы использовать 5-минутную эпоксидную смолу, термоклей, сварной шов JB или множество других клеев. Используйте то, что у вас есть и что вам нравится. Мне нравится двусторонний скотч из поролона, поэтому я использовал его.См. Иллюстрацию №7.

ИЛЛЮСТРАЦИЯ № 8

Банановые пробки, которые я использовал, «гнездятся»; то есть одну банановую пробку можно вставить боком в отверстие в другой банановой пробке (см. иллюстрацию №8). Чтобы сделать это возможным, убедитесь, что раковины расположены достаточно далеко от деревянного крепления, чтобы в них могла вставить еще одна заглушка. Отверстие, выглядывающее из дерева, — это отверстие, в которое был вставлен выброшенный винт. Можно заблокировать отверстие под винт.

Металлическую часть разъема необходимо осторожно расположить так, чтобы отверстия совпадали, чтобы можно было вставить еще одну банановую вилку.Я использовал другую банановую заглушку, вставленную в отверстия, чтобы удерживать две части на одном уровне. Затем я поместил каплю клея из пистолета для горячего клея между задним концом пластиковой оболочки и термоусадочным материалом, чтобы зафиксировать металлический соединитель на месте в пластиковой оболочке. Я выбрал горячий клей для скорости. Используйте клей по вашему выбору. См. Иллюстрацию № 8

.

ИЛЛЮСТРАЦИЯ № 9

Подключите черный шнур питания переменного тока к источнику питания ПК, подключите другой конец черного шнура к розетке, поверните тумблер в положение «включено», и вы готовы к зарядке.Используйте кабельные стяжки, чтобы аккуратно собрать непослушные провода.

На иллюстрации № 9 показано питание трех моих зарядных устройств. Зарядное устройство №1 заряжает LiPo аккумулятор емкостью 3 секунды на 1000 мАч. Зарядное устройство №2 заряжает батарею LiPo 4s емкостью 1500 мАч. Зарядное устройство №3 заряжает литий-полимерный аккумулятор 3s 2200 мАч. Блок питания не был нарушен требованиями этих 3 зарядных устройств, оставаясь тихим и прохладным. Он удовлетворял все мои потребности в зарядке уже несколько месяцев. Ваш пробег может отличаться.

ИЛЛЮСТРАЦИЯ № 10

На этом фото показано крепление шнура питания и тумблер, который теперь включает и выключает устройство.

аккумуляторов — Что я сделал не так — зарядка герметичных свинцово-кислотных аккумуляторов с помощью переработанного компьютерного блока питания

Сегодня я взял старый компьютерный блок питания, зачистил желтый +12 В и черную землю и скрутил половину из них на 4 отдельные пары. Затем я взял свинцово-кислотную батарею, в которой, казалось, не осталось жидкости, и проверил ее на напряжение 0 В. Затем я залил его разбавленной * аккумуляторной кислотой и протестировал сразу при напряжении выше 12 В.Я подключил красную клемму + аккумулятора к отключенному от сети блоку питания +12 В, а черную клемму — к земле того же, все еще отключенного, блока питания. Он начал вращать вентиляторы блока питания, и я мог сказать, что на него подается питание. Я поменял направление, чтобы разместить черный — к блоку питания + 12 В, а красный + — к черному заземлению блока питания, все еще отключенного. Я увидел легкий запах дыма, исходящий от блока питания, и как можно быстрее отключил соединение.

Ни один из этих результатов не является тем, что я ожидал, я ожидал, что я должен подключить красный + к + 12В, а черный — к земле, чтобы зарядить аккумулятор, но он действительно достиг 12В сразу после заполнения.У меня вопрос — что здесь произошло? Был ли на пластинах избыток скрытого электрического заряда и хватило ли аккумуляторной кислоты для их восстановления без дальнейшей зарядки? Был ли такой избыток электричества, что оно текло «против течения», поскольку при подключении клемм тока не было? Я просто ничего не знаю о том, как течет электричество?

Спасибо за любые уточнения, которые вы можете предоставить этому новичку.

Edit: Я должен отметить, что я также скрутил зеленый цвет и землю на блоке питания компьютера, чтобы указать его состояние «включено».Однако на протяжении всего эксперимента он был отключен от электросети. * Разбавьте аккумуляторную кислоту дистиллированной водой и серной кислотой. Так оно и пришло. Упаковка сомнительна, но отзывы указывают на серную кислоту ~ 30-35% по объему, поэтому в основном это просто дистиллированная вода.

Блок питания ПК для зарядных устройств

Блок питания старого типа AT (те, что с лопастью переключатель на боковой)

Вам повезло. Этот источник питания старого образца (PS) намного проще в эксплуатации и как правило, корпус больше, поэтому у вас больше места для работы.Подключите блок питания и включите его. Вентилятор должен работать. Используйте свой VOM и определите пару проводов правильного цвета для +12 вольт. Это довольно просто. Выберите концы проводов в вилке всего 4 провода. Вероятно, это было связано с дисководом (жестким диском или дискетой). Будет 2 центральных провода того же цвета (возможно, черного), а внешние провода будут разных цветов (возможно, желтого и красного).Используйте ВОМ с один датчик в центральном проводе и один датчик во внешнем проводе. Вы обнаружите, что центральные провода приравниваются к отрицательному пост на батарее, а внешние провода — положительные. Достаточно проб и ошибок вы можете определить большинство цветов. Я видел следующие:

Желтый +12 В

Черный Общий

Красный +5 В

Оранжевый -5 В

Синий -12 вольт

Белый Электропитание хорошее.

Будет много проводов +12 вольт, много проводов +5 вольт, ужасно много «Common» провода и только один или два провода -12 вольт или -5 вольт. Обычно имеется только один провод «Power Good».

Теперь, когда вы знаете, какой цвет составляет +12 В, а какой — «Обычный», все, что вам нужно сделать, это «спроектировать» свою коробку. С мы планируем использовать этот блок питания вместо автомобильного аккумулятора. Я предполагаю, что он будет иметь «положительный» и «отрицательный» значения. посты, прям как аккумулятор.Выберите два места на корпусе PS, которые позволят закрепить зарядное устройство без замыкания. наружу, и что вы можете провести несколько проводов внутри корпуса PS к этим местам. Сходите в местный хозяйственный магазин и получить:

2 резиновые втулки (достаточно центральных отверстий 1/4 дюйма)

2 крепежных болта № 10 длиной 1 1/2 дюйма (они должны через люверсы без проблем)

4 гайки на болты

4 плоские шайбы на болты

4 большие (наверное 1/4 дюйма на 2 дюйма в диаметре) нейлоновые (или другие изоляционные) шайбы с небольшими (1/4 дюйма) отверстиями в центре

Теперь вернемся к магазин.Если у вас есть лента Red Zagi и лента Black Zagi, заклейте одну сторону нейлоновой шайбы красным и одна сторона другой нейлоновой шайбы с черным цветом. Обрежьте ленту с открытой стороны острым ножом. Просверлите отверстие 5/16 на каждое из выбранных вами мест. Вставьте резиновую втулку в каждое отверстие. Затем отрежьте 3 или 4 провода +12 В до нужной длины, чтобы первая дырка. Припаиваем эти провода к болту (возле головки).«Кольцевые клеммы» — скорее отличный вариант. чем припаивать непосредственно к болту, но подойдет любой вариант. Наденьте гайку на болт и затяните ее до припаянного провода. Надеть на болт металлическую плоскую шайбу. Затем наденьте на болт одну из нейлоновых шайб. Проденьте болт через втулку. При необходимости вы можете немного обрезать нейлоновую шайбу, если она с чем-то конфликтует, но оставьте достаточно нейлоновой шайбы, чтобы она была убедитесь, что провода не соприкасаются с корпусом PS.Установите еще одну нейлоновую шайбу (красную, если вы заклеили ее лентой Zagi) на болт. Наденьте на болт еще одну металлическую плоскую шайбу. Наденьте на болт еще одну гайку и затяните. Теперь у вас должно быть «Позитивное». батарейный столб, полностью изолированный от корпуса PS.

Затем отрежьте 3 или 4 общих провода на длину до добраться до второй дыры. Повторите тот же процесс, что и с проводами плюс 12 В, на этот раз используя «общие» провода.Используйте шайбу из черного нейлона, если вы покрыли ее лентой Zagi. Теперь у вас есть отрицательный пост для вашего новый PS. Теперь осталось отрезать лишние провода, чтобы они не закорачивались. Наденьте крышку обратно на питание поставьте и отметьте сообщения как «Положительные» и «Отрицательные». Вы сделали.

Новее Блок питания типа AT (с кнопочным переключателем сбоку или на шнуре)

Этот блок питания (PS) немного сложнее, чем старые, и требует немного больше работы.Мало того, что они, как правило, меньше и есть меньше места для работы внутри коробки PS.

Подключите блок питания и включите его. Вентилятор может работать или просто начать, а затем остановиться. Обычно следующие цвета обозначают определенные функции — обычно:

Желтый +12 В

Черный Общий

Красный +5 В

Оранжевый Хорошее питание

Синий -12 В

Белый -5 В

Зеленый или серый Источник питания — Вкл. (PS-on)

Примечание: «PS-on» может не существовать.Если он существует, он будет частью двухрядной вилки, которая перешел на материнскую плату ПК.

Если вентилятор не работает постоянно, выключите питание и временно подключите «Power Good» на линию +5 ​​вольт. Это должно привести к стабильной работе вентилятора при включении PS. Если вентилятор по-прежнему не работает, найдите линию «PS-on» и подключите ее к линии «Common».PS-на Линия фактически является переключателем для включения (или выключения) PS. Используйте свой VOM и определите пару проводов правильного цвета для +12 вольт. Это довольно просто. Выберите набор проводов, который заканчивается вилкой, состоящей всего из 4 проводов. Вероятно, это было связано с дисковым приводом (либо жесткий диск или дискету). Будет 2 центральных провода одного цвета (возможно, черного), а внешние провода будут разными. цвета (возможно желтый и красный).Используйте VOM с одним датчиком на центральном проводе и одним датчиком на внешнем проводе. Что ты будешь Обнаружено, что центральные провода приравниваются к отрицательному выводу на батарее, а внешние провода — к положительному полюсу. С достаточным методом проб и ошибок можно выделить большинство цветов. Будет много проводов на +12 вольт, много проводов на +5 вольт, ужасный много «общих» проводов и только один или два провода -12 вольт или -5 вольт.Обычно есть только один «Power Good» и один провод PS-on.

Сделайте постоянное соединение от «Power Good» на +5 В (припаяйте с помощью немного термоусадки).

Теперь, когда вы знаете, какой цвет — +12 В, а какой — «Обычный», теперь вам нужно «спроектируйте» вашу коробку. Поскольку мы планируем использовать этот блок питания вместо автомобильного аккумулятора, я представляю его «положительным». и «отрицательные» посты, прям как аккум.Выберите два места на корпусе PS, в которых зарядное устройство будет закреплен без короткого замыкания, и что вы можете провести несколько проводов внутри корпуса PS к этим местам.

Вы может пожелать переместить выключатель питания PS в корпус, если это выключатель типа «пуповина». Я обычно выбираю вставьте его в отверстие, через которое «пуповина» выходит из корпуса БП.Этот процесс просто вопрос распайки проводов, их укорачивания и перепайки. Обязательно припаяйте провода правильного цвета обратно к такие же ушки на переключателе. Возможно, вам понадобится просверлить пару отверстий в корпусе PS, чтобы удерживать переключатель. и установите коммутатор, используя эти отверстия и винт через каждое.

Сходите в местный хозяйственный магазин и получите:

2 резина втулки (центральные отверстия 1/4 дюйма подойдут)

2 крепежных болта # 10 длиной 1 1/2 дюйма (они должны проходить через втулки без проблем)

4 гайки для болтов

4 плоские шайбы для болтов

4 больших (вероятно, 1/4 дюйма на 2 дюйма диаметром) нейлоновые (или другие изоляционные) шайбы с маленькими (1/4 дюйма) отверстиями в центре

Автомобильный фонарь на 12 В с розетка и провода (я использую небольшой габаритный светильник с желтой линзой).Лампа №1154 или №1156 также подойдет.

Сейчас обратно в магазин. Если у вас есть лента Red Zagi и лента Black Zagi, закройте одну сторону нейлоновой шайбы. с красной и одной стороной другой нейлоновой шайбы с черным. Обрежьте ленту с открытой стороны острым ножом. Дрель отверстие 5/16 в каждом из выбранных вами мест. Вставьте резиновую втулку в каждое отверстие. Затем отрежьте 3 или 4 провода +12 В до длина до первого отверстия.Припаиваем эти провода к болту (возле головки). «Кольцевые клеммы» — отличный вариант, а не пайка непосредственно на болт, но подойдет любой вариант. Наденьте гайку на болт и затяните припаянные провода. Надеть на болт металлическую плоскую шайбу. Затем наденьте на болт одну из нейлоновых шайб. Проденьте болт насквозь люверс. . При необходимости вы можете немного обрезать нейлоновую шайбу, если она конфликтует с чем-то внутри корпуса PS, но оставьте достаточно нейлоновой шайбы, чтобы провода не соприкасались с корпусом PS.Наденьте на болт еще одну нейлоновую шайбу (используйте Красная нейлоновая шайба, если вы заклеили ее лентой Zagi). Наденьте на болт еще одну металлическую плоскую шайбу. Надеваем еще одну гайку на болт и затяните это. Теперь у вас должен быть «положительный» вывод аккумуляторной батареи, который полностью изолирован от корпуса PS.

Nследующий отрежьте 3 или 4 общих провода до такой длины, чтобы достать до второго отверстия. Повторите тот же процесс, что и с плюсом. Провода на 12 вольт на этот раз с использованием «общих» проводов.Используйте черную нейлоновую шайбу на этом, если вы покрыли один Zagi. Лента. Теперь у вас есть отрицательный пост для вашего нового PS.

Зарядное устройство

от блока питания ПК

Зарядное устройство от блока питания ПК
Мой мустанг провел зиму в гараже, а этой весной оказался с незаряжаемым аккумулятором. Батареи было всего около 6 месяцев, поэтому я начал исследовать, как батареи умирают и что с этим делать. Этот проект возник в результате этого исследования.

Вроде все сделал не так. Батарею пустил полностью разрядился, поплавковой зарядки нет. Зимой я заводил машину несколько раз, но так и не позволил полностью зарядить аккумулятор. Я неправильно зарядил аккумулятор стендовым блоком питания. Результат — аккумулятор с сульфонированием.

Итак, я хотел создать зарядное устройство, которое заряжало бы батарею примерно на 10 ампер, если она сильно разряжена, а затем переключалось бы на плавающий заряд около 100 мА, когда батарея почти заряжена.Я хотел использовать один из старых блоков питания для ПК, который у меня валялся, в качестве источника питания для зарядного устройства. В дополнение к зарядке и поддержанию плавающего режима, я хотел периодически прикладывать нагрузку, чтобы слегка разрядить аккумулятор, и после разряда перезарядить.

В середине этого проекта я нашел информацию о десульфаторах и начал исследовать использование десульфонатора вместо зарядного устройства для ПК. После создания этого зарядного устройства я приступил к созданию комбинированного десульфатора-зарядного устройства.Щелкните здесь, чтобы перейти на новую страницу об десульфаторе.

Блок питания ПК был модифицирован для подачи от 10 до 14,1 В.

Обмотки инверторного трансформатора + 5 В и фильтрующие элементы были отключены, как и выпрямитель +12 В, а также все цепи -12 В и -5 В. Обмотка инвертора на 12 В затем была подключена к тому, что раньше было сильноточным выпрямителем +5 В. При таком расположении инвертор должен выдавать 10 ампер при +14.1 вольт при потребляемой мощности 200 Вт. Обмотка инвертора на 12 В, однако, может быть не рассчитана на постоянную подачу такого большого тока.

Цепь перенапряжения была изменена для отключения инвертора при напряжении> 15 вольт. Цепь перегрузки по току осталась в покое. Управление напряжением представляет собой делитель напряжения, подключенный к выходу источника питания, и был изменен с тремя точками переключения: 10 В, 13,6 В и 14,1 В.

Схема управления зарядным током была построена для установки напряжения источника питания для правильной зарядки аккумулятора.

Ток в батарее контролируется через резистор сопротивлением 0,1 Ом. Операционные усилители сравнивают полученное напряжение с опорными и возвращают сигнал в источник питания. Когда батарея сильно разряжена, напряжение источника питания падает до +10 вольт, чтобы ограничить зарядный ток до 10 ампер и предотвратить срабатывание цепи перегрузки по току источника питания. По мере того, как аккумулятор принимает некоторый заряд, напряжение питания увеличивается, и ток поддерживается на уровне 10 ампер. Когда напряжение питания достигнет 14.1 вольт, напряжение перестает расти, а зарядный ток начинает уменьшаться. При зарядном токе 1 ампер аккумулятор практически заряжен, а напряжение источника питания снижается до 13,6 В для поддержания постоянного тока заряда около 100 мА.

Когда аккумулятор не используется в течение длительного времени, даже с плавающим зарядом, он разлагается из-за расслоения электролита. Чтобы предотвратить эту деградацию, была построена схема, которая периодически немного разряжает аккумулятор, а затем подзаряжает его.Пузырьки и тепло, возникающие при перезарядке, перемешивают электролит.


Блок питания ПК
Большинство блоков питания ПК имеют очень похожие схемы. В разделе «Ссылки» ниже есть несколько ссылок на сайты, на которых описывается модификация компьютерных блоков питания для питания оборудования с напряжением 13,8 В. Я только проследил схему конкретного источника питания, который использовал достаточно, чтобы иметь возможность модифицировать его, чтобы выдавать 14,1 вольт.

После удаления компонентов -5 и -12 В я отключил обмотку трансформатора +5 В и перемыл плату, чтобы подключить обмотку 12 В к сильноточному выпрямителю.Затем я изменил схему защиты от перенапряжения.


Схема превышения напряжения сравнивает опорное напряжение 1,7 вольт к крану напряжения на резистор строке. Внизу гирлянды был диод на -5 вольт и резистор на -12 вольт. Это поместило соединение этих двух компонентов на -5,6 В при нормальном напряжении питания. Верх строки был подключен через диод к +5 вольт. Общее напряжение на струне было [5,5 В -.Падение напряжения на диоде 6 В + 5,6 В] = 10,5 В. Струна была отпущена для получения входного сигнала в 0,73 раза. Итак (0,73 x 10,5 В) -5,6 = 1,7 вольт. Я подключил соединение двух компонентов отрицательного напряжения к земле, что фактически подняло нижний конец цепочки делителя напряжения на 5,6 вольт. Поскольку верхний конец струны изначально был подключен к линии +5 В, а теперь переходит к линии +14,1 В, я поставил стабилитрон на 12 В последовательно с входом 5 В. Таким образом, выходное напряжение строки становится равным 0,73 x (14.1В — 12В — 0,6В падение диода) = 1,1 вольт. Повышенное напряжение отключает питание при 14,9 В [0,73 x (падение на диоде 14,9–12–0,6 В) = 1,75 В.

Микросхема контроллера ШИМ (TL494) регулирует ширину импульса инвертора, чтобы поддерживать напряжение обратной связи на уровне 2,5 вольт. Для блока питания, который я модифицировал, была цепочка резисторов, подключаемых к +5 В, +12 В и земле. Снять резистор +5 В и пересчитать +12 В для подключения +14,1 В было довольно просто. Эта цепочка резисторов была дополнительно разделена, чтобы обеспечить переключение диапазона для части управления током зарядного устройства.

Контроллер тока
Когда я начал этот проект, я искал в Интернете конструкцию зарядного устройства для аккумулятора. Я выбрал зарядное устройство на сайте Энтони ван Руна от Яна Хамера, но потом начал думать о возможных изменениях. У меня не было под рукой регулятора напряжения или сильноточного трансформатора, поэтому мне пришлось бы проектировать регулятор и покупать или перематывать трансформатор. Я скупец; спроси мою жену. У меня было несколько старых блоков питания для ПК, поэтому я решил изменить схему для управления блоком питания вместо микросхемы последовательного регулятора напряжения.

Операционный усилитель U1B поддерживает зарядный ток на уровне 10 ампер до тех пор, пока напряжение аккумулятора не достигнет 14,1 вольт. Операционный усилитель U1A устанавливает выходное напряжение зарядного устройства на 13,6 вольт после того, как зарядный ток упадет до 1,1 ампера при напряжении заряда 14,1 вольт.

U1A-OUT имеет низкий уровень до тех пор, пока ток через R21 не станет меньше 1,1 А. D1 имеет обратное смещение.

U1B-OUT высокий для разряженной батареи. Резисторы с R4 по D2 подключаются параллельно к цепочке резисторов R22 / R23 / R24 / R25, которые вместе с R26 определяют напряжение обратной связи источника питания.U1B-OUT включается достаточно, чтобы уменьшить ток в цепочке делителя и изменить напряжение обратной связи. Выходное напряжение источника питания варьируется от 10 до 14,1 вольт, пока ток через R21 не даст 1 вольт. Это зарядный ток 10 ампер. Ток поддерживается на уровне 10 ампер, поскольку батарея заряжается за счет включения U1B-OUT и уменьшения большей части тока, идущего на строку делителя. Таким образом, выходное напряжение источника питания увеличивается, чтобы поддерживать напряжение обратной связи источника питания на уровне 2,5 вольт.

U1B выходит за пределы диапазона регулирования, когда напряжение питания достигает 14,1 В. Обратная связь источника питания устанавливается R25 в цепочке резисторов R22 / R23 / R24 / R25 / R26. По мере того, как аккумулятор продолжает заряжаться при фиксированном напряжении 14,1 вольт, ток через R21 и напряжение на нем уменьшаются. Когда напряжение на R21 падает ниже 110 мВ, что соответствует скорости заряда 1,1 А, U1A-OUT становится высоким. Это позволяет соединить R2 и R3 параллельно через смещенный в прямом направлении D1 с цепочкой резисторов R22 / R23 / R24 / R25 и установить напряжение зарядки равным 13.6 вольт для «плавающей» зарядки.

Кондиционер батареи
Прошу прощения за запутанное описание следующей строки счетчика. Чтобы оптимизировать пространство на плате, мне пришлось перебросить счетчик пульсаций с U2A на U3A, на U2B, на U3B.

Из цепи управления током зарядный ток проходит через реле кондиционера аккумулятора к аккумулятору. Реле переключается между подачей зарядного тока и разрядкой аккумулятора через заряжающую лампочку.

U1C — это релаксационный генератор с частотой 0,1 Гц, слегка несимметричный из-за D12, который предназначен для ускорения спада тактового импульса счетчика 74393. Семь с половиной дней спустя выход Q3 четвертого счетчика (второй счетчик в двойном счетчике 74393, U3) становится высоким и подает + 2,4 В на R45. Другой конец R45 зажимается на 0,8 В из-за низкого выхода второго счетчика (выход Q3 первого счетчика в U3). Двадцать одна минута спустя выходной сигнал второго счетчика становится высоким на 42 минуты и отключает зажимы R45 и +2.На U1D подается 4 В. Выходной сигнал U1D имеет высокий уровень, включая Q11 и реле. Аккумулятор разряжается через лампу дальнего света фар автомобиля в течение 42 минут или до тех пор, пока напряжение аккумулятора не упадет ниже 11,6 В. Когда напряжение на R51 падает ниже 11,6 вольт, D15 тянет напряжение, приложенное к U1D ниже + 1,6 В качестве ссылки на стыке R54 и R55.

Q6 был включен, когда U1D включил реле. Это разрядил C12. Теперь, когда на выходе U1D падает низкий уровень, Q6 отключается, и конденсатор подает положительный импульс сброса на счетчики.Цикл кондиционирования начинается снова, когда реле подключает аккумулятор к зарядному току.

При выходе из строя цепи питания аккумулятор может быть подключен к лампе фары и разрядиться, когда не будет источника для подзарядки аккумулятора после разряда. Кроме того, батарея будет продолжать незаметно разряжаться через электронику зарядного устройства, если источник питания действительно идет на юг. Имеется сигнализация о низком потреблении тока, чтобы предупредить меня, если возникнет такая ситуация, и отключить разрядную нагрузку.Транзистор Q12 включается сигналом исправности питания от источника питания и отключает Q13 и сигнализацию. Если источник питания выходит из строя, потеря сигнала хорошего питания включает аварийный сигнал, который получает питание от батареи, и подтягивает вход U1D к низкому уровню, чтобы разблокировать реле разряда. Состояние счетчика сохраняется благодаря снятию напряжения + 5В с батареи. Таким образом, если сбой источника питания был просто кратковременным сбоем питания, счет продолжится, как только источник питания перезапустится.


К началу

После того, как компоненты + 5V, -5V и -12V были удалены из источника питания ПК, было место для добавления небольшой печатной платы для добавленной схемы. Лампа фары размещалась в небольшом ящике на передней части корпуса блока питания ПК. Он изготовлен из перфорированного металла и охлаждается воздухом, выходящим из блока питания компьютера. Добавленная коробка также содержит резистор измерения тока, R21, и реле заряда-разряда.

Маленькая печатная плата содержит большинство компонентов, добавленных к блоку питания ПК. Доска была вытравлена ​​в технике фотобумаги, упомянутой на главной странице моего сайта. Я подумывал об использовании программного обеспечения для создания схем, рисования и автотрассировки на печатной плате, но кривая обучения этим специализированным пакетам высока для тех, кто делает, может быть, две небольшие платы в год. В настоящее время я использую ручной метод, в котором задействованы три программы. Однако я использую эти три программы в других областях, поэтому я уже могу управлять программами.

Я рисую макет с помощью DesignCAD, затем отделяю слой с необходимыми надрезами и зеркально отражаю изображение. Затем я распечатываю вырезанный слой на виртуальном принтере. Виртуальный принтер использует драйвер принтера Postscript и программу Ghostscript. Виртуальный принтер создает файл PNG, который я открываю с помощью Irfan View. Используя Irfan View, я меняю изображение на негатив и распечатываю его на струйной фотобумаге с помощью лазерного принтера. Наконец, я глажу изображение и протравляю доску.Вы можете получить все подробности, перейдя в раздел «Случайные ссылки, которые не подходят ни в какое место» на моей главной странице.

Я сделал резистор 0,1 Ом для R21 из нихромовой проволоки от старого нагревательного элемента сушилки. Нихромовая проволока диаметром 0,052 дюйма имеет сопротивление 0,2595 Ом на фут, поэтому 4 витка проволоки диаметром 3/8 дюйма дают 0,1 Ом.

Чтобы убедиться, что сопротивление паяного соединения не влияет на измеряемое напряжение, я использовал контакты Кельвина. К нихромовому проводу были припаяны четыре провода: два для измерения напряжения и два для прохождения тока от источника питания к батарее.Один из проводов с контактом Кельвина также является источником питания для схемы на дополнительной плате компьютера, поэтому провода измерения напряжения не являются чисто контактами Кельвина.

Я припаял провода к нихромовой проволоке, отшлифуя проволоку и используя водопроводный флюс, содержащий хлорид цинка. Этот кислотный флюс требует тщательной очистки после пайки с использованием растворителя, чтобы избавиться от парафина во флюсе, и длительного замачивания в растворе бикарбоната натрия, моющего средства и теплой воды для нейтрализации кислоты.

К началу

Авторские права Дейл Томпсон.

Последняя редакция: 29 ноября 2006 г.

Преобразование блока питания компьютера ATX в блок питания 12 В постоянного тока для зарядного устройства


Размещено: | Больше сообщений о зарядное устройство строить журнал липо источник питания

Я только что закончил сборку блока питания 12 В постоянного тока для своего LiPo. зарядное устройство, следуя этим двум статьям:

Я купил Зарядное устройство HobbyKing ECO8 от HobbyKing, если у меня будет подходящая стенка-бородавка валяется.Немного осмотревшись, я понял, что у меня, вероятно, не было ни одного источника 2A + требуется для зарядки LiPos, поэтому я решил попробовать мощность компьютера преобразование поставок, это проект, который я рассматривал раньше, когда баловаться с микроконтроллерами. Решил пропустить 5В вывод, чтобы не усложнять, я всегда могу построить еще один, чтобы получить полная версия «стендового питания».

Детали:

Завалялся блок питания ATX, биты, которые я добавил, были (от JayCar):

  • 2 розетки типа «банан»
  • Резистор с проволочной обмоткой, 1 x 10 Ом, 10 Вт (песчаная коса)
  • Связка из термоусадочной трубки.

И 4 винтика для крепления кожуха вентилятора, пара кабельные стяжки, немного термопасты.

Шагов:

  1. Разъедините блок питания и очистите его (они обязательно грязный)
  2. Отрезать коннекторы
  3. Переместите вентилятор за пределы коробки, чтобы освободить место
  4. Вырезать отверстия в насадке для дефлектора для розеток типа банан
  5. Обрежьте ненужные провода (все, кроме зеленого, 1 красного, желтого и половина черного)
  6. Изолируйте оставшиеся кусочки обрезанных проводов
  7. Припаяйте красный провод и 1 черный провод к резистору (это дает питание нагрузки, поэтому она не будет отключена, когда ничего не подключено в)
  8. Припаяйте зеленый провод к концу черного провода резистора (т.е.е. заземлить)
  9. Припаять желтые провода к банановому разъему для +12 В постоянного тока. (красный)
  10. Припаяйте оставшиеся черные провода к банановому разъему для GND. (черный)
  11. Термоусадочная изоляция для всего
  12. Нанесите термопасту / смазку на резистор (если возможно) и используйте кабельные стяжки, чтобы прикрепить его к корпусу через некоторые отверстия в вентиляционное отверстие.
  13. Соберите

Тестирование:

Делайте это на свой страх и риск, сетевое питание опасно и т.п.

  1. Проверить заземление черной вилки с помощью мультиметра
  2. Проверить заземление корпуса
  3. Проверить с помощью мультиметра красный штекер на отсутствие короткого замыкания
  4. Выключить и подключить к сети переменного тока, отсутствие дыма, искр и т. Д.
  5. Проверить отсутствие напряжения на корпусе и вилках
  6. Отключите переменный ток, включите, подключите к сети переменного тока (т. Е. Хотите прикоснуться к Переключатель переменного тока при включении, а не корпус или что-нибудь …)
  7. Проверить отсутствие дыма, искр, вентилятор должен включаться.
  8. Проверьте напряжение на штекерах, должно быть примерно 12 В.
  9. На корпусе блока нет напряжения.
  10. Проверить выключатель питания.

Фото:

Внутри довольно аккуратно:

Передняя панель (была задняя), сверху установлен вентилятор.

Проверка выходного напряжения:

Подключение зарядного устройства LiPo (сначала подключите его, затем включите мощность), он загрузился и работает:

Я еще не тестировал его при высокой нагрузке (например,грамм. зарядка LiPo аккумулятора), скрестив пальцы, это все выдержит.

Обновление:

Блок питания работал отлично при зарядке двух 3S1P Литий-полимерные батареи емкостью 2200 мАч. Осталось красиво и круто и без взрывов!

Преобразование компьютерных блоков питания (БП) в стабилизированные 13,8 В постоянного тока 20 А


С помощью нескольких модификаций и двух дополнительных резисторов вы можете модифицировать старый блок питания AT или ATX для ПК на стабилизированный 13.Блок питания 8 Вольт / 20 Ампер.

Некоторые советы по безопасности: Внутри корпуса высокое напряжение, которое может привести к летальному исходу. Перед открытием корпуса блока питания ПК отключите кабель питания и выключите переключатель на задней панели. Разрядите конденсаторы источника питания, подключив резистор 100 Ом между черным и красным проводом на выходной стороне. Однако высоковольтные конденсаторы на входе все еще могут быть заряжены. Лучший способ разрядить все конденсаторы — оставить блок питания отключенным на несколько дней.Вы вносите изменения на свой страх и риск.


Модифицированный блок питания AT. Новая передняя часть сделана из печатной платы.


Внутри модифицированного блока питания ПК.

Отличия AT и ATX на практике: Существуют две версии блоков питания для ПК. Старые версии называются AT, а более новые — ATX. Оба являются импульсными блоками питания, и модификация работает практически одинаково. Обе версии обеспечивают несколько напряжений.Регулируется только выход +5 В и рассчитан на ток до 30 А. Наша цель — добиться стабилизации 13,8 В на 20 А или больше, чтобы заряжать автомобильные аккумуляторы или получить источник питания для любительских радиоприемопередатчиков с выходом ВЧ 100 Вт. . Общее требование к источникам питания типа AT — это минимальная нагрузка, чтобы источник мог продолжать работу. Если вы хотите протестировать блок питания ПК, вам необходимо подключить нагрузочный резистор между землей (черный провод) и +5 В (красный провод). Минимальный ток около 1 Ампер. Вместо нагрузки можно взять лампу на 12 Вольт.После модификации нагрузка вам не понадобится. Блок питания ATX имеет зеленый провод для включения. Всегда соединяйте зеленый провод с любым черным проводом. Все черные провода подключены к массе. В противном случае блок питания ATX работать не будет. У старых блоков питания AT нет зеленого провода. В источниках питания AT может достигать напряжения до 14,2 Вольт после модификации. Однако питание ATX может подавать только до 13,8 вольт, потому что у них больше внутренних регуляторов, которые по соображениям безопасности избегают выходных напряжений выше 13.8 вольт. Для зарядки автомобильных аккумуляторов достаточно 13,8 вольт.

Кратко о принципе модификации: Немодифицированный блок питания ПК AT или ATX имеет нерегулируемое напряжение +12 В (желтый провод) и регулируемое +5 В (красный провод). Модификация изменяет выходное напряжение с нерегулируемого +12 В на регулируемое +13,8 В. Поэтому вы вставляете два резистора, которые работают как делитель напряжения. Делитель напряжения снижает 13,8 вольт между желтым и черным проводом до 5 вольт, которые подключены к входу регулятора 5 вольт.Другими словами: отвод делителя напряжения подключается ко входу регулятора напряжения на 5 вольт. Выход 5 В отключен и не используется.


Как модифицировать печатную плату и вставить делитель напряжения для блоков питания ATX и AT (щелкните здесь, чтобы получить более высокое разрешение).

Как это сделать? Извлеките печатную плату из корпуса. Отпаяйте все кабели на выходной стороне и запомните, какие большие паяльные площадки к каким проводам подключены, чтобы вы могли определить паяные площадки для красного, черного, желтого и зеленого кабелей.Иногда у вас есть несколько пэдов одного цвета. В таком случае соедините вместе все контактные площадки одного цвета.

Если у вас есть блок питания ATX, соедините зеленую площадку с землей (черный провод) с помощью куска провода и всегда соединяйте оранжевую площадку с коричневой площадкой.


«Красная» паяльная площадка для +5 В разделена на две части путем царапания острой отверткой.


Новый делитель напряжения.

Изменение печатной платы: Следующим шагом является изоляция красной контактной площадки +5 В путем отрезания дорожки pcp между сердечником тороида и контактной площадкой +5 Вольт.Поэтому вы можете использовать острую отвертку, чтобы поцарапать медную поверхность. Однако никогда не обрезайте тонкую дорожку печатной платы между контактной площадкой +5 В и входом регулятора напряжения +5 В.

Как вставить два резистора для делителя напряжения на печатную плату:

Источник питания AT: Припаяйте 18 Ом / 3 Вт между желтой (+12 В) и красной (отключено +5 В) площадкой. Припаяйте 7,8 Ом / 3 Вт между красной (отключено +5 вольт) и черной (заземляющей) площадкой.

Блок питания ATX: Припаяйте 36 Ом / 2 Вт между желтой (+12 В) и красной (отключено +5 В) контактной площадкой. Припаяйте 18 Ом / 2 Вт между красной (отключено +5 вольт) и черной (заземляющей) площадкой.

Конечно, вы можете регулировать выходное напряжение, незначительно изменяя номиналы резисторов с помощью шунтов.

Поменять местами два выпрямителя: В блоках питания AT на выходной стороне размещены две выпрямительные пары диодов. Большой — для +5 В, а меньший — для +12 Вольт.Вы можете поменять местами оба, чтобы более крупный мог справиться с 20 или более усилителями.


Поменять местами два выпрямителя на +5 вольт и +12 вольт. Это изменение не является обязательным. Иногда возникают нежелательные колебания выходного напряжения, которых можно избежать, добавив дополнительный конденсатор емкостью 1000 мкФ между землей и 13,8 вольт.


Это еще один модифицированный блок питания ПК для моего радиолюбительского трансивера. У меня нет шума на коротких волнах от источника питания, если печатная плата заземлена на металлический корпус.

Другое решение для блоков питания ATX: Другой делитель напряжения также работает и требует меньшего тока.

1. Между «красным (5 вольт)» и «черным (земля)» я поместил два резистора 100 Ом в параллельную конфигурацию.
2. Между «красным (5 вольт)» и «желтым (12 вольт)» я разместил один резистор 2 кОм и один резистор 100 Ом в параллельной конфигурации.

В результате получилось выходное напряжение около 14,2 вольт. Смотрите следующую картинку. Подробности и фотографии здесь.


Еще один пример для ATX-PSU. Выходное напряжение около 14,2 вольт.


Это делитель напряжения на печатной плате блока питания ATX.


Новая проводка со стороны меди.


Внешний вид модифицированного блока питания ATX.

Снижение скорости вентилятора: Обычно полная скорость вентилятора не требуется. Поэтому вы можете уменьшить скорость вентилятора. Я запускаю вентилятор с помощью 5 вольт, которые вы получаете от источника питания -5 вольт.Капля моторного масла на подшипник вентилятора снижает также шум вентилятора.

Очистка блока питания: Использованные блоки питания для ПК покрыты уродливой пылью и грязью. Разберите блок питания и вымойте его в посудомоечной машине перед переделкой. После такой обработки блок питания выглядит как новый. Я не шучу. Оно работает.


Использованные и грязные блоки питания для ПК можно мыть в посудомоечной машине. Сушка происходит в те же дни.

Как доработать корпус? Передняя часть модифицированного блока питания выглядит лучше с куском печатной платы.Здесь вы видите больше изображений, как адаптировать корпуса.


С лицевой стороны суперклеен кусок PCP.


Покройте корпус аэрозольным лаком.


Электролитные конденсаторы со сломанными предохранительными клапанами наверху подлежат замене (чума конденсаторов).

Зарядка автомобильного аккумулятора от блока питания компьютера

Большое спасибо, ребята, за вашу помощь,
, теперь мне нужно знать, регулирую ли я выходное напряжение источника питания до 13.4 или 13,8 вместо 12
и подключить к автомобильному аккумулятору.
будет ли он заряжать его или нет.
и очень просто объясните мне, пожалуйста, почему блок питания после модификации, выдающий 13,4 вольт при 33 ампер, не считается приличным зарядным устройством? !!
, если у вас есть необходимое напряжение и сила тока, что может пойти не так и как это повлияет на срок службы батареи ?!

Мой друг, ничто не заменит хороший трансформатор. Свитчеры хороши до тех пор, пока не перестанут работать, потому что сгорела какая-то деталь.Если у вас есть подходящие напряжение и сила тока, вы можете зарядить аккумулятор. Я говорю в контексте надежности и долговечности конструкции. Хорошие зарядные устройства с трансформаторами можно передавать из поколения в поколение, но коммутатор будет работать до тех пор, пока не остановится какой-нибудь вентилятор из-за плохого качества или пыли. Пожалуйста, не поймите меня неправильно, я просто хочу сэкономить ваше время и деньги.

Посмотрите этот проект:

Контроллер заряда для свинцово-кислотных аккумуляторов 12 В или аккумуляторов SLA
http: // electronicseverywhere.blogspot.com/2012/04/charge-controller-for-12v-lead-acid-or.html

У вас есть исходный код, и вы можете регулировать токи или функции зарядного устройства в соответствии с вашими потребностями.

Второй проект:

Зарядное устройство для аккумуляторов глубокого цикла на 12 В (проект не предназначен для батарей глубокого цикла, они просто так называют проект. Вы можете регулировать токи в фазах зарядки, по умолчанию проект достигает 16 А)
http://www.siliconchip.com.au / cms / A_103191 / article.html

У вас есть исходный код, и вы можете регулировать токи или функции зарядного устройства в соответствии с вашими потребностями.

Вы понимаете, что я не могу разместить весь проект на форуме.

Простое и дешевое решение:

Зарядное устройство с использованием LM338K (корпус TO-3) ограничено током до 5 А
Вы можете установить плавающее напряжение 13,5 В и 13,8 В в зависимости от температуры, ток ограничен внутри LM338K . Конденсатор 4700uF не нужен, замените его на 220uF-330uF.

Пример для тока до 10 А вы можете увидеть здесь:
http://wiringschematic.net/lm338-based-1-20v-10a-adjustable-dc-power-supply-wiring/

Вы можете даже сделать небольшие более умные улучшения этого зарядного устройства с выбором резисторов вручную или каким-либо контроллером или микроконтроллером, и тем самым выбрать выходное напряжение для зарядки.

или посмотрите этот проект:

AVR450: Зарядное устройство для SLA, NiCd, NiMH и Li-Ion аккумуляторов
http: // www.atmel.com/Images/doc1659.pdf

Есть множество проектов и дизайнов, я не могу опубликовать их много из-за правил и авторских прав, но ваша клавиатура встает между вами и Интернетом и полем поиска Google ….

Мой совет по безопасности специально для зарядных устройств:
Когда вы делаете зарядные устройства для аккумуляторов LA, убедитесь, что они безопасны и их можно оставить без присмотра долгое время, чтобы зарядные устройства имели полный контроль над запуском и остановкой, также как и напряжение и ток.

Оставить комментарий